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A new local dependence function based on regression concepts is introduced. This function can characterize the
dependence structure of two random variables localized at the fixed point. Some properties of the local
dependence function are given. Examples of important bivariate distributions are provided.
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1 INTRODUCTION

In recent years several important statistical papers have appeared, extending scalar association
measure to local association functions. Bjerve and Doksum (1993), Doksum et al. (1994)
and Blyth (1993; 1994a,b) introduce and discuss a “correlation curve”, which is a generalization
of the Pearson correlation coefficient. The correlation curve of Bjerve and Doksum (1993) is a
local measure of the strength of association between random variables X and ¥, and is defined as

o1B(x)
[({o1 BN + a2(0]' /2
where f(x) = ¢/(x) is the slope of the nonparametric regression u(x) = E(Y|X =x),
6*(x) = Var(Y|X = x) is the nonparametric residual variance, and 67 = Var(X). The idea
behind the construction of p(x) is based on the fact that in the bivariate normal case

a1p
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px) =

px) =p=

where f is the slope of the regression line. Note that the measure p(x) is not symmetric in
X and ¥, and applies only when X is a continuous random variable.

Jones (1996) provides a motivation for a local dependence function, the mixed partial
derivative of the log density, proposed by Holland and Wang (1987). There are many
ways of measuring dependence between two random variables. In a recent book, Nelsen
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(1999) discusses various measures of dependencies, regarding “correlation coefficient” as a
measure of the linear dependence between random variables, and using the term “measure of
association” for measures such as Kendall’s tau and Spearman’s rho. Various measures of
concordance and their properties are also described in Nelsen’s book, providing relationships
between measures of association and dependence of random variables.

This paper provides a description for a new local dependence function based on regression
concepts. The measure is symmetric in X and Y and its expected value is approximately equal
to the Pearson correlation coefficient. We define this new measure in Section 2, where we
also discuss its basic properties. In Section 3 we provide examples of several important
bivariate distributions. Graphs and tables are collected in Section 4.

2 A LOCAL DEPENDENCE FUNCTION

Let X and Y be random variables (r.v.’s) with marginal distribution functions (d.f.’s) and den-
sities (p.d.f.5) Fx, fy and FYy, fy, respectively. Consider the following function of two variables
E{(X — EX|Y = »)(¥ — E(Y|X = )]

H(x,y) = ,
)= B0 = BXY =) PIVENTY — BGTX = 07

(1)

which is obtained from the expression of the Pearson correlation coefficient by replacing
mathematical expectations EX and EY by conditional expectations E(X|Y =y) and
E(Y|X = x), respectively. By construction, H(x, y) can be interpreted as a local dependence
function characterizing the dependence between X and Yat the point (x, y). After some simple
algebra, (1) can be written as

H(x,y) = P+ ox(»)dy) ’ )
J1+ 01+ 6w
where
_ Cov(X, Y) 3)
OxOy
is the Pearson correlation coefficient of X and Y,
bty = BN g < H RS, @

gy

and oy = /Var(X), oy = /Var(Y) are the standard deviations. The function H(x, y) will be
referred to as a local dependence function. The properties of H(x, y) are given in the follow-
ing lemma.

LEMMA 2.1 Let (X, Y) have a bivariate distribution with finite second moments, Pearson
correlation coefficient p, support Ny y, and local dependence function H = Hy y. Then,

1°. If X and Y are independent, then H(x,y) = 0 for all (x,y) € Nx.y.
2°. |H(x,p)| <1 forall (x,y) € Nx.y.

3°. If H(x,y) = £1 for some (x,y) € Nx.y, then p # 0.

4°. If Y =aX + b, a.s., then HX, Y) = sign(a), a.s.

5°. If p==1 then HX,Y) = £1, a.s.
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6°. If X =aX +band Y =cY +d, then
Hy y(x, y) = sign(ac)Hy y(x, y),

where x =ax+b andy =cy+d.

7°. If H(x,y) = 0 for all (x,y) € Nx.y, then either EX = E(X|Y =y)or EY = E(Y|X =Xx)
forall (x,y) € Nxy, and p = 0.

8°. The point (x*,y*) satisfying ¢x(y*) = ¢y(x*) =0 is a saddle point of H and
H(x*, y*) = p.

Proof  For proving 1°, note that when X and Yare independent, then p = 0 and conditional
expectations of X and Y coincide with expectations of X and ¥, so that ¢ (y) = ¢y (x) = 0 for
(x,») € Nx.y. Consequently, by (2), H(x,y) = 0 for (x,y) € Nx y.

For proving 2°, use Schwarz inequality.

For proving 3°, note that the condition |H(x,y)| = 1 produces

10+ $x(Mby @] = 1+ 21 + B2 ). (5)
Squaring both sides of (5) and simplifying leads to
PP+ 20¢x(Ndy () = 1+ ¢ (1) + ¢7 (), ©)

which is impossible if p = 0.

For proving 4°, define the set 4 = {(x, y):y = ax+ b, x = X(w), y = Y(w)}, which by
assumption has probability one, and note that the function H takes the constant value of
sign(@) on A. Indeed, let (x,y) € A. Then, y=ax+b and x=(y—b)/a, so that
EY|X =x)=ax+ band E(X|Y =y) = (y — b)/a = (ax + b — b)/a = x, which implies that
EX —x and () = a(EX—x).

ox lalox

dx(y) =

Finally, substituting the above along with p = a/|a| into (2), we obtain the assertion.
For proving 5°, first note that the condition p = £1 implies that the distribution is concen-
trated on a straight line, and then use 4°.

For proving 6°, apply (2) noting that ¢3(3) = sign(a)dy(y) and ¢3(¥) = sign(c)py(x),
while the correlation of X and Y is the same as sign(ac) times the correlation of X and Y.
For proving 7°, note that if H(x, y) = 0, then the numerator of (2) is equal to zero, so that

EXEY + poyoy = EXAy(x) + EYAx(y) — Ax(y)4y (%), (7)
where Ay(x) = E(Y|X = x) and Ax(y) = E(X|Y = y). Differentiating (7) twice with respect
to x and y leads to

d d
—A —A =0, 8
A0 g Ax() ®)
so that either Ay(x) or Ax(y) is equal to a constant. Suppose that Ax(y) = E(X|Y =y) = C.
Then, C = EC = E(E(X|Y)) = EX, so that
$x(3) = EX — Ax(y) = EX — EX = 0

and consequently p = 0. A similar conclusion follows if Ay(x) = C. The result follows.
For proving 8°, write

H(x,y) = h(dx(y). ¢y(x)), )
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where
p+1iz
it z) = ——. 10
A= ez 0
Then, the partial derivatives of % are
. z— pt . t—pz
h(t,z) = N and h.(t,z) = N (11)

We see that for |p| < 1, the only critical point of % is the origin. Further, differentiating A
twice with respect to ¢ and z we obtain

—3tz — p(1 — 2¢%) —3tz— p(1 — 22%)

hy(t,z) = NEE Y and A (t,z) = NI (12)
while the mixed derivative is
et ) = hat2) = 7 Zz;;g(fiti e (13)
Consequently, at the critical point (0, 0) we have
hu(0, 0)h=-(0. 0) — [0, O)F* = p* — 1 <0, (14)
showing that the origin is a saddle point of 4. The result follows. |

Remark Formula (2) suggests a possible estimator for the local dependence function
H(x, y). Nadaraya (1964) and Watson (1964) independently proposed the following estimate
for the regression functions E(X|Y = y) and E(Y|X = x), respectively,

_ Yo XiK(y — Y))/hy) Yo YiK((x — X3)/hy)
Zz"lzl K((y - Yl)/hn) Z:’lzl K((X - sz)/hn)
where (X;, Y;),i=1,2, ..., nare the data, K is an integrable kernel function with short tails,

and 4, is a width sequence tending to zero at an appropriate rate. Therefore we have the
following estimate for H(x, y):

AP(y) and AV (x) =

B+ (X — AP (Y — A7 (x))/(SxSy)

Hy(x,y) = - - : (15)
U+ & = AP0 /831 + (¥ — 4P 0)/8%
where
~ ny XY — Zi)(i Zj Y;

Pn =
X (DX 0 Y v - (1

is a standard estimate for the Pearson correlation coefficient p and _)_( =1/n) X,
Y=1/nY,%, 82 =1/(n—1)Y,(X; —X)* and $2 = 1/(n — 1) L (¥; — V)~

Remark The expected value of H is obtained by weighted integration of H with respect to
the joint density f of (X, Y),

EH = E[H(X. )] = ”H@a W) drdy, (16)
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and is always finite since |H(x, y)| < 1. As we see in the next section, this average nearly
coincides with the Pearson correlation coefficient. Since H(x, y) is basically a correlation
when we concentrate at a particular point (x, y), it is plausible that, in some smooth cases
not far from linearity, the operation of averaging brings us back to the initial quantity — the
classical correlation coefficient.

3 EXAMPLES

In this section we illustrate the concept of local linear dependence function by means of four
examples, chosen to demonstrate the special features of the function at hand. For brevity, we
shall skip most derivations and refer the reader to Bairamov et al. (2000) for a more detailed
discussion.

3.1 Bivariate Normal Distribution

For a mean zero bivariate normal distribution with unit variances and correlation p, we have

2
VI+p22 1+ 2

The Pearson correlation coefficient corresponds to the local dependence function at the
origin. Figure 1 contains selected graphs of the local dependence function for various values
of p. We see that H(x, y) takes large values when (x, y) lies near the diagonal x = y, and small
values when (x, y) lies in reverse sides. As shown in Bairamov ef al. (2000), on any circle
centered around the origin of fixed radius » > 0, the function H attains maximum value at
0 = /4, 5n/4, and its minimum value at 6 = 3n/4, 7n/4 (in polar coordinates x = rcos 0
and y = rsin ). Moreover, for any fixed 6 € [0, 2n), the function A(r) = H(rcos 6, rsin 0)
admits the following limit at infinity:

—1, for 0 € (n/2,m)U (3n/2,2n),
lim A(r) = 0, for 8 =0,n/2,m 3n/2. (18)
e 1, for 6 € (0,7/2) U (n,31/2).

H(x,y) =

Thus, we may have a point (x, y) for which the density f is almost zero, and yet the local
dependence function H is close to its maximal value of one. Bairamov et al. (2000) compared
values of H(x, y) and f(x, y) for various choices of x and y, finding that when (x, y) is near the
origin (where the density attains the largest value), the values of H concentrate tightly near p,
while the values of H become more spread out and eventually cover almost the entire range
from —1 to 1 as the point (x, y) gets further away from the origin (and values of f decrease
towards zero).

The average value EH given by (16) can be approximated through the numerical integration of
the function H (x, y)f (x, y). Table I contains selected numerical values of p and EH = EH(X, Y).
We used Monte Carlo integration with a sample size n = 10,000 to evaluate the values of EH.
Remarkably, p and EH are in close agreement, especially for values of p near zero.

3.2 Farlie-Gumbel-Morgenstern Distribution

Consider the one-parameter family of Farlie-Gumbel-Morgenstern (FGM) distributions with
uniform marginals, given by the p.d.f.

) =1+l —=2x)(1-2y), 0<x,y<1, —-1=<a=<l. (19)
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For generalizations and further discussion, see Johnson and Kotz (1975; 1977). Here, the
local dependence function takes the form

p +3p*(1 = 2x)(1 —2y)
V1+3p2(1 — 2021 +3p2(1 — 29

where p = a/3 is the Pearson correlation coefficient. The local dependence function co-
incides with the correlation coefficient at the point of symmetry (x,y) = (1/2,1/2). In
Figure 2 we present selected graphs of local dependence function for FGM distributions.
Unlike the normal case, where the value of H may approach one even though the density
approaches zero, here the dependence function is close to zero when the density is close
to zero, and the dependence gets stronger as the values of f, increase.

In Table II we provide some numerical values of EH for selected values of . Again, the
average values of H are remarkably close to the Pearson correlation coefficient. In fact, as
shown in Bairamov et al. (2000), we have

EH = EH(2) = EH(X, Y) = I, () + Db(0),

W,
R(x) = 7 3 L,
1

1., 1 3 & 4
— — - = 21
I(x) log” R(x) 3x 7x —1—1 15x +0x") (x— 0), (21)

H(x,y) = (20)

where

1 3 R 1
L(x)=—(v3+x2—=logR(x) ) =—=x ——xX+0(x") (x— 0).
4x |x| 27 135

Thus, for « close to zero, we have EH(xt) = p 4+ O().

3.3 Bivariate Exponential Conditionals Distribution

Consider the following bivariate distribution, referred to as a bivariate exponential condi-
tionals (BEC) distribution by Arnold and Strauss (1988), with joint p.d.f.

S, y)=kexp(—x —y—dxy), 0=<x,y,<o00, 0=0, (22)
where
=S 2
and
Ei(z) = Joo ? dt (24)

is the exponential integral function (see, e.g., Abramowitz and Stegun, 1965, formula 5.1.1).
Here the conditional distributions are exponential and the marginal distributions are indepen-
dent for 6 = 0 (k = 1). For this family, the local dependence function is

d+k—k4(k—1=38/1+ )k —1—35/(1+ dx))
VIS +k—k2+(k—1-0/0+ ) Vkd+k—k2+(k—1—03/(1 +oy)°
(25)

H(x,y) =
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and we have
1 1 1 1 k—k+96
H———— ——— | =——— = p. 2
(k—l 3 k—1 5) ko+k—k P 6)

In Figure 3 we provide selected graphs of the local dependence function. The expected value
of H is finite, and can be approximated through the numerical integration of the function
H(x,y)f(x,y) for any given value of ¢. Table IIl contains numerical values of p and
EH = EH(X, Y) for selected values of 6. We used Monte Carlo integration with sample
size n = 10,000 to evaluate the values of EH. To simulate random samples from the BEC
distribution we used the rejection algorithm described in Arnold and Straus (1988). It is
apparent that p and EH are in close agreement, especially for small values of 0.

3.4 Gumbel’s Bivariate Exponential Distribution
In this section we consider the distribution of a random vector (X, Y) with p.d.f.
fx,y) =exp(—x —y — oxp)[(1 + ox)(1 +dy) — 6], x,y>0, 0<o<I, 27)

which was studied in Gumbel (1960). As the marginal distributions of X and Yare standard
exponential, we shall refer to the above distribution as Gumbel’s bivariate exponential (GBE)
distribution. The correlation of X and Y is

p= (%)a/éEl (%) - 1. (28)

For 6 = 0, the variables are independent with p = 0. (At the other extreme, the correlation is
about —0.4037 for 6 = 1.) The local dependence function takes the form

p+(1—(1+0+x)/(1+ )1 —(1+0+)/(1+0p)%)
VIH (1 =1 +0+00)/(1+)2V1I+(1 =146+ )/(1+ )

H(x,y) =

and coincides with p when

V1440 —1
20 '

Figure 4 contains plots of the local dependence function for selected GBE distributions.
Compared with BEC distributions, one may notice that although densities of BEC and
GBE may be quite different, the two distributions seem to have very similar local dependence
structures.

Finally, we calculate the expected value of H for selected values of 6 and compare it with
the correlation coefficient. In the calculation we numerically integrate the function
H(x, y)f (x, y) via Monte Carlo integration with sample size » = 10,000. To generate variates
from the GBE distribution, we followed the conditional distribution approach described in
Johnson (1987, p. 197)." Table IV contains values of p and EH = EH(X, Y) for selected
values of 0. Again, the two quantities are in close agreement.

!There seems to be a misprint in the algorithm presented in Johnson (1987); a corrected version can be found in
Bairamov et al. (2000).
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4 GRAPHS AND TABLES
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FIGURE 1

Perspective plots (left) and contour plots (right) of H(x, y) for bivariate normal distribution with vector
mean zero, unit variances, and correlation equal to 0.1 (top), 0.5 (middle), and 0.95 (bottom).
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FIGURE 2 Perspective plots (left) and contour plots (right) of H(x,y) for FGM distributions with uniform
marginals and parameters o equal to —1 (top), 0.5 (middle), and 1 (bottom).
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FIGURE 4 Perspective plots (left) and contour plots (right) of H(x,y) for Gumbels bivariate exponential
distributions with parameter ¢ equal to 0.1 (top), 0.5 (middle), and 1 (bottom).
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TABLE I Selected Numerical Values of p and EH = EH(X, Y) for Bivariate Normal Distributions with Mean Zero
and Unit Variances.

p 0.01000 0.02500 0.05000 0.10000 0.25000 0.50000 0.95000
EH 0.010000 0.02500 0.05000 0.09992 0.24976 0.49385 0.94383

TABLE II Selected Numerical Values of EH(«) for FGM Distribution with Uniform Marginals.

o 0.00000 0.02500 0.05000 0.10000 0.25000 0.50000 0.75000 1.00000
p=0o/3 0.00000 0.00833 0.01667 0.03333 0.08333 0.16667 0.25000 0.33333
EH(x) 0.00000 0.00833 0.01667 0.03333 0.08333 0.16664 0.24984 0.33273

TABLE III  Selected Numerical Values of p and EH = EH(X, Y) for BEC Distributions with Selected Values of .

1 0.025 0.05 0.1 0.25 0.5 1 2.5 5
p —0.0228 —0.0421 —0.0734 —0.1356 —0.1932 —0.2492 —0.3034 —0.3224
EH —0.0228 —0.0421 —0.0734 —0.1357 —0.1940 —0.2514 —0.3128 —0.3397

TABLE IV Selected Numerical Values of p and EH = EH(X, Y) for Gumbel’s Bivariate Exponential Distributions
with Various Parameters 0.

s 0 0.025 0.05 0.1 0.25 0.5 1

p 0 —0.02384 —0.04563 —0.08437 —0.17462 —0.27734 —0.40365
EH 0 —0.02385 —0.04561 —0.08435 —0.17552 —0.28076 —0.41991
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