

ROBOT LOCALIZATION WITH ADAPTIVE MONTE

CARLO LOCALIZATION AND REAL-TIME

LOCALIZATION SYSTEM

SERCAN ÇAĞDAŞ TEKKÖK

Thesis for the Master’s Program in Electrical and Electronics Engineering

Graduate School

Izmir University of Economics

Izmir

2022

ROBOT LOCALIZATION WITH ADAPTIVE MONTE

CARLO LOCALIZATION AND REAL-TIME

LOCALIZATION SYSTEM

SERCAN ÇAĞDAŞ TEKKÖK

THESIS ADVISOR: Assoc. Prof. Dr. Pınar OĞUZ EKİM

A Master’s Thesis

Submitted to

the Graduate School of Izmir University of Economics

the Department of Electrical and Electronics Engineering

Izmir

2022

ETHICAL DECLARATION

I hereby declare that I am the sole author of this thesis and that I have conducted my

work in accordance with academic rules and ethical behaviour at every stage from the

planning of the thesis to its defence. I confirm that I have cited all ideas, information

and findings that are not specific to my study, as required by the code of ethical

behaviour, and that all statements not cited are my own.

Name, Surname: Sercan Çağdaş Tekkök

Date: 02.01.2023

Signature:

iv

ABSTRACT

ROBOT LOCALIZATION WITH ADAPTIVE MONTE CARLO LOCALIZATION

AND REAL-TIME LOCALIZATION SYSTEM

Tekkök, Sercan Çağdaş

Master’s Program in Electrical and Electronics Engineering

Advisor: Assoc. Prof. Dr. Pınar OĞUZ EKİM

December, 2022

Autonomous systems are a trending topic due to their proven benefits to society and

industry. Therefore, it is crucial to design and deploy reliable systems for safety and

productivity. One of the most important parts of autonomous mobile robots is their

ability to localize themselves and this problem becomes complicated depending on the

use case. So, this thesis proposes a solution to localization problems for dynamic

environments. Problems can be observed when there are dramatic changes in the area

where the robot navigates. These changes become problematic when it starts to prevent

LiDAR from taking matching measurements with the previously generated map. The

proposed method is the fusion of different global localization sources together to have

a more robust solution. These global localization sources are adaptive Monte Carlo

localization and ultra-wideband-based real-time localization system. Both sources

fused with an extended Kalman filter to create a more fault-tolerant system. Although

the system requires sensors to be placed in the perimeter, results showed that the

proposed method is able to eliminate occurring problems when the only active global

v

localization source is Adaptive Monte Carlo Localization.

Keywords: Localization, Sensor fusion. Real-time localization system, Autonomous

robotics, Robot operating system.

vi

ÖZET

ADAPTİF MONTE CARLO KONUMLANDIRMASI VE GERÇEK ZAMANLI

KONUMLANDIRMA SİSTEMİ KULLANILARAK ROBOT

KONUMLANDIRMA SİSTEMİ

Tekkök, Sercan Çağdaş

Elektrik Elektronik Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Doç. Dr. Pınar OĞUZ EKİM

Aralık, 2022

Otonom sistemler, topluma ve endüstriye kanıtlanmış faydaları nedeniyle popüler olan

bir konudur. Bu nedenle, güvenlik ve üretkenlik için güvenilir sistemler tasarlamak ve

devreye almak çok önemlidir. Otonom mobil robotların en önemli parçalarından biri

kendi kendilerini konumlandırma yetenekleridir ve kullanım durumuna bağlı olarak

bu problem karmaşık hale gelmektedir.Bu yüzden bu tez çalışması dinamik

ortamlardaki konumlandırma problemlerine bir çözüm sunmaktadır. Problemler

robotun çalıştığı alanda büyük değişiklikler olduğunda gözlemlenebilmektedir Bu

değişiklikler, LiDAR'ın önceden oluşturulmuş harita ile eşleşen ölçümler almasını

engellemeye başladığında sorunlu hale gelir. Önerilen yöntem, daha sağlam bir

çözüme sahip olmak için farklı küresel konumlandırma kaynaklarının

harmanlamasıdır. Bu kaynaklar adaptif Monte Carla konumlandırması ve Ultra geniş

bant temelli gerçek zamanlı konumlandırma sistemidir. Her iki kaynak genişletilmiş

Kalman süzgeci ile harmanlanarak hataya dayanıklı br system oluşturmaktadır. Sistem

vii

çevreye algılayıcıların yerleştirilmesini gerektirmesine rağmen, sonuçlar önerilen

yöntemin yalnızca adaptif Monte Carlo konumlandırması kullanıldığında ortaya çıkan

sorunları ortadan kaldırabildiğini göstermiştir.

Anahtar Kelimeler: Konumlandırma, Sensör Harmanlama. Gerçek zamanlı

konumlandırma sistemi, Otonom robotik, Robot işletim sistemi.

viii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Assoc. Prof. Dr. Pınar Oğuz Ekim

for her guidance and insight throughout the research.

ix

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS ... ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS ... xiv

CHAPTER 1 : INTRODUCTION ... 1

1.1. Problem Statement .. 2

CHAPTER 2: PRELIMINARIES ... 5

2.1. Exteroceptive sensors .. 5

2.2. Proprioceptive sensors .. 5

2.3. Active sensors ... 5

2.4. Passive sensors .. 6

CHAPTER 3: RELATED WORK .. 8

3.1. Wi-Fi ... 8

3.2. Bluetooth ... 9

3.3. RFID .. 9

3.4. Ultrasound ... 9

3.5. Ultra-wideband .. 9

3.6. LiDAR SLAM ... 10

3.6.1. Hector SLAM ... 11

3.6.2. Gmapping ... 12

3.6.3. Cartographer ... 13

3.7. Visual SLAM .. 14

3.7.1. ORB-SLAM ... 15

3.7.2. RTAB Map ... 16

CHAPTER 4: METHODOLOGY ... 18

4.1. Robot Operating System ... 18

4.1.1. Unified Robot Description Format .. 18

4.1.2. Gazebo.. 19

4.1.3. RViz ... 20

4.1.4. Transformation Package... 22

4.1.5. Map Server ... 23

x

4.2. Real-Time Localization System .. 24

4.2.1. Signal Strength Based Ranging .. 25

4.2.2. Time-Based Ranging .. 25

4.2.2.1. Time of Flight ... 25

4.2.2.2. Time Difference of Arrival ... 27

4.2.2.3. Angle of Arrival .. 28

4.2.3. Decawave MDEK1001 .. 28

4.2.3.1. Decawave DRTLS Manager ... 30

4.2.3.2. I/O Ports .. 32

4.2.3.3. Universal Serial Port ... 33

4.3. Adaptive Monte Carlo Localization .. 34

4.3.1 KLD - Sampling .. 35

4.3.2 ROS AMCL Package .. 36

4.4. Extended Kalman Filter .. 43

4.5. Robot Localization Package .. 47

CHAPTER 5: SIMULATION RESULTS... 50

5.1. UWB Localization Tests ... 50

5.2. Adaptive Monte Carlo Localization Tests .. 52

5.3. Localization tests with the fusion of RTLS and AMCL 55

CHAPTER 6: CONCLUSION .. 58

6.1. Future work ... 58

REFERENCES ... 60

APPENDICES .. 64

Appendix A-Robot Localization Package Odom Parameters 64

Appendix B- Robot Localization Package Map Parameters 65

xi

LIST OF TABLES

Table 1. List of Sensors. ... 6

Table 2. AMCL Parameters. .. 38

Table 3. Kalman equations table. ... 47

Table 4. Ultra-wideband measurement results. .. 51

xii

LIST OF FIGURES

Figure 1. Example warehouse with dynamic regions. ... 3

Figure 2. Decawave ultra-wideband device. .. 10

Figure 3. Hector SLAM example map. .. 12

Figure 4. Gmapping example map. .. 13

Figure 5. Cartographer example map. .. 14

Figure 6. ORB-SLAM2 map example with camera position estimations. 15

Figure 7. RTAB Map example. .. 16

Figure 8. Completed RTAB map example. .. 17

Figure 9. Visualized URDF model. ... 19

Figure 10. House environment created in Gazebo. .. 20

Figure 11. RViz display tab. .. 21

Figure 12. Default RViz buttons. ... 21

Figure 13. Visualization of transform frames. ... 22

Figure 14. ToF localization. ... 26

Figure 15. Possible locations of receiver relative to beacons. 27

Figure 16. Antenna Example Array. .. 28

Figure 17. RTLS network installation. ... 29

Figure 18. Decawave DWM1001-DEV module .. 30

Figure 19. Example RTLS network. .. 30

Figure 20. Device configuration screen. .. 31

Figure 21. RTLS visualization screen (Triangles are anchor positions and circle is the

position of the tag). .. 32

Figure 22. Terminal output. ... 33

Figure 23. Initialized AMCL (Red arrows represent particles and green dots are

LiDAR scans). .. 42

Figure 24. Initial location of the robot in Gazebo. ... 42

Figure 25. AMCL Pose after a few iterations (Red arrows represent particles and green

dots are LiDAR scans). .. 43

Figure 26. Ultra-wideband range measurements. .. 50

Figure 27. Histogram of measurements. .. 52

Figure 28. Simulation world in Gazebo. .. 53

file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055607
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055608
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055609
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055610
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055620
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055621
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055622
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055627
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055627
file:///C:/Users/Sercan/Desktop/SercanCagdasTekkok-Updated.docx%23_Toc123055628

xiii

Figure 29. Map of the simulated world. ... 53

Figure 30. Localization results with AMCL (Green line is ground truth and red line is

EKF output). ... 54

Figure 31. Particles when LiDAR does not measure any features in environment. .. 55

Figure 32. Localization results with UWB and EKF (Blue line is ground trurth and red

line is AMCL output). .. 57

xiv

LIST OF ABBREVIATIONS

UWB: Ultra Wide Band

AMCL: Adaptive Monte Carlo Localization

RTLS: Real-Time Localization System

LiDAR: Light Detection and Ranging

ROS: Robot Operating System

ToF: Time of Flight

GPS: Global Positioning System

GNSS: Global Navigation Satellite System

RTK: Real-Time Kinematics

Wi-Fi: Wireless Fidelity

RF: Radio Frequency

IMU: Inertial Measurement Unit

SPI: Serial Peripheral Interface

UART: Universal Asynchronous Receiver- Transmitter

USB: Universal Serial Bus

EKF: Extended Kalman Filter

1

CHAPTER 1: INTRODUCTION

Autonomous mobile robots are popular devices that are capable of increasing

productivity and minimizing the errors caused by humans. Moreover, it is a promising

technology for both industrial applications and end-users. These robotic applications

provide automated solutions such as transporting goods inside the factories or

household cleaning. However, these applications require fundamental components that

allow them to move autonomously without external guidance or human intervention:

mapping, localization, and path planning.

For a robot to localize itself, it must have some information about its environment.

Different approaches have been proposed to solve localization problem, such as visual

SLAM techniques like ORB-SLAM and Stereo SLAM (Mur-Artal et al., 2015)(Zhang

et al., 2015). According to the ORB-SLAM paper, this solution is a real-time feature-

based algorithm with a monocular camera. The accuracy of the system is at centimeter-

level for small indoor areas. On the other hand, Stereo SLAM uses line-based features

to map the environment, which appears to be a better solution compared to point-based

algorithms. However, it suffers from low frame per second due to the line tracking

process. SLAM techniques use different sensors, such as LiDARs (Light Detection

and Ranging). One of the techniques is grid-based mapping in short G-mapping

(Grisetti et al., 2007). This approach takes advantage of both odometry and LiDAR

sensors to merge the sensory information with the help of a particle filter algorithm.

Adaptive resampling is utilized in this research which achieved the goal with fewer

particles, thus increasing the overall performance compared to the reference paper

(Hahnel et al., 2003).

There are different approaches to localization problems, but the core idea is similar for

all techniques, which is to fuse additional sensory information to better estimate the

robot. One method to use for localization is Adaptive Monte Carlo Localization

(AMCL) with a LiDAR and odometry setup (Fox et al., 2005). AMCL is a highly used

and proven solution with relatively cheap sensors, but the algorithm’s accuracy

depends highly on the environment. For example, if the environment is highly

2

symmetric, odometry information has to be precise to maintain accurate localization

estimation. An improved version of AMCL with UWB is also proposed in the earlier

study (Wang et al., 2019). This technique is developed to solve the kidnapped robot

problem and UWB sensors are used to fix the AMCL position when necessary.

Another research shows that the replacement of odometry is also possible with the help

of RFID sensors (Hahnel et al., 2004). The authors state that the system successfully

localized itself and with the use of RFID technology, computational demand

decreased. Practical experiments showed that the system could build accurate maps of

RFID tags to localize moving objects without odometry information. Similar results

can also be achieved by the fusion of ultra-wideband (UWB) ranging and odometry

sensors via Kalman filtering (Oguz-Ekim et al., 2020). UWB sensors can be

considered as an imitation of GPS systems for indoor areas. However, coverage and

accuracy are still limited and highly depends on the quality and placement of the

sensors. Various Kalman filters are applied in this area, such as Unscented and

Adaptive Extended Kalman filters, as discussed in (Lasmadi et al., 2019)(Yuzhen et

al., 2016). Filter selection mainly depends on the type of noise introduced by the

sensors and their noise characteristics.

1.1. Problem Statement

AMCL is a widely used algorithm for robots among all localization systems that utilize

LiDARs. These systems require pre-created maps in order to localize themselves.

However, significant changes in highly dynamic environments can create considerable

problems, such as warehouses or industrial facilities, where both human and other

machinery activities are present such as forklifts. There are also cases where serious

changes are made in these areas, which affect the performance of the algorithms that

require static maps for localization. An example case where products are distributed

on the ground, and there are no static rack systems at specific parts of the warehouse

can be seen in Figure 1.

3

If robots are mounted with 2D LiDAR Scanners with a limited range, this might

prevent them from seeing static landmarks such as walls or columns. Eventually, they

will lose track of their location during navigation since they are practically blind if

LiDAR can not measure anything. So main objective of this work is to prevent AMRs

from getting lost in highly dynamic environments with the help of alternative global

localization systems.

The following sections of this thesis consist of five main chapters which are

preliminaries, related work, methodology, simulation results, and conclusion. The

second chapter will provide information about the common sensor types, their features,

and how this data can be collected in one place so that it can be fused. Common sensors

and algorithms to build a system that can achieve mapping and localization tasks are

reviewed in the related work section. The fourth chapter has a detailed explanation of

the theory behind localization algorithms and ROS tools that are used during the

Figure 1. Example warehouse with dynamic regions (Source: Pierce ,2020).

4

research. Simulation results are presented in the fifth chapter. These results include

the tests that are done in a Gazebo environment with localization algorithms and also

the proposed solution. Finally, the proposed solution will be discussed in the last

chapter with its benefits, drawbacks, and further improvements. This research

contributes to the literature by examining algorithms and sensors that are proposed in

earlier studies. Existing techniques are compared according to their accuracy, noise

resilience, power consumption, and suitability for indoor applications. Subsequently,

it extends the earlier works in this field and merges different systems together to create

a more robust system design for indoor localization applications.

5

CHAPTER 2: PRELIMINARIES

Autonomous mobile robots require a localization system in order to accomplish their

duties properly. Therefore, achieving full autonomy is crucial since the aim here is to

eliminate human errors and increase productivity. There are many ways to solve the

localization problems, and various sensors are utilized in order to make the system

perceive its environment. Sensors are used to collect information both from the

environment and the internal states of the robot. Common sensors can be listed under

two categories which are Exteroceptive or Proprioceptive. Each sensor category has

two main types, which are Passive or Active.

2.1. Exteroceptive sensors

These types of sensors are used to take measurements from the external world. Some

examples of this type are Laser, LiDAR, Radar, Camera, Depth Cameras, Infrared,

Sonar, Touch Sensors or Bumpers, GPS, and Proximity Sensors.

2.2. Proprioceptive sensors

These sensors extract information from the robot’s internal states, such as its speed

and acceleration

2.3. Active sensors

Active types of sensors work by emitting energy to its surrounding and taking

measurements with the help of returning signals. Then, the sensor can use signal

strength or return time to extract information. For example, LiDAR sensors emit light

to the surroundings and wait for it to return to calculate the direct distance to an

obstacle with the help of the time difference between the initial pulse and returned

pulse.

6

2.4. Passive sensors

Cameras or temperature sensors can be counted as an example of this type. They

mainly measure environmental energy.

Table 1. List of Sensors (Source: Lecture Notes 2002).

General Classification

(typical use)
Sensor System

PC:

Propriocep.

EC:

Exteroceptive

P:

Passive

A:

Active

Tactile Sensors

(detection of physical contact or

closeness; security switches)

Contact switches, bumpers

Optical barriers

Non-contact proximity sensors

EC

EC

EC

P

A

A

Wheel/motor sensors

(wheel/motor speed and position)

Brush Encoders

Potentiometers

Synchros, Resolvers

Optical Encoders

Magnetic Encoders Inductive

Encoders

Capacitive Encoders

PC

PC

PC

PC

PC

PC

PC

P

P

A

A

A

A

A

Heading sensors

(orientation of the robot in

relation to a fixed reference

frame)

Compass

Gyroscopes

Inclinometers

EC

PC

EC

P

P

P/A

Ground-based beacons

(localization in a fixed

reference frame)

GPS

Active optical or RF beacons

Active ultrasonic beacons

Reflective beacons

EC

EC

EC

EC

A

A

A

A

Active ranging

(reflectivity, time-of-flight, and

geometric triangulation)

Reflectivity sensors

Ultrasonic sensor

Laser rangefinder

Optical triangulation (1D)

Structured light (2D)

EC

EC

EC

EC

EC

A

A

A

A

A

7

Table 1. (Cont’d) List of Sensors (Source: Lecture Notes 2002).

As listed in Table 1, there are many sensors for different use cases, so according to the

requirements and limitations of the application, sensors must be chosen. Having many

sensor options raises the need to merge all sensory information to use it. That is when

the Robot Operating system (ROS) comes into play. It is not a standalone operating

system but a sub-operating system that can run on Linux, Windows, or Mac. It is a

powerful tool when one needs to gather all the data from the system to use it on tasks.

For example, sensor fusion or navigation in a known space where control signals are

sent to the motors according to the obstacle detection done with cameras

simultaneously. ROS provides many tools and libraries for users to build and test their

applications. Each process or node that runs on ROS uses TCP/IP protocol to

communicate with each other. Publisher/Subscriber model is used in ROS, and data is

exchanged under Topics and Services.

Motion/speed sensors

(speed relative to fixed or

moving objects)

Doppler radar

Doppler sound

EC

EC

A

A

Vision-based sensors

(visual ranging, whole-image

analysis, segmentation, object

recognition)

CCD/CMOS camera(s)

Visual ranging packages

Object tracking packages

EC P

8

CHAPTER 3: RELATED WORK

Localization is an important topic where various techniques and sensors are used to

solve the problem both for indoor and outdoor applications. For outdoor applications,

Global Navigation Satellite Systems (GNSS) and Real-Time Kinematic (RTK)

systems are the most common systems which are widely used in our everyday devices

such as phones, cars, computers, or industrial and military-grade devices. Although

GNSS provides sufficient accuracy of 3 to 10 meters (Wing et al., 2005) for outdoor

applications, GNSS systems are insufficient for indoor applications because more

precise positioning is required. RTK is a more advanced technology that utilizes GNSS

data in order to correct it further to achieve better accuracy. The system includes a

fixed station that transmits correction data and moving receivers that receives the data

to reduce the position error. Commercial products such as U-blox Neo-M8P RTK

claimed to have a centimeter-level accuracy. However, it is still not suitable for indoor

applications since the GNSS signal is highly affected by buildings.

Despite the unavailability of GNSS in indoor environments, GPS-like positioning

systems still exist. They are known as Real-Time Localization Systems (RTLS).

Technologies that are used in such a system can be listed as follows:

Wi-Fi

 Bluetooth

 UWB

 Ultrasound

 RFID

  

3.1. Wi-Fi

Wireless Fidelity is mainly used for communication and data transfers in the 2.4GHz

and 5GHz bands. Although it is widely available, it is prone to noise, and processing

requires complex algorithms. Therefore, suitable algorithms must be utilized in order

to use them for localization purposes. These algorithms use a few principles like

received signal strength, channel state information, time of flight, and angle of arrival.

Previous studies claim that the accuracy level of decimeters can be achieved with Wi-

Fi (Kotaru et al., 2015) (Kumar et al., 2014).

9

3.2. Bluetooth

Bluetooth is another standard wireless communication technology that uses the

2.4GHz band. Just like Wi-Fi, this technology is also prone to noise, but due to low

power consumption, it might be more suitable for localization. Previous research

showed that an accuracy of around 5 meters could be achieved with Bluetooth alone

(Kriz et al. 2016). Moreover, in 2019 the newest version of Bluetooth 5.1 is introduced

which improved its performance. Products from u-blox claimed to have a typical

accuracy of 1 – 2 meters and they can even provide direction information since they

use the angle of arrival technique and antenna arrays (u-blox, 2020).

3.3. RFID

This technology is originally used for storing and transferring data with

electromagnetic waves and splits into two main types, which are Active and Passive

RFID. Passive has a low power consumption and a lower range compared to the active

type, making them unsuitable for localization. Even though the active type has a

greater range, this technology can still not achieve a sub-meter level of localization

accuracy.

3.4. Ultrasound

This sensor uses a sound signal over 20KHz frequency and uses the velocity of the

sound to calculate the distance between its transmitter and receiver. This method is

called the time of flight (ToF). On the other hand, environmental conditions have a

high effect, so these conditions must be accounted for. According to the research, this

technology can achieve centimeter-level accuracy (Hazas et al., 2006).

3.5. Ultra-wideband

The UWB technology uses large bandwidth of over 500MHz and a frequency range of

3.1GHz to 10.6GHz. Moreover, it has a low-duty cycle which decreases power

10

consumption. Another benefit of UWB is its resilience to interference and multipath

effects. According to the datasheet of Decawave, the system can achieve localization

accuracy of up to 10 centimeters with the time of flight (ToF) technique (Decawave,

2022).

In conclusion, UWB requires extra hardware and is costly compared to other sensors.

However, it still might be the most fitting sensor for such an application due to its

resilience to noise, accuracy, and low power consumption.

Although the RTLS system offers precise localization, greater accuracy is required to

use it exclusively due to its limitations. Therefore it is more suitable to utilize different

sources together Aside from RTLS systems, another type of global localization system

is Simultaneous Localization and Mapping (SLAM), which can be divided into two:

LiDAR and Visual SLAM.

3.6. LiDAR SLAM

LiDAR technologies date back to the 1960s and are mostly used in airplanes.

Nonetheless, it has a wide range of applications today, including, such as geology,

seismology, atmospheric physics, and autonomous vehicles. LiDARs use laser signals

Figure 2. Decawave ultra-wideband device (Source: MDEK1001 User Manual, 2022).

11

to measure the distance, and range measurement is done by the ToF method. Distance

is calculated with the following equation (1).

𝑑 =
𝑐. 𝑡

2

(1)

where 𝑐 refers to the speed of light, t refers to the time passed until the laser point

returns, and d is the distance between the sensor and the object. Currently, there are

two different models in the market: 2D and 3D. Essentially they work in a similar

manner, but 3D LiDARs provide additional data in multiple layers ranging from 16 to

128, depending on the model. Therefore, it can increase the accuracy of SLAM and

eliminate the need for extra sensors to detect obstacles since the field of view covers

most of the area around the vehicle (Ouster, 2022). The placement of the sensor plays

a vital role in maximizing the field of view. However, having more scan layers also

increases calculation complexity since the computer must process more data quickly.

They also increase the product cost compared to 2D LiDAR models.

There are many SLAM algorithms available as open-source packages. However, this

paper will only discuss three of them: Hector SLAM, GMapping, Cartographer, and

AMCL will be used to localize the vehicle in the frozen maps created by these SLAM

techniques.

3.6.1. Hector SLAM

This algorithm solely relies on the scan data from LiDARs to create the map of the

environment (Kohlbrecher et al., 2011). According to the paper, the system benefits

from LiDAR, which has a high update rate and low measurement noise. Position

estimation is done by scan matching using the actively created map until the last

measurement, and the Gaussian-Newton equation is used to solve the scan matching

problem. 3D State estimation is also possible with the help of an inertial measurement

unit which enables the package to be used for Drone applications.

12

The map in Figure 3 was created in 2011 at RoboCup by a handheld system mounted

with LiDAR. The map has solid measurements about obstacles and free space, which

is why the map consists of three colors: black, white, and gray, which refer to filled,

free space, and unknown, respectively.

3.6.2. Gmapping

This algorithm is one of the most popular SLAM packages used widely in robotic

applications. It exploits the laser scan and odometry information to construct the map.

The algorithm uses a particle filter-based approach which introduces computational

complexity and particle depletion problem during resampling. The proposed solution

to the depletion problem is an adaptive resampling technique that minimizes particle

depletion (Grisetti et al., 2007). Another technique is also proposed to reduce the

uncertainty in the prediction step of the filter with the help of the robot’s most recent

observations and movement, which lead to fewer particles.

Figure 3. Hector SLAM example map (Source: Hector SLAM Documentation, 2014).

13

As depicted in Figure 4, Gmapping also has similar output to Hector SLAM in terms

of solid obstacle measurements since the map only consists of three main pixel values.

3.6.3. Cartographer

Google’s Cartographer is an open-source grid-based SLAM algorithm. Although

Cartographer is not directly available as a binary package for ROS, it is still supported

and can be built for Kinetic, Melodic, and Noetic. According to the paper proposed

system can achieve good performance without high-end hardware since it does not

utilize any particle filter but pose optimizations instead. The algorithm uses a scan-to-

submap matching method with a Ceres-based solver. In addition, it supports 3D

SLAM, but an IMU is required to measure gravity.

Figure 4. Gmapping example map.

14

Figure 5. Cartographer example map (Source: Cartographer Documentation).

Unlike Gmapping and Hector SLAM, this algorithm leaves semi-known locations,

which are shown with a color between gray and white. These pixels become whiter

with each measurement and update during the mapping process. Semi-known locations

do not cause any problems during navigation since they are not considered obstacles

but free spaces.

3.7. Visual SLAM

Visual SLAM is a technique that uses visual inputs to construct a map, and it is often

referred to as vSLAM in short. Unlike GMapping, the algorithm does not require

additional sensors for mapping and localization. Nonetheless, it comes with a

drawback which is the lack of field of view. The workflow of visual SLAM is

composed of three basic modules, which are initialization, tracking, and mapping. The

map is initialized at the first stage, where pose estimation of the camera can be done,

and tracking is run over the initial features in the first key frames and new features. As

more features are observed over time, the map expands.

15

3.7.1. ORB-SLAM

ORB-SLAM is a system that works in real-time and both for indoor and outdoor

environments. According to the paper and conducted experiments, the system does not

require a GPU’s high processing power and manages to work in a computer with Intel

Core i7-4700MQ (four cores @2.40Ghz) and 8GB RAM. This system was developed

from scratch with some novel ideas and algorithms along with some old works from

the loop detection of (Galvez et al., 2012), the loop closing procedure and covisibility

graph of (Strasdat et al. 2010) also the optimization framework g2o by (Kuemmerle et

al., 2011) and ORB features by (Rubble et al., 2011) Experiments shows that the

accuracy of the system is below centimeter-level for small indoor environments. Code

is also publicly available along with its ROS packages for Kinetic and Melodic. The

package supports monocular, stereo, and RGB-D cameras.

Figure 6. ORB-SLAM2 map example with camera position estimations.

The authors claim that the algorithm outperforms its alternative LSD-SLAM in

different datasets and sequences. In some sequences, ORB-SLAM has half as absolute

translation root mean square error for the KITTI dataset. This dataset is acquired from

16

a stereo camera mounted on a car and has different sequences from urban and highway

environments.

3.7.2. RTAB Map

Another popular visual SLAM algorithm is Real-Time Appearance-Based Mapping

(Labbe et al., 2014). The algorithm uses point clouds to create a dense map which is a

graph with nodes and links. Nodes have odometry poses and visualization information

from sensors such as depth images and range measurements from LiDAR or images.

Loop closures are done with this visualization information. Graph optimization is also

used to correct the map by propagating odometry errors to all links. Tree-based

network optimizer (TORO) is selected as an optimization tool.

Figure 7. RTAB Map example.

Live RViz screens during the SLAM process can be seen in Figure 7. On the right

window constructed map of the environment is shown as a 3D point cloud.

Additionally, the estimated positions of the camera are shown as yellow rectangles.

The top left corner shows odometry measurements which are extracted from visual

features. Additionally, loop closure detections are shown under odometry. This live

17

demonstration of the algorithm is done in a forest, and the full-length recording is

available online at (YouTube, 2020).

Figure 8. Completed RTAB map example.

The final form of the 3D map is shown in Figure 8. According to the demo total

distance is around four kilometers.

As a result, there are many sensors and algorithms to solve localization problems, and

each method has different benefits and drawbacks. Therefore, the most convenient way

is to fuse multiple sensors to achieve more accurate results. Different sensors can be

added and fused with the Kalman filter applications to improve the location estimation

accuracy, such as inertial measurement units or GPS-like real-time localization system

measurements (Moore et al., 2015).

18

CHAPTER 4: METHODOLOGY

This chapter will have a detailed explanation of the techniques and technologies that

are used.

4.1. Robot Operating System

Robot operating system is an open-source system that offers hardware abstraction,

low-level device control, and communication so that developers can focus on their area

of interest without dealing with software-related problems. It also offers many open-

source libraries and drivers for different types of sensors developed by the community.

They are publicly available for the use of developers. ROS is used in many commercial

products, from drones to robotic arms or mobile robotic platforms. ROS offers an

exchange of data between processes through its publishers and subscribers. This data

may be sensor data, a control message, a state, or a user-defined custom message for

different use. Due to its valuable tools and packages, ROS is selected as the

development and testing environment for this work since it is the most suitable system.

4.1.1. Unified Robot Description Format

This file format defines all links and joints of a robot in an XML format. Robots are

described in xacro files in order for joint_state_publisher and robot_state_publisher

packages. These packages provide state information about the system links and joints

with the help of URDF description. Provided data mainly contains forward axes,

limits, positions, and orientations of actuators and sensors. Furthermore, it is possible

to visualize this model using a widget called RViz.

19

Figure 9. Visualized URDF model.

Transformation frames and the model of Turtlebot3 Waffle are visualized in Figure 9.

The screenshot is taken from the RViz tool.

4.1.2. Gazebo

Gazebo is a simulation environment for robotics. It offers many plugins to simulate

sensors, such as cameras, LiDARs, and depth cams like Kinect. Besides, Gazebo

allows developers to simulate the physical world with high-performance physics

engines like ODE and Bullet. The OGRE engine renders the graphics, offering high-

quality lighting, textures, and 3D rendering. The simulation environment is also used

in competitions such as Toyota Prius Challenge, DARPA Challenges, and NASA

Space Robotics Challenge. Therefore, Gazebo environment will be used as the primary

simulation tool for this work’s development and test environment.

20

Figure 10. House environment created in Gazebo.

Many different environments and applications can be simulated through Gazebo. One

use case is shown in Figure 10, where a house environment is created for simulation.

For instance, one can test mapping, localization, and navigation algorithms in this

simulation world. The mapping output of this environment is given in the previous

chapter in Figure 4. This environment was initially created to simulate Turtlebot3, and

models are shared on the ROBOTIS GitHub page (ROBOTIS GitHub, 2022).

4.1.3. RViz

RViz is a 3D visualization tool that allows developers to visualize any data related to

the robot and its surroundings, such as sensory information or the robot’s state. It also

allows developers to create their plugins in order to visualize custom data types or

control certain states of the robot by publishing messages. The display tab in RViz

allows adding any type of message and topic for visualization by clicking the add

button at the bottom left. A selection window will pop up to add anything by topic or

type. Figure 11 shows the currently active displays, and the boxes next to each display

allow the user to hide and show them individually.

21

Figure 11. RViz display tab.

RViz also comes with a few default buttons that can publish the initial position to the

localization package and goal point for navigation purposes. It also allows measuring

distance with the measure button. Figure 12 shows all default buttons.

Figure 12. Default RViz buttons.

22

4.1.4. Transformation Package

Transform package offers a straightforward way to deal with all static and dynamic

transformations between coordinate frames. For instance, calculating an object’s

position relative to the robot by using the sensor’s known location and measurement

(Foote, 2003). TF library will allow this information to be transformed so that its

relative position to the robot can be calculated for obstacle avoidance or any other

application. The library consists of two main modules Broadcaster and Listener. The

broadcaster module publishes messages each time an update occurs for a particular

transform while Listener collects this information to interpolate with the last known

sample. Interpolation is done by the spherical linear interpolation (SLERP) technique.

This technique makes the system resilient to package losses and allows

unsynchronized communication between publisher and subscriber. Nevertheless,

publish frequency of the transforms must be high enough for accurate results. Actively

published transformation frames can be visualized with RViz.

Figure 13. Visualization of transform frames.

Each component of the robot is described in the URDF file, and the transform package

generates the related frames, as depicted in Figure 13. Every axis is shown with a

different color.

23

4.1.5. Map Server

Map server is a sub-package from the ROS navigation stack to provide all necessary

services to generate and use the maps. One can use this package to generate map files

when mapping is finished. The package generates two files in PNG and YAML

formats. The PNG file holds the map as a picture, and YAML has the map description.

This description defines the map’s features, such as resolution, origin, occupied

threshold, free threshold, and name of the map image. A sample YAML file is as

follows.

Each field refers to the following information about the map.

 image: Path of the image. Both absolute and relative path is accepted

 resolution: Resolution of the map in meters/pixel

 origin: Position of the lower-left pixel in the map in [x, y, yaw] format

 occupied_thresh: Threshold value for a pixel to be considered as occupied. If

the pixel value is above the threshold, it is considered occupied.

 free_thresh: Threshold value for a pixel to be considered free space. If the pixel

value is below the threshold.

 negate: Reverses the calculation of occupancy probability of pixel values. If

negate is set to true, pixel values of 255 will be considered occupied, and 0 will be free

space.

The package provides two essential utilities, which are map_server and map_saver.

The map server is used to publish the map under the /map topic and related metadata

under /map_metadata to other ROS nodes that require this information, such as

AMCL. This node can be launched by running the following in the console.

image: ExampleMap.png

resolution: 0.5

origin: [0.0, 0.0, 0.0]

occupied_thresh: 0.7

free_thresh: 0.2

negate: 0

24

As the name implies, map_saver saves the maps generated during SLAM, but the

following process must be run through the console to save the map.

However, this node requires the map data under the /map topic in the form of

nav_msgs/OccupancyGrid in order to successfully save the map. If parameters for the

map are not given to the process, it will automatically generate a YAML file with

default parameters.

4.2. Real-Time Localization System

Real-Time Localization System is a composition of hardware and software where

location data of the desired object is available with a relatively low latency depending

on the system limitations. The most common example of a real-time localization

system is the global positioning system (GPS) which is available to us through our

everyday devices such as mobile phones, modern cars, smart watches, or computers.

These systems can be used for different cases apart from being an absolute location

measurement system. For example, it can work as a proximity sensor or relative

location measurement device. However, these two applications are not much of use

for this work since finding the absolute location is the main objective in order to

achieve more precise global localization. 2D localization is sufficient for this work

since our mobile robotic platform does not move in 3D, and our map is created from

2D LiDAR measurements. The system has two degrees of freedom: x and y, hence at

least three sensors in known locations must be in the line of sight in order to estimate

the position of an object in two dimensions. Nevertheless, this requires all devices to

be placed on the same plane, which may only be feasible for some applications.

Two methods are frequently employed to measure line of sight distance:

rosrun map_server map_server <map.yaml>

rosrun map_server map_saver [--occ <threshold_occupied>] [--

free <threshold_free>] [-f <mapname>]

map:=/your/costmap/topic

25

 Signal Strength Based Ranging

 Time-Based Ranging

4.2.1. Signal Strength Based Ranging

Signal strength ranging exploits received radio signal strength to calculate the distance

between sensors. It is possible to calculate the approximate distance between the

transmitter and the receiver because emitted signal strength and propagation

characteristics in the target medium are known.

4.2.2. Time-Based Ranging

This method uses time information that the signal takes until it reaches the receiver

after it is emitted from the transmitter. Time-based ranging methods consist of four

different approaches:

 Time of Flight

 Time Difference of Arrival

 Angle of Arrival

All four methods use the propagation time of the signal and the known propagation

speed of the signal.

4.2.2.1. Time of Flight

This method, also known as the Time of Arrival approach, uses the propagation time

between the transmitter and receiver to calculate the distance between sensors. In this

technique, distance is calculated by multiplying the speed of the signal by propagation

time. Measurement of this time requires synchronization between transmitter and

receiver so the receiver can calculate the time of flight with the timestamp sent from

the transmitter. The accuracy of this system is highly affected by the bandwidth and

sampling rate. Frequency domain super-resolution techniques are used to overcome

26

the low sampling rate problem, and increasing the bandwidth solves the multipath

problem. However, errors still exist due to missing line of sight path between

transmitter and receiver. This causes wrong distance calculations since the signal

propagates at different speeds in different mediums. As a consequence, the error is

introduced to the results because the distance is calculated with the help of travel time

and obstructions cause delays.

Let Lij be the distance between the transmitter and receiver, and t1, t2 are the timestamps

of sent and received messages, respectively. So distance is calculated as follows

𝐿𝑖𝑗 = (𝑡2 − 𝑡1) × 𝑣

 (2)

where 𝑣 is the speed of the signal.

Figure 14. ToF localization.

27

After the distance for each beacon is measured, circle equations (3) will represent all

the possible locations for the target receiver. Solving all three circle equations

simultaneously will yield the exact location of the receiver.

𝐿 = √(𝑥𝑏𝑒𝑎𝑐𝑜𝑛 − 𝑥)2 + (𝑦𝑏𝑒𝑎𝑐𝑜𝑛 − 𝑦)2

(3)

4.2.2.2. Time Difference of Arrival

Similar to the time of flight, the distance between the receiver and beacon is calculated

from the time difference. However, in this approach, the transmitter side does not send

the time stamp; instead, the time difference between received signals is used. After

each anchor receives the message, the time of arrival is stamped, and the time

difference between each anchor is used to estimate the tag’s position. Four anchors are

required to estimate the location of the tag, and the clocks of each anchor must be

accurately synchronized to estimate the tag location correctly.

Figure 15. Possible locations of receiver relative to beacons.

28

4.2.2.3. Angle of Arrival

Antenna arrays are used on the receiver side to estimate the angle of arrival by

calculating the time difference of arrival at each antenna. This method can localize the

receiver with two transmitters in 2D and three in 3D. However, significant problems

occur even with minor errors in angle calculation. The system also suffers from the

multipath problem since the line of sight is not easy to achieve, and more complex

hardware is required for this method (Kumar et al., 2014).

4.2.3. Decawave MDEK1001

Decawave MDEK1001 kit is based on Dacewave’s UWB integrated circuit

DWM1001C, which offers a Real-Time Localization system ready for development

and evaluation. This kit has twelve development boards, and each unit can be used as

an anchor or tag. The official DWM1001 documentation contains some guidelines to

follow in order to get the best performance out of the setup. According to the

documentation, DWM1001 antennas support ranges up to 60 meters under ideal

conditions and have a line of sight between antennas. However, it is unlikely that the

system will work with this range since the tag’s orientation with respect to anchors is

not always ideal and varies a lot. Thus, the manufacturer suggests reducing the range

between anchors. For the best performance, 20 – 25 meters as the maximum range

Figure 16. Antenna Example Array.

29

between anchors is advised, and sensors should be placed to create a square grid, as

shown in Figure 17. Depending on the environment, this distance should be adjusted

since not being in a line of sight has an impact on system performance and localization

quality.

Figure 17. RTLS network installation (Source: DWM1001 System Overview, 2022).

Features and visual of the development board is shown in Figure 18. The device has

three ways of streaming data to the user. Two of these are wired connections, while

one is wireless:

 Decawave DRTLS Manager

 I/O Ports

 Universal Serial Bus

30

Figure 18. Decawave DWM1001-DEV module (Source: MDEK1001 User Manual,

2022)

4.2.3.1. Decawave DRTLS Manager

Boards come with pre-flashed firmware that supports wireless data exchange through

Bluetooth and android application, which is downloadable at the Decawave’s website.

This application allows users to create, configure and visualize their RTLS networks

for evaluation purposes. An example of a test network created for evaluation can be

seen in Figure 19

Figure 19. Example RTLS network.

31

Triangles represent configured units as anchors in the network, and circles represent

tags. Moreover, the system provides further configuration for tags and anchors where

users can change localization properties, such as updating the localization frequency

or enabling motion sensors on the device for more accurate results. All available

configurations for the tags can be seen in Figure 20.

Figure 20. Device configuration screen.

After the network is configured, the app can visualize localization results. The position

of the tag is shown in Figure 21, along with its estimated (𝑥, 𝑦, 𝑧) coordinates which

is relative to the anchors in the test network.

32

Although the app offers easy deployment features, the system is not usable by a robotic

platform through an android app. Therefore, exchanging data with a wired connection

is more suitable for such an application to programmatically read and publish data to

ROS and its relative sub-processes.

4.2.3.2. I/O Ports

DWM1001-Dev module offers compatible pinouts with Raspberry Pi to directly

connect SPI and UART channels. Either type of connection is sufficient to work with

the device, so it is entirely up to the user to decide which one to use. Powering the

device through these ports is also possible, and recommended voltage level is +5V,

and the current level is 500mA which is a standard for USB as well.

Figure 21. RTLS visualization screen (Triangles are anchor positions and circle is the

position of the tag).

33

4.2.3.3. Universal Serial Port

USB connection provides the same features as I/O ports since firmware offers

commands to configure and exchange data with the board. Furthermore, it is more

straightforward compared to the I/O connection and suitable for a PC connection. Data

coming from the board can be visualized and logged with third-party software such as

PuTTY or Tera Term. Although they are initially used as SSH and Telnet clients, they

can connect to a serial port to send and receive data. After connecting to the tag,

specific commands must be sent to activate the tag and start the data stream. First,

double enter must be sent through the terminal. Once this command is sent following

message in Figure 22 will be printed on the terminal.

This message indicates that the connection was successfully established with the tag.

Secondly, the tag must be activated for localization with the related command, which

requires “nmt” and a double return to be sent. This command will put the tag in active

mode. Finally, data can be read in two formats: string or CSV. In order to trigger the

data stream in CSV format “lec” command is used, and once it is sent board will start

sending position information at the designated rate in Figure 20. A sample message is

as follows

DIST,4,AN0,1237,0.61,1.24,0.00,0.66,AN1,D980,0.00,0.00,0.00,2.38,AN2,D81B,3.

16,0.00,0.00,2.11,AN3,5529,2.27,1.45,0.00,2.61,POS,1.27,-1.07,0.29,55

Messages come with three main headers: DIST, AN, and POS. The first header, DIST,

Figure 22. Terminal output.

34

has information about how many anchors are included in the position estimation; the

given sample has four. The second header, AN, indicates the unique anchors and their

IDs. The exact location of the anchors is also sent next to their IDs. The final header

is POS which is the estimated position of the tag in the x, y, z, and quality factor,

respectively. Since this work will not cover development around the DWM1001 chip,

only the USB port of the module is essential to establish communication between the

computer and the UWB network. More information about the rest of the commands

and a detailed explanation of the usage of the device can be found at (MDEK1001

User Manual, 2020). Evaluation of the localization results will be given in the results

section.

4.3. Adaptive Monte Carlo Localization

Adaptive Monte Carlo Localization is a probabilistic approach for 2D localization

problems, and it is also known as particle filter localization. Initially Monte Carlo

localization algorithm utilized recursive Bayesian estimation for resampling, which

introduces computational complexity in the long run. However, the problem occurs

when the number of particles is maintained even if particles converge to the correct

location. This shortcoming is addressed and solved in an adaptive manner in the earlier

work (Fox, 2001). The proposed method uses Kullback–Leibler divergence (KLD)

sampling to adaptively change the sample size to decrease the number of particles to

compute depending on the error. A particle filter is used to estimate the posterior

distribution of the states. Posteriors can be calculated recursively with new inputs

because the Markov condition assumes that the Bayesian network is memoryless, so

present states do not depend on the past. Input data consists of observations denoted

as 𝑧𝑡 and control input denoted as 𝑢𝑡 where 𝑡 is the time index.

𝑆𝑡 = { (𝑥𝑡
(𝑖), 𝑤𝑡

(𝑖)) | 𝑖 = 1,… , 𝑛 }

(4)

States are denoted as 𝑥𝑡 and importance weights of the particles, which sums up to one

is 𝑤𝑡. The particle filter continuously updates the beliefs at each step by sampling and

resampling.

35

Resampling is done by selecting random samples from sample set St-1 with the use of

importance weights wt-1. The next step is sampling which uses states 𝑥𝑡−1 and control

information 𝑢𝑡−1 to sample 𝑥𝑡 from 𝑝(𝑥𝑡 |𝑥𝑡−1, 𝑢𝑡−1). Density

𝑝(𝑥𝑡 |𝑥𝑡−1, 𝑢𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1) is represented by 𝑥𝑡 , and will be used in the next step. The

final step of the filter is called importance sampling, which weights the sample 𝑥𝑡 with

the likelihood of 𝑥𝑡 given the measurement, and it is denoted as 𝑝(𝑧𝑡 |𝑥𝑡).

4.3.1 KLD - Sampling

This method is introduced to the particle filter to bound the error due to the sample-

based representation. It is achieved by calculating the minimum number of particles at

each sampling to maintain approximation accuracy. According to the paper (Fox,

2001) number of particles required is calculated as follows. Likelihood ratio statistic

for 𝜆𝑛 for testing p

log 𝜆𝑛 = ∑𝑋𝑗 log
𝑝𝑗̂

𝑝𝑗

𝑘

𝑗=1

= 𝑛 ∑𝑝𝑗̂ log
𝑝𝑗̂

𝑝𝑗

𝑘

𝑗=1

(5)

Where n is the number of samples and k is the number of different bins. X represents

the number of samples drawn from each bin, and p refers to the probability of each

bin. Lastly, the maximum likelihood estimate of 𝑝̂ is given as 𝑝̂ = 𝑛−1𝑋. This equity

reduces to the following

𝑛 =
1

2𝜀
𝑥𝑘−1,1−𝛿

2

(6)

With the probability 1 − 𝛿, Kullback–Leibler between Maximum likelihood estimate

and distribution is less than error bounds. The number of samples is then calculated by

approximating equation (6) by Wilson-Hilfert transformation, which results as

36

𝑛 =
1

2𝜀
𝑥𝑘−1,1−𝛿

2 =
𝑘 − 1

2𝜀
{1 −

2

9(𝑘 − 1)
+ √

2

9(𝑘 − 1)
𝑧1−𝛿}

3

(7)

where 𝑧 is the standard normal 𝑁(0,1) distribution. Therefore, the sample size that is

required can be calculated with an upper bound 𝜀 on K-L distance. According to the

paper (Fox, 2001), a bin of multinomial distribution has support as long as the

probability is above the threshold. Furthermore, k will decrease depending on the

certainty of the state estimation.

4.3.2 ROS AMCL Package

There exists a package that is implemented using the theory explained in the previous

section. It is offered as an open source to all users and is part of the ROS navigation

stack. Package offers global localization in a given map with the help of four topics

subscribed by default.

 Scan topic

This topic has the 2D point cloud information of the surroundings and is published as

a sensor_msgs/LaserScan message type. Message mainly includes range

measurements and other helpful information such as max scan range, intensities, scan

time, etc. Data is published under /scan topic.

 Transformations

This message has the transformations of the platform and is published from the

transformation package. Transformations are generated according to the description in

the URDF of the platform. It is published under the /tf topic and has the tf/tfMessage

format.

 Initial Position

This message is used to initialize the particle filter and triggers an action to re-

distribute the particles with a given mean and covariance. The message is published

under /initialpose topic. The message format is

37

geometry_msgs/PoseWithCovarianceStamped, which has pose and covariance.

 Map

This message contains the map data as an occupancy grid and is published under /map

topic. The message format is defined as nav_msgs/OccupancyGrid and published by

the map_server package.

These messages are required to estimate the robot’s position. Once they are received,

the filter outputs the following information.

 Estimated Position

This message holds the estimated position of the robot relative to the map and with

covariance. The message is published under /amcl_pose, and the same format is used

as initial pose geometry_msgs/PoseWithCovarianceStamped.

 Particle Cloud

This message holds the particles that are estimated with the filter. The message is

published under /paticlecloud, and uses the geometry_msgs/PoseArray format, which

has the positions of the particles used by the filter.

 Transformation

The filter publishes the transformation between odometry and map.

The adaptive Monte Carlo Localization package is highly configurable with the

exposed parameters. Both omnidirectional and differential drive is supported by

default.

http://docs.ros.org/en/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html
http://docs.ros.org/en/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html

38

Table 2. AMCL Parameters.

Parameter Name Description Value

min_particles Minimum number of particles
(int)

100

max_particles
Maximum number of

particles

(int)

5000

kld_err

The maximum error between

the actual distribution and the

estimated distribution.

(double)

0.01

kld_z

Upper standard normal

quantile for (1 - p), where p is

the probability that the error

on the estimated distribution

will be less than kld_err.

(double)

0.99

update_min_d

Minimum translational

movement to trigger filter

update

(double)

0.2 meters

update_min_a

Minimum rotational

movement to trigger filter

update

(double)

π/6.0 radians

resample_interval
Number of filter updates

before resampling

(int)

2

transform_tolerance
Maximum tolerable

transformation delay

(double)

0.1 seconds

recovery_alpha_slow
Parameter to trigger recovery

behavior

(double)

0.0 (disabled)

recovery_alpha_fast
Parameter to trigger recovery

behavior

(double)

0.0 (disabled)

initial_pose_x
Initial x position that particles

distributed around

(double)

0.0 meters

initial_pose_y
Initial y position that particles

distributed around

(double)

0.0 meters

39

Table 2. (Cont’d) AMCL Parameters.

initial_pose_a
Initial yaw position that

particles distributed around

(double)

0.0 radians

initial_cov_xx
Covariance of the initial x

position distribution

(double)

0.5*0.5 meters

initial_cov_yy
Covariance of the initial y

position distribution

(double)

0.5*0.5 meters

initial_cov_aa
Covariance of the initial yaw

position distribution

(double)

 (π/12)*(π/12)

radian

gui_publish_rate
Maximum rate for publishing

visualization data

(double)

1.0 Hz

save_pose_rate
Maximum rate to save last

pose and covariance

(double)

0.5 Hz

use_map_topic
This parameter allows AMCL

to subscribe to map topic

(bool)

false

first_map_only

This parameter prevents

AMCL from receiving a new

map.

(bool)

false

selective_resampling
Reduces resampling rate and

avoids particle deprivation

(bool)

false

laser_min_range

Minimum scan range for a

measurement to be

considered in calculations

(double)

-1.0

laser_max_range

Maximum scan range for a

measurement to be

considered in calculations

(double)

-1.0

laser_max_beams
Maximum number of evenly-

spaced beams used.

(int)

30

laser_z_hit
Mixture weight for the z_hit

part of the model.

(double)

0.95

laser_z_short
Mixture weight for the

z_short part of the model.

(double)

0.1

40

Table 2. (Cont’d) AMCL Parameters.

laser_z_max
Mixture weight for the z_max

part of the model.

(double)

0.05

laser_z_rand
Mixture weight for the z_rand

part of the model.

(double)

0.05

laser_sigma_hit

Standard deviation for

Gaussian model used in z_hit

part of the model.

(double)

0.2 meters

laser_lambda_short
Exponential decay parameter

for z_short part of the model.

(double)

0.1

laser_likelihood_max_d

ist

Maximum distance to do

obstacle inflation on a map,

for use in the likelihood_field

model.

(double)

2.0 meters

laser_model_type

Parameter to choose which

model will be used

likelihood_field, or

likelihood_field_prob

(string)

"likelihood_field_prob"

odom_model_type

Driving model of the

platform, such as differential

or omnidirectional

(string)

“diff”

odom_alpha1

Expected noise in odometry’s

rotation estimate on the

rotational component

(double)

0.2

odom_alpha2

Expected noise in odometry’s

rotation estimate on the

translational component

(double)

0.2

odom_alpha3

Expected noise in odometry’s

translation estimate on the

translational component

(double)

0.2

odom_alpha4

Expected noise in odometry’s

translation estimate on the

rotational component

(double)

0.2

41

Table 2. (Cont’d) AMCL Parameters.

The algorithm will be tested with the parameters in Table 2. and their respective values.

As explained earlier, initialization is required for AMCL to work correctly, and Figure

23 shows an example of initialization. Particles, which are shown with red arrows, are

distributed around the possible locations of the robot. Green dots depict the LiDAR

measurements, which are aligned with the map, so one can assume that initialization

is very close to the robot’s actual location. Since the algorithm runs with the

likelihood_field_prob model amount of particles is less and assembled around the

same point. If the algorithm could not match the LiDAR points with the map or there

were no available measurements initial distribution of the particles would be more

scattered.

odom_alpha5
Translational noise only valid

for omnidirectional drive

(double)

0.2

odom_frame_id Frame id for odometry
(string)

“odom”

base_frame_id Name of the base frame
(string)

"base_link"

global_frame_id
Name of the global

localization frame

(string)

“map”

tf_broadcast

If set to false, AMCL will no

longer publish transform

between odometry and global

frame

(bool)

True

42

Figure 23. Initialized AMCL (Red arrows represent particles and green dots are

LiDAR scans).

The actual position of the robot can be seen from Gazebo. Figure 24 shows the exact

location of the robot in the simulation environment.

Figure 24. Initial location of the robot in Gazebo.

Once the robot starts moving, the algorithm will iterate with the new measurements,

eventually eliminating the particles that do not match with measurements and keeping

43

the ones that match it. After some time, particles will gather around the point closer to

the robot’s actual position, as shown in Figure 25.

Figure 25. AMCL Pose after a few iterations (Red arrows represent particles and green

dots are LiDAR scans).

Localization will successfully continue to estimate the location correctly unless

measurements are not aligned with the estimated position of the robot. If the algorithm

starts to receive measurements that are not matched with the map or there is nothing

in the sensor’s measurement range, particles will start to scatter around. This scattering

will lead to wrong position estimation, and the robot will get lost in the long run. In

this case, re-initialization is required. Otherwise, the robot will navigate to the wrong

place or get stuck.

4.4. Extended Kalman Filter

Kalman filter is proposed as a solution to prediction problems in linear systems

(Kalman, 1960). However, due to the non-linear nature of many systems and problems

we face, localization issues require for specific filter modifications. Consequently,

44

variations of the filter are eventually developed and have been utilized to solve

problems in many different fields, from economics to object tracking (Pasricha,

2006)(Tekkok et al., 2021). Therefore, it is a well-known and used filter for fusing

information from different measurement sources to estimate the desired parameters of

the system

Firstly, the linear Kalman filter will be described since most equations and idea behind

is similar to the extended version. Kalman filter can be reduced to a single equation,

but it is usually defined in two main steps: prediction and update. The prediction step

is the estimate of the system with the information from the previous update or initial

state. Additionally, observation information is not used in this step.

𝑥𝑘
− = 𝐹𝑥𝑘−1 + 𝐵𝑢𝑘−1

(8)

The first equation of the prediction step looks very similar to the state-space

representation of dynamic systems. However, Kalman filter have a set of linear

equations to transition 𝑥 one step further in time instead of a state matrix. 𝐹 matrix

here is called the state transition matrix, which is found by solving the dynamic system

model. This model is often described with a set of linear differential equations. As one

can recall from linear time-invariant systems theory, it is solved by the matrix

exponential method or with the Laplace transform. After the next state of the system

is predicted with the mathematical model, covariance is estimated step further as

follows.

 𝑃𝑘
− = 𝐹𝑃𝑘−1𝐹

𝑇 + 𝑄

(9)

In equation (9), covariance estimate P is predicted with the help of process noise 𝑄.

This matrix is selected depending on the noise model of the system and must be

calculated accordingly. Briefly, a small Q will make the filter more confident in its

prediction model. Moreover, if values are too large, the prediction step will be

introduced with unnecessary noise, leading to sub-optimal results. Therefore,

modeling the noise is essential for producing accurate filter outputs, but it is usually

difficult to represent the noise perfectly. Because of this, tuning is frequently necessary

45

to modify the filter quality.

The second step is to run the update. It can be broken down into three main equations:

Kalman gain calculation, state update, and covariance update. Kalman gain decides

how much weight will be put on prediction or measurement. It is calculated as follows.

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1

(10)

In the univariate Kalman case, Kalman gain results in a real number between 0 and 1.

For example, if the gain is calculated as 0.7, measurement will contribute to the result

as 70%, and prediction will contribute as 30%. Similar logic applies to the multivariate

case as well. However, in multivariate cases, gain results in a vector rather than a single

number. There are new terms introduced in this step which are measurement function

𝐻 and measurement noise covariance matrix 𝑅.

The measurement function converts the states to the same type of measurement. For

instance, if the state is temperature and the sensor measures it as voltage, the error

cannot be calculated between the two. Hence, the state must be converted such that the

error can be calculated as shown in equation (11). Measurements are notated as 𝑧

and 𝐻𝑥̂𝑘
− refers to the converted state.

𝑦𝑘 = 𝑧𝑘 − 𝐻𝑥𝑘
−

(11)

The second term 𝑅 is measurement noise covariance which models the noise in the

sensors. The matrix expands according to the number of sensors, so if there are n

number of sensors in the system R matrix will have a dimension of n × n. Once

Kalman gain is calculated, as shown in equation (10), state update can be performed.

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−)

(12)

Equation (12) is the state update equation where Kalman gain acts as a weight and

sums both measurement and prediction state to better estimate the system. Lastly,

covariance update is achieved with equation (13), and the update step is concluded.

46

.

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−

(13)

The extended version of the filter has a few different operations while calculating the

state transition matrix 𝐹 and measurement function 𝐻. These changes are necessary

since the original filter is unsuitable for non-linear cases. Therefore, linearization

around the current state is required for the filter to work. Linearization is done by

taking the partial derivative of the matrixes mentioned earlier, called the Jacobian

matrix.

𝐹 =
𝜕𝑓(𝑥𝑡, 𝑢𝑡)

𝜕𝑥
=

[

𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

…

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

…

⋮ ⋮ ⋱]

(14)

𝐻 =
𝜕ℎ(𝑥𝑡

−)

𝜕𝑥−
=

[

𝜕ℎ1

𝜕𝑥1

𝜕ℎ1

𝜕𝑥2
…

𝜕ℎ2

𝜕𝑥1

𝜕ℎ2

𝜕𝑥2
…

⋮ ⋮ ⋱]

(15)

Furthermore, state estimation calculation takes a different form since linearization

causes inaccuracies. Hence, it is computed directly from the non-linear function f, as

shown in equation (16).

𝑥− = 𝑓(𝑥, 𝑢)

(16)

For the same reason, states are converted by computing ℎ(𝑥−) directly as follows.

𝑦 = 𝑧 − ℎ(𝑥−)

(17)

To summarize, the extended Kalman filter following equations are used to calculate

prediction and update steps.

47

Table 3. Kalman equations table.

Prediction Step Update Step

(1) Predict the state

𝑥− = 𝑓(𝑥, 𝑢)

(2) Calculate covariance

𝑃𝑘
− = 𝐹𝑃𝑘−1𝐹

𝑇 + 𝑄

(3) Compute Kalman

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅)−1

(4) Update the estimate

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘

−)

(5) Update error covariance

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
−

In conclusion, this is how the extended Kalman filter is described. The following

section will investigate the generic application of EKF as a ROS package.

4.5. Robot Localization Package

Robot localization is an open-source ROS package for sensor fusion applications with

two supported filters: the extended Kalman filter and the unscented Kalman filter. The

package supports an unlimited number of inputs from different types of sensors, such

as GPS, IMU, and Odometry. The theory behind the package is described in detail in

the research paper (Moore et al., 2015). The system is described in equation (18)

with a non-linear state transition matrix 𝑓 and process noise w which is assumed to be

normally distributed.

𝑥𝑘 = 𝑓(𝑥𝑘−1) + 𝑤𝑘−1

(18)

State vector 𝑥 is 12 - dimensional vector that includes position and orientation in three

dimensions along with their respective velocities. Additionally, the measurement

model of the system is described in equation (19), where ℎ is a non-linear sensor

48

model to convert states to measurement space and normally distributed measurement

noise 𝑣𝑘.

𝑧𝑘 = ℎ(𝑥𝐾) + 𝑣𝑘

(19)

Filter equations are the same as described in the previous section except for the

covariance update (20), which is in Joseph form to keep 𝑃𝑘 as a positive semi-definite.

𝑃𝑘 = (𝐼 − 𝐾𝐻)𝑃𝑘(𝐼 − 𝐾𝐻)𝑇 + 𝐾𝑅𝐾𝑇

(20)

The authors also propose to take 𝐻 matrix as an identity matrix to accommodate

different sensors. Therefore, if there are n number of variables being measured, 𝐻

matrix will have the shape of 𝑛 × 12, and nonzero values will be related columns of

the measured variables. Process noise covariance is exposed, so it becomes a

configurable parameter depending on the application.

Customization of the filter can be done with the YAML file. The package supports

different messages as input to the filter, but they must be defined in the YAML file

according to their related message types. For instance, data acquired from wheel

encoders must be converted to a nav_msgs/Odometry message and published under

any desired topic name. Once measurement messages are published, each sensor can

be added to the configuration file with its name and index, so for the wheel encoder

case, it must be defined as odom<N>: /name_of_the_odometry_topic. Each input is

sequentially indexed starting from zero, therefore <N> must be replaced with a related

index, and the topic’s name must be inserted as its value. Supported message types

that can be used as described are:

 nav_msgs/Odometry

This message holds position and velocity estimates in PoseWithCovariance and

TwistWithCovariance format.

 sensor_msgs/Imu

This message holds measurement data from the inertial measurement unit under

49

orientation, angular velocity, linear acceleration, and their relative covariance as a

3 × 3 matrix.

 geometry_msgs/PoseWithCovarianceStamped

This message holds a position estimate with a reference frame and time stamp.

 geometry_msgs/TwistWithCovarianceStamped

This message holds velocity estimates with reference frame and timestamp.

Filter estimates fifteen states (21) of the vehicle using the message types given above,

and sensors should provide data related to the states.

(𝑋, 𝑌, 𝑍, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤, 𝑋̇, 𝑌̇, 𝑍̇, 𝑟𝑜𝑙𝑙̇ , 𝑝𝑖𝑡𝑐ℎ̇ , 𝑦𝑎𝑤̇ , 𝑋̈, 𝑌̈, 𝑍̈)

(21)

After the measurement source is defined in YAML as odom0 new variable must be

defined as odom0_config, which is a boolean vector where each element refers to the

given states at (21) respectively. Considering a 2D localization case of an autonomous

robot, one can set the vector as follows.

odom0_config: [false, false, false,

 false, false, false,

 true, true, false,

 false, false, true,

 false, false, false]

Another critical parameter is two_d_mode which zeros out the 3D pose variables if set

to true. Since our robot operates on an even surface and does not leave the ground, this

parameter will be true. The parameters used in tests and simulations are listed in

Appendix A and B.

50

CHAPTER 5: SIMULATION RESULTS

This chapter will explain how sensors and algorithms are tested and simulated, along

with the results.

5.1. UWB Localization Tests

The measurement errors of ultra-wideband sensors will be evaluated in order to

emulate their noise in a simulation environment. Sensors are tested both for obstructed

and unobstructed setups. Figure 26 shows the results from both test setups.

Figure 26. Ultra-wideband range measurements.

The left-hand side depicts the minimum maximum and average measurement values

when sensors are not obstructed, and the right side shows the measurements when a

wall obstructs the sensor. Around a hundred measurements were taken at the same

place. The following results have been gathered from the tests and are shown in Table

4.

51

Table 4. Ultra-wideband measurement results.

 Unobstructed Obstructed

True distance (m) 0.7 1.6 3.0 3.0

Mean (m) 0.637 1.752 3.073 3.211

Standard deviation 0.0259 0.0309 0.0244 0.0322

Minimum (m) 0.57 1.69 3.02 3.13

Maximum (m) 0.7 1.84 3.16 3.27

Histograms of the above measurements are shown in Table 4. Based on the tests,

Gaussian noise with a standard deviation of 0.0285 will be used to imitate the natural

behavior of the sensor in the simulation as noise. This value is selected since it is the

mean of obstructed and unobstructed test cases.

52

Figure 27. Histogram of measurements.

5.2. Adaptive Monte Carlo Localization Tests

This section will cover the tests with the Monte Carlo localization, and problems

described in the problem statement will be shown in the simulation environment. The

first custom environment is created for tests consisting of 6 x 3 evenly separated blocks

with dimensions of 15 x 1.2 meters. Blocks are separated with 5 meters gaps to create

corridors. The simulation world in Gazebo is shown in Figure 28, where red blocks

represent outer walls and yellow blocks separate corridors.

53

Figure 28. Simulation world in Gazebo.

Once the simulation is up and running, the robot can start mapping the environment.

In order to generate the map, the Gmapping algorithm is used. The final map is

depicted in Figure 29, where dark gray areas in the inner part refer to the yellow blocks

in Figure 28. Generated map is 4000 x 4000 pixels, and the resolution is 0.05

Figure 29. Map of the simulated world.

54

After the map is generated, localization can be tested. The robot will start moving from

the center of the map and will continue to navigate until it reaches (-5, 0). Both ground

truth and AMCL pose will be saved and printed on the map during navigation. In these

tests, all blocks will remain in the world so that LiDAR will have accurate

measurements of the environment.

Figure 30. Localization results with AMCL (Green line is ground truth and red line is

EKF output).

The resulting paths are shown in Figure 30, where the green line refers to the ground

truth, and the red is the AMCL position output. Since the environment is unchanged,

AMCL accurately estimated the robot’s position. AMCL is tested in the whole map,

and the algorithm can maintain accurate estimation if the environment is static and

unchanged. However, the issue arises in highly dynamic environments when LiDAR

measurements do not match the map. An example of this problem can be seen in Figure

31. Red arrows represent AMCL particles. At the initial state, particles are unified at

the starting location, but once the robot moves, they spread around. When all particles

are considered, the output position estimation of the filter is still close to the actual

position. However, once a certain amount of distance is traveled position estimation

starts to jump. These jumps eventually lead to the robot getting stuck in a static

obstacle or getting lost entirely such that it will not recover on its own. The following

55

section will cover an example of this situation, along with the proposed solution and

its results.

Figure 31. Particles when LiDAR does not measure any features in environment.

5.3. Localization tests with the fusion of RTLS and AMCL

This section will describe the proposed solution to solve unreliable position estimation

problems when LiDAR can not receive correct measurements. Furthermore, the test

setup and results will also be presented.

Firstly, an imitation of the RTLS system must be simulated in the ROS environment

to provide position measurement data to the robot localization package. Since the

simulation world is created in Gazebo, it is possible to retrieve the exact location of

the robot. Location data will be published from a Gazebo plugin libgazebo_ros_p3d

defined in the xacro file as follows.

56

This plugin will publish the robot’s exact position in the desired topic as

nav_msgs/Odometry message. Once these messages are received from a python script,

Gaussian noise with 𝜇 = 0 and 𝜎 = 0.0285 will be added to (𝑥, 𝑦) positions, and they

will be republished with 10 Hz under /uwb_pose topic.

For robot_localization to work, transform publishers must also be re-arranged. When

AMCL works as the only global estimator, the tf_broadcast option must be set to true

to let AMCL handle the transformation between the global and odometry frame.

However, after an extended Kalman filter is introduced, this transformation will be

published from the robot_localization package, and the tf_broadcast option must be

changed to false. A new frame for RTLS messages must also be defined according to

the sensor’s location with respect to the robot. However, since the exact position of the

robot is taken from the simulation world, this frame is the same as the robot’s base

link, which is the center of the robot.

Tests are conducted in a simulation environment with an extended Kalman filter and

AMCL. The problem is reproduced and shown in Figure 32. The red line depicts the

AMCL position output, and as the robot continues to move, it starts to jump around

the true position of the robot. Green dots also show the Monte Carlo particles, which

are spread around since blocks in the middle are removed, and LiDAR is unable to

measure enough features. Unlike AMCL, the extended Kalman filter outputs more

stable and continuous position estimation. The blue line shows the extended Kalman

filter output, and sudden jumps do not appear when two sources are fused.

<plugin name="p3d_base_controller"

filename="libgazebo_ros_p3d.so">

 <alwaysOn>true</alwaysOn>

 <updateRate>50.0</updateRate>

 <bodyName>base_link</bodyName>

 <topicName>ground_truth/state</topicName>

 <gaussianNoise>0.00</gaussianNoise>

 <frameName>world</frameName>

 <xyzOffsets>0 0 0</xyzOffsets>

 <rpyOffsets>0 0 0</rpyOffsets>

</plugin>

57

Figure 32. Localization results with UWB and EKF (Blue line is ground trurth and red

line is AMCL output).

Although sensor fusion results in a more robust positioning and does not prevent

navigation from working safely, AMCL still needs to be manually or programmatically

corrected once LiDAR starts getting measurements from the environment. Otherwise,

AMCL will keep estimating the position wrong, making the extended Kalman filter

ignore the jumps and estimations from AMCL since pose rejection is set in the

configuration file.

58

CHAPTER 6: CONCLUSION

This paper showed that global localization from a single source might cause problems.

This research tested AMCL as a global localization source, and tests showed that

AMCL fails in dynamic environments where LiDAR is unable to capture enough

features from the environment. The problem is reproduced, and the solution is tested

in a simulation environment.

The proposed solution to the problem is fusing two global localization sources to have

a more accurate and stable estimation. The second source is a real-time localization

system with ultra-wideband sensors that provides absolute position information. These

sensors are configured as tags or anchors and placed in the robot’s operation area to

cover the mapped region. Furthermore, line of sight is crucial since obstructions cause

measurement errors, as shown in tests. Additionally, max range of sensors must be

considered during placement of the sensors. The sample setup for the system is given

in Figure 17, and a re-arrangement of sensors might be required depending on the

application area.

In conclusion, fusing global localization estimations offers sufficient and stable results

compared to using a single source only. Therefore, supporting the AMCL from a

different source solves the localization problem in highly dynamic environments for

robots with limited LiDAR measurement range. Another way to eliminate the problem

could be using high-end LiDARs with increased ranges up to a few tens of meters long.

However, this will introduce higher setup costs, and as the LiDAR range increases,

even minor changes in ground slope could create high errors while measuring objects

far from the sensor. So, one should consider all these while designing such a system.

6.1. Future work

Although the proposed solution is a good way to eliminate localization issues in the

described environments, a few problems still exist if AMCL goes far away from the

actual position. It is observed in the tests that AMCL is not able to recover from such

59

high errors if measured features match with someplace else. In such an event, position

estimations of AMCL will be useless, and particles must be reinitialized. Therefore, a

mechanism to reinitialize the particles at the correct location must be designed and

implemented to have a more robust system.

60

REFERENCES

[matlabbe]. (1 June 2020). Four Kilometers Walk in Forest (an uncut real-time visual

SLAM demo) [Video File]. Available at: https://www.youtube.com/watch?v=G-

5jesjNfLc

Decawave. (2022) REAL-TIME LOCATION SYSTEMS. [Online] Available at:

https://www.decawave.com/sites/default/files/resources/aps003_dw1000_rtls_introd

uction.pdf. (Accessed: 16 May 2022).

DWM1001 System Overview and Performance. (2022), DWM1001 Documents

[Online], Available at: https://www.qorvo.com/products/p/DWM1001C#documents

(Accessed: 20 October 2022).

Foote, T. (2013) tf: The transform library, IEEE Conference on Technologies for

Practical Robot Applications (TePRA), pp. 1-6.

Fox D., Burgard W., Thrun S. (eds.)(2005). Probabilistic Robotics. MIT Press.

Available at Google Books. (Accessed: 06 April 2022).

Fox, D. (2001) KLD-sampling: Adaptive particle filters and mobile robot localization.

Advances in Neural Information Processing Systems, vol. 14, no. 1.

Galvez-López, D., and Tardos, J. D. (2012). Bags of Binary Words for Fast Place

Recognition in Image Sequences. IEEE Transactions on Robotics, vol. 28, no. 5, pp.

1188–1197.

Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved Techniques for Grid

Mapping With Rao-Blackwellized Particle Filters. IEEE Transactions on Robotics,

vol. 23, no. 1, pp. 34-46.

Hahnel, D., Burgard, W., Fox, D., and Thrun, S. (2003). An efficient fastslam

algorithm for generating maps of large-scale cyclic environments from raw laser

range measurements. IEEE/RSJ International Conference on Intelligent Robots and

Systems, vol.1, pp. 206-211.

Hahnel, D., Burgard, W., Fox, D., Fishkin, K., and Philipose, M. (2004, April).

Mapping and localization with RFID technology. IEEE International Conference on

Robotics and Automation. Proceedings. ICRA ’04. Available at:

https://ieeexplore.ieee.org/document/1307283

Hazas, M., and Hopper, A. (2006). Broadband ultrasonic location systems for

https://www.youtube.com/watch?v=G-5jesjNfLc
https://www.youtube.com/watch?v=G-5jesjNfLc
https://www.decawave.com/sites/default/files/resources/aps003_dw1000_rtls_introduction.pdf
https://www.decawave.com/sites/default/files/resources/aps003_dw1000_rtls_introduction.pdf
https://www.qorvo.com/products/p/DWM1001C#documents

61

improved indoor positioning. IEEE Transactions on Mobile Computing , vol. 5 no. 5,

pp. 536–547.

Hector SLAM Documentation, (2014). Hector SLAM [Online], Available at:

http://wiki.ros.org/hector_slam (Accessed: 06 April 2022).

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

In Journal of Basic Engineering. vol. 82, no. 1, pp. 35–45.

Kohlbrecher, S., von Stryk, O., Meyer, J., and Klingauf, U. (2011). A flexible and

scalable SLAM system with full 3D motion estimation. 9th IEEE International

Symposium on Safety, Security, and Rescue Robotics, , pp. 155-160.

Kotaru, M., Joshi, K., Bharadia, D., and Katti, S. (2015). SpotFi. ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp. 269–282.

Kriz, P., Maly, F., and Kozel, T. (2016). Improving Indoor Localization Using

Bluetooth Low Energy Beacons. Mobile Information Systems vol. 2016, pp. 1–11.

Kumar, S., Gil, S., Katabi, D., and Rus, D. (2014). Accurate indoor localization with

zero start-up cost. Proceedings of the 20th annual international conference on Mobile

computing and networking. MobiCom’14: The 20th Annual International Conference

on Mobile Computing and Networking, pp. 483–494.

Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). G2o:

A general framework for graph optimization. 2011 IEEE International Conference on

Robotics and Automation (ICRA), pp. 3607-3613.

Labbe, M., and Michaud, F. (2014, September). Online global loop closure detection

for large-scale multi-session graph-based SLAM. 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 2661-2666. Available at:

https://ieeexplore.ieee.org/document/6942926

Lasmadi, L., Kurniawan, F., Dermawan, D., and Pratama, G. N. P. (2019, December).

Mobile Robot Localization via Unscented Kalman Filter. 2019 International Seminar

on Research of Information Technology and Intelligent Systems (ISRITI), pp. 129-

132. Available at: https://ieeexplore.ieee.org/document/9034570

Lecture Notes. (2002). Carnegie Mellon University lecture notes [Online]. Available

at: https://www.cs.cmu.edu/~rasc/Download/AMRobots1.pdf (Accessed: 06 April

2022).

MDEK1001 User Manual. (2022), MDEK1001 Documents [Online], Available at:

http://wiki.ros.org/hector_slam
https://ieeexplore.ieee.org/document/6942926
https://ieeexplore.ieee.org/document/9034570
https://www.cs.cmu.edu/~rasc/Download/AMRobots1.pdf

62

https://www.qorvo.com/products/p/MDEK1001 (Accessed: 20 October 2022).

Moore, T., and Stouch, D. (2015, September). A Generalized Extended Kalman Filter

Implementation for the Robot Operating System. Intelligent Autonomous Systems 13,

pp. 335–348.

Mur-Artal, R., and Tardos, J. D. (2016). ORB-SLAM2: an Open-Source SLAM System

for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, vol. 33,

no. 5, pp. 1255-1262.

Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015, October). ORB-SLAM: A

Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol.

31, no. 5, pp. 1147-1163.

Oguz-Ekim, P., Bostanci, B., Tekkok, S. C., and Soyunmez, E. (2020, October). The

EKF based Localization and Initialization Algorithms with UWB and Odometry for

Indoor Applications and ROS Ecosystem. 2020 28th Signal Processing and

Communications Applications Conference (SIU), pp. 1-4. Available at:

https://ieeexplore.ieee.org/document/9302137

Ouster. (2022) Ouster OS1 LiDAR Scanners [Online]. Available at:

https://ouster.com/products/scanning-lidar/os1-sensor/ (Accessed: 21 May 2022)

Pasricha, G. K. (2006). Kalman filter and its economic applications. MPRA [Online].

Available at: https://mpra.ub.uni-muenchen.de/22734/1/MPRA_paper_22734.pdf

(Accessed: 09 April 2022).

Pierce F. (2020). IKEA switches from timber to cardboard pallets

[Online] Available at: https://supplychaindigital.com/supply-chain-risk-

management/ikea-switches-timber-cardboard-pallets (Accessed: 8 December 2020)

ROBOTIS GitHub. (2022). Simulations for TurtleBot3 [Online]. Available at:

https://github.com/ROBOTIS-GIT/turtlebot3_simulations

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011, November). ORB: An

efficient alternative to SIFT or SURF. 2011 International Conference on Computer

Vision, pp. 2564-2571. Available at: https://ieeexplore.ieee.org/document/6126544

Strasdat, H., Davison, A. J., Montiel, J. M. M., and Konolige, K. (2011, November).

Double window optimisation for constant time visual SLAM. 2011 International

Conference on Computer Vision, pp. 2352-2359. Available at:

https://ieeexplore.ieee.org/document/6126517

https://www.qorvo.com/products/p/MDEK1001
https://ieeexplore.ieee.org/document/9302137
https://ouster.com/products/scanning-lidar/os1-sensor/
https://mpra.ub.uni-muenchen.de/22734/1/MPRA_paper_22734.pdf
https://supplychaindigital.com/supply-chain-risk-management/ikea-switches-timber-cardboard-pallets
https://supplychaindigital.com/supply-chain-risk-management/ikea-switches-timber-cardboard-pallets
https://github.com/ROBOTIS-GIT/turtlebot3_simulations
https://ieeexplore.ieee.org/document/6126544
https://ieeexplore.ieee.org/document/6126517

63

Strasdat, H., M. M. Montiel, J., and Davison, A. (2011). Scale Drift-Aware Large Scale

Monocular SLAM. Robotics: Science and Systems 2011 [Online]. Available at:

http://www.roboticsproceedings.org/rss06/p10.pdf (Accessed: 13 April 2022).

Tekkok, S. C., Soyunmez, M. E., Bostanci, B., and Ekim, P. O. (2021, June). Face

Detection, Tracking and Recognition with Artificial Intelligence. 2021 3rd

International Congress on Human-Computer Interaction, Optimization and Robotic

Applications (HORA), pp. 1-5. Available at

https://ieeexplore.ieee.org/document/9461356

u-blox. (2020) Bluetooth Indoor Positioning [Online]. Available at: https://www.u-

blox.com/en/technologies/bluetooth-indoor-positioning (Accessed: 26 December

2022).

Wang, Y., Zhang, W., Li, F., Shi, Y., Chen, Z., Nie, F., Zhu, C., and Huang, Q. (2019,

October). An improved Adaptive Monte Carlo Localization Algorithm Fused with

Ultra Wideband Sensor. 2019 IEEE International Conference on Advanced Robotics

and its Social Impacts (ARSO), pp. 421-426. Available at:

https://ieeexplore.ieee.org/document/8948809

Wing M. G., Eklund A., and Kellogg L.D., Consumer-Grade Global Positioning

System (GPS) Accuracy and Reliability, Journal of Forestry, vol. 103, no. 4, pp. 169–

173.

Yuzhen, P., Quande, Y., and Benfa, Z. (2016, May). The application of adaptive

extended Kalman filter in mobile robot localization. 2016 Chinese Control and

Decision Conference (CCDC), pp. 5337-5342.

Zhang, G., Lee, J. H., Lim, J., and Suh, I. H. (2015, December). Building a 3-D Line-

Based Map Using Stereo SLAM. IEEE Transactions on Robotics, vol. 31, no. 6, pp.

1364-1377.

http://www.roboticsproceedings.org/rss06/p10.pdf
https://ieeexplore.ieee.org/document/9461356
https://www.u-blox.com/en/technologies/bluetooth-indoor-positioning
https://www.u-blox.com/en/technologies/bluetooth-indoor-positioning
https://ieeexplore.ieee.org/document/8948809

64

APPENDICES

Appendix A-Robot Localization Package Odom Parameters

frequency: 60

two_d_mode: true

use_control: false

control_config: [true, false, false, false, false, true]

base_link_frame: base_footprint

odom_frame: odom

world_frame: odom

map_frame: map

publish_tf: true

odom0: /odom

odom0_config: [false, false, false,

 false, false, false,

 true, true, false,

 false, false, true,

 false, false, false]

odom0_differential: false

65

Appendix B- Robot Localization Package Map Parameters

frequency: 10

two_d_mode: true

map_frame: map

odom_frame: odom

base_link_frame: base_footprint

world_frame: map

publish_tf: true

transform_time_offset: 0.1

smooth_lagged_data: false

dynamic_process_noise_covariance: false

odom0: /odom

odom0_config: [false, false, false,

 false, false, false,

 true, true, false,

 false, false, true,

 false, false, false]

odom0_differential: false

pose1: uwb_pose

pose1_config: [true, true, false,

 false, false, false,

 false, false, false,

 false, false, false,

 false, false, false]

pose1_rejection_threshold: 3

pose0: amcl_pose

pose0_config: [true, true, false,

 false, false, true,

 false, false, false,

 false, false, false,

 false, false, false]

pose0_rejection_threshold: 4

