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Distribution Theory

Baker- Lin-Huang Type Bivariate Distributions
Based on Order Statistics

K. BAYRAMOGLU! AND I. BAYRAMOGLU (BAIRAMOV)?

Department of Statistics, Middle East Technical University, Ankara, Turkey
’Department of Mathematics, Izmir University of Economics, Izmir, Turkey

Baker (2008) introduced a new class of bivariate distributions based on distributions
of order statistics from two independent samples of size n. Lin and Huang (2010)
discovered an important property of Baker’s distribution and showed that the Pearson’s
correlation coefficient for this distribution converges to maximum attainable value,
i.e., the correlation coefficient of the Fréchet upper bound, as n increases to infinity.
Bairamov and Bayramoglu (2013) investigated a new class of bivariate distributions
constructed by using Baker’s model and distributions of order statistics from dependent
random variables, allowing higher correlation than that of Baker’s distribution. In this
article, a new class of Baker’'s type bivariate distributions with high correlation are
constructed based on distributions of order statistics by using an arbitrary continuous
copula instead of the product copula.

Keywords Bivariate distribution function; FGM distributions; Copula; Positive quad-
rant dependent; Negative quadrant dependent; Order statistics; Pearson’s correlation
coefficient

Mathematics Subject Classification 62H20; 62G30

1. Introduction

Huang and Kotz (1999) introduced new modifications of classical Farlie-Gumbel-
Morgenstern (FGM) distribution introducing additional parameters. The new Huang-Kotz
FGM distributions allow a correlation higher than the classical FGM and because of the
simple analytical form aroused the interest of many researchers. In recent years, there
appeared many articles dealing with the modifications of FGM distribution allowing high
correlation. For related works on this subject, see Lai and Xie (2000), Bairamov et al.
(2001), Amblard and Girard (2002), Bairamov and Kotz (2002, 2003), and Fisher and
Klein (2007), among the others. Baker (2008) used a novel approach connected with the
FGM distribution and introduces a new class of bivariate distributions based on the distri-
butions of order statistics. Dolati and Ubeda-Flores (2009) considered new transformation
of copulas based on Baker’s construction, recovering known families of copulas. Baker
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(2008) considered independent random variables X;, Y; , from two univariate distributions
with distribution functions (cdf) Fx and Fy, respectively. The corresponding probability
density functions (pdf) are fy and fy. Let U; = min(X, X») and U, = max(X, X»),
Vi = min(Yy, Y>) and V, = max(Y}, Y»). To obtain positive correlation, Baker randomly
chooses either the pair U;, V) or U,, V,. The random numbers are now positively correlated,
but the marginal distributions remain unchanged, because the random choice of either of
two order statistics from a distribution gives a random variable from that distribution. To
obtain a negative correlation, either U;,V; or U,, V| are chosen. The bivariate distribution
of a randomly chosen pair of order statistics is

1/2 x {F2x)FP?(y) + FY* () Fy2 ()}

and by choosing either a pair of order statistics with probability g or the original independent
random variables X, Y with probability 1 — ¢, the bivariate distribution function is

H(x,y) = (1 — Q)Fx(x)Fy(y) + (q/2) { Ff*(x)FF*(y) + Fy*(x)Fy ()}
= Fx(x)Fy(M{1 + g(1 — Fx(x))(1 — Fy(y)}.

In general, let X, X5, ..., X, and Yy, V>, ... Y, are independent and identically distributed
(i.i.d.) random variables with distribution functions (df) Fx and Fy, respectively. Let X.,
and Yi.,, k=1,2,...,n be corresponding order statistics and Fx"(x) = P{Xy,, < x},

F}“”(y) = P{Y;.,, < y}. Baker’s bivariate distribution function is now defined as

| :
H,y) = =3 F O FF () (0
k=1
| R .
HO(x,y) = =3 FMOFy ™1 (). )
k=1

For Baker’s bivariate distribution Hf:')(x, y) with exponential marginals Fx(x) = Fy(x) =
1—e™™, x > 0, the Pearson’s correlation coefficientis p, = 1 — % Z=1 %, which increases
monotonely to 1.

As a generalization of (1) and (2), Baker also introduced

) = 303 Y O 0), ¥

k=1 =1

where riy >0 and > _ru =Y ) ru = %, for all k,/ =1,2,...,n. Lin and Huang
(2010) proved that (3) does not contain members with a correlation higher than that of
(1). That is why the best bivariate distribution with higher positive correlation among the
members (3) is (1). Similar consideration holds true for the negative correlation. Lin and
Huang (2010) investigated the conditions under which the correlation for (1) converges
to the limit. In particular, they showed that if either (i) X > b, Y > c a.s. for some b, c €
R and E(Xz) = Fy'(21) and E(Yi.y) = Fy '(51) for all (k, n), or (i) X <b,Y <c
a.s. for some b,c € R and E(Xy,) < Fy'(5) and E(Yi,) < Fy'(%) for all (k, n) then
lim,—, 000, = p*, where p* is the correlation coefficient of the Fréchet-Hoeffding upper
bound Hy(x,y) = min(Fx(x), Fy(y)) (see Fréchet, 1951). The results presented in Lin
and Huang (2010) makes Baker’s distribution attractive.
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Recently, Bairamov and Bayramoglu (2013) observed that if one uses the dependent
random variables (X, Y) with positive quadrant dependent (PQD) joint distribution function
F(x, y), in the Baker’s model instead of independent random variables, then the correlation
increases, while for negative quadrant dependent F(x, y) it decreases. More precisely,
let (X1, V1), (X2, Y2), ..., (X,, ¥;,) be a bivariate sample with joint distribution function
F(x,y) = C(Fx(x), Fy(y)). Bairamov and Bayramoglu (2013) considered the following
bivariate distribution functions constructed on the basis of the Baker’s idea:

: 1 n
Ki)(x, y) = ;ZP{Xr:n <X, Yr:n =< y}

r=1

1 n
KT)(-X’ )’) = - ZP{Xr:n =x, Yn—r+l:n = y}’
n

r=1

where X;., and Y., are the ith and jth order statistics constructed on the basis of bivariate
observations (X;, ¥;), (i =1, 2, ..., n) with joint distribution function F(x,y) = P{X; <
x, Y; < y}and marginal distribution functions Fyx(x) = F(x, 00), Fy(y) = F (oo, y) so that
Xl:n =< X2:n == Xn:n’ Yl:n =< Y2:n <= Yn:n~ The jOil’lt df of Xr:n and Ys:n is giVeH
in David (1981) (see also Arnold et al., 1992) as

P{X,, <x,Yen <y}

n n b
=D 2 ek, pptipppa P )
i=r j=s k=a
where
n!
cn, kyi, j) = —— - — ,
kKl —)\(G—kn—i—j+k)
a =max(0,i + j —n), b = min(, j) 5)
and
pi = F(x,y)
pi2 = Fx(x) — F(x,y)
p2 = Fy(y) — F(x,y)
P =1—Fx(x)— Fy(y)+ F(x, ). (6)
Then,
1 n n n b
n .. ik _j—k n—i—j+k
K'(Q')(x’ y) = n ZZZZC(”,k;l, J)P]flplzkpé1 Pxn a ™)

r=1 i=r j=r k=a

n n

n b
n ! . i—k _j—k n—i—j+k
KOy ==3 230 30 D et ki ppiipi pi s ®)

r=1 i=r j=n—r+1 k=a

It is clear that the marginal distributions of K Sr")(x, y)and K n )(x, y) are again Fy(x)
and Fy(y), i.e., K\ (x, 00) = Fx(x) and K" (00, y) = Fy(y). It is shown that for a PQD
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joint distribution function F(x, y) the positive correlation of K 5:’) (x, y) is higher than that
of Hi")(x, y) and for NQD F(x, y) and the negative correlation of K(,")(x, y) is smaller
than that of H™(x, y).

In this article, we consider a new class of bivariate distribution functions using Baker’s
construction and considering any copula C(u, v) instead of product copula C(u, v) =
IT(u, v) = uv. It follows that for this new class of distributions if C(u, v) is PQD, i.e.,
C(u, v) > uv, for all (u, v) € [0, 1], then the Pearson’s correlation coefficient is higher
than that of Baker’s distribution. Similarly, if the copula is NQD, i.e., C(u, v) < uv, for all
(u, v) € [0, 1]? then then the Pearson’s correlation coefficient is smaller than that of Baker’s
distribution. Due to important contributions in Lin and Huang (2010) and Huang et al.
(2013) Baker’s distribution became very attractive. In this article, we call all modifications
constructed on the Baker’s idea Baker-Lin-Huang Type distribution, the distribution (7),
(8) Baker’s Type I BB and the new distributions introduced in this paper Baker’s Type 11
BB distributions.

2. New bivariate Baker’s Type II BB Distributions Based
on a Copula Approach

Let Xy, X5,...,X,, and Yy, Y,,...Y, be 1i.d. random variables with df’s Fx and Fy,
respectively. Let Xi., and Y;.,, Kk =1,2,...,n be corresponding order statistics and
Fy"(x) = P{Xpp < X}, Fy"(y) = P{Yen < ).

Recall that a two-dimensional copula is a function C(x, y) from [0, 11? = [0, 11x[0, 1]
to [0, 1] with the properties:

I. C(x,0)=0=C0,y), C(x,1)=xand C(1, y) = y;
2. forevery xi, x2, y1, y2suchthat 0 < x; <x; <land0 <y, <y, <1

C(x2, y2) — C(x2, y1) — C(x1, y2) + C(x1, y1) = 0.

According to Sklar’s Theorem, if Fx y(x, y)is a joint distribution function with continuous
marginal distributions Fy(x) and Fy(y), then there exists a unique copula C such that
F(x,y) = C(Fx(x), Fy(y)). Theory and applications of copulas are well documented in
Nelsen (2005), and Balakrishnan and Lai (2009). Let C(u, v) be any copula. Consider

n 1 . n n
GP(x,y) = - ; C (FE"(x), FE"(y)) )
1< . .
GU(x,y) =~ 3 C(F"(0, iy (). (10)
k=1

It follows from the properties of a copula that the marginal distributions of G(f)(x, y) and
G" (x,y) are Fx and Fy, respectively. In fact,

Y l ¢ n 1 ¢ n
G (x, 00) = - Y C(Fy" ). 1) = - > FE"(x) = Fx(x)
k=1 k=1

n 1 « n 1 - n
G100, y) = = 3 C(L Ff"(») = = 3 Ff"() = Fy(y).
k=1 k=1
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Similarly, G(,”)(x, o0) = Fx(x) and G(,")(oo, y) = Fy(y). From now on, we will denote by
pu the Pearson’s correlation coefficient between any random variables X and Y with joint
distribution function H (x, y). It is clear that if C(u, v) = I1(u, v) = uv then G(f)(x, y) =
H"(x,y) and G”(x, y) = H™(x, y). Since C(F£"(x), F£"(y)) is a bivariate cdf (with
marginals F )’?” (x) and F; ;‘:”(y)) then G(f)(x, y) is obviously a bivariate cdf as a convex
combination of bivariate cdf’s. The copula used in construction (9) and (10) will be called
the “kernel” copula for Baker’s Type II BB distribution.

Theorem 2.1. IfC(u, v) is POD then PG > Py and if C(u, v) isNOD then pgm < pyo.

Proof. Since C(u,v) >uv for all (u,v)€[0,1]1%, then C(Fk"(x), Ff"(y)) >
F )l?” (x)F }’f:" (y) forall (x, y) € R?. From the Hoeffding’s formula (see Hoeffding, 1940) for
correlation coefficient one has

3 1 00 poo o B
o = s || (04603 = PO 0y

= ; - > l - k:n kn
— VarVar(Y) /_oo /_oo n;C(FX ), Fy" ()

— Fx(x)Fy(y) |dxdy Y

. 1 [o¢] o0 (n) B
Puy = Var(x)Var(Y) /—oo /—oo LA 3) = Fx(Fy ()Jdy

Fy"(x)Fy™(y)

N VarG)Var(Y) J_so J-o | 7 P
— Fx(x)Fy(y) |dxdy (12)

and P Z Py Similarly, pgm < pyo. O

Example 2.1. Baker’s Type II BB distributions with FGM “kernel” copula. Let

C(u,v) =uv(l + (1l —u)(1 —v)), (u,v) € [0, 1]2, —1<ac<l. (13)
Consider
n 1 - n n
G y) =~ 3 ") FF" ()1 + (14)
k=1

+a(l = FR"))(1 — Ff"(»), 0 <a < L.
1 n
G"(x,y) ==Y FE"@)Fp o)+ (15)
n kgl: X Y

+a(l = FF"0))(1 = Fp*"(y), =1 <a <0,
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Table 1
Correlation coefficients PG and pgom with
Flx,y) = xy(Il +a(l = x)(1 = y)),a = 1, Fx(x) = x, Fy(y) = y,0 < x,y < l and
Py P and Py Py with Uniform(0, 1) marginals

n 2 4 6 8 10 12 15 20

pgw  0.5467  0.7258  0.8039 0.8475 0.8753 0.8945 0.9144 0.9348
,0,((}) 0.5133 0.6915 0.7761 0.8247 0.8561  0.8779 0.9006  0.9241
Py 0.3333  0.6000 0.7143 0.7778 0.8182 0.8462 0.8750  0.9048
pgm —0.5467 —0.7258 —0.8039 —0.8475 —0.8753 —0.8945 —0.9144 —0.9348
,OK(;) —0.5133 —-0.6915 —0.7761 —0.8247 —0.8561 —0.8779 —0.9006 —0.9241
,oHEn —0.3333 —-0.6000 —0.7143 —0.7778 —0.8182 —0.8462 —0.8750 —0.9048

Let Fx(x) =x,0<x <l and Fy(y) =y,0 <y < 1. Since the FGM copula (13) is
PQD for o > 0 and is NQD for @ < 0, then PG > Py for o > 0, P < Py, for

« < 0. It is clear that if @ = 0 then G (x, y) = H"(x, y) and G"(x, y) = H"(x, y).
In Table 1 we present some numerical values of PG> P s Py PGy Py and pymfor
Uniform(0, 1) marginals. The numerical calculations are made in MATLAB which is one
of the commonly accepted packages for coding mathematical models since it has built-in
functions for probability distributions and allows probabilistic and mathematical operations.

It can be observed from Table 1 that p;m < pgw < pym < P = Pgo = P

In Table 2, the values of the correlation coefficients for PG> P Pyms PGy Pxo
and p 5o for Uniform(0, 1) and Exponential(1) marginal distributions.

Again, from Table 2 we have Pgm < pgm < ppm < Py < Pk < PG~

3. Copula Representation of Baker’s Type II BB Distribution

Denote by I1(z, s) = ts, (t,s) € [0, 17 a product copula. Let (X;, Y;),i =1,2,..n be a
bivariate sample with joint distribution function F(x, y) = C(Fx(x), Fy(y)). Consider the

Table 2
Correlation coefficients p;m and psm with F(x, y) = xy(1 +a(l —x)(1 —y)), a =
I, Fx(x)=x,0<x <1, F+y(y) =1- exp(—y),y > 0 and Pk P and Py Py
with the same marginals

n 2 4 6 8 10 12 15 20

PG 0.4811 0.6343 0.7001 0.7367 0.7600 0.7762  0.7929  0.8102
Pg® 0.4426  0.5951 0.6682 0.7105 0.7379 0.7572 0.7772  0.7980
Py 0.2886  0.5196 0.6185 0.6735 0.7085 0.7327 0.7577  0.7835
pgm —0.4811 —0.6343 —0.7001 —0.7367 —0.7600 —0.7762 —0.7929 —0.8102
pgw —0.4426 —0.5951 —-0.6682 —0.7105 —0.7379 —0.7572 —0.7772 —0.7980
pym —0.2836 —0.5196 —0.6185 —0.6735 —0.7085 —0.7327 —0.7577 —0.7835
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joint distribution of order statistics X,., and Y., given in (4):
FX,;n,Ys;n(x’ y)=P{X,p <x, Y <y}
k k
= ZZZC(” ks i, ])pllplzkpél szl s (16)
i=r j=s k=a

where c(n, k;i, j), pi1, P12, P21, P22 are given in (5) and (6). The copula of bivariate
distribution Fy,, v, (x,y) is of considerable interest. Denote this copula as C, s.,(f, s),
then

Fx,,v,,(x,y) = Cron(Fx,,(x), Fy,, (). A7)

It is well known (David, 1981), that

n

Fx, (=Y (’:) Fi)(1 = Fx(x)"™

i=r

| CONS
= m/ u (I —=w)""du = Iy 1 (Fx(x))
) - 0

and

Fy, ) =) (’f) Fy(»)(1 — Fy()"™

i=s

1 Fy(y) - .
B m/ N =)' du = Lt (Fy (),
b 0

where 1,,(p) = B(i_b) J§u* (1 — w)’~'du is an incomplete Beta function. Denote
by I;bl(p) the inverse of I,,(p). Let Fx,_ (x) =1 ,_,11(Fx(x)) =t and Fy_(y) =
Is.n—H—l(FY(y)) = s. Then

x = Fy' (I, (Fx@) and y = Fy' (10, (Fr(s) (18)

From (17), and (18), one has

erSiVl(t’ S) FX Yen (F (Irn r+l(t)) (ISTHI—X-H(S))) : (19)

Therefore, a copula of joint distribution of order statistics X, and Y., is C, 5.u (2, 5) given
in (19). In a special case if r = s = n one has

Con(t,s) = F" (F' (I 1(0), Fy'' (I,1(9))) (20)
— Fll (F;l([l/n), F;l(sl/n)) — Cn(tl/n,sl/n),

since I, 1(t) = t" and In_ll (v) = v'/". The copula (20) is an extreme value copula, i.e., a cop-
ula of componentwise maxima X,y = (Xp.n, Yy:n) of a given sample X = (X, X», ..., X)T
and Y = (Y1, Y», ..., ¥,,)T with common distribution function F(x, y) of (X, Y). The ex-
treme value copula presents interest in insurance and finance in modeling of extreme events.
The extreme events are more disastrous than any previously observed events. A bivariate
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copula C,y, is called an extreme value copula, if there exists a copula C such that for all
(t,s) €0, 117

limnﬁoocn(tl/n’ Sl/n) = Cox:(t, 5).

It is known that the class of extreme value copulas coincides with the class of max-stable
copulas, i.e., a copula C,,;, is an extreme value copula if and only if for alln € N

Cou(t,s) = C2,(t"/", 5"/

for all (¢, s) € [0, 1]*> (see Gudendorf and Segers, 2010; Haug et al., 2011).
Analogously, one obtains the copula of joint distribution of order statistics X;., and
Yl:n as

Cinnt,s)=1t+s—1
+[A ="+ 1 -5 -1
+ F(Fy' (1= (1 =0, Fy(1 = (1 =)' ]
=t+s—14+[A=-D""+U-5)""—1 (1)
+CU - =" 11— =)
by noting that the joint distribution function of X;., and Yi., is
Fxp v, (X, y) = P{X1 <x, Y1 <y}
=1 —(1=Fx))+A—=0—F))—1+F'(x,y)
=1 —=1=Fx(x))+1—-0-=FO))—1
+ (1 = Fx(x) — Fy(y) + F(x, y))"
= Crun (1= (1= Fx(0))", 1 = (1 = Fy(y))"). (22)

3.1. The Baker’s Type II1 BB Distributions with “Kernel” Copula of Bivariate FGM
Extreme Order Statistics

If the underlying distribution is classical FGM, i.e.,
F(x,y) = Fx()Fy(y)A +a(l — Fx(x)(1 — Fy(y), -1 =a <1 (23)
one obtains from (20)
Cunlt, $) = 15 [1+ (1 —"/")(1 = 5"/M)]" (24)
and from (21)
Ciut,s)=t+s—1+[1-0""+A—-5""—1

+ A=A =01 =1 =9
x {1 +a(l — )Y/ — s)V/m. (25)
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It follows thatlim,,_, o, C,,., (¢, s) = ts = I(¢, s)and lim,,_, ,C., (2, s) = TI(z, 5), since
lim,— 00[1 4+ (1 — t1/")(1 — s/")]" = 1 and

lim [(1 —)/"+ 1 -5/ —1
n—o0

+1 =A== (1 =)' +a =1 =51
=1 -0 =),

where I1(¢, s) is a product copula of independent random variables. This means that if the
joint distribution of (X, Y) is FGM given in (23), then the extreme order statistics X, and
Y., are asymptotically independent. So are the order statistics X;., and Y7.,. In spite of this
fact, the Baker’s type BB distribution constructed on the base of the copula (24) and (25)
has correlation large enough.

Indeed, consider Baker’s type BB distribution (9) with the “kernel” copula (24) and
with the “kernel” copula (25):

~(n 1 § n n
G0 y) = =3 Con (FY" (), ()
k=1

=Y AR |1+ al =[] )0 - [Fo)] ) |

k=1

G0y = =3 Crn (FY" (), FY" (7))
k=1

1 « . . . n . n
:;Z{F;"(x)JrFﬁ-"(y)—1+[(1—F§~"(x))” + (1= FEo) " =1
k=1

- (1= ) ) - (1 - o))
% {1 +a (1 _ F}/?n(x))l/n (1 _ F)};:n(y))l/n }:I”} .

For example, the correlation coefficient of (V}(f)(x, y) for Uniform(0, 1) marginals is pem =
0.4985 forn = 2.

3.2. The Baker’s Type BB Distributions with “Kernel” Copula of Bivariate Gumbel’s
Extreme Order Statistics

Let

uv

O =

(26)

Equation (26) is the copula of the Gumbel’s bivariate logistic distribution function

Hyy(x,y)=(l+e*+e ) L x>0,y>0
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with standard logistic marginal distributions Hy (x) = (14e~*)~! and Hy(y) = (I4e=)71,
x >0,y > 0. (Gumbel, 1961; see also Nelsen, 2005, p. 28). Using

Fx(x)Fy(y)

F(x,y) = ,
Fx(x) + Fy(y) — Fx(x)Fy(y)
one obtains from (20)
c B ts 27
el 8) = (tl/n + sl/n — tl/nsl/n)n 27
and from (21)
Cipt,s)=t+s—1+
+ [ A-"+1-s" =1 (28)

(1= (1 =" =1 =9 '
2= (A== (=) = (1= A =T = (1= )"

+

It is seen that

. . ts
Jim G (t,5) = Tim s — iy = ts = I1(t, s).

4. Joint Distribution of Bivariate Order Statistics for Fréchet Upper Bound
Copula

Let (X1, Y1), (X2, Y2), ..., (X, Y,,) be a bivariate sample with joint distribution function
F(x,y) = C(Fx(x), Fy(y)). In this section our aim is first, to investigate the joint distribu-
tion function of bivariate order statistics (X,.,, ¥;.,) for a copula with maximal correlation,
i.e., the Fréchet upper bound. We are interested then in distribution function

1 n n n b o - e ik
Ky = =3 3733 eln ki pphypis ph s
r=1 i=r j=r k=a

in the case where the marginal distributions are uniform and C(u, v) = min(u, v). Recall
that the coefficients c(n, k; i, j) and pi1, p12, p21, P22 are given in (6) and (5). Second, we
consider a distribution introduced in (9) with uniform marginals, i.e.,

1 . .
- C (P, " ()

k=1

G (x, y)

1 n
=2 C(Fy,, (), Fu,, (),
r=1

where C(r,s) =min(t,s) and Fy, (x)=)7 (1)x'(1 — x)" and Fy (y)=
i ()y =y

Assume that marginal distributions are Uniform(0, 1), i.e., Fx(x) =x,0 <x <1,
Fy(y)=y, 0 <y < 1. Denote by (U;, V;),i = 1,2, ...,n the random sample from the
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bivariate distribution C(u, v),0 <u <1,0<v <land Uy, < Uy, <--- < Uy, Vi:n <
Voo < -++ < V., be corresponding order statistics. Then from (4) for r = s one has

P{Ur:n S I/[, Vr:n S U}

n n b
— Z Z Zc(n, ki, )HC*u, v)(u — C(u, v))*

i=r j=r k=a

x (v — C(u, v)) F(Cw,v)" " 0<u<1,0<v<1. (29
and

n n n b
K, v) = rll DN DD el ki, HC@, v) e — Clu, v) ™

r=1 i=r j=r k=a

v —CQu,v))Y *Cu,v)" " o<u<1,0<v<l. (30)

Lemma 4.1. The joint distribution of U,., and V,., can be represented as

P{Urn S u Vr'n S v}

_Z< )C(u V) [v—Cu,v)+ Cu, v)]

+ Z( )Cf(u ) [u— Clu, v) + Clu, v)]"™’

5 (ewncuor
" ZZ Y clnksiy HCG, v = Clu, v)) ™

i=r j=r ki#j

x (v — C(u, v)) K(C(u, v))' =+, (31)

Theorem 4.1. [f C(u, v) = min(u, v), then

P{U;n < u, Vey < v}

n

Z(?)u"[l—u]”_i if u<v
i

Z <7>vi [1—v]"" if u>v
— \i

P{Upy <u} if u<vw

P{V., <v} lf u=v
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Consider (31). Let C(u, v) = min(u, v). Then it is clear that (u — C(u, v)) *(v —
C(u, v))/ =% = 0 for those k satisfying k # i and k # j, because u — C(u,v) =u —u =0
if u <vandv— C(u,v) =0if u > v. Therefore the last term of (31) vanishes and we
have from (31)

P{U; < u, Viy <0}

Z <n>u’ 1—ul™ if u<v
i

— i=r (32)

Z(?)vi =" if u>v

P{U,.y <u} if u=<v
PV <v} if u>v

Consider now the Baker’s Type I BB copula obtained from (32)

1 n
K-(t:l)(ua v) = ;l ZP{Urn <u,Viy < v}

r=1
1 n n n
- i 1— n—i . <
n;l;(l)u[ u) if u<v

= 1 n n n . A
_ L 1_ n—i .
n;;<i>v[ v] if u>v
u if u<v

= = W(u, v) = min(u, v)
v if u>v

is nothing but the Fréchet upper bound itself. In other words, the Baker’s BB distribution
with uniform marginals and underlying joint distribution which is the Fréchet upper bound
generates the Fréchet upper bound.

Now consider the Baker’s Type II BB distribution with the “kernel” copula, being
Fréchet upper bound, i.e.,

1 n
G(x, ) = = C(Fy,, (), Fr,, (),
r=1

where  C(t,s) =min(r,5) and Fy,(x)=37_, ()x'd — x)" and Fy, ()=
>, ()Y (1 =yl It follows that

; s
G(x, y) = ~ 3 min(Fy,, (x), Fy,, ()

r=1

1 n
- Z min(Fy,, (x), Fy,, ()

r=1
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n n

122(’?>xi(l_x)n—i lf -xfy

_ n r=1 i=r !

- 1 n n n . y .
—ZZ(.)y'(l—y)" i x>y
n r=1 i=r !

= min(x, y).

Therefore, if in the constructions K Sf)(x, y) and G(J:’)(x, y) with Uniform(0, 1) marginals,
one uses the Fréchet upper bound copula W (t, s), then obtained copula is again the Fréchet
upper bound copula. Example 1 indicates that if in the same construction one uses FGM
copula then different distributions with high correlation can be obtained. For different con-
structions satisfying conditions of the Example 2.1, we have the following set of inequalities
for correlation coefficient:

PM = PG = Pgo = P = Pue = P = P = PWs

where oy, is the correlation coefficient of the Fréchet lower bound M (¢, s) = max(t + s —
1,0).
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Appendix

Proof of Lemma 4.1. Separating terms for summation in (29) fork =i = j, k=i # j
and k = j # i we have

P{Ur:n S uﬂ Vr:n S U}

= e, i i, )C (u, v)(Cu, v))"

i=r

+ )0 ) eln i, HCHw, v)u—Clu, v)) 7 (v — Clu, )7 (Clu, v)y

i=r j=i+l

+ )0 e, HC ) —Cu, )Y~ (w=Cu, )Y (Cu, v))' I+

j=r i=j+1

+ 30> eln ki, HC, v)f (u = Clu, v)) (= Clu, v)) ™

i=r j=r k#i#£]

X (C(M, v))n—i—j-H(
- n . - .
= Z <i>C’(u, v(C(u, v))"™'

n n nl . o o
+>. > T € v = €l ) C )

i=r j=i+l ‘])

~ 1 n! j i—j (7 n—i
+> 3 = =€ e v = Cl ) T (Cw, v))

j=ri=j+l1
+ D)0 el ki, HCu, v)f(u — Clu, )
i=r j=r k#i#j

x (v — C(u, v)) X(C(u, v)' I+, (33)
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Consider the second summation in (33) and changing index in the inner sum as j —i =k
(J=i+k, j=i+1=k=1j=n=—k=n—1i)wehave

Z Z —c ', v)(v — Cu, v)) 7 (Clu, )"

| |
zrlerll(‘] l)(l’l )

n—i

_Zc T Z (”_i) (v — Cu, V)X(C(u, v))y—i—*
i — i) Kkl —i—k)!

= ;(’Z)c'(u,v) [Z o0 = Gl o)l )™ = (v }

_Z< >C(u v) [v—Cu,v)+ Cu, v)] Z(’Z)Ci(u,v)(é(u,v))ni. (34)

I=r

Analogously, the third term in (33) can be written as

Z Z WC’(M W — Cu, v)) I (Cu, v))"™

Jj=ri=j+1

—Z( )C’(u ) [u — Clu, v) + Cu, u)] (35

- Z( )C (u, v)(C(u, v))" .

Taking into account (34) and (35) in (33) we have (31). U



