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In silico drug screen reveals potential competitive MTHFR inhibitors for clinical
repurposing

Nazlıg€ul Keskea�, Başak €Ozaya�, Ezgi Ya�gmur T€ukela�, Muratcan Menteşa� and Cihangir Yandıma,b

aFaculty of Engineering, Department of Genetics and Bioengineering, _Izmir University of Economics, Balçova, _Izmir, Turkey; b_Izmir
Biomedicine and Genome Center (IBG), Dokuz Eyl€ul University Health Campus, _Inciraltı, _Izmir, Turkey

Communicated by Ramaswamy H. Sarma

ABSTRACT
MTHFR (Methylenetetrahydrofolate reductase) is a pivotal enzyme involved in one-carbon metabolism,
which is critical for the proliferation of cancer cells. In line with this, published literature showed that
MTHFR knockdown caused impaired growth of multiple types of cancer cells. Moreover, higher MTHFR
expression levels were linked to shorter overall survival in hepatocellular carcinoma, adrenocortical car-
cinoma, and low-grade glioma, bringing the need to design MTHFR inhibitors as a possible treatment
option. No competitive inhibitors of MTHFR have been reported as of today. This study aimed to iden-
tify potential competitive MTHFR inhibitor candidates using an in silico drug screen. A total of 30470
molecules containing biogenic compounds, FDA-approved drugs, and those in clinical trials were
screened against the catalytic pocket of MTHFR in the presence and absence of cofactors. Binding
energy and ADMET analysis revealed that Vilanterol (b2-adrenergic agonist), Selexipag (prostacyclin
receptor agonist), and Ramipril Diketopiperazine (ACE inhibitor) are potential competitive inhibitors of
MTHFR. Molecular dynamics analyses and MM-PBSA calculations with these compounds particularly
revealed the amino acids between 285-290 for ligand binding and highlighted Vilanterol as the stron-
gest candidate for MTHFR inhibition. Our results could guide the development of novel MTHFR inhibi-
tor compounds, which could be inspired by the drugs brought into the spotlight here. More
importantly, these potential candidates could be quhickly tested as a repurposing strategy in pre-clin-
ical and clinical studies of the cancers mentioned above.

Abbreviations: ACC: Adrenocortical carcinoma; ADMET: Absorption, distribution, metabolism, excretion
and toxicity; CH2-THF: 5,10-methylenetetrahydrofolate; CH3-THF: 5-methyltetrahydrofolate; FAD: Flavin
adenine dinucleotide; FDA: U.S. Food and drug administration; Fs: Femtoseconds; HCC: Hepatocellular
Carcinoma; IP: Prostacyclin receptor; LAML: Acute Myeloid Leukemia; LGG: Low-grade glioma; LIHC:
Liver hepatocellular carcinoma; MD: Molecular Dynamics; MM-PBSA: Molecular Mechanics Poisson-
Boltzmann Surface Area; MTHFR: Methylenetetrahydrofolate reductase; NAD: Nicotinamide adenine
dinucleotide; NPT: Constant number of particles, system pressure, and temperature; NVT: Constant
number of particles, system volume, and temperature; PDB: Protein data bank; PME: Particle-mesh
Ewald; PRMT4: Arginine methyltransferase 4; Ps: Picoseconds; RG: Radius of gyration; RMSD: Root mean
square deviation; RMSF: Root mean square fluctuation; ROC: Receiver operating characteristic; SAM: S-
Adenosyl methionine; TCGA: The Cancer Genome Atlas

ARTICLE HISTORY
Received 28 July 2022
Accepted 24 December 2022

KEYWORDS
Docking; MTHFR; cancer;
molecular dynamics; drug
screen; PyRx; repurposing;
inhibitor

1. Introduction

One-carbon metabolism is an omnipresent process, which
plays a pivotal role in many diseases including cancer and
neurodegenerative as well as cardiovascular diseases. During
this cellular process, single-carbon methyl substituents are
transported to facilitate the synthesis of many key metabo-
lites (Newman & Maddocks, 2017). DNA synthesis (thymidine
and purines), amino acid homeostasis (serine, glycine, and
methionine), redox balance, and epigenetic maintenance are
all example outcomes of this critical metabolic process
(Mattaini et al., 2016; Newman & Maddocks, 2017). Even

though the relevance of one-carbon metabolism has long
been acknowledged, new findings have further emphasized
the prominent role of this pathway’s homeostasis in cancer
(Jain et al., 2012; Mattaini et al., 2016). Especially, the folate
and methionine cycles, which are subsets of one-carbon
metabolism, are known to adapt to cancer in a way that
allows rapid synthesis of methyl groups that are conse-
quently used in biosynthesis to maintain highly proliferative
and persistent characteristics (Mazat, 2021; Tibbetts &
Appling, 2010).

One of the major regulator proteins of this metabolism is
methylenetetrahydrofolate reductase (MTHFR) (Chen et al.,
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2005). MTHFR is an enzyme that connects the folate and
methionine cycles in one-carbon metabolism by catalyzing the
conversion of 5,10-methylenetetrahydrofolate (CH2-THF) to 5-
methyltetrahydrofolate (CH3-THF) (Zheng et al., 2019). The
methyl tetrahydrofolate is produced and then used to convert
homocysteine to methionine (Froese et al., 2018; Figure 1a). As
a result, MTHFR gene is indeed a critical hub gene in one-car-
bon metabolism (Zheng et al., 2019). MTHFR protein (a.k.a.
5,10-methylenetetrahydrofolate) consists of 656 amino acids,

having a molecular weight of 74597Da (Goyette et al., 1998). It
has a catalytic and regulatory domain and is predominantly
found in a homodimer form (Bezerra et al., 2021). Some of its
known ligands are flavin adenine dinucleotide (FAD) as a
cofactor and nicotinamide adenine dinucleotide phosphate
(NADP) as reducing agent, both of which bind to the catalytic
domain (Burda et al., 2015).

Due to its emerging role in the metabolism of cell prolif-
eration, folate and methionine metabolisms, MTHFR has

Figure 1. Physiological role of MTHFR and its association with cancer survival. (a) MTHFR, folate and one-carbon cycles. (b) GEPIA overall survival analysis for
MTHFR expression (ACC, adrenocortical carcinoma, LGG: low-grade glioma, LIHC: Liver hepatocellular carcinoma, LAML: acute myeloid leukemia.).

2 N. KESKE ET AL.



been studied within the concept of potential cancer treat-
ment strategies, with a focus on inhibiting DNA synthesis
during uncontrolled cell proliferation (Stankova et al., 2008).
Intriguing research showed that MTHFR knockdown caused
remarkable inhibitory effects on the growth of human colon,
prostate, lung, neuroblastoma, and breast tumor cells
(Stankova et al., 2005) as well as gastric cancer cells (Sun
et al., 2008). MHFTR was also shown to be the Achilles’ heel
of methionine-dependent cancer cells and it modulates the
sensitivity of MYC-targeting therapies (Su et al., 2020).
Various polymorphisms on the MTHFR gene have also been
found to affect drug sensitivity and resistance (Kim, 2009;
Yang et al., 2016). Moreover, in vivo studies on lung carcin-
oma demonstrated that reducing MTHFR expression shrank
the tumor size nearly by half, where the apoptotic effects of
cisplatin were enhanced (Stankova et al., 2005). In line with
these experimental observations, MTHFR gene expression
was shown to be associated with overall survival in liver hep-
atocellular carcinoma (LIHC) patients (Liu et al., 2019). When
we performed further analysis on GEPIA web server (Tang
et al., 2017), which utilizes The Cancer Genome Atlas (TCGA)
datasets, we found significant links between overall survival
and MTHFR gene expression not only in LIHC but also in
adrenocortical carcinoma (ACC) and low-grade glioma (LGG)
(Figure 1a). Additionally, there was a similar yet insignificant
trend for acute myeloid leukemia (LAML).

Although the efficacy and therapeutic potential of MTHFR
in cancer has been well demonstrated, MTHFR inhibiting
compounds are yet to be identified. S-Adenosyl Methionine
(SAM) was identified as the natural allosteric MTHFR inhibitor
along with three sinefungin analogues (Bezerra et al., 2021;
Bhatia et al., 2020). None of these reached clinics yet and no
competitive inhibitors of MTHFR have yet been identified.
The aim of this study is to find potential competitive inhibi-
tor candidates against the MTHFR enzyme from currently
existing small-drug molecules by applying the drug repur-
posing methodology. In order to achieve this, we first identi-
fied the druggable pockets in the MTHFR protein using the
DoGSiteScorer tool (Volkamer et al., 2012), and figured out
the catalytical domain as the most druggable site on MTHFR
(Supplementary Figure 1). Next, we followed a pipeline,
where 30470 molecules were obtained from the ZINC data-
base (Sterling & Irwin, 2015) and scanned against the catalyt-
ical domain of MTHFR in the presence and absence of its
cofactors (Figure 2). PyRx molecular docking-screening sys-
tem, which is among the most cited in silico tools in the lit-
erature (Dallakyan & Olson, 2015), was employed. Small
molecules determined by this process were subjected to
ADMET (absorption, distribution, metabolism, excretion and
toxicity) filters, where drug-efficacy and usability potential
were further analyzed, and the results were refined (Guan
et al., 2019). Finally, molecular dynamics simulations were
performed for the small molecules that provided satisfactory
results according to binding energies obtained from docking,
and the results of the ADMET analysis; revealing potential
competitive MTHFR inhibitors for clinical repurposing or fur-
ther drug development.

2. Materials and method

2.1. Ligand library acquisition

In this study, we used ZINC15 database (https://zinc.docking.
org/) (Sterling & Irwin, 2015), with a subset where only
‘named’ and ‘commercially available’ drugs were considered
for screening against MTHFR. This subset contains FDA
approved drugs, and those that are in clinical trials, along-
side biogenic compounds. All (30470 molecules) were down-
loaded in the mol2 file format and then directly utilized for
PyRx docking screen. Additionally, the substrate CH2-THF
(ZINC ID: 4228244) was also downloaded to be used as a
control.

2.2. Preparation of 3D structures

The crystal structure of MTHFR was obtained from Protein
Data Bank (PDB ID: 6FCX) (Froese et al., 2018). Two separate
models were used in the docking process, one that con-
tained the cofactors FAD and NAD; and another one that
was completely cleaned and did not contain any of these
cofactors. Additionally, both models were pre-processed by
removing all the water molecules using UCSF Chimera
(Pettersen et al., 2004). To validate the pre-processed models,
their structural alignment with the original PDB model was
checked. For further validation, PROCHECK (Laskowski et al.
1993), and ProSA (Wiederstein & Sippl, 2007) were employed.
As the first step of the screening procedure, the energies of
downloaded drug molecules were minimized based on
default parameters of PyRx (v0.9.9), which is the software
used for virtual screening and docking (Dallakyan & Olson,

Figure 2. Pipeline flowchart of the study.
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2015). They were then converted to the pdbqt format using
OpenBabel, a program that converts chemical files to a for-
mat suitable for PyRx (Dallakyan & Olson, 2015).

2.3. PyRx molecular docking screen

For the docking procedure, the site of interest was selected
as the binding site of the substrate, CH2-THF, as given in a
previously published study (Froese et al., 2018). The center of
mass for this site was calculated using all the atoms of the
residues implicated in the binding site. The grid box utilized
here comprised all the binding residues as given by Froese
et al. (2018). Coordinates of the center of mass were calcu-
lated as �7.7454, 44.0202 and �31.1223 on X, Y and Z-axes,
respectively. The dimensions were chosen as 23 Å x 23Å x
23Å, so that the box would contain all the atoms necessary
for binding. Molecular docking was performed with PyRx
(Dallakyan & Olson, 2015), which utilizes AutoDock Vina. In
this step, docking was performed with the crystal structure
containing the cofactors (FAD and NAD) in the binding
domain and consecutively with another structure, which did
not contain any of the cofactors. Docking was then per-
formed for each downloaded molecule. The threshold for
binding affinity was set to �11.0 kcal/mol.

2.4. ADMET analysis

ADMET analysis (absorption, distribution, metabolism, excre-
tion and toxicity) was performed using AdmetSar (Yang et al.,
2017, Cheng et al., 2012) and SwissADME (Daina et al., 2017).
Each molecule’s data were extracted from ZINC15 database
using ZINC IDs in the smiles file format. Firstly, smiles lists were
presented to SwissAdme profiling tool for investigating the vio-
lations of Lipinski (Pfizer) (Lipinski et al., 2001) and Muegge
(Bayer) (Muegge et al., 2001) filters. Some of the candidates
that have filter violations higher or equal to two (Benet et al.,
2016) and bioavailability scores lower than 0.55 were elimi-
nated (Martin, 2005). For further investigation, AdmetSar was
employed. Considering human oral bioavailability and human
intestinal absorption potentials, candidates having lower acute
oral toxicity levels (<2.5) were selected as previously described
(Zhu et al., 2009). Finally, drugs that are not available in the
market, based on ZINC database’s ‘available for sale’ option,
were eliminated.

2.5. Molecular dynamics analyses

Drugs and biogenic compounds that were found to be promis-
ing candidates for MTHFR inhibition were put in a molecular
dynamics (MD) simulation with the MTHFR protein. In all MD
simulations, AMBER99SB-ILDN all-atom force field (Lindorff-
Larsen et al., 2010) was used and GROMACS 2021.1 software
(Abraham et al., 2015) was employed. The docking result and
its ligand complexes was used to initiate the MD simulation.
To create ligand topologies and force field parameters, Acpype
(AnteChamber PYthon Parser interfacE) (Silva & Vranken, 2012)
was utilized. The system’s topology was modified to include all
compound parameters, which were merged into complex

topology files. SPC/E water molecules were used to dissolve
protein-ligand complexes in a cubic box. Then, to make the
simulation system electrically neutral, we replaced solvent mol-
ecules with Cl- or Naþ ions. The particle-mesh Ewald (PME)
method was used to treat long-range electrostatic interactions.
During the simulations, the temperature was kept constant at
300K. Using the Parrinello-Rahman coupling, the pressure was
kept isotopically at 1 bar. The LINCS algorithm was used to
constrain all bond lengths with a time step of 2 fs (femtosec-
onds). Structures were relaxed prior to MD simulations by per-
forming 50000 steps of energy minimization using the
steepest descent algorithm, which was followed by 1ns of
equilibration in the NVT (constant number of particles, system
volume, and temperature) and NPT (constant number of par-
ticles, system pressure, and temperature) ensembles. Finally,
unbiased MD simulations were run, where the system atomic
coordinates were saved every 10ps (picoseconds). Resulting
trajectories were collected for further analysis. After the trajec-
tories were obtained, GROMACS analysis toolkit was employed
to analyze hydrogen bonds, root mean square deviation
(RMSD), radius of gyration (Rg), and root mean square fluctu-
ation (RMSF). The binding free energy (DG) was approximated
using the Molecular Mechanics Poisson-Boltzmann Surface
Area (MM-PBSA) followed by decomposition of pre-residue by
utilizing gmx_MMPBSA (Vald�es-Tresanco et al., 2021), which
was adapted from AmberTools MMPBSA.py (Miller et al., 2012)
script to work with GROMACS trajectories. The MMPBSA ana-
lysis consisted of 1000 frames and covered the final 50 ns of
the simulation as previously described (Balbuena-Rebolledo
et al., 2021). Per-residue decomposition is configured to
include all residues within the 23Å proximity of the ligand.

3. Results

3.1. Preparation of the MTHFR structure and its
validation

The processed crystal structure (PDB: 6FCX) was put through
web-based structure validation tools PROCHECK and
ProSA.PROCHECK checks the stereochemistry of a protein
complex in detail. It produces a variety of charts in
PostScript format and a detailed residue-by-residue list.
These provide an evaluation of the structure’s overall quality
in comparison to well-defined structures of the same reso-
lution, along with highlighting residues that might also
require additional examination (Laskowski et al., 1993). The
Ramachandran plot obtained by PROCHECK showed that
87.8% of the residues were found in the most favored
regions, whereas 11.2% were in the additional allowed
regions with only 0.3% in disallowed regions (Figure 3a).
Additionally, the model was structurally aligned with the ori-
ginal 6CFX structure and both models were found to be
well-aligned, with an RMSD value of 0.004 Å (Figure 3b).
Next, another validation was performed with ProSA, which is
a convenient software for checking 3D models of proteins
for possible faults. Error detection in experimental structures,
hypothetical frameworks, and protein engineering are among
its functions (Wiederstein & Sippl, 2007). The z-score by
ProSA, which calculates the z-score of a given model and
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compares it to publicly available structures from PDB, was
�12.12 (Figure 3c). This score is within the range for the
MTHFR model when compared to other proteins with similar
sizes. Grid box coordinates were decided according to past
research (Froese et al., 2018) and it was placed according to
the binding site of the substrate, CH2-THF (Figure 3d).

3.2. Structure based ligand screening and molecular
docking

Structure-based drug repurposing generates affinity estima-
tion based on docking and binding simulations of target pro-
tein and potential candidates (Vyas et al., 2008). This method
depends on cavity structural properties such as polarity, buri-
edness, hydrophobicity, length, and curvature for processing
the 3D target structure (Rognan, 2017). For this purpose,
MTHFR was docked using AutoDock Vina via the PyRx plat-
form (Dallakyan & Olson, 2015), with more than 30470 mole-
cules downloaded from the ZINC15 database. The calculated
grid box shown in Figure 3d was used for the docking pro-
cess. Docking was performed on two separate models with
and without cofactors in order to only consider the mole-
cules that exhibit high affinity both in the presence and
absence of the cofactors. While evaluating the docking
results, binding affinity, and RMSD values were taken into
consideration. The more negative binding affinities are linked
to better interaction between a ligand and a macromolecule
(Dallakyan & Olson, 2015). Therefore, at the end of the

screening, the binding affinity threshold of the selected mol-
ecules was determined to be �11.00 (kcal/mol) and below,
and only those with RMSD values ‘0’ were considered.
Additionally, the substrate CH2-THF was also docked to find
the binding affinity of a molecule known to bind to the cata-
lytic site to compare with the drug molecules. As a result,
among the common molecules from the results of the
screening with both models, those matching the specified
criteria (as also demonstrated in Figure 2) were selected and
listed in Table 1. Another supplementary table, showing add-
itional molecules where the threshold is �10.00 kcal/mol was
also provided (Supplementary Table 1).

3.3. ADMET profiling

In order to examine the drug-efficacy of the small molecules
selected via molecular docking; absorption, distribution,
metabolism, elimination and toxicity (ADMET) properties
were analyzed for each. At this stage, widely used tools,
SwissADME (Daina et al., 2017) and AdmetSar (Yang et al.,
2017, Cheng et al., 2012), both of which have been stated to
be the gold standard of in silico ADMET profiling, were uti-
lized (Kar & Leszczynski, 2020; Pathania & Singh, 2021). In the
first step, the Lipinski (Lipinski et al., 2001) and Muegge fil-
ters (Muegge et al., 2001), crucial indicators of pharmacoki-
netic principles such as molecular weight, lipophilicity, and
rotatable bonds that molecules should satisfy in order to be
counted as a potential drug candidate (Benet et al., 2016)

Figure 3. Validation of prepared MTHFR structure model. (a) Ramachandran plot of the processed model. (b) Structural alignment of the model with the original
PDB structure. (c) z-score plot of the model within the range of the original structures. (d) The placement of the grid box for molecular docking.
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Table 1. Molecules obtained as a result of docking screen and their binding affinities.

Zinc ID Compound name Structure

Binding energy (kcal/mol)

With cofactors Without cofactors

zinc000004726511 Benzyl(trityl)sulfane �12.9 �13.2

zinc000003991624 Vilanterol �12 �14.1

zinc000003916953 Mazokalim �11.9 �11.3

zinc000003990451 Selexipag �11.8 �13.8

zinc000003940680 Rivenprost �11.5 �12

zinc000004769727 Manzamine A �11.5 �11

zinc000002043398 Dabigatran Ethyl Ester �11.4 �11.7

(continued)
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were used as selective parameters. ADMET profiles derived
from SwissAdme tool revealed that out of the eight mole-
cules obtained from docking, Dabigatran Ethyl Ester (Zinc ID:
2043398), Ramipril Diketopiperazine (Zinc ID: 67665351),
Selexipag (Zinc ID: 3990451), Vilanterol (Zinc ID: 3991624)
and Rivenprost (Zinc ID: 3940680) showed overall satisfactory
results (<1 violations) using the Lipinski filters. These five
molecules also displayed convincing Abbott bioavailability
scores (¼ 0.55) (Martin, 2005). ADMET results for these mole-
cules were given in Table 2. ADMET profiles of molecules
with the binding threshold lowered down to �10.00 kcal/mol
were given in Supplementary Table 2.

As the next step, to investigate the toxicity and further
analyze the drug-efficacy features, remaining candidates that
showed satisfactory results in the previous phase were pre-
sented to the AdmetSar tool. Further pharmacokinetic profile
and toxicity assessment via AdmetSar showed that out of
the 5 molecules that passed the Lipinski and Muegge filters,
only Ramipril Diketopiperazine, Selexipag and Vilanterol
showed satisfactory human oral bioavailability and human
intestinal absorption characteristics. In order to increase the
efficacy of potential inhibitors, these factors have been used
as eliminative parameters, as human intestinal absorption
and bioavailability are important factors in the efficacy of
orally taken drugs (Guan et al., 2019). Further considering
the acute oral toxicity scores (<2.5), three candidate mole-
cules were determined among the eight molecules that

satisfied the binding threshold, �11.00 kcal/mol (Table 2).
Lastly, to easily enable the application of these findings to
possible future clinical research, it was also taken into
account whether inhibitor candidates retrieved from ADMET
analysis were already available on the market or not. As
such, Dabigatran Ethyl Ester was rejected from the list for
being unpurchasable.

In conclusion, Vilanterol, Selexipag and Ramipril
Diketopiperazine were selected as potential inhibitor candi-
dates (Figure 4). The LigPlotþ (Wallace et al., 1995) represen-
tations show the MTHFR amino acids, which interact with
drug molecules and the hydrogen bonds between the pro-
tein and each of the drugs. All the molecules were found to
interact with Tyr285, Leu235, Glu27 and Gln192 residues.
Additionally, Ala159, Thr58, Thr191, Ile190, His91, Trp59,
His60, Met118, Thr191 and Ile190 were found to be com-
monly interacting with the substrate and at least one of the
drug molecules.

3.4. Molecular dynamics simulations

Molecular dynamics (MD) was performed to analyze the
dynamics and stability of most promising repurposing candi-
dates (Vilanterol, Selexipag and Ramipril Diketopiperazine)
for MTHFR inhibition along with the natural substrate CH2-
THF (Figure 5). Candidate inhibitor molecules and the

Table 1. Continued.

Zinc ID Compound name Structure

Binding energy (kcal/mol)

With cofactors Without cofactors

zinc000067665351 Ramipril Diketopiperazine �11.4 �11.5

zinc00004228244 CH2-THF (Substrate) �7.6 �8.6

The structures were taken from PubChem (Kim et al., 2021).

Table 2. ADMET analysis of the molecules obtained from molecular docking.

ZINC ID Compound name

ADMET ANALYSIS

Lipinski filter
(Pfizer)

Muegge filter
(Bayer)

Bioavailability
score

Human oral
bioavailability

Acute
oral toxicity

Human intestinal
absorption

zinc000002043398 Dabigatran Ethyl Ester 0 violation 0 violation 0.55 � 2.34 þ
zinc000067665351 Ramipril Diketopiperazine 0 violation 0 violation 0.55 þ 1.952 þ
zinc000003990451 Selexipag 0 violation 0 violation 0.55 þ 2.117 þ
zinc000004726511 Benzyl(trityl)sulfane 1 violation 2 violations 0.55 þ 2.701 �
zinc000003916953 Mazokalim 1 violation 1 violation 0.55 � 3.119 þ
zinc000003991624 Vilanterol 0 violation 1 violation 0.55 þ 2.074 þ
zinc000003940680 Rivenprost 0 violation 0 violation 0.55 � 3.96 �
zinc000004769727 Manzamine A 2 violations 2 violations 0.17 � 1.026 þ
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substrate were subjected to an MD simulation of 100 ns
together with the MTHFR homodimer.

The Root-Mean-Square deviation (RMSD) of the backbone
measures the stability of the structure and atomic change con-
formation upon ligand binding (Aier et al., 2016). RMSD results
of our MD simulations revealed similar characteristics with the
natural substrate and inhibitor candidates (Figure 5a). The
radius of gyration (Rg) is a measure of the compactness and
size of protein structures. Rg value is calculated by the distribu-
tion of atoms of a protein around its axis (Arnittali et al., 2019),

facilitating the estimation of the pressure exerted on a specific
location and showing the strength of a bond between two
cross-sections. The radius of gyration decreases as the mass is
dispersed closer to the axis of rotation (Sneha & Priya Doss,
2016). Our Rg analysis revealed that the substrate CH2-THF
reached the lowest Rg values and all the inhibitor candidates
had similarly stable results (Figure 5b). The RMSD values of
ligands show how much a ligand changes conformation inside
the binding pocket after initial binding. While CH2-THF fluctu-
ated during the whole simulation time and peaking at around

Figure 4. Natural substrate and potential competitive MTHFR inhibitors for repurposing. The binding simulations of the (a) CH2-THF substrate, (b) Vilanterol, (c)
Selexipag and (d) Ramipril Diketopiperazine along with their schematic LigPlotþ (Wallace et al., 1995) representations. The yellow lines represent H bonds, whereas
red arcs represent Van der Waals interactions between the amino acid residues and drug molecules.
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2nm, Selexipag’s RMSD consistently increased, and Vilanterol
and Ramipril Diketopiperazine exhibited a similarly stable pro-
file (Figure 5c). The Root Mean Square Fluctuation (RMSF) val-
ues, on the other hand, stayed below 0.7nm for the whole
simulation, and the highest peak was observed between resi-
dues 120-140 for all ligands (Figure 5d). Additionally, the capa-
bilities of CH2-THF and the drug molecules to form hydrogen
bonds were also analyzed to assess the conformational
changes between the ligand and protein based on time
(Figure 6). The H-bonds provide necessary stability to the pro-
tein-ligand complex (Kumar et al., 2014). The number of H-
bonds between MTHFR and the ligands was calculated by
GROMACS at 300K. For the substrate, the number of hydrogen
bonds fluctuated with an average of 0.869. Selexipag and
Vilanterol had higher averages at 1.313 and 1.077 respectively,
whereas Ramipril Diketopiperazine averaged at 0.140.

3.5. Binding free energy analyses with MM-PBSA and
per-residue decomposition

Molecular Mechanics Poisson-Boltzmann Surface Area (MM-
PBSA) calculations were used to examine the binding affin-
ities between protein-ligand complexes that were obtained
from MD trajectories (Table 3). The results of MM-PBSA dis-
played the same order of affinities as molecular docking. The
substrate CH2-THF exhibited lower affinity towards the
MTHFR in comparison to Vilanterol, Selexipag and Ramipril
Diket. as was the case with molecular docking.

We also performed decomposition analyses, which
revealed the energy contribution of individual residues dur-
ing the molecular dynamics simulation (Figure 7). According
to this calculation, Vilanterol and Selexipag revealed a higher
number of interacting residues (jDGj >0.5 kcal/mol) within
23 Å of their respective ligand whereas CH2-THF and Ramipril
Diket. were only associated with a handful of residues. In line
with this, decomposition result for Vilanterol and Selexipag
generally agreed well with the corresponding residues in the
molecular docking result (Figure 4), even though this relation
did not seem as strong for Ramipril Diket. and CH2-THF.
Moreover, certain residues particularly stood out among the
decomposition analyses for all ligands. Specifically; LEU235
appeared for all drugs but not for the substrate, whereas
LEU287 was emphasized for the substrate itself as well as
Ramipril Diket. and Selexipag. Interestingly, another residue
(i.e. TYR285), which is very close to LEU287, was identified to
be interacting with Vilanterol; altogether highlighting the
potential importance of the amino acids between the posi-
tions 285-290.

4. Discussion

Finding new therapeutic potentials for available drugs to use
them for disease treatment other than what they were first
described for, is referred to as drug repositioning or repur-
posing. It is a process that is significant for the development
of new drugs, as it can be more cost-effective and time-

Figure 5. Molecular dynamics analyses of the natural substrate and potential MTHFR inhibitor candidates. (a) RMSD values of the Ca atoms of the backbone of
MTHFR upon different ligand binding as a function of time. (b) Radius of gyration of the three drugs and substrate. (c) RMSD values of the ligands. (d) RMSF of all
the ligands at different residues.
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saving when compared to classical drug discovery (Jarada
et al., 2020). This process has been used to find possible
drugs for the treatment of cancer (Schein, 2021; Zhang et al.,
2020), rare diseases (Roessler et al., 2021) and most recently,
Covid-19 (Chakraborty et al., 2021). Drug repurposing trials
for Covid-19 illuminated the need for finding rapid treat-
ments during the height of the pandemic. Some of the
repurposed antiviral drugs have been approved in several
countries for the treatment of Covid-19 (Chakraborty et al.,

2021), and several drugs are in clinical trials for cancer treat-
ment (Nowak-Sliwinska et al., 2019).

The contribution of MTHFR in human disease and the
need for its inhibitors is well acknowledged. Even though
deleterious effects were reported for the complete knockout
of MTHFR (Chen et al., 2001), knockdown studies suggest
possibly beneficial effects particularly against human cancers
in vitro and in vivo (Stankova et al., 2005, 2008; Wang et al.,
2022; Wu et al., 2021). While testing MTHFR inhibition pre-
clinically and clinically will address the safety concerns, it is
worth mentioning that the complete knockouts of many
genes/proteins, whose inhibitors are successfully and widely
used in the clinics at the moment, were reported to cause
lethal effects whereas the right dosing regimen of inhibition
brings clinical benefits. Sorafenib (Escalante & Zalpour, 2011)
and Erlotinib (Masuda et al., 2017) are well known examples
for this case as the knockouts of their target proteins are
reportedly lethal (Haiko et al., 2008; Lee & Threadgill, 2009;
Zhang et al., 2010). Essential roles of MTHFR in subcellular
metabolic events including carbon metabolism indeed make
it an interesting drug target. More recently, MTHFR was
linked to efflux transportation with potential implications on
drug resistance (Naseem et al., 2022) pointing out a

Figure 6. Hydrogen bonding of the ligands with MTHFR. Number of hydrogen bonds formed between MTHFR and (a) the natural substrate CH2-THF, (b) Vilanterol,
(c) Selexipag, (d) Ramipril Diketopiperazine.

Table 3. Calculations of the binding free energy of MTHFR complexes using
the mmPBSA method.

CH2-THF Vilanterol Selexipag Ramipril Diket.

Avg SEM Avg SEM Avg SEM Avg SEM

VDWAALS �28.35 0.13 �40.89 0.11 �47.10 0.14 �38.14 0.09
EEL �223.07 0.79 �305.35 0.51 �35.46 0.66 �2.10 0.08
EPB 231.85 0.83 315.28 0.46 50.45 0.55 17.23 0.10
ENPOLAR �19.00 0.08 �31.94 0.06 �36.65 0.09 �26.60 0.05
EDISPER 35.35 0.14 51.71 0.08 62.01 0.13 44.73 0.06
DG gas �251.42 0.82 �346.24 0.52 �82.56 0.66 �40.23 0.12
DG solv 248.19 0.86 335.05 0.47 75.82 0.54 35.36 0.12
DG Total �3.23 0.16 �11.19 0.17 �6.74 0.25 �4.88 0.12
�All values given are in kcal/mol.
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tantalizing possibility of employing MTHFR inhibition in
reducing drug resistance in cancer.

Newly developed and novel allosteric inhibitors were
already recently described for MTHFR (Bezerra et al., 2021;
Bhatia et al., 2020), yet no experimentally or clinically used
competitive inhibitor was developed. The effectiveness of
either type of inhibitor can change depending on the con-
text. Interestingly, competitive and allosteric inhibitors can
be used concurrently to overcome drug resistance (R�ea &
Hughes, 2022). For instance, both competitive and allosteric
inhibitors have been described for AKT with varying side
effects and separate effectiveness rates for different disease
contexts as extensively reviewed previously (Lazaro et al.,
2020). In this study, we performed an in silico drug screen
against the catalytical domain using docking and molecular
dynamics simulations, and found three candidates for repur-
posing: Vilanterol, a b2-adrenergic agonist (Wen et al., 2022);
Selexipag, a prostacyclin receptor (IP) agonist (Kaufmann
et al., 2015), and Ramipril Diketopiperazine, an ACE inhibitor
(Kn€utter et al., 2008). During the evaluation of the binding
affinity results, we saw that the substrate had binding affin-
ities of �7.6 and �8.6 kcal/mol for models with cofactors
and without cofactors, respectively; while the binding affin-
ities were �12 and �14.1 kcal/mol for Vilanterol, �11.8 and
�13.8 kcal/mol for Selexipag, and �11.4 and �11.5 kcal/mol
for Ramipril Diketopiperazine. (Table 1). As the docking of
the substrate was performed as a control, and its binding

affinity was found lower than the drug molecules in all anal-
yses described in this article, the molecules pointed out in
our study have high potentials to bind to MTHFR even
though this findings need to be elaborated further with
experimental studies.

Hydrogen bonds are thought to be the main contributors to
higher binding affinities (D. Chen et al., 2016), interestingly
Ramipril Diket., which shows no H bonds in the LigPlotþ results
and an average of 0.14 bonds in the MD results, has higher
binding affinity when compared to the substrate. This higher
binding affinity might be related to increased hydrophobic and
Van der Waals interactions, the latter of which can be seen in
LigPlotþ results where Ramipril Diketopiperazine has 14 and the
substrate has 10 (Figure 4). The LigPlotþ results also show dif-
ferent numbers of H bonds for the substrate and Vilanterol in
comparison to MD results. In LigPlotþ representations, the sub-
strate and Vilanterol had 4H bonds, Selexipag had 1 and
Ramipril Diketopiperazine had 0 (Figure 4). On the other hand
in the MD results, Ramipril Diketopiperazine had an average of
0.140 and Selexipag had 1.313 (Figure 6). Conversely, MD simu-
lations showed that the substrate had an average of 0.869 and
Vilanterol had 1.077 (Figure 6). The underlying reason might be
the fact that in LigPlotþ, the 3D structures were flattened to a
2D representation, leaving the side chains with limited move-
ment capacity (Wallace et al., 1995). As this is not a moving
simulation unlike MD, the snapshot of the ligand-protein com-
plex might have had the maximum bonds at the time. In fact,

Figure 7. The decomposition analysis of residues (jDGj >0.5 kcal/mol) found within 23 Å of their respective ligands.

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 11



for Vilanterol and Selexipag particularly, the formation of H-
bonds showed high variability at 50ns level (Figure 6b and c).
In line with this, RMSD ligand results (Figure 5c) also showed
that the molecules had higher instability at that time. The RMSF
results showed peaks around the 120-140 residue areas for all
the molecules with the exception of Vilanterol (Figure 5d). This
area contains FAD binding residues, which, as the MD tests
have been done with the model that did not contain cofactors,
may have led to the decreased stability of the molecules that
are bound to the area.

When detailed calculations were performed with MM-
PBSA using the MD trajectories we obtained, we observed a
significant reduction in binding affinities for the substrate
and all drug molecules except Vilanterol, as opposed to
docking results. As we saw this reduction for the substrate as
well, this result might be attributed to known limitations of
molecular dynamics simulations as discussed in the literature
(Hollingsworth & Dror, 2018). Still, decomposition analyses
revealed some consistent residues, particularly highlighting
the amino acids between 285-290 for ligand binding. In
future studies, laboratory experiments are necessary to inves-
tigate the bindings and subsequent effects of these drug
molecules in vitro and validate the in silico results presented
in this study possibly via a receiver operating characteristic
(ROC) analysis (Al-Sha’er et al., 2022).

5. Conclusion

In this study, our purpose was to reveal potential competi-
tive inhibitors for MTHFR, which is a crucial protein related
to proliferation in cancer cells. We specifically aimed to
reveal molecules that are clinically available, bypassing the
long period needed to develop de novo drugs. To this end,
we performed systematic molecular docking followed by
ADMET analysis and molecular dynamics. Based on our anal-
yses, we determined three drug molecules which can pos-
sibly be used as competitive inhibitors of MTHFR: Selexipag,
Vilanterol and Ramipril Diketopiperazine, particularly high-
lighting the amino acids between 285-290 for binding.
Among the reported candidates, Vilanterol stood out as it
showed consistently high levels of binding both in molecular
docking and molecular dynamics simulations.
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