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ABSTRACT 
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Advisor: Prof. Dr. Turker Ince 

 

July, 2022 

 

Monitoring the underwater scenes is important for both continuation of 

ecological life and exploration of these underwater areas. However, because of the 

lights  transmission characteristics and water physical attributes, underwater images 

suffer from artifacts like color distortion, scattering, flickering, poor visibility, and 

uneven illumination. The set of these abovementioned artifacts with varying 

severities makes underwater images hard to monitor. Despite numerous studies that 

have attempted underwater image restoration, they obviously fail to perfectly restore 

real underwater images corrupted with a random blend of artifacts with their simple 

restoration models.  In this paper, we propose a promising approach for restoring 

blind underwater images using novel operational cycle-consistent generative 

adversarial networks (Op-GANs), where the signal quality may be improved 

regardless of the kind or degree of the artifacts degrading the underwater image. This 



  

iv  

is the first study to utilize 2D operational layers with higher learning capacity in 

powerful cycle-GANs for processing 2D underwater images. Utilizing one of the 

largest benchmark underwater image datasets from the Large-Scale Underwater 

Image dataset (LSUI), the proposed technique achieved promising results. The 

detailed evaluations, both quantitative and qualitative, show that the suggested 

method outperforms the other competing techniques in the literature. 

 

Keywords: Machine Learning, Convolutional Neural Networks, Operational Neural 

Networks, Generative Adversarial Networks, Underwater Images, Underwater Image 

Restoration,  
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CHAPTER 1: INTRODUCTION 

 

Almost 

the reasons like biological/archeological research, wreckage exploration, and damage 

control of underwater pipelines and cables, there has been always a high demand for 

exploring these underwater areas. Recently, due to the prevalence of the use of 

Autonomous underwater vehicles (AUV) and remotely Operating Machines (ROV), 

the ability of image capturing has increased in areas that are difficult to reach under 

the sea. However, because of the light  transportation characteristics and the water 

turbidity or any other interferences, underwater images can be corrupted with severe 

artifacts such as color deformation, scattering, uneven illumination, flickering and 

poor visibility. 

 

 

 

Figure 1. Sample corrupted underwater image 

 

Figure 1 shows a sample underwater image from the LSUI dataset 

(Peng et al., 2021). The underwater image is distorted by several of the 

aforementioned distortions, as seen in the figure. As a consequence, most of the 
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details on the image are diminished. The detailed description of the artifacts of 

corruption and their sources are presented in the next chapter. 

 

(Liu et al., 2019), proposed an underwater image enhancement method 

using an underwater ResNet model. They first created synthetic paired training data 

using CycleGANs to train the model. They used the Underwater ResNet model with 

20 convolutional layers to train paired synthetic images. They obtained 43.9 and 0.86 

PSNR and SSIM results respectively. (Huimin Lu et al., 2017), proposed an 

underwater image enhancement convolutional neural network (CNN) model based 

on underwater scene prior, called UWCNN. First, they synthesized the training data 

which covers a diverse set of water types and degradation levels using UWCNN. 

Then, they use 10-Layer CNN to enhance underwater images.  (Li et al.,2021) 

proposed a novel self-similarity-based method for de scattering and super-resolution 

(SR) of underwater images. They used a self-similarity-based SR algorithm with a 

convex fusion rule to dispel the noise of underwater images with high turbidity. The 

proposed algorithm demonstrates a consistent improvement with 21.4 PSNR. (Han et 

al., 2021), proposed a deep supervised residual network for underwater image 

enhancement and restoration. To train the proposed system, they used clear in-air 

images and synthetic underwater degraded images. The proposed method uses 

residual dense blocks for extracting features to enhance feature utilization. Next, it 

reduces the semantic disparities between low-level features and high-level features 

by using the U-Net model. Finally, they use a supervision mechanism to train the 

system. They obtain 36.2 PSNR.  

 

Most of the works above-mentioned use deep learning models with 

datasets that are artificially synthesized artifacts by disturbing only the color 

harmony of clean outside pictures. Eventually, deep learning methods learn to 

suppress one artifact of the noise. However, in real-life underwater images, there is 

usually more than one artifact to corrupt the image. Also, most of the real corruption 

artifacts can not be synthesized by image processing algorithms. Therefore, this 

method cannot reconstruct the images. As a consequence, In this study, we take this 

issue as a blind restoration approach to avoid any prior assumptions about the types 

and severity of artifacts. The proposed method will learn to convert corrupted 



3 

  

 

underwater images to clean underwater pictures with an unsupervised approach using 

Operational Cycle-GANs.  

 

Cycle-Consistent Adversarial Networks (Cycle-GANs) (Zhu et al., 

2017) are developed for image-to-image translations on the unpaired datasets. Cycle-

GANs learn the aspects of domains individually and learn to translate between them 

while not violating the features not directly related to either domain. To achieve the 

above-mentioned goal, in this study, we used unpaired clean and corrupted 

underwater images from the LSUI dataset to train the data Cycle-GANs. The quality 

of the underwater photos will be enhanced using Cycle-GANs by translating 

corrupted domain characteristics to clean domain characteristics while preserving 

details of the images. Self-Organized Operational Neural Networks (Self-ONNs), 

(Kiranyaz et al., 2021; Malik et al., 2021; Devecioglu et al.,2021; Ince et al.,2021; 

Kiranyaz et al., 2022). were recently shown to superiority over well-known 

Convolutional Networks, on many regression and classification tasks with their non-

linear generalized neuron models. To reflect this superiority over underwater image 

reconstruction, the operational layers of the Self-ONNs take the place of the native 

GANs' convolutional layers. The Self-ONN based generator trained to transform 

corrupted to clean images can subsequently be utilized for the underwater image 

restoration after an Operational Cycle-GAN has been trained over the batches. 

 

The rest of the thesis is organized as follows, first, in Chapter 2 source 

of corruption of underwater images. Then, the methods used to restore the 

underwater images are explained in Chapter 3. Then, the dataset used, experimental 

setup, and experimental results are presented in Chapter 4. Finally, in chapter 5, the 

thesis is concluded. 
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CHAPTER 2: WHY UNDERWATER IMAGES ARE 

DISTORTED? 

 

Underwater imaging is a challenging task that requires expensive 

cameras and lights. Even though these requirements are satisfied, underwater images 

still suffer from color distortion, uneven illumination, scattering, and flickering. 

Chemical composition, physical characteristics, and The underwater environment's 

light transmission characteristics have a significant impact on the quality of the 

images that are taken there by creating issues that do not exist while photographing 

above water. Sample underwater images corrupted with mentioned artifacts are given 

in Figure 2 

 

Even though light can go through a space, it cannot pass through all 

objects. Light can be transmitted, reflected, or absorbed when it hits an object. The 

item is made up of molecules, and each molecule has electrons that can absorb 

energy and jump to higher energy levels. According to its frequency, a light packet 

has a particular quantity of energy, the higher the frequency, the more energy. The 

electron will absorb this energy and re-emit it as heat if it corresponds to one of the 

electron energy levels. Transparent materials, on the other hand, do not absorb the 

photon's energy. The photon can pass right through since it is not absorbed. Some 

materials are partly transparent, allowing some photons to pass through while others 

are absorbed. Because it only passes specific colors of light, the material will appear 

colored.  
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Figure 2. Corrupted Underwater Images with respect to their dominant artifacts 

 

Furthermore, the density of water is approximately 800 times that of 

the atmosphere above water. As a result, visible light falling on water bounces back 

in part and passes into the water in part (Water and light Seafriends, 2022). As it 

propagates through the water, the amount of energy going into it begins to decrease. 

Water molecules absorb a portion of the light's energy, which is why subaquatic 



6 

  

 

images get more unlit as depth increases. The maximum energy of particles floating 

in water is diminished, and light energy deviates from its route before reaching the 

camera, resulting in a blur, reduced contrast, and mist (Oakley, 1998). Scene 

radiance also decreases as the distance between the intended objectives and the 

camera increases due to absorption (Qingsong et al., 2015). 

 

 
 

Figure 3. Visualization of underwater color deformation artifact 

 

Figure 3. shows the illustration of how colors are absorbed by light. 

From the figure, it can be seen that, while going deeper, the red and orange lights of 

the sun are quickly absorbed by the water. As a consequence, blue/green color is 

more dominant in photos taken underwater.  
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Figure 4. Visualization of underwater scattering artifact 

 

Additionally, water molecules lower a certain percentage of the energy 

in visible light, which results in the cloudiness of an image. (Sandbhor et al., 2015). 

A fraction of the visible light energy from the image interacts with the fluid particles 

as it moves toward the camera's aperture. In consequence of this, these particles 

absorb and scatter light energy as illustrated in Figure 4. Artificial illumination is 

frequently used but it is also influenced by scattering and attenuation (Galdran, 

2018). Simultaneously, uneven illumination results, producing bright spots in the 

center of the underwater image. (Li et al., 2018,). The camera collects radiation of 3 

different types of light: Energy that is directly reflected from the scene (direct 

transmission), the energy that encounters minute particles and scatters before it 

reaches the image-capturing device's aperture (forward scattering), and energy from 

atmospheric light that is reflected by a water-based particle (background scattering) 

(Schechner et al., 2005). The underwater image is a linear mixture of the direct-

transmission, forward-scattering, and back-scattering components, which is given in 

Equation 1 (Schettini et al., 2010; McGlamery, 1980; Jaffe, 1990): 

 

 

 



8 

  

 

 

 

Equation 1. The underwater image is a linear mixture of the direct-transmission, 

forward-scattering, and back-scattering components. 

 

where (l,m) stands for the coordinates of the image's components;  stands for 

the total energy directed at the camera's aperture;  stands for the direct 

scattering component;  stands for the backscattering component; and 

 stands for the forward scattering component. 
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CHAPTER 3: METHODOLOGY  

 
 In this section, the methods used in this thesis are presented. First, U-

Nets (Ronneberger et al.,2015) will be introduced. Then, the main properties of 

GANs (Goodfellow et al,,2014)  are described, Then, the next generation of AI, the 

ONNs (Kiranyaz et al., 2020) and Self-ONNs (Kiranyaz et al., 2021) are introduced. 

Finally, the proposed novel underwater image restoration method, Operational 

Cycle-GANs is explained. 

 

3.1. U-Nets 

 

 

 

 

Figure 5. Architecture of U-Net 

 

U-Net (Ronneberger et al., 2015) is an architecture that is derived from 

convolutional neural networks to process biomedical images. The general framework 

of U-Nets is given in Figure 5 Unlike traditional convolutional neural networks, U-

Net generates an image as output for segmentation purposes rather than one valued 

label. U-Net network consists of three main parts: encoder, decoder, and skip 

connections. The encoder network aims to extract features. The decoder network is 

used to take the features from the encoder and generate a semantic segmentation 

mask. Skip connections are shortcut connections that help the indirect flow of 

gradients from the early layers of the encoder to the decoder to generate better 
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outputs. 

3.2. Generative Adversarial Networks 

 

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are 

generative machine learning models that have become popular recently with the 

abilities to generate fake images, image-to-image translation, and text-to-image 

translation. GAN contains two machine learning architectures which are generator 

and discriminator.  

 

 

 

Figure 6. Architecture of conventional GANs 

 

The general framework of GANs is shown in Figure 6. The generator 

model tries to generate realistic fake samples from random noise. The output of the 

generator is fed into the discriminator with real samples in the training dataset. 

Discriminator forces generator to create more realistic samples by discriminating 

generators fake samples and real samples.   

 

Discriminator plays a two-player min-max game on the objective 

function V(G, D), where G is the generator, D is the discriminator and z is the 

random noise: 
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Equation 2. The objective function of GANs 

 
D() gives the probability of the given samples whether real or fake. For 

the generator's loss function, the aim is to minimize log(1-D(G(z)). For the 

discriminator, the target is the maximize D(x) and (1-D(G(s))). As a consequence, 

the optimal output for D will be P(x)=0.5 since we want the discriminator not to 

discriminate between classes. 

 

3.3. Operational Neural Networks 

 

The two main restrictions imposed by typical CNNs, which employ the 

conventional "linear" neuron model, are kernel-wise constrained connections and 

weight sharing. Due to these limitations, the linear weighted sum for MLPs becomes 

the CNN convolution formula. This is demonstrated in Figure 7 (left) where the three 

sequential convolutional layers are displayed without the sub-sampling (pooling) 

layers. 

 

 

 

Figure 7. Three following convolutional (left) and operational (right) layers of 

corresponding the kth neuron of a CNN (left) and an ONN (right). 
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Using the fundamental GOPs principle, nodal and pool operators 

extend the exclusive usage of linear convolutions in the convolutional neurons.  The 

operational layers and neurons are made up of these, whereas the two main 

limitations weight sharing and constrained (kernel-wise) connectivity are directly 

derived from traditional CNNs. This is also shown in Figure 7 (right), where an ONN 

is represented by an ONN with three operational layers and the kth neuron with three 

kernels. The input map of the kth neuron at the current layer, shown as , is 

generated by pooling the final output maps, or  of the neurons at the previous layer 

that was driven by their respective kernels, , as shown in the example: 

 

 

Equation 3. Forward Propagation of ONNs 

 

 When the pooling operator in Equation 3, is the summation and the 

nodal operator  is linear, the ONN is equal to a CNN.   

 

The training of an ONN via back-propagation (BP) should involve the 

repetitive execution of the following four steps: 1) Calculating the delta error, L 1, at 

the output layer, 2) Interacting between two subsequent operational layers, 3) 

Interacting within an operational neuron, and 4) Calculating the weight (operator 

kernel) and bias sensitivities to update them at each BP it. When sub-sampling 

(pooling) operations are used in the neuron, Stage 3 also takes care of them. A 

detailed information can be found in (Kiranyaz et al., 2020). 
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3.4. Self-Operational Neural Networks 

 

As it is explained, ONN aims to break homogeneity in CNNs. 

However, to use ONNs in optimal conditions, the right transformation should be 

used. If the right transformation is not in the operator set, this leads to a limit on the 

diversity. 

 

 

 

Figure 8. Illustration of the nodal operations using the ith neuron CNN, ONN, and 

Self-ONN (right). 

 

In Figure 8 (left), the 3x3 kernel of CNN is shown.  Weights of the 

kernels are slopes of the lines in the kernel. It can be seen that all the transformations 

are linear. In Figure 8 (middle), the operator is set to the sine function. Thus, sine 

functions with different frequencies can be seen as weights of the network. However, 

using sine (or any other arbitrary function) in each operation sets limitations. To 

obtain full freedom for reaching maximum diversity, Self-Operational Neural 

Networks are proposed. Self-ONNs can generate every nodal operator as any 

arbitrary function through Backpropagation. In Figure 8 (right), it can be seen that 

every nodal function fit the different arbitrary function to maximize the performance 

of the ML algorithm by varying the diversity. 

 

Self-ONNs are defined by a nodal transformation, , which can 

approximate any arbitrary function. The Taylor approximation of a function, near the 

origin (a=0)., can be expressed in Equation 4, 
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Equation 4. The Taylor approximation of a function 

 

For each kernel component of every unique inter-neuron connection, the training 

procedure improves the parameters to create (about) the best-fitting nodal operator. 

There is a problem right away because this approximation is only accurate up to y = 

a. The approximation is rougher the further away the points are from a. Self-ONNs 

are unaffected by this, though, as the nodal operators work with the previous layer's 

neuron outputs, each of which is constrained by the generating range of the 

activation operator function. The output, y, operates in the [0, 1] range, for example, 

if the activation function is sigmoid. If we denote  as : 

 

 

Equation 5. Maclaurin coefficients as weights 

 

from Equation 5,   are the Mclauren coefficients which 

will be calculated through the backpropagation. 

3.4.1. Forward Propagation Self-ONNs 

 
The forward propagation formula for Self-ONNs is given in the equation.  

 

 

Equation 6. The Forward Propagation of Self-ONNs 
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Where, backpropagation. 

 

3.4.2.  Back Propagation Self-ONNs 

 

The backpropagation of Self-ONNs starts from the output 

Mean Square Error (MSE) is used as the loss function. 

 

 

Equation 7. MSE loss function 

 
where,  is the pixel p of the image I, T is the target output and  is the predicted 

output. The derivative of the error with respect to the input feature map  should be 

calculated as delta error  .The delta error in the output layer of the input map can 

be expressed as; 

 

 

 

Equation 8. The delta error in the output layer of the input map 

 

Which, can be directly calculated from multiplying error  to the 

derivative of activation function f.  It is needed to find the delta error of every input 

map of every hidden layer. To Calculate this, the equations are given in Equation 8 

with varying the pool operator P and nodal operator : 
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Equation 9. The delta error of every input map of every hidden layer 

 
Where nodal operator is Mclauren polynomial given in Equation 5, We can 

simplfy the equation like Equation 10; 

 

 

  

Equation 10. The delta error of every input map of every hidden layer (simplified) 

 
The derivative of the error can be taken with respect to the previous layer output map 

 

 

 

 

 

Equation 11 The delta error of output pixel 
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Equation 12. The delta error of output pixel (simplified) 

 

 

Equation 13 The gradient output of the operator function 

 
Equation 11 and Equation 12 shows the delta error of output pixel and its simplified 

version respectively. Equation 13 Shows the gradient output of the operator function.  

 

3.5. Operational Cycle GANs 

 

Cycle-GANs determine the aspects of two classes and learn to 

transform each other while preserving unrelated characteristics of the input image 

using two generators.  As a consequence, if the training set of Cycle-GANs are 

consist of perfect underwater images as one class and corrupted underwater images 

as another class, one of the generators learns to detect sources of corruption and 

learns to transform that source to its possible clean version without damaging main 

characteristics. This makes Cycle GANs the perfect blind restoration method. 

Recently Proposed Self-ONNs show superiority over previous state-of-art deep 

learning models over many ML and CV tasks with less computational complexity. 

To reflect this superiority over the underwater image restoration problem, 

convolutional layers of traditional Cycle-GAN are changed to operational layers. 
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Figure 9. The proposed underwater image restoration framework 

 

Figure 9 shows the basic framework of the proposed underwater image 

restoration scheme. Each RGB channel of the input image is resized to 256x256 and 

linearly scaled to a range of [-1. 1]: 

 

Equation 14. The definition of linear normalization 
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where  and  are the original and normalized pixel values, The input 

color channel's maximum and minimum values are designated as  and  , 

respectively. The proposed approach contains two pairs of Self-ONN-based 

generator and discriminator models. In the first set of networks, The Generator 

Corrupted-to-Clean (GX2C) algorithm learns how to convert corrupted images into 

clean ones. Discriminator Clean (DC) helps GX2C to create more realistic clean 

images by telling apart its synthesized images from real ones. The second set of 

networks tries to learn the opposite of the first set by creating realistic corrupted 

images with Generator Clean-to-Corrupted (GC2X) and Discriminator Corrupted 

(DX). In this case, a generator gets feedback from the other generator to ensure that 

an image generated by a generator is cycle consistent, meaning that applying 

consecutively both generators on an image should yield a similar image.  

 

In the training of the Cycle-GANs, there are several important loss 

functions to minimize. Adversarial losses are calculated from DX and DC to make 

output samples closer to real ones.  The adversarial loss functions are given in 

Equation 16 and Equation 17,  

 

Equation 15. Cycle-consistency loss function of Cycle-GANs 

 

Equation 16. Adversarial loss function with respect to discriminator 1 
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Equation 17. Adversarial loss function with respect to discriminator 2 

 

 

where and represent the corresponding corrupted and clean underwater images, 

respectively. Contrary to traditional GANs, cycle consistency losses are used in 

Cycle-GANs. This loss leads to preserving characteristic details. The cycle-

consistency loss is expressed in Equation 15. 

 

In case the input sample is in the desired output class, GAN should give 

the same image. To ensure this identity loss is defined Equation 18 

 

Equation 18. Identity loss function of Cycle-GANs 

 

 

Any Cycle-GAN training has as its goal minimizing the total loss in Equation 19 

 

 

Equation 19. The total loss function of Cycle-GANs 

 

In the next section, we present the experimental setup and parameters of Cycle-GAN 

structures. 
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CHAPTER 4: EXPERIMENTAL RESULTS  

 

The benchmark LSUI dataset will be introduced in this chapter initially. 

The experimental setup that was used to evaluate the suggested underwater picture 

restoration strategy will next be described. Then, evolutions in both terms of quantity 

and quality will be exhibited. The computational complexity of the suggested 

approach will then be demonstrated. 

 

4.1. Large Scale Underwater Image Dataset 

 

Large Scale Underwater Image dataset (LSUI), the largest real 

underwater image dataset with high-quality reference images, is utilized to train and 

test the proposed method. The dataset contains 8018 underwater photos that were 

both acquired by them and included in other datasets that already existed (Liu et al., 

2020; Akkaynak et al., 2019; Li et al., 2017;  Fabbri et al., 2018; Li et al., 2020). 

They decided to eliminate potential bias as much as possible, the reference photos 

were chosen using two rounds of subjective and objective evaluations. In the first 

round, the first use of 18 existing optimal UIE methods (Ancuti et al., 2012; Fu et al., 

2014; Peng Y.-T. 2017; Drews et al., 2013; Drews et al.,2016; Li et al.,2016 ; Chiang 

J. Y.  et al.,2012; Galdran et al.,2015; Li et al., 2016; Islam et al.,2020; Li et al., 

2017; Li et al., 2018; Yang et al., 2011; Fu et al., 2017; Song et al., 2018; Uplavikar 

et al., 2019; Qi et al., 2022; Ma et al., 2022) to process the collected underwater 

images successively, and a set with 18*8018 images is generated for the next-step 

optimal reference dataset selection. After subjective and objective evaluations, the 

LSUI dataset is formed with 5004 underwater images with their corresponding 

reference images. 
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4.2. Experimental Setup 

 

 

 

Figure 10. The architectures for the Generator and Discriminator in the proposed 

technique 

 

A U-Net architecture is utilized, with 5 operational layers and 5 

transposed operational layers with residual connections, for both the generators 

GX2C and GC2X of operational Cycle-GANs. The remaining U-Net connections 

assist in improving the output image's resolution. With the exception of the last 

transposed convolutional layer, which has a kernel size of 6, all layers have kernel 

sizes of 5. The stride is set to 2 for operational and transposed operational layers.  

Both discriminators have a kernel size of 4 and 6 operating layers. The layers' strides 

are set at 2, 2, 2, 2, 1, and 2 per layer, accordingly. The generator and discriminator 

architectures are shown in Figure 10. The loss weights  and  in (9) are set as 10 

and 5. The proposed 1D Self ONN architectures are implemented using the FastONN 

library (Malik et al., 2020) based on Python and PyTorch. 4500 clean and corrupted 

underwater images are chosen for the training dataset, while the remaining data 

segments are used for testing and assessment. 
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4.3. Experimental Results 

 

 Peak Signal-to-noise Ratio (PSNR) is used to quantitatively evaluate 

results. PSNR which is the signal's maximum power to corrupting noise power ratio 

is the most commonly used restoration metric. PSNR can be described as; 

 

Equation 20. The definition of PSNR 

 

Where R(i,j) and I(I,j) are the corresponding m*n sized restored and ground truth 

images. 

 

Table 1. Restoration Performance of Operational Cycle-GANs and Benchmark 

Underwater Restoration Algorithms. 

 

  

 

 

 

Methods PSNR Parameters Computational 
Time (s) 

UIBLA (Peng et al., 2017) 13.5 x 42.1 s 
UDCP (Drews et al., 2013) 11.8 x 30.8 s 
Fusion (Ancuti et al., 2012) 17.4 x 6.5 s 

Retinex based (Fu et al., 
2014) 

13.8 x 1.0 s 

RGHS (Chiang J. Y.  ) 14.2 x 8.9 s 
WaterNet (Li et al., 2020) 17.7 24.8 M 0.6 s 
FUnIE (Islam et al., 2020) 19.3 7.0 M 0.09 s 

UGAN (Fabbri et al., 2018) 19.7 57.1 M 0.05 s 
UIE-DAL (Ma Z. 2019) 17.4 18.8 M 0.07 s 
Ucolor (Li et al., 2021) 22.9 157.4 M 2.75 s 
U-Shaped Transformer 

(Peng et al., 2021) 
24.1 65.6 M 0.07 s 

Original (CNN) Cycle-GAN  18.9 5.1 M 0.01 s 
Operational Cycle-GAN 

(q=5) 
22.3 12.2 M  0.02 s 
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Table 1 demonstrates the PSNR performances over the restored images by the 

Operational Cycle-GAN, original Cycle-GAN, and benchmark underwater 

restoration models. Operational Cycle-GAN has more parameters than their 

equivalent CNN Cycle-GAN because of the nonlinear parameters. However, this 

nonlinearity increases the learning capacity of Operational Cycle-GAN by increasing 

the PSNR by about 4 dB. When we compare Operational Cycle-GAN to benchmark 

underwater restoration models, the proposed model outperforms UIBLA, UDCP, 

Fusion, Retinex based, RGHS, WaterNet, FUnIE, UGAN, UIE-DAL but, both 

Ucolor and U-Shaped Transformer achieved better than our proposed model with 

corresponding 0.6 dB and 1.8 dB improvements. However, Our model significantly 

decreases the number of parameters. This makes out model more real-timely 

implementable. 

 

Figure 11 and  Figure 12 show the sample underwater images and their 

corresponding Operational GAN restored outputs. The first and most significant 

observation is that the restored underwater images' quality is superior to the original 

underwater images: The details are sharpened, the color of images is corrected, the 

water turbidity effect is suppressed, and contrast is enhanced. The proposed 

algorithm maintains the original image without any artificial alterations or 

 

 

When we take a closer look at Figure 11, in a b and c, the algorithm 

corrected the colors of the images. In b, it smooths the flickering effects without 

completely suppressing them. In c Operational Cycle-GAN enhances the contrast of 

the image. The details on the wrecked boat sharpened and become more visible. 

 

When we examine Figure 12 more closely, in the first row, the input 

image is extremely blurred. The proposed method sharpens the image. In the d and e, 

both input images are green-scaled. The Operational Cycle-GAN corrected the colors 

of images. 
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Figure 11. Sample underwater images and its corresponding Operational Cycle-GAN 

output Images. 
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Figure 12. Sample underwater images and their corresponding Operational Cycle-

GAN output Images. 
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Figure 13. Sample underwater images, its corresponding GAN output images and its 

ground truths 
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Figure 14. Sample underwater images, their corresponding GAN output images, and 

their ground truths 

 

In Figure 13 and Figure 14, Original underwater images are given with 

their corresponding original Cycle-GAN restored, Operational Cycle-GAN restored 

and their ground truths are given.  A closer look at both figures reveals that 

Operational Cycle-GANs are better restoration performance in terms of color-

correcting, blur removal, and contrast enhancement than original Cycle-GANs. 

Besides the lower restoration performance original cycle gan adds synthetic noise in 

Figure 13 b, d and Figure 14 f, a. In addition to the artificial noise adding, the 

original Cycle-GAN decides that Figure 13 c and Figure 14 e-g are not corrupted 

with artifacts and give exact output as input. As a consequence, when both inputs 

take into consideration, Operational Cycle-GANs have superiority over restoring the 

underwater images. 
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4.4. Computational Complexity  

 

For GX2C network setup, the network size, total number of parameters 

(PARs), and inference time (to recover an underwater image) are calculated and 

provided in Table 1 for the computational complexity. (Malik et al., ) contains the 

comprehensive formulas of the PARs computations for Self-ONNs. A 2.2 GHz Intel 

Core i7 computer with 16 GB of RAM and an NVIDIA GeForce RTX 3080 graphics 

card was used for all of the trials. Python and the PyTorch and FastONN libraries are 

used to implement operational Cycle-GANs. GPU cores were used to process the 

classifier's training and testing phases. The operational Cycle-GAN is substantially 

quicker in terms of the inference time and PARs. Less parameter size of our model 

makes our model more real time implementable than the models which are slightly 

get mode PSNR value than our model. 
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CHAPTER 5: CONCLUSIONS  

 

Even though expensive equipment is used, underwater images are 

severely corrupted because of both  transmission properties and water's 

physical characteristics. These artifacts lose the details of the picture and render these 

pictures useless.  To avoid this problem, prior works usually find the solution to 

enhance these corrupted images using deep learning models with using synthetic 

noise added paired datasets as a supervised solution. However, even though these 

methods can be useful to enhance a certain type of artifact which trained, they are 

useless to remove a blend of artifacts. As a consequence, these typical regression-

based methods are not practical, which is why this work addressed the problem as 

a blind approach, without making any assumptions about the types or severity of the 

artifacts. We provide a novel Operational Cycle-GAN strategy to repair the 

underwater images in order to solve this issue, independent of the kind or severity of 

the artifacts. The clean and corrupted batches of images are utilized to train the 

operational cycle-GANs. The generator, GX2C, develops the ability to convert 

corrupted underwater images into their uncorrupted counterparts. 

 

The wide collection of real underwater images used in the quantitative 

and qualitative evaluations shows that the corrupted underwater images can be 

restored to the appropriate vision quality. During the qualitative evaluations, the 

proposed work achieves superiority over the many benchmark underwater image 

restoration methods in terms of PSNR and the number of parameters used in the 

model. The proposed method outperforms the models using fewer parameters to 

double of parameters by 3-11 dB and get about 1-2 dB less PSNR value than 

methods using more double parameters than our model. This is not surprising that 

Self-ONNs consistently outperform (deep) CNN models by using compact models in 

a wide range of challenging ML and CV tasks (Kiranyaz et al., 2021; Malik et al., 

2021; Devecioglu et al., 2021; Kiranyaz et al., 2022; Malik et al., 2021; Ince et al., 

2021). 

 

For future work, it is possible to further lower the depth and complexity 

of the operational Cycle-GANs while improving the restoration performance using 
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the next-generation AI method Super Neurons (Kiranyaz et al., 2021). Using Super 

Neurons instead of the generative neurons in the Self-ONN layers will be the topic of 

our future research. 
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