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In this paper we study the existence of periodic and asymptotically periodic solutions of
a system of nonlinear Volterra difference equations with infinite delay. By means of
fixed point theory, we furnish conditions that guarantee the existence of such periodic
solutions.
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1. Introduction

Consider the system of nonlinear Volterra difference equations with infinite delay

Aty = haxy + Y anif ()

i=—o00

" , (1.1)
Ayn = DPnYn + Z bn,ig(xi)

i=—00

where f and g are real valued and continuous functions and {a,;}, {b,;}, {h,} and {p, } are
real sequences. In this study, we use Schauder’s fixed point theorem to provide sufficient
conditions guaranteeing the existence of periodic and asymptotically periodic solutions of
system (1.1). Since we are seeking the existence of periodic solutions it is natural to ask
that there exists a least positive integer 7 such that

hnsr = huy Puir = Pa, (1.2)
AnyTi+T = Ani, (1.3)

and
bps1ivr = bnyi (1.4)

hold for all n € N, where N indicates the set of all non-negative integers.
Recently, there has been a remarkable interest in the study of Volterra equations due to
their applications in numerical analysis and biological systems, see e.g. [2,3,18]. There is a
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vast literature on this subject in the continuous and discrete cases. For instance, in [19] the
authors considered the 2D system of nonlinear Volterra difference equations

A-xn = hn-xn + Zan‘if(yi)
i=1
, n=1,2 ...

Ayn = PnYn + Z bn,ig(xi)
i=1

and classified the limiting behaviour and the existence of its positive solutions with the
help of fixed point theory. Also, the authors of [15] analysed the asymptotic behaviour of
positive solutions of second-order nonlinear difference systems, while the authors of [14]
studied the classification and the existence of positive solutions of the system of Volterra
nonlinear difference equations. Periodicity of the solutions of difference equations has
been handled by [1,5—10]. In [6,7], the authors focused on a system of Volterra difference
equations of the form
x(n) = ag(n) + by (m) + Y > Kop(n, (i), n €N,
p=1 i=0

where ay, by, x, : N— Rand Ky, : NXN—R,s=1,2, ..., r,and R denotes the set of all
real numbers and obtained sufficient conditions for the existence of asymptotically
periodic solutions. They had to construct a mapping on an appropriate space and then
obtain a fixed point. Furthermore, in [11] the authors investigated the existence of periodic
and positive periodic solutions of system of nonlinear Volterra integro-differential
equations. The paper [8] of Elaydi was one of the first to address the existence of periodic
solutions and the stability analysis of Volterra difference equations. Since then, the study
of Volterra difference equations has been vastly increasing. For instance, we mention the
papers [12,16] and the references therein. In addition to periodicity we refer to [13,17] for
results regarding boundedness. The main purpose of this paper was to extend the results of
the above-mentioned literature by investigating the possibility of existence of periodic and
the asymptotic periodic solutions for systems of nonlinear Volterra difference equations
with infinite delay.

Denote by Z and Z~ the set of integers and the set of non-positive integers,
respectively. By a solution of system (1.1) we mean a pair of sequences {(x,, V,)},ez of
real numbers which satisfy (1.1) for all » € N. The initial sequence space for the solutions
of system (1.1) can be constructed as follows. Let S denote the non-empty set of pairs of all
sequences (1, ) = {(1n, &)} ez~ of real numbers such that

max{ sup |m,], sup |§n|} < o,

n€z~ n€z~

and for each n € N the series
0

0
D anfn) and > big(l)

j=—0o0 =—00

converge. It is clear that for any given pair of initial sequences {(7,, {;)},ez- in S there
exists a unique solution {(x,, y,)},e7 of system (1.1) which satisfies the initial condition

Xn Mn
<yn> = (@) forne 7, (1.5)
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such solution {(x,,, y,)},c7 is said to be the solution of the initial problem (1.1-1.5). For
any pair (n,{) € S, one can specify a solution of (1.1-1.5) by denoting it by
{Ca (), yu(D)}nez, Where

(M, &) forne 27,

(xn(n)vyﬂ(g)) = { (xmyn) for n € N.

In our analysis, we apply a fixed point theorem to general operators over a Banach space of
bounded sequences defined on the whole set of integers. Unlike the above-mentioned
literature that dealt with the stability of delayed difference systems, in the construction of
our existence type theorems we neglect the consideration of phase space, for simplicity.
For a similar approach we refer to [4].

We end this section by recalling the fixed point theorem that we use in our further
analysis.

THEOREM 1 (SCHAUDER’S FIXED-POINT THEOREM). Let X be a Banach Space. Assume that
K is a closed, bounded and convex subset of X. If T : K — K is a compact operator, then it
has a fixed point in K.

2. Periodicity

In this section, we use Schauder’s fixed point theorem to show that system (1.1) has a
periodic solution.

Let Pr be the set of all pairs of sequences (x,y) = {(x,, yn)},e7 satisfying x,.7 = x,
and y,+7 =y, for all n € N. Then P7 is a Banach space when it is endowed with the
maximum norm

= ma ma ma.
[1Ce, I X{nElL;lzlan HE[L;«]ZIan},

where [1,7T]7 :=[1,T] N Z. We define the subset (U (W) of Py by
QW) == {(x,y) € Pr: I, pll = W},

where W > 0 is a constant. Then (W) is a bounded, closed and convex subset of Pr.
For any pair (x,y) = {(x:.(1), y2(D))} ez € UW) with an initial sequence
{(nn, &) }nez- in S, define the mapping E on (W) by

El(x7y)n
E(X,)’) = {E(xvy)n}nel = EQ()C y) )
" n€z

where
- forne 7,
Ey(x,y), = ahnfl (nﬁl(l +h1)> zl: aipf ym) for n € N, 2D
i=n I=i+1 m=—0o
L forne 7,
Er(x,y), = ap”fl (nJﬁl(l +pz)> ZI: bim8(xy) for n €N, (2:2)
i=n I=i+1 m=—00
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and

-1

-1 -1 r-l
@ = ll—H(H‘hl) = [I—H“ﬂ?ﬂ
=0

=0

We use the following result on several occasions in our further analysis.

Lemma 1. Assume that (1.2—1.4) hold. Suppose that 1+ h, # 0, 1+ p, # 0 for all
n € [1,T]y and that

T—1 T—1
[Ta+m=#1 and JJ+py=#1. (2.3)
=0

=0

The pair (x,y) = {(x(0), yo(D) } ez € QW) with an initial sequence {(n,, ()} ez~ in' S
satisfies

Ex,y)n = (Xn; Yn)
for all n € N if and only if it is a T-periodic solution of (1.1).

Proof. One may easily verify that the pair (x,y) = {(x,(1), y.(D)) },ez € QUW) satisfying
(X4, ) = E(x,y), for all n € N is a T-periodic solution of system (1.1). Conversely,
suppose that the pair (x,y) = {(x,(0), y.(O)},ez € QW) is a T-periodic solution of (1.1).
Multiplying both sides of the first equation in (1.1) with ([]_, (1 + h))~! and taking the
summation from n to n + T — 1, we obtain

n+T-1

ZA

i=n

ntT—1 [ i -l
X; <H<1+h,>> ] > (H(Hh») > ainfOm).
=0

i=n m=—00

This implies that

n+T—1 ! n—1 !
Xn+T< H (1+h,)> —xn<1'[(1+hz)>
=0
n+7T-1 i i
Z (H(th)) D ainf G-

=n m=—00

Using the equalities x, 7 = x, and H"JFT 'O +n) = H "1+ hy), n €N, we have
Ei(x,y), = (x,,yn) for all n € N. The equality E,(x,y), = (x,,y,) for n € N can be
obtained by using a similar procedure. The proof is complete. ]
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In preparation for the next result we assume that there exist positive constants Wy, W,
K, and K>, such that

lfeol = wy, (24)
lso)| = W, (2.5)
n+T—1 |n+T-1
lal H (1+h) Z lail = K, (2.6)
i=n =i+1 m=—00
n+T—1 |n+T—1
el Y- | T +p0 Z |biml = K, 2.7)
i=n I=i+1 m=-—00

for all n € Z and all (x,y) € QW).

THEOREM 2. In addition to the assumptions of Lemma 1 suppose that (2.4—2.7) hold. Then
(1.1) has a T-periodic solution.

Proof. From Lemma 1, we can deduce that E(x,y),,r = E(x,y), for all n € N and any
(x,y) € Q(W). Moreover, if (x,y) € (W) then

n+T—1 |n+T—-1
|EvGe )l = lanl > | JT 1 +m) Z lainl LfG) = WKy, (2.8)
i=n I=i+1 m=—00
and
n+T-1 n+T—1 i
|ExCe, )l < eyl D7 oy T A 4pd| D Ibiml gl = WaKs  (2.9)
i=n I=i+1 m=—00

for all n € N. If we set W = max{W K, W,K,} then E maps Q(W) into itself. Now we
show that E is continuous. Let {(x, y’)}, [ € N, be a sequence in (W) such that

hmH(x,y)—(x y)H = 11m< max {’x —x,,| ’yn yn|}> =0.

I—o0 \ n€[1,T])y

Since (W) is closed, we must have (x,y) € U (W). Then by definition of E we have

[EG!, v = B, y)|| = max{n max [Ei(xr', v, = Ei(x ),

ngllla%(] |E2(X Y )n EZ(x7y)n|}7
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in which

ot (”f[lm +h,>) S s )

|E\' "), = Ei(x, )| = ol
i=n i+1 m=-—00
n+T—1 [n+T—1 i
- > < 1T <1+hl>> > ainfGm)
i=n I=i+1 m=-—00
n+T—1 |n+T—1 i
=l Y | ] a+m| > |aim|l£Gh) = fOw)-

i=n I=i+1 m=—oo

Similarly,

n+T—1 |n+T—1

By = ExCe, | = oyl D | T A +p0] D 1biml g(x),) — g)|-

i=n I=i+1 m=-—00

The continuity of f and g along with the Lebesgue-dominated convergence theorem
implies that

lim||EGe', y') = Ex, )| = 0.

This shows that E is continuous. Finally, we have to show that EQ(W) is precompact. Let
{(x!,y")},en be a sequence in Q(W). For each fixed I € N, {(x/,y)},c7 is a bounded
sequence of real pairs. Then by Bolzano—Weierstrass theorem, {(x!,y')},c7 has a
convergent subsequence {(xnk,ym)} By repeating the diagonalization process for each
[ € N we can construct a convergent subsequence {(x%, yl‘)}lkeN of {(x*,yh bien in Q(W).
Since E is continuous, we deduce that {E(x!,y’)},cn has a convergent subsequence in
EQ(W). This means that EQ(W) is precompact. By Schauder’s fixed point theorem we
conclude that there exists a pair (x,y) € (W) such that E(x,y) = (x, ). O

THEOREM 3. In addition to the assumptions of Lemma 1, we assume that (2.4), (2.6) and
(2.7) hold. If g is a non-decreasing function satisfying

lg@o)| = g(lx]), (2.10)

then (1.1) has a T-periodic solution.

Proof. By (2.8) we already have
|E1(x, )| = WK, forall (x,y) € Q(W).

This along with (2.10) implies that

n+T-1 n+T-1
|E2(x7y)n| = Z ap H (1+Pl) Z |bzm||g(xm)|
i=n I=i+1 m=—o00
n+T-1 n+T-1
= > e [T a4 Z |bi.mlg(1E: (x, 9)1)
i=n I=i+1 m=—o0

= Krg(WiKy).
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If we set W = max{W K, K,g(WK,)}, then the rest of the proof is similar to the proof of
Theorem 2 and hence we omit it. U
Similarly, we can give the following result.

THEOREM 4. In addition to the assumptions of Lemma 1, we assume (2.5), (2.6) and (2.7)
hold. If f is a non-decreasing function satisfying

Lfol = fdyD,

then (1.1) has a T-periodic solution.

Example 1. Let
h,=1-+cosnm, p,=1—cosnm, a,; =b,;= e
and
f(x) =sinx and g(x) = sin2x.
Then (1.1) turns into the following system

Ax, = (1 + cosnm)x, + Z e " sin(y;),

i=—00

Ayn = (1 — cosnm)y, + Z el sin(2x;).

i=—00

It can be easily verified that conditions (1.2)—(2.3) and (2.4)—(2.7) hold. By Theorem 2,
there exists a 2-periodic solution (x,y) = {(x,, yu)} ez of system (1.1) satisfying

n+1 n+l

= —_i: ﬁ (2 + cos(im)) Z "' sin(y,),
rlt+n1 ln-:l e

= —_Z H (2 — cos(lm) Z "1 sin(2x,,),
i=n l=i+1 m=-—0

for all n € N.

3. Asymptotic periodicity
In this section, we show the existence of an asymptotically 7-periodic solution of system
(1.1) by using Schauder’s fixed point theorem. First, we state the following definition.

DEFINITION 1. A sequence {x,},c7 is called asymptotically T-periodic if there exist two
sequences u, and v, such that u, is T-periodic, lim,—«v, = 0 and x,, = u, + v, for all
n €.

First, we suppose that

T—1 T—1
[Ta+m=1 and JJ+p=1. (3.1
=0 =0
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Then we define the sequences ¢ := {¢, },en and ¢ := {i,},en as follows:

n—1 n—1
1 1
@y = and ¢, = . 3.2)
jl;[) L+ hy g 1 +p;

Furthermore, we define the constants my, My, k = 1,2, by

= min |¢g; M, := max |¢; = min | M, := max |[{].
m ie[]ﬂz|%|7 1 IE[I’T]J(P;L np IE[]’T]ZWGL 2 ie[mzl%l

We note that in this section, we do not assume (1.3) and (1.4) but instead we suppose
that the series

D> laiml <o and > > byl < oo (33)
i=0 m=—0o0 i=0 m=—0o0
converge to a and b, respectively. Observe that (3.3) implies

13" 3 bl = 32 3 lbil =0, G

i=n m=—00 i=n m=-—00

THEOREM 5. Suppose that (2.4), (2.5), (3.1), (3.3) and (3.4) hold. Then system (1.1) has an
asymptotically T-periodic solution (x,y) = {(x,, V,)},ez Satisfying

X, 1= ufll) + vill), Vp 1= uf) + v,(f)
for n € N, where

n—1

n—1
uﬁ,l) = C]H(l + hy), uf) = czH(l +p), neZ*
j=0 Jj=0

¢ and cy are positive constants, and

limv" = 1imv? = 0.

n—oo n—o0

Proof. Due to the T-periodicity of the sequences {4, },c7 and {p,},c7 and by (3.1) and
(3.2) we have

e Eder, @2, . ery and g, € {dn, o, . Pr)
for all n € N. This means
my = |@,| =M, (3.5)
my = || = M, (3.6)

for all n € N. Let B be the set of all real bounded sequences x = {x, },c7. Denote by B the
Banach space of all pairs of real bounded sequences (x,y) = {(xy,yn)},ez> X,y € B,
endowed with the maximum norm

[1Ce, Il = maX{suplxnl, suplynl}.

n€zZ n€z
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For a positive constant W™ we define

QW ={xy €B: l(x,pll = W"}.

1935

Then, " (W™) is a non-empty bounded convex and closed subset of B. For any pair
x,9) = {C (), yu(D)} ez € O (W) with an initial sequence {(1,,, £,)},e7- in S define

the mapping E* on Q*(W*) by

) ) E\(x,y),
E'on) =1E@ntez= \ | g, y)
b n
nez
where
M
s L 00 i .
El(xvy)n = cl% — Z Pitl ai.mf(ym) for n € N,
! i=n m=-—00 Pn
and
&
Ei(x,y), = . 2K P
L — bimg(xy) for n € N.

forne 7™,

for ne 7,

(3.7

(3.8)

We show that the mapping E* has a fixed point in B. First, we demonstrate that

E* Q" (W™ C Q"(WH). If (x,y) € Q" (W7), then

SMlml_

=M1m1

and

= Mzmgl

— -1
—M2m2

for all n € N. This implies that

|Ej(x,9),| = Mym}!

and

|ES(x, )| = Momy!

. 1 _
E|(x,y), — ci —' = Mym,
©n

" 1 -
E2(%)’)n - 02_’ = M2m2
P

IWIZ i |cti

i=n m=-—00

WSS laal

i=0 m=—o00

lW](l,

IWZZ 2 |blm|

i=n m=-—00

0 i
W3S Il

i=0 m=—o00

Wb

1
Wia+—
m

Wob + 2
my
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for all n € N. If we set
* —1 Cl —1 (&)
W = max{M1m1 W1a+—,M2m2 W2b+—},
mi ny

then we have E*Q"(W™) C Q" (W™) as desired.

Next, we show that E* is continuous. Let {(x, y9)} e be a sequence in Q*(W ") such
that limy—.c||(x4, y7) — (x, y)|| = 0, where (x,y) = {(x4, ¥s) },ez. Since Q" (W ™) is closed,
we must have (x,y) € Q*(W™). From (3.7) and (3.8), we have

(BT, 3D, — Ej(x,0),] = Z Z

i=n m=-—00

QDt-H

lme(ym) _f(ym)’

and

l/ft—&-l

|b1 m| |g(xq) - g(-xm)|

Ey(x4, "), = E5(x, )] = Z Z

i=n m=—0o0

for all n € N. Since f and g are continuous, we have by the Lebesgue-dominated
convergence theorem that

lim ||E*(x9,y%) — E*(x,y)|| = 0.
(I—?OO

As we did in the proof of Theorem 2 we can show that E™ has a fixed point in Q*(W™). On
the other hand, using a similar procedure that we have employed in the proof of Lemma 1,
we can deduce that any solution (x,y) = {(x,, y,)},ez of system (1.1) is a fixed point for
operator E*. This means E*(x,y) = (x,y) or equivalently,

1 i
o=l —— §j § EEL G f ) (3.13)
and
1 2 &K P
Yp = C2 ‘IT g g bi ng(xm). (3.14)
n i=n m=—o0 n

Conversely, any pair (x,y) = {(x,, V.)},7 satisfying (3.13) and (3.14) also satisfy that

Xopt = X1+ 1) = ¢y (H(l+h)—(1+hn)H(1+h)>

Jj=0 J=

+(1+h,1)z Z P i )

i=n m=—o00 @n

- Z Z il tmf(ym)a

i=n+1 m=—0o0
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and hence,
n—1
o, aEm[fa+m
=0
Xp+1 — )Cn(l + hn) = Z Z i ! azﬁ,mf(ym)
i=n m—=—00 H (1 + h])
j=0
o TMa+m

-3y
i=n+1 m=—o00 H(l + hj)

j=0
n

= Z an,mf(}’m)-

m=—oo

1937

That is, any fixed point (x,y) = {(x,, y.)},ez of operator E* satisfies the first equation in

(1.1). Similarly, one may show that the second equation holds.
For an arbitrary fixed point (x,y) € Q*(W™) of E*, we have

1 1
hmx,,—cl——hmE(xy),Z ci—| =0
=0 ©Pn ©n

and
. 1 .
lim|y, — c;—| = lim|E»(x,y), — cz— =0.
n—co T U
Choosing
a _ 1 W= — Dit1
U, =cr—, V, Z Z a;, mf(ym)
®n i=n m=—o0
and

1 00 i :
Sl eSS

i=n m=—co 1

(3.15)

(3.16)

(3.17)

(3.18)

we have x, = u) + vV and y, = u? +v?. By (3.15) and (3.16), v{" and v?) tend to 0

when 1 — co. We have to show that u" and u'? are T-periodic.

n+T-1 n+T-1

ul)y = ¢ H (l+h)—c1H(1+h) H (1+ hy)

n—1

—01H(1+h)H(1 + k)
ZCIH(1+hj),
=0

by (3.1). The proof for u? is thus identical.
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Example 2. Consider system (1.1) with the following entries:

1, ifn=2k+ 1forke”Z

hy = pn =
n=Pn -1 ifn=2kforkeZ
an;=¢e"  for n,i €Z, b,;=e* " for ni€7Z,

f(x) =cosx and g(x)= cos2x.

Then (1.1) turns into the following system:

Ax, = hyx, + Z e’ 2 cos(yy),

[=—00

Ayn = PuYn + Z CZi_3nCOS(2xi)-

i=—o00

Obviously, the sequences {h,},c7 and {p,},c7 are 2-periodic and all conditions of
Theorem 5 are satisfied. Hence, we conclude by Theorem 5 the existence of an
asymptotically 2-periodic solution (x,y) = {(x,;, y.) },e7 satisfying

1 ) i . .
Xp—=C—— Z Z % e” ZZCOS(Ym)a
n

Pn i=n m=—00
TR U TE P,
== 3y S e cos(2x,),

lpn i=n m——00 n
for all n € N, where ¢ and ¢, are positive constants, ¢ := {¢, },en and ¢ := {i,} ,en are
as in (3.2).
Notes
1. Email: can.koyuncuoglu@ieu.edu.tr.

2.  Email: yraffoull @udayton edu.
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