
 

 

 

 

 

 

 

 

 

 

 

OPTIMIZED EXEMPLAR-BASED LIGHT FIELD 
SUPER-RESOLUTION 

 

 

 

BURHAN AYDENİZ 
 

 

 

 

Thesis for the Master’s Program in Electrical and Electronics Engineering   

Graduate School 

Izmir University of Economics 

Izmir 

2023 



 

 

 

 

OPTIMIZED EXEMPLAR-BASED LIGHT FIELD 
SUPER-RESOLUTION 

 

 

 
BURHAN AYDENİZ 

 

 

 
THESIS ADVISOR: ASSOC. PROF. DR. MEHMET TÜRKAN 

 

 
A Master’s Thesis 

Submitted to  

the Graduate School of Izmir University of Economics 

the Department of Electrical and Electronics Engineering

Izmir 

2023 

 



csucularli
Rectangle



 iv 

ABSTRACT 
 

 

 

OPTIMIZED EXEMPLAR-BASED LIGHT FIELD SUPER-RESOLUTION 

 

 

 

Aydeniz, Burhan 

 

 

 

Master’s Program in Electrical and Electronics Engineering 

 

Advisor: Assoc. Prof. Dr. Mehmet Türkan 

 

January, 2023 

 

The light field imaging technique can produce views captured from light rays in 

different locations and directions. Due to several hardware restrictions, light field 

images have low spatial resolution. By aiming to reconstruct image details, different 

high resolution images can be estimated in an image generation model. In literature, 

several super-resolution methods have been proposed to solve this ill-posed 

optimization problem. In this thesis, exemplar-based light field super-resolution 

algorithms have been developed by means of Linear Embeddings and Orthogonal 

Matching Pursuits through exemplar patch pairs extracted from low resolution images. 

The proposed method estimates high resolution images in low disparity light field 

datasets. According to statistical and visual results, the proposed exemplar-based light 

field super-resolution approach provides remarkable performance when compared to 

state-of-the-art algorithms.  

 

Keywords: light field, super-resolution, exemplar-based, linear embedding, orthogonal 

matching pursuit 
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ÖZET 
 

 

 

OPTİMİZE EDİLMİŞ ÖRNEK-TABANLI IŞIK ALAN SÜPER-ÇÖZÜNÜRLÜK 

 

 

 

Aydeniz, Burhan 

 

 

 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Doç. Dr. Mehmet Türkan 

 

Ocak, 2023 

 

Işık alanı görüntüleme tekniği, farklı konumlarda ve yönlerde yakalanan ışık 

hüzmelerinin görüntülerini üretebilir. Çeşitli donanım kısıtlamaları nedeniyle, ışık 

alanı görüntüleri düşük uzamsal çözünürlüğe sahiptir. Görüntü üretim modelinde, 

görüntü detaylarının korunması amacıyla, farklı yüksek çözünürlüklü görüntüler 

tahmin edilebilir. Bu kötü konumlanmış optimizasyon problemini çözmek için 

literatürde bir cok süper-çözünürlük yöntemi önerilmiştir. Bu tezde, düşük 

çözünürlüklü görüntülerden çıkarılan örnek yama çiftleri aracılığıyla doğrusal 

yerleştirme ve dikgen eşleştirme takibi tabanlı algoritmalar kullanılarak örnek tabanlı 

ışık alanı süper-çözünürlük algoritmaları geliştirilmiştir. Önerilen yöntemler, düşük 

eşitsizlikli ışık alanı verisetlerinde yüksek çözünürlüklü görüntüleri tahmin 

etmektedir. İstatistiksel ve görsel sonuçlara göre, en ileri teknoloji algoritmalar ile 

karşılaştırıldığında önerilen örnek tabanlı ışık alanı süper çözünürlük yaklaşımı 

dikkate değer bir performans sağlamaktadır.  
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CHAPTER 1: INTRODUCTION 
Humanity has always wondered about making sense of environment and wanted to 

develop it further. Therefore, humanity has tried to figure the nature and its 

circumstances. These trials sometimes be photography, painting, or other kind of 

visual arts. Since the early age of the invention of photography, the working principles 

have been usually like a copy of human vision system. Fundamentally, the copied 

principle is that the light beam is refracted by the lens and projected onto the sensors. 

Thus, similar to human vision system, the object or the scene can be captured by 

imaging systems. With the principle, due to the inability to capture light rays from 

different angles and intensities, two-dimensional images with low depth perception are 

produced. However, as human beings always do, they solve this problem in a way that 

is inspired by living forms. As mentioned in the study of (Rodríguez-Gironés and Ruiz, 

2016), many insects, spiders and flies have more than one lens, unlike the human 

vision system. In this way, these creatures can capture light beams with different 

angles and intensities. LF imaging also captures light beams in a similar way to this 

principle.  

 

As it is shown in Figure 1, LF imaging technique is a technique that can capture light 

rays at different locations and different directions. In fact, different from 2D 

conventional imaging technique, the technique is able to detect the spatial and angular 

variations in the intensity of light rays (Adelson and Bergen, 2020). Thanks to the 

microlens array, which is frequently preferred in LF imaging, these variations can be 

captured in different parts of the sensor. As it is known, an LF can be formulated as a 

4D function that represents the spatial distribution, and the angular distribution of light 

rays. To comprehend 4D LF matrix views (see Figure 1), the represented spatial 

dimensions as a 2D matrix is also called SAI, these SAIs constitute the 4D matrix with 

the appropriate angular dimension locations. Thus, when each SAI in the 4D matrix is 

examined, it can be observed that each of the others shifts by a certain amount of 

pixels. 
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Figure 1. LF Imaging: (a) Structure of a microlens-based LF camera. (b) Two-plane 

parameterization model. (c) Basic structure of conventional cameras. (d) Basic 

structure of microlens-based LF camera. (Source: Wang et al., 2018)  

 

To enhance the captured scene, this technique presents images those enable some 

benefits such as post-capture refocusing, controlling and extended depth-of-field, 

different viewpoint rendering. Therefore, as mentioned in (Ng Ren, 2006), these 

capabilities can be employed for image or video post-production and virtual or 

augmented reality applications. Despite all these favorable features, LF imaging 

systems have some restrictions which obstruct widely usage. While in the early years, 

LF imaging systems were supposed to have a multi-camera array, with organizations 

such as Lytro and Raytrix, LF cameras have become available for conventional usage. 

Even if they developed LF systems, because of sensor resolution restriction, there is a 

trade-off between spatial and angular resolution, and the spatial resolution is lower 

than 2D conventional imaging systems (Boominathan, Mitra and Veeraraghavan, 

2014). 

 

Many studies aim at solving this trade-off have been proposed. These are mostly super-

resolution methods that can be applied to spatial dimensions or angular dimensions or 

both dimensions. Some of these up-to-date methods originate in applying SISR 

methods to each SAI. Nonetheless, there are some approaches based on the 4D LF 

structure. Also, methods can be categorized as TIP based methods and NN based 

methods. The study of (Mitra and Veeraraghavan, 2012) considers modelling LF 

patches by using Gaussian Mixture Model (GMM), (Rossi and Frossard, 2018) 

grounds on adoption of multi-frame SR approach, (Farrugia, Galea and Guillemot, 
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2017) proposes an example-based SR algorithm that learns linear projections between 

low- and high-resolution dimension and (Alain and Smolic, 2018a) combines an 

iterative SISR method and LF image denoising. The forementioned works are well-

known methods that can be classified as TIP based methods. Along with these studies, 

some state-of-the-art NN based studies are found, such as the study of (Yoon et al., 

2015) grounds on data-driven learning method to upsample the angular and spatial 

resolution simultaneously, (Yoon et al., 2017) considers applying CNN to 

simultaneously upsample the spatial and angular resolution respectively, (Wang et al., 

2018) proposes a reconstruction scheme based on accumulation of the contextual 

information from multiple scales. 

 

In this thesis, the LF SR problem is focused since it is an important problem to be 

solved in the LF imaging technique. By means of traditional and sparsity based 

approaches, the statistical and visual performance of the developed methods are 

analyzed. The common point of all developed methods is the usage of LF images 

around the SAI whose resolution is desired to be upscaled, called LF window. In other 

words, in these patch-based approaches, it is aimed to increase the similarity by 

searching the target image patches in the target SAI in the LF window. To find similar 

image patches, K-nearest neighbors are determined through sum-of-squared distance. 

Only the nearest patch pairs are calculated for approximation, thus saving computation 

time and power. Later, LLE known as a dimension reduction method (Roweis and 

Saul, 2000) and OMP which is a greedy algorithm based on sparse approximations 

(Pati, Rezaiifar and Krishnaprasad, 1993; Davis, Mallat and Avellaneda, 1997) are 

used to represent a target reference patch with its K-neighbors. In addition, a local 

optimization process is applied for ensuring local compatibility. As another common 

point of proposed methods, IBP or BP is applied for adding details with respect to LR 

image. All methods presented in this thesis include LF window, LLE or OMP and IBP 

or BP can provide a new perspective for solving the LF SR problem. 

 

This thesis is organized as follows. The related studies in literature are analyzed briefly 

in CHAPTER 2: LITERATURE REVIEW. The methods developed in this study are 

detailed in CHAPTER 3: METHODOLOGY. Statistical and visual results are 

presented in CHAPTER 4: EXPERIMENTAL DETAILS & RESULTS. Finally, a 
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brief conclusion and possible future directions are given in CHAPTER 5: 

CONCLUSION.   
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CHAPTER 2: LITERATURE REVIEW 
2.1 Light Field Denoising, Light Field Superresolution and Stereo Camera Based 

Refocussing using a GMM Light Field Patch Prior 

In the study of (Mitra and Veeraraghavan, 2012), it is proposed a common framework 

by using a GMM prior for LF patches, such as denoising, angular and spatial SR. The 

base of this approach is the estimation of LF patches using LMMSE (Kay, 1993) 

through the estimation of disparity values of extracted patches from the observed data 

via a fast subspace projection algorithm.  

 

In this method, patches are firstly extracted from the observed image. After that, by 

analyzing the LF patches of diffuse scenes, LF patches with the same disparity value 

are showed to lie on a low-dimensional subspace. The LF patches are then modeled as 

Gaussian random variables depending on their disparity values. In this way, it enables 

a GMM. In the first step of the processing part to estimate the original LF patches, the 

disparity value of the observed LF patches is estimated by using a fast subspace 

projection algorithm PCA (Bartholomew, 2010), as the second part, for each patch, the 

LMMSE algorithm (Kay, 1993) is used with the estimated disparity value. 

 

In short, being effective and multitasking framework for different LF imaging 

problems, this method can be considered as a well-known LF SR method. 

 

2.2 Light Field Super-resolution via Graph-based Regularization 

In (Rossi and Frossard, 2018), an SR algorithm based on multi-frame approach with 

graph-based regularizer, called GB, is proposed to provide a global solution to upscale 

all LF images together. By using this approach, graph-based regularizer that carries 

out LF structure via nonlocal self-similarities provides to circumvent disparity 

estimation which can be accepted as a challenging step. 

 

In this study, by designing an iteratively solved quadratic objective function that 

contain three terms to find the relations between the LF SAIs, LF spatial SR problem 

can be arranged into a global optimization problem. These three terms consist of the 

data fidelity compelled to be coherent of HR view and its LR equivalent, warping term 

that collects the complementary information encoded in each view, graph-based 
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regularizer that enforces smoothness along the LF epipolar lines defined on the LF 

structure.  

 

In brief, the method that is generally called Graph-Based Algorithm shows a 

benchmark performance on LF camera views due to their small disparity values. Thus, 

this method is one of the significant methods that are used to analyze performance on 

LF SR. 

 

2.3 Super Resolution of Light Field Images Using Linear Subspace Projection of 

Patch-Volumes 

In (Farrugia, Galea and Guillemot, 2017), to improve the spatial resolution of the 

different LF views appropriately all SAIs of the LF structure, an example-based SR 

algorithm is proposed. This algorithm is basically based on learning linear projections 

between dimension reduced subspaces, in which patch-volumes are extracted from the 

LF structure.  

 

In the method, example dictionaries are firstly constructed by extracting HR and LR 

patch pairs from HR and LR LF images. Because they comprise redundant 

information, and lie on subspaces of lower dimension, the HR and LR patch-volume 

pairs are projected by using PCA (Bartholomew, 2010). Between the subspaces of HR 

and LR patch-volumes, a linear mapping function is learned by using RR. With this 

learned mapping function, LR LF patch-volumes can be upscaled. Also, to prevent 

disparity of LF structure, a block-matching step is proposed aiming at obtaining best-

matching patches across all SAIs. Therefore, the algorithm is named as BM + PCA + 

RR. In Figure 2, a schematic diagram of the algorithm is illustrated.  
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Figure 2. Overview of BM + PCA + RR, (a) the linear projections are learned from 

training patch-volumes. (b) restoration the LF by using learned projections. (Source: 

Farrugia, Galea and Guillemot, 2017) 

As a result, the proposed approach does not require more training samples, the method 

can be accepted as a preferred method. However, it is obvious that the method is the 

one of the old studies in the LF SR literature and does not perform well under different 

experimental conditions. 

 

2.4 Light Field Super-resolution via LFBM5D Sparse Coding 

(Alain and Smolic, 2018a) proposed a spatial SR method combined with the SR-

BM3D SISR filter (Egiazarian and Katvonik, 2015) and the LFBM5D LF denoising 

filter (Alain and Smolic, 2017). The method iteratively updates LF SAIs between 

LFBM5D filter and BP steps. 

 

In this algorithm, 4D patches consisted by taking 2D patches in the neighboring SAIs 

with respect to the reference 2D patch. These 4D patches are stacked are stacked to 

build 5D patches. Then, the 5D LF patches are transformed 5D transform domain due 

to its high sparsity. Thus, by applying hard-thresholding, sharper HR patches can be 

estimated using the 5D patches. In the next step, BP is applied on each SAI to add 

upsampled residual error between the known LF image and downsampled estimated 

HR image. This process iterates until convergence. Also, image guided filtering is 

proposed to avoid ringing artifact for high upsampling factors. 

 

In summary, this method presents high performance on low upsampling factors and 

LF structures that have high disparity value and differ from capturing by LF cameras. 
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With its sparsity approach and its performance on high disparity value, the method can 

be considered as a memorable and inspiring LFSR method. 

 

2.5 Learning a Deep Convolutional Network for Light-Field Image Super-

resolution 

(Yoon et al., 2015) proposes, as accepted one of the earliest NN based LF SR methods 

a data-driven learning method which is able to upsample angular and spatial 

dimensions simultaneously. Respectively, the spatial resolution is firstly upsampled 

by a spatial SR network, then each enhanced view is angularly upscaled using an 

angular SR network.  

 

In details of the study, the spatial and angular SR networks are trained independently, 

and then fine-tuned via end-to-end training. As shown in Figure 3, to recover high-

frequency details, the networks are fed horizontally, vertically and surrounding bicubic 

upsampled blocks of each SAI. Also, the reason of the order of this cascade NN 

structure is that the estimated HR images contain more details and have clean views. 

The method is called as LFCNN. 

 

 

Figure 3. Overview of the LFCNN method. (Source: Yoon et al., 2015) 

In brief, this NN based method can be used to obtain estimated HR images by 

upsampling angular and spatial resolutions simultaneously. However, the given 

benchmark performance on synthetic LF images may not maintain on LF examples 

contained high disparity.  
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2.6 Light Field Image Super-Resolution using Convolutional Neural Network 

In (Yoon et al., 2017),  the proposed method consists of an improvement of previous 

cascade NN based LF SR method in “2.5 Learning a Deep Convolutional Network for 

Light-Field Image Super-resolution” (Yoon et al., 2015). Fundamentally, the method 

is similar to the previous method that includes spatial and angular SR networks. 

 

Different than the previous study, in this method, the output of the spatial SR network 

is organized as vertical, horizontal and central pairs to feed angular SR network as 

shown in Figure 4. 

 

 

Figure 4. Overview of the improved version of LFCNN. (Source: Yoon et 

al., 2017) 

In short, the proposed method in (Yoon et al., 2017) is a novel version of the study in 

(Yoon et al., 2015), by changing algorithm pipeline. Also, the given results obtained 

from LF images, captured in real-world, can enable to evaluate the performance on 

different LF datasets. Especially, it is also stated that the results in the depth map 

estimation have been improved. 

 

2.7 LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for 

Light-field Image Super-resolution 

In the study of (Wang et al., 2018), an NN based method is proposed which uses IMsF 

scheme to accumulate contextual information from multiscale and Bidirectional 

Recurrent CNN that iteratively models spatial relations between horizontal and 

vertical SAIs.  This method is named as LFNet.  
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As shown in Figure 5, LFNet has two NN models specified on directions which are 

vertical and horizontal to upsample the resolution of vertical and horizontal LF SAIs 

stacks separately. After that, for obtaining upsampled LF structure, these Bidirectional 

Recurrent CNN that is used with IMsF are ensembled via stacked generalization.  

 

 

Figure 5. Overview of the LFNet. (Source: Wang et al., 2018) 
 

As a result, LFNet is a NN based method that aims at upsampling LF views as vertical 

and horizontal stacks. In the light of the presented quantitative and qualitative 

evaluations on real-world and synthetic datasets, the performance is robust and 

competitive. 
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CHAPTER 3: METHODOLOGY 
In this chapter, there are different approaches proposed aiming at obtaining an HR LF 

image which is consistent with neighboring LR LF images. Formally,  %! is the known 

LR LF and assumed to be a blurred and down-scaled version of the unknown HR LF 

%" that is aimed to generate the model as follows: 

 %! =	'#(%") (1) 

where '# is the operator of blurring and downsampling of each view with a factor of 

!. 

 

The described LFSR problem is ill-posed due to the multipotential HR LF %" 

generations which can produce exactly the known %!. To solve the problem, as 

mentioned in (Türkan, Thoreau and Guillotel, 2013), a global energy function 

including a prior on %" is employed: 

 *+,	min
$!

‖%! −	'#(%")‖%
% + 34(%") (2) 

where ‖%! −	'#(%")‖%
% is the data term related to Eq. (2), 3 and 4(%") express the 

control parameter providing contribution of the prior and the regularization term of a 

prior on %", respectively.  

 

In all proposed methodologies in this study, the focus is on solving the LF SR 

optimization problem in Eq. (2). Firstly, initial estimate %",' of the HR LF image is 

obtained by using patch-based estimator: 

 %",' = 	*+,	min
$!

	4(%") (3) 

Secondly, to accomplish an image generation model, the data term should be 

minimized by projecting %",' onto the solution space of Eq. (1): 

 *+,	min
$!

5%" −		%",'5%
%
				!. 7.			'#(%") = 	%! (4) 

In the light of this fundamental problem, the proposed solutions are examined in detail 

in the remaining part of this chapter.  
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3.1 Common Components of all Proposed Methods 

3.1.1 LF Window 

As mentioned in the previous section, LF imaging is based on its 4D structure that 

includes spatial and angular resolutions. Similar to many studies explained in 

“CHAPTER 2: LITERATURE REVIEW”, to upsample each SAI of LF structure, a 

multi-frame approach that contains neighbors of each SAI is proposed and is called LF 

Window in this thesis. It is aimed to take advantage of this structure in order to use the 

details of each view on spatial and angular locations. Thus, the focused approximated 

patch has higher precision by using the similarities of adjacent textures in different 

views in LF structure. For each SAI, neighboring SAIs in the LF Window are 

considered from the LF structure as shown in Figure 6. 

 

 

Figure 6. An example of LF Window sliding on 4D LF Structure. 

 

3.1.2 Phase Images 

As detailed in (Glasner, Bagon and Irani, 2009), small image patches generally repeat 

themselves within and across different scales of an image. Therefore, as shown in 

Figure 7, exemplar LR and HR patch pairs from each LR LF SAI are collected 

respectively from its downscaled version of LR LF patches located in the downscaled 

LR LF SAIs and their related HR LF parents according to input LR LF SAI.  
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Figure 7. Collection LR and HR patch pairs from the input LR LF SAI and its 

downscaled version. (Source: Türkan, Thoreau and Guillotel, 2013) 

 

According to (Freedman and Fattal, 2011), to conserve various details of natural 

images, using small scaling factors is a principle of improving the resolution. Hence, 

in this thesis, all proposed methods use small scaling ratios to reach satisfied 

upsampling factors at each step, as used in (Türkan, Thoreau and Guillotel, 2013). 

Also, with this small scaling ratios, at each step, LR LF and HR LF patch pairs are 

extracted from each LF SAI in the LF Window. For increment the size of LR LF patch 

of size 8 × 8, 7:-pixels are added at each step 0 < 7 < =, thus by using >(,#)(
*+,  of size 

(8 × (7 − 1):) × (8 × (7 − 1):), >(,#)(
*  of size (8 × 7:) × (8 × 7:) can be obtained. 

A HR LF patch pair ℎ(,#)(
*  of sizes (8 × 7:) × (8 × 7:) is also extracted from input 

LR LF SAI and its matching LR LF exemplar of size (8 × (7 − 1):) × (8 × (7 − 1):) 

in !* =	 (8 × (7 − 1):)/(8 + 7:) times downscaled LR LF SAI. In order to provide 

that LR and HR patch pairs are in phase, with using non-integer !*, irregular points of 

input LR and its downscaled version images have to be related. To search and match 

patch pair regular offset, at step 7, multiple downscaled phase image Φ-,#)(
*  are created 

by offsetting each input LR LF SAI by 0	.		.		.		8 + (7 − 1): − 1 pixels in each spatial 

dimension. Basically, that means C is equal to 0	.		.		.		(8 + 7:) × (8 + 7:) − 1. With 

respect to phase images for each SAI, LR LF and HR LF patch pairs are obtained. 

 

3.1.3 Nearest Neighbor Search 

After obtaining LR LF and HR LF patch pairs as previously explained, a nearest 

neighbor search is proposed to eliminate highly redundant LF patches far from 

reference LF patch. Thus, to save computational power and time, the neighbor 

approximation methods are applied only on the patch pairs closest to reference LF 
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patch. For each focused reference patch in center SAI in the LF Window, at each step 

7, K-NN patches are found and stacked to be used on the HR patch estimation. In each 

phase image, the determined K number is equal to the number of neighbors in the LLE 

optimization and the number of iterations in OMP. Especially, for OMP, the rank of 

the collected stack is checked on each step to satisfy over-completeness. 

 

3.1.4 Local Optimization 

As detailed in (Türkan, Thoreau and Guillotel, 2013), at any step 7, the estimated HR 

LF patch is downscaled to match patch size with reference input LR LF patch. The D% 

distance between downscaled estimated HR LF patch and reference LR LF patch is 

calculated to check the similarity between them. To verify the local patch 

compatibility, the best estimation of HR LF patch is selected to be used in the HR 

reconstruction. This optimization step is applied on LLE and OMP differently. In the 

LLE based approach, it is applied to the results from different number of neighbors 

from 1 to K, while it is applied to the results from each iteration (from 1 to K) in OMP. 

 

3.1.5 Back-Projection 

To ensure the consistency between the reconstructed HR LF center SAI in the LF 

Window and the input LR LF center SAI in the LF Window, BP or IBP is proposed as 

a final step of all proposed methods. To solve Eq. (4), BP is formulated as follows: 

 %",./0*/1 = %",./0*/1,' + EFG%!,./0*/1 − G%",./0*/1,' ∗ IJ ↓#J ↑#M ∗ N (5) 

where %",./0*/1 is the final estimated HR LF center SAI ,  %",./0*/1,' is the inital 

estimation of HR LF center SAI, %!,./0*/1 is the input LR LF center SAI, I and N are  

blur kernel and  back-projection kernel, and ∗, ↑#, ↓# represent 2D convolution, up- 

and down-scaling operators with a factor of !, respectively. Also, as used in 

(Egiazarian and Katvonik, 2015; Alain and Smolic, 2018a), E provides a weight for 

the residual error. 

 

BP process can also be applied iteratively. This can be seen as an approach where 

consistency is ensured and various features are added in each iteration. Similar to Eq. 

(5), IBP can be formulated as follows: 

 !!,#$%&$',( = !!,#$%&$',()* + $%&!+,#$%&$' − &!!,#$%&$',()* ∗ )* ↓,* ↑,- ∗ . (6) 
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where %",./0*/1,2 is the estimated HR LF center SAI at iteration O,O = 1	.		.		.		Q, 

and the remaining terms and operations are the same as BP. 

 

The difference between BP and IBP is that BP is non-iterative, it does not smooth LF 

images at every iteration as IBP does. This effect may also be observed with the 

experimental results in “CHAPTER 4: EXPERIMENTAL DETAILS & RESULTS“.  

 

3.2 Neighbor Approximation Methods 

3.2.1 Locally Linear Embedding 

The proposed technique is inspired from the well-known dimensionality reduction 

approach called LLE (Roweis and Saul, 2000). The adapted algorithm focuses on 

approximating HR LF patches through neighboring LR LF patches taken from 

exemplar patch pairs. Thus, neighbor embedding optimization is given as follows: 

*+,	min
$!

R>(,./0*/1
*+, −	S T(,3>(,#)(

*
3

	R
%

%
			!UVWXY7	7Z	S T(,3 = 1

3
	 

(7) 

where T(,3 represents the approximation weights stated for the K-NN, >(,#)(
* . 

Additionally, weighting coefficients are constrained by a sum-to-one constraint to 

provide shift-invariance. This constrained optimization is solved in a similar way as in 

(Roweis and Saul, 2000). Finally, HR LF patches are estimated at each step 7 by 

multiplying the optimum weights with ℎ(,#)(
* .  

 

3.2.2 Orthogonal Matching Pursuit 

OMP is a sparsity based greedy approach to solve ill-posed problems. As seen in the 

detailed study of (Yang et al., 2010), sparsity notion can be applicable to robustly solve 

SR optimization problems. By adopting this perspective, the proposed method uses K-

NN constrained LR LF patches as a dictionary for OMP in order to reconstruct HR LF 

center SAI in the LF Window. Thus, at each iteration, the sparse vector is updated 

using the LR LF dictionary. With the calculated sparse vector, HR LF patches are 

estimated in center SAI in the LF Window. Additionally, an adapted OMP called 

MeanSubs-OMP, is employed over the mean subtracted values of each dictionary 

element (i.e., atom). The aim here is to highlight the texture in the patches with this 

mean subtraction. After the estimation of HR LF patches in center SAI, the 

corresponding mean value of HR LF patches is added to the final estimation. 
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3.3 Proposed Methods in this Study 

In this part, detailed overviews of the proposed methods are described. The approaches 

explained in the previous subsections are combined in the proposed methods. The 

general idea of the proposed algorithms basically originates from (Türkan, Thoreau 

and Guillotel, 2013). Because, as detailed before, it is observed that the different 

texture information in the angular and spatial dimensions of the LF structure has an 

important role in upscaling the resolution. Hence, it is proposed that the exemplar-

based approach can provide significant advantages in the LF structure, especially by 

searching for texture similarity in different phase images.  

 

3.3.1 Optimized Locally Linear Embedding Based Nearest Neighbor Constraint 

Light Field Super-Resolution (OptLLE-LFSR) 

This proposed algorithm is mainly based on LLE with Local Optimization and named 

as OptLLE-LFSR. As previously detailed, the LF Window is first created to focus on 

specific LF SAIs for each SAI to be upsampled. The phase images of each SAI are 

produced and, LR LF and HR LF patch pairs are then extracted. As illustrated in Figure 

8, at each step 7, to upscale LR LF patches with non-integer ratios, HR LF patches are 

firstly estimated by using LLE with local optimization. Basically, the output patch 

stack at a specific step is the reference patch stack for the following step. Finally, the 

proposed method is completed by applying IBP after the reconstruction of overlapping 

patches by ! pixels in both directions.  

 

3.3.2 Optimized Orthogonal Matching Pursuit Algorithm Based Nearest Neighbor 

Constraint Light Field Super-Resolution via Deblurring with Self-Organizing Map 

(OptOMP-LFSR via SOM) 

The designed algorithm in this part contains OMP with Local Optimization to solve 

LF SR optimization problem with sparse representations, and it is named as OptOMP-

LFSR via SOM. As shown in Figure 9, the flow of the algorithm is indeed similar to 

the previously proposed method.  However, SOM and BP with image guided filter (He, 

Sun and Tang, 2013) are applied to resolve blur artifacts on the reconstructed LF 

views. SOM is employed to enhance the details by means of the principle of the study 

in (Kohonen, 1990) . For each [ × [ block in the image, the mean value is subtracted 
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from the block. This mean subtracted block is then multiplied by \ and added to initial 

[ × [ block. In this way, the local content of the image is recovered. It is also observed 

during different trials that IBP has negative effects of smoothing. Thus, BP is preferred 

in the following methods. 

 

3.3.3 Optimized Orthogonal Matching Pursuit Algorithm Based Nearest Neighbor 

Constraint Light Field Super-Resolution via Edge Directed Unsharp Masking 

Sharpening Method (OptOMP-LFSR via EDUMS) 

The flowchart of the developed method in this part is shown in Figure 10. It is named 

as OptOMP-LFSR via EDUMS, because of the employed techniques: Local 

Optimization and Edge Directed Unsharp Masking Sharpening (Peng et al., 2013).  In 

the EDUMS, the normalized component edge information from Canny Edge (Canny, 

1986) is employed to suppress the edge jaggies. Even though EDUMS is proposed for 

real-time video applications, performance improvements are observed in the proposed 

approach (See in “CHAPTER 4: EXPERIMENTAL DETAILS & RESULTS“). 

 

3.3.4 Optimized Mean Substracted Orthogonal Matching Pursuit Algorithm Based 

Nearest Neighbor Constraint Light Field Super-Resolution via Deblurring with 

Self-Organizing Map (OptMeanSubs-OMP-LFSR via SOM) 

This proposed method differs from the previous method called OptOMP-LFSR via 

SOM, by including MeanSubs-OMP and applying SOM to !+,#$%&$'  without  the . 

kernel in BP. Thus, it is called as OptMeanSubs-OMP-LFSR via SOM. In particular, the 

application of SOM to !+,#$%&$' in BP helps emphasize details by reducing the 

approximation of input blur image. The flowchart of the algorithm is illustrated in Figure 

11. 
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CHAPTER 4: EXPERIMENTAL DETAILS & RESULTS 
In this chapter, experimental results of each proposed method are presented visually 

and statistically to examine the performance of these algorithms. Besides, statistical 

results of miscellaneous well-known benchmark SISR and LF SR methods are 

discussed for comparison, for instance, Bicubic interpolation, SR-BM3D (Egiazarian 

and Katvonik, 2015), BM + PCA + RR (Farrugia, Galea and Guillemot, 2017), GB 

(Rossi and Frossard, 2018), and SR-LFBM5D (Alain and Smolic, 2018a). The 

statistical results were taken from the project website (Alain and Smolic, 2018b) of the 

study (Alain and Smolic, 2018a) and extended on its basis.  

 

All implementations have been carried out on MATLAB R2022a environment. All test 

images are shown in Figure 12. Lytro Illum dataset is processed as in (Matysiak et al., 

2020), used as the experimental dataset. It consists of EPFL LF Image Dataset 

(Rerabek and Ebrahimi, 2016) and Inria Lytro Illum LF Dataset (Le Pendu, Jiang and 

Guillemot, 2018). This dataset is an extensively used one in LF image processing 

studies.  

 

      

      

Figure 12. Lytro Illum Dataset 

 

4.1 Experimental Details 

The centering 5 × 5 SAIs in the LF structure is used for computation time. The scaling 

factor ! is set to 2 and 3. To generate LF images, downscaling operator and Gaussian 

blurring kernel are applied on each SAI, and Gaussian blurring kernel is set with 

standard deviation 1.6 and of sizes 7 × 7, 9 × 9	for ! = 2	*8[		3, respectively. In the 

experiments, LR patch size is set to 8 = 3, thus for = = 3, {!,, !%, !4}#5% =

	{3/4, 4 5⁄ , 5 6⁄ } and {!,, !%, !4}#54 =	 {3/5, 5 7⁄ , 7 9⁄ }. To compute the PSNR score, 
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in order not to be affected by the edge artifacts, the reconstructed HR image is cropped 

by 20 pixels from rows and columns in the borders. 

 

4.1.1 Experimental details of OptLLE-LFSR 

In this experiment, all SAIs in the LF Window are applied with imsharpen filter to 

eliminate blur, i.e. where standard deviation of Gaussian low-pass filter is set to 1 and 

Strength of sharpening effect is set to 0.8. For Nearest Neighbor Search and LLE, e =

8. For IBP, Q = 10 when ! = 2 ,  Q = 30 when ! = 3 with, and E = 1.85 and  ↑#, 

↓# are set to bicubic upsampling and downsampling filters.  

 

4.1.2 Experimental details of OptOMP-LFSR via SOM 

In this experiment, for Nearest Neighbor Search and OMP, e and number of iterations 

is set to 10. Also, in OMP, stopping threshold value for approximation error is set to 

0.001. For BP,  E = 2.85 and  ↑#, ↓# are set to bicubic upsampling and downsampling. 

For SOM, [ = 2 and \ = 0.04.  

 

4.1.3 Experimental details of OptOMP-LFSR via EDUMS 

In this experiment, for Nearest Neighbor Search and OMP, e and the number of 

iterations is same as previously defined. In OMP, threshold error value is set to 0.001. 

For BP,  E = 2.25 and  ↑#, ↓# are set bicubic upsampling and downsampling. 

 

4.1.4 Experimental details of OptMeanSubs-OMP-LFSR via SOM 

Similar to previous experiments, for Nearest Neighbor Search and MeanSubs-OMP, 

e and the number of iterations is defined as 10. Threshold value is set to 0.001. In BP,  

E = 1.55 and  ↑#, ↓# are set bicubic upsampling and downsampling. To apply SOM 

on !+,#$%&$', [ = 2 and \ = 0.4. 

 

4.2 Experimental Results 

In this section, statistical and visual results of the proposed methods and benchmark 

methods are presented. The proposed methods are compared against Bicubic 

Interpolation, SR-BM3D (Egiazarian and Katvonik, 2015), BM + PCA + RR 

(Farrugia, Galea and Guillemot, 2017), GB (Rossi and Frossard, 2018) and SR-

LFBM5D (Alain and Smolic, 2018a). The statistical results in terms of PSNR (in dB) 



 

 

24 

are reported in Table 1, Table 2, and Table 3. For each LF view, the scores of the 

focused 5 × 5 centering SAIs in the LF structure are computed as average PSNR (in 

dB) values.  

 

The experimental results reported in Table 1 show that the proposed algorithms 

produce competitive results among all average PSNR scores for ! = 2	*8[			3. 

According to average results of OptMeanSubs-OMP-LFSR via SOM, this method 

outperforms most of the benchmark studies. For ! = 2, the average results of 

OptOMP-LFSR via SOM and OptOMP-LFSR via EDUMS are higher than those of the 

benchmark algorithms. Furthermore, for ! = 2, it is observed that SOM has a better 

improvement than EDUMS. In the average results of ! = 3, OptOMP-LFSR via 

EDUMS and OptMeanSubs-OMP-LFSR via SOM perform close to or better than the 

benchmark studies. Unlike for ! = 2, EDUMS presents higher experimental scores 

than SOM for ! = 3. According to the average performance statistics, OMP provides 

better results than LLE regardless of the value of !. Especially for ! = 2, the methods 

based OMP have highly competitive statistical results. With all these evaluations and 

average performance scores in Table 1, it is clearly noticed that MeanSubs-OMP 

approach is the much better performing one. 

 

Table 1. Average performances in PSNR (dB) 

Methods ! = 2 ! = 3 

Bicubic 27.78 26.08 

SR-BM3D (Egiazarian and Katvonik, 2015) 30.21 28.45 

BM + PCA + RR (Farrugia, Galea and Guillemot, 2017) 29.95 28.55 

GB (Rossi and Frossard, 2018) 29.80 28.65 

SR-LFBM5D 1st Step (Alain and Smolic, 2018) 30.17 28.62 

SR-LFBM5D 2nd Step (Alain and Smolic, 2018) 30.25 28.60 

OptLLE-LFSR 30.08 27.48 

OptOMP-LFSR via SOM 30.95 28.12 

OptOMP-LFSR via EDUMS 30.57 28.64 

OptMeanSubs-OMP-LFSR via SOM 31.30 28.90 
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The detailed statistical results in Table 2 report the image quality scores for ! = 2. 

OptMeanSubs-OMP-LFSR via SOM method provides the highest PSNR value on 

Ankylosorus, Bee1, Bee2, Fruits, Posts, Rose and Vespa LF datasets. Moreover, all 

proposed methods outperform on these datasets except Ankylosorus, Fruits and Vespa 

datasets. It is also worth mentioning that the proposed main approach, which is 

exemplar-based and non-integer ratio upsampling in multi-times, is successful at a low 

upsampling factors for ! = 2. 

 

The results reported in Table 3 show the PSNR scores for ! = 3. In Bee1, Bee2, Posts 

and Rose LF dataset, OptMeanSubs-OMP-LFSR via SOM has the best performance 

against all benchmark algorithms. It is also observed that all proposed methods show 

the highest performance on Posts LF dataset for ! = 3	as for ! = 2. 

 

In the light of these statistical results and the visual results are shown from Figure 13 

to Figure 24 for ! = 2, the outcomes of OptMeanSubs-OMP-LFSR via SOM have 

more details and less blurring artifacts visually. The results of LF views that have more 

detail, such as Chez Edgar (in Figure 17), Danger de Mort (in Figure 18) and Friends 

1 (in Figure 19), have not enough improvements for blur. In addition, the results of  

Ankylosorus (in Figure 13), Bee 1 (in Figure 14), Bee2 (in Figure 15), Fruits (in Figure 

20), Posts (in Figure 22), Rose (in Figure 23) and Vespa (in Figure 24) contain fine-

detailed textures, such as, flower petal in Bee 1 (in Figure 14), Bee2 (in Figure 15), 

Rose (in Figure 23), post’s chandelier or column in Posts (in Figure 22) and headlight 

in Vespa (in Figure 24). As it can be supported by statistical results, OptLLE-LFSR is 

not applicable to remove the blur or recover fine-details. Even though OptOMP-LFSR 

via SOM and OptOMP-LFSR via EDUMS can reconstruct sharper images, a certain 

amount of blur is still present. If a full inference is to be made for ! = 2, it is observed 

that the proposed methods achieve plausible results with low disparity in the LF views 

focused on a particular object. 

 

The visual results of OptMeanSubs-OMP-LFSR via SOM for ! = 3 are shown from 

Figure 25 to Figure 36. These can be visually evaluated as sharper images. Because of 

the larger upsampling factor, it is expected that the estimated HR images are more 

blurred than the ! = 2 results. Thus, the results of proposed methods are not 
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satisfactory because the methods perform far from removing the blur and preserving 

fine-detail. For example, this is observed in Figure 25 (Ankylosorus), Figure 32 

(Fruits), Figure 36 (Vespa). Besides, the results of Bee 1 (in Figure 26), Bee 2 (in 

Figure 27), Posts (in Figure 34) and Rose (in Figure 35) have sharper and detailed 

views. Especially, the details of petal texture in Bee 1 (in Figure 26), Bee 2 (in Figure 

27) and post’s chandelier or column in Posts (in Figure 22) can be easily distinguished. 

Additionally, OptMeanSubs-OMP-LFSR via SOM provides better visual quality with 

texture details on all LF views. It is mentioned that OptMeanSubs-OMP-LFSR via 

SOM cannot recover as much detail as and eliminate the blur, when compared to ! =

2. 

 

To sum up, the proposed methods produce visually appealing results of the LF views 

contained low disparity and texture, such as Bee 1 (in Figure 14 and Figure 26), Bee 2 

(in Figure 15 and Figure 27), Posts (in Figure 22 and Figure 34) and Rose (in Figure 

23 and Figure 35). On the other hand, the proposed exemplar-based approach cannot 

provide the desired statistical and visual performance for images with high disparity 

or texture details (i.e., Chez Edgar (in Figure 17 and Figure 29),  Danger de Mort (in  

Figure 18 and Figure 30), Friends 1 (in Figure 19 and Figure 31)). 
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Figure 13. Visual results of Ankylosorus, ! = 2 
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Figure 14. Visual results of Bee1, ! = 2 
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Figure 15. Visual results of Bee2, ! = 2 
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Figure 16. Visual results of Bikes, ! = 2 
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Figure 17. Visual result of Chez Edgar, ! = 2 
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Figure 18. Visual result of Danger de Mort, ! = 2 
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Figure 19. Visual results of Friends 1, ! = 2 
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Figure 20. Visual results of Fruits, ! = 2 
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Figure 21. Visual results of Magnets 1, ! = 2 
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Figure 22. Visual results of Posts, ! = 2 
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Figure 23. Visual results of Rose, ! = 2 
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Figure 24. Visual results of Vespa, ! = 2 
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Figure 25. Visual results of Ankylosorus, ! = 3 
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Figure 26. Visual results of Bee 1, ! = 3 
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Figure 27. Visual results of Bee2, ! = 3 
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Figure 28. Visual results of Bikes, ! = 3 
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Figure 29. Visual results of Chez Edgar, ! = 3 
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Figure 30. Visual results of Danger de Mort, ! = 3 



 

 

47 

 

 

Original 

 

Bicubic 

 

OptLLE-LFSR 

 

OptOMP-LFSR via SOM 

 

OptOMP-LFSR via EDUMS 

 

OptMeanSubs-OMP-LFSR via SOM 

Figure 31. Visual results of Friends 1, ! = 3 
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Figure 32. Visual results of Fruits, ! = 3 
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Figure 33. Visual results of Magnets 1, ! = 3 
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Figure 34. Visual results of Posts, ! = 3 
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Figure 35. Visual results of Rose, ! = 3 
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Figure 36. Visual results of Vespa, ! = 3 
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CHAPTER 5: CONCLUSION 
LF is an imaging technique of capturing light rays from different locations and 

directions in order to obtain the 4D LF structure to produce 3D real-world scene. Due 

to hardware restrictions, LF views have low spatial resolution. Therefore, super-

resolution methods can be used to improve the spatial resolution. However, recovering 

fine-details and removing blur are challenges because of ill-posed nature of this 

optimization problem. In this study, many solutions have been proposed with different 

tools to solve this optimization problem. 

 

In this thesis, the well-known SISR and LFSR methods have been initially analyzed to 

better understand the nature of the problem and its solution proposals. During the 

research, some successful algorithms such as SR-LFBM5D (Alain and Smolic, 2018a) 

and (Türkan, Thoreau and Guillotel, 2013) have been inspiring works. It has been 

considered that the usage of texture details in the angular and spatial dimensions in the 

LF structure can be appropriate with their SR approaches. Thanks to this perspective, 

the exemplar-based LFSR methods are proposed in order to solve the problem by using 

patch-based and locally optimized approaches. By means of phase images and non-

integer upsampling factors, the employment of effective local similarities is the main 

focus of the proposed LFSR methods. Moreover, LLE and OMP work to find patch 

approximations, and it is observed that MeanSubs-OMP provides HR images 

contained sharper and cleaner views.  

 

The proposed algorithms are compared with several well-known benchmark studies. 

The comprehensive statistical and visual evaluation provides an inference that the 

proposed methods yield competitive performance. In particular, the method called 

OptMeanSubs-OMP-LFSR via SOM can be defined as a novel LFSR method to obtain 

superior performance on low disparity LF images.  

 

The main disadvantage of the proposed methods is that the framework cannot produce 

high-quality images when the input images contain fine-detailed contents. In addition, 

during the study, the proposed approaches have been tested on different LF datasets. 

These datasets have high disparity between LF SAIs, and it is observed that the main 

exemplar-based approach may not be sufficient to eliminate blur artifacts. This 
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problem can simply be solved by estimating the blur kernel, deconvolving the image 

with the estimated kernel and applying a more sensitive neighbor-search method. 

 

Additionally, the developed algorithms can be incorporated into NN-based or GAN-

based frameworks to prevent computational complexity and extend their usage. With 

GPU processors or parallel processing, the computation time can also be remarkably 

reduced. 
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