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ABSTRACT 
 

 

 

PATCH BASED IMAGE DENOISING THROUGH 

LOCALLY LINEAR EMBEDDING 

 

 

 

Kırmızıay, Çağatay 

 

 

 

Master’s Program in Electrical and Electronics Engineering 

 

Advisor: Assoc. Prof. Dr. Mehmet Türkan 

 

July, 2022 

 

In this thesis, image denoising algorithms have been developed by means of  Locally 

Linear Embedding (LLE) which is a dimensionality reduction method in data science. 

Although denoising has been studied for decades, it is still an active research area 

because there is not an upper and certain limit yet. By using LLE, new perspectives of 

image denoising are aimed to establish. Therefore, traditional patch-based approaches 

and basic dictionary learning algorithms have been  developed. The main idea of using 

a patch-based process is to estimate sparse representations of denoised patches with 

LLE weights of nearest neighbor patches of each patch. In order to diminish the effect 

of the noise, various parameters have been analyzed such as patch size, dictionary size, 

dimension reduction size, number of the nearest neighbor patches, etc. Furthermore, 

different approaches have been tested such as alpha rooting, hard-thresholding in a 

transform domain, error based dictionary updating and feature mapping. According to 

the statistical results and visual assessments, preserving details in images is as much  

important as removing the noise effect. The experimental results demonstrate that the 
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developed algorithm based on alpha rooting has very promising results. Moreover, the 

denoising performance of the proposed method can compete against the well-known 

denoising algorithms in literature. 

 

Keywords: denoising, patch processing, dictionary learning, linear embedding 
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ÖZET 
 

 

 

YEREL DOĞRUSAL YERLEŞTİRME İLE 

GÖRÜNTÜLERDE PARÇA TEMELLİ GÜRÜLTÜ GİDERME 

 

 

 

Kırmızıay, Çağatay 

 

 

 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Doç. Dr. Mehmet Türkan 

 

Temmuz, 2022 

 

Bu tezde, veri biliminde bir boyutsallık indirgeme yöntemi olan Yerel Olarak Doğrusal 

Yerleştirme (YDY) aracılığıyla görüntü gürültü giderme algoritmaları geliştirilmiştir. 

Gürültü giderme onlarca yıldır çalışılsa da henüz bir üst ve kesin sınır olmadığı için 

halen aktif bir araştırma alanıdır. YDY'yi kullanarak, görüntü gürültü gidermenin yeni 

bakış açılarının oluşturulması amaçlanmaktadır. Bu nedenle, geleneksel parça tabanlı 

yaklaşımlar ve temel sözlük öğrenme algoritmaları geliştirilmiştir. Parça tabanlı işlemi 

kullanmanın ana fikri, her bir parçanın en yakın komşu yamalarının YDY ağırlıkları 

ile gürültü giderilmiş parçaların seyrek temsillerini tahmin etmektir. Gürültünün 

etkisini azaltmak için parça boyutu, sözlük boyutu, boyutsallık indirgeme boyutu, en 

yakın komşu parça sayısı gibi çeşitli parametreler analiz edilmiştir. Dahası, alfa 

köklendirme, dönüşüm alanında eşikleme, hata tabanlı sözlük güncelleme ve özellik 

eşleme gibi yaklaşımlar denenmiştir. İstatistiksel sonuçlara ve görsel 

değerlendirmelere göre, gürültü etkisinin ortadan kaldırılması kadar görüntülerdeki 

detayların korunması da önemlidir. Deneysel sonuçlar, alfa köklendirmeye dayalı 
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olarak geliştirilen algoritmanın çok umut verici sonuçlara sahip olduğunu 

göstermektedir. Ayrıca, önerilen yöntemin gürültü giderme performansı, literatürdeki 

iyi bilinen gürültü giderme algoritmaları ile rekabet edebilir. 

 

Anahtar Kelimeler: gürültü temizleme, parça işleme, sözlük öğrenimi, doğrusal 

yerleştirme 
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CHAPTER 1: INTRODUCTION 
Human beings have tried to infer meaningful and useful information from the 

environment they lived in for thousands of years. Back in the day, there were not 

various kinds of data that people can reach. However, today there are many types of 

data due to the developing technological devices such as mobile phones, satellites, 

cameras, personal computers, smart-watches, a variety of sensors, etc. One of the 

efficient collectible data is the images captured through different imaging tools such 

as cameras, microscopes, telescopes, and medical imaging devices. Although images 

may be captured for different purposes, they have a common point. This common point 

is that they need to be processed to extract some critical information which people 

could not recognize or to give machines visual perception. The quality of the processed 

outcomes can be affected easily by physical, electronic, and software factors, even by 

broadcasting. For example, a dust particle on the camera lens can damage  the image 

data or rainy weather conditions can ruin it. Another thing that can disturb the image 

quality is the noise. Noise can appear in images naturally by changing the intensity 

values of pixels randomly. As an example, if you want to take a photo in a dimmed 

light or dark,  as it is shown in Figure 1, you will see these damaged pixels at high ISO 

speeds which is a setting parameter of digital cameras indicating the sensitivity to light. 

Different types of noise (e.g. salt & pepper, gaussian) can corrupt images at different 

levels, and the noise effect should be removed or diminished to obtain the meaningful, 

required data properly for the ultimate purposes. Completely removing the noise effect 

is the best and desired case. Unfortunately, it is almost impossible to find desired 

(noise-free) image because of generally unknown noise characteristics. As a 

consequence, new methods have been developed by researchers to improve the 

performance of the denoising process for decades, and image denoising is still an 

attractive topic since it is the fundamental step of many image processing applications. 

Nowadays, even if deep learning algorithms are commonly employed rather than 

traditional mathematical approaches, traditional approaches have been providing 

sources of inspiration for both traditional and learning algorithms. 
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Figure 1. An example of noise at high ISO speeds (Source: Kun, 2012). 

Up till today, many approaches were published processing patches of images. One of 

them is the well-known patch matching. The studies of Buades, Coll and Morel (2005) 

and Mairal et al. (2009) consider the non-local neighbor patches for processing. 

Similarly,  the study in Zhang and Gunturk (2008) can be mentioned as an example if 

the patch size is one pixel. One of the famous methods that are exploiting the similarity 

of patches and their sparsity is Block Matching and 3D collaborative filtering (BM3D) 

(Dabov et al., 2007b) and  its derivatives (Dabov et al., 2007c, 2007a, 2009; Yang and 

Sun, 2018). K-Singular Value Decomposition (K-SVD) (Elad and Aharon, 2006) is 

another well-known method that learns and uses the sparse dictionaries from  patches 

of images, also the studies of Li and Liu (2009) and Scetbon, Elad and Milanfar (2021) 

were derived from K-SVD. As other approaches, multi-scale image denoising methods 

by using Discrete Cosine Transform (DCT) pyramids (Pierazzo, Morel and Facciolo, 

2017), Weighted Nuclear Norm Minimization (WNNM) by applying convex 

relaxation techniques on non-local patch similarity process (Gu et al., 2014). 

 

In this thesis, the image denoising problem is discussed since it is an active research 

area and it has high significance for many image processing applications. By using 

traditional and basic learning approaches, the performance of methods and the effects 

of parameters are analyzed. The core of all methods is the Locally Linear Embedding 

(LLE) algorithm which is a dimension reduction method (Roweis and Saul, 2000). 

Also, the LLE method is employed for super-resolution (Türkan, Thoreau and 

Guillotel, 2012, 2013) and image restoration applications (Shi, Shen and Chen, 2005; 
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Fei and Medioni, 2010). Hence, the calculation of weights between neighborhoods and 

reference data can be exploited for the image denoising problem. Because considering 

images with their full size is not easy to solve optimization problems mathematically, 

small blocks (patches) are considered as the benchmark methods in this study. Most 

of the image denoising algorithms reveal the relationship between patches by 

representing the weights between them. Eventually, the idea that the combination of 

the well-known approaches and the LLE may provide us with a new perspective on 

the image denoising problem is presented in this study. 

 

The brief explanations of the reference studies guiding us are given in Chapter 2. Our 

methods built in the light of reference studies are described in detail in Chapter 3. 

Statistical results and sample outputs are presented in Chapter 4. After all, outcomes 

and future works of the proposed method are presented in Chapter 5 to conclude the 

thesis.  
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CHAPTER 2: LITERATURE REVIEW 
2.1 Non-Local Means Algorithm 

In this study, Buades, Coll and Morel (2005) developed an image denoising algorithm 

called Non-Local Means (NL-means). The main idea of this method is based on the 

estimated noise-free image’s pixels’ values can be interpreted by using the noisy image 

itself. Since original clear images are unknown, this approach is helpful for the blind 

denoising processes. 

 

According to the approach, a pixel value can be calculated as a weighted average of 

pixels in the noisy image. In order to decrease the complexity of the process, similar 

pixels are found in the related search window including the pixel to be processed. The 

similarity between pixels is based on the weighted Euclidian distance of fixed-sized 

neighbors of the related pixels by using the Gaussian kernel. 

 

Although the NL-means algorithm has common points with the neighborhood filtering 

(Yaroslavsky, 1985), it takes into account the geometrical configuration of related 

pixels’ neighbors differently. It means to determine the similarity comparison of two 

pixels in grey level is not sufficient, also neighbors should be considered. Moreover, 

by considering the neighborhood of each pixel, the algorithm eliminates some 

problems of processing a single pixel such as not robust against noisy values and 

creating artifacts. 

 

As a result, because of the application's simplicity and effectiveness, and being 

applicable for color images, NL-means is one of the well-known image denoising 

algorithms. 

 

2.2 Block-Matching and 3-Dimensional Filtering Algorithm 

The research in Dabov et al. (2007b) presents a state-of-art image denoising algorithm. 

For years, the algorithm with block-matching and 3-Dimensional filtering (BM3D) 

has been one of the most successful and famous algorithms. BM3D combines the 

block-matching algorithms used to extract the similar patches from the noisy image 

and the filtering in the 3D transform domain of the stacked structure of similar patches. 

Most commonly, the main goal for image denoising algorithms is to diminish the effect 
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of the noise in an image. In order to do that, noise in the transfer domain can be 

employed. While the transform-based approaches achieve outstanding performance in 

terms of statistics, they are not good at conserving the details by using the 

transformation. As a result, artifacts can appear in the estimated image. As an 

alternative approach, non-local estimation based methods may come to mind. Since 

these algorithms consider the average of similar regions’ pixels’ values to calculate an 

estimation of the processed region, the output images are oversmooth. The proposed 

BM3D algorithm combines these approaches to extinguish the bottlenecks of both 

algorithms. 

 

The whole BM3D algorithm is summarized in Figure 2. This algorithm can be divided 

into two parts. In the first part, similar patches are found for each sliding patch of the 

noisy image. To determine the similarity between the patches Euclidian distances of 

thresholded values of the (2-dimensional) 2D transformed (e.g. DCT, DFT, etc.) 

patches are used. The advantage of this similarity calculation is filtering the noisy 

patches roughly in the 2D transfer domain to find similar patches more accurate. After 

collecting the reference patch and noisy similar patches in a (3-dimensioanl) 3D 

matrix, which is essential to increase the sparsity, 3D filtering is performed in the 3D 

transfer domain of the stack. By applying the 3D transform and filtering on the stacked 

patches, transform coefficients are thresholded to diminish the noise. The estimated 

noise-free version of the reference patch can be obtained by applying an inverse-3D 

transform. The whole estimated noise-free image is generated by considering the 

weighted average of estimated patches. In the second part of this algorithm, almost the 

same procedure is repeated with small differences. One of the differences is that the 

estimated image of the first part is utilized to find similar patches. Another one, the 

L2-norm of difference of patches is employed for block-matching. Also, Weiner 

filtering is applied on the 3D transform-domain instead of thresholding. At the end of 

the second part, by taking the weighted averages of the estimated patches, the final 

estimated version of the clean (noise-free) image is obtained. 
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Figure 2. Scheme of the BM3D Algorithm (Source: Dabov et al., 2007b). 

According to the statistical results, the BM3D method has an outstanding performance 

in terms of not only objective criteria such as Peak Signal-to-Noise Ratio (PSNR) but 

also visual assessment. In addition to the success of the algorithm, it is applicable to 

color images (Dabov et al., 2007a) and is promising to improve the algorithm by 

considering the complicated bases such as Principle Component Analysis (PCA) 

(Dabov et al., 2009). 

 

The BM3D algorithm first was applied to greyscale images. It is also useful for color 

image denoising. As mentioned in (Dabov et al., 2007a), the whole procedure can be 

used to process each channel of luminance-chrominance color space such as YCbCr. 

However, since the Y channel, the luminance channel, contains the important image 

structure data and has high Signal-to-Noise Ratio (SNR) value than Cb and Cr 

channels (chrominance channels), it is sufficient to apply the BM3D algorithm on just 

the luminance channel. For the process on chrominance channels, patches sharing the 

same locations as the patches used for the process for the luminance channel are used. 

Even if the Cr chrominance channel has a low SNR value because of the iso-luminant 

image parts and sharp transition in the Cr channel, these are not factors that can affect 

the performance of the algorithm. As a result, statistical and visual results are still 

satisfactory. 

 

In order to improve the performance of the above developed BM3D algorithm, some 

elaborative moves are done at some points. The main goal of these improvements is to 

strengthen the sparsity in the 3D transfer domain. For the step of finding similar 

patches, adaptive-shape neighborhoods and an enclosing square block of each 

reference pixel are considered (Dabov et al., 2009). Similar blocks are found based on 

the distance between the enclosing square block, then an adaptive-shape neighborhood 

is extracted from each similar block. According to the ratio of the number of similar 
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neighborhoods to the number of pixels in the reference adaptive-shape neighborhood, 

the 2D transformation method is determined. If the ratio is under the pre-defined 

threshold value which means there is not sufficient similar neighborhood data to train 

the algorithm, the fixed-sized shape adaptive DCT (SA-DCT) should be used. 

However, even supposing that the adaptive-shape neighborhood approach facilitates 

the local adaptivity to image features, SA-DCT is not useful for the local adaptivity. 

Instead of the SA-DCT, PCA which depends on the eigenvalue decomposition should 

be employed. The eigenvectors which have eigenvalues greater than the threshold are 

selected. Following that, a transformation in the third dimension and shrinkage in the 

3D transfer domain should be applied respectively. In order to reconstruct the denoised 

image, the same procedure as the BM3D is used. Although the statistical results in 

terms of PSNR do not have an increasing attitude for all test scenarios compared to the 

BM3D, it is worth studying for further improvements. 

 

Since the image denoising methods provide smooth results, a sharpening process 

should be considered as another way to improve the performance of the BM3D. 

According to the study (Dabov et al., 2007c), in order to contain the details in the 

denoised image, the thresholded coefficients in the 3D transfer domain can be 

augmented. This augmentation is named alpha-rooting and Eq. (1) is given as, 

 
𝑡!"(𝑖) = (𝑠𝑖𝑔𝑛[𝑡(𝑖)]|𝑡(0)| 0

𝑡(𝑖)
𝑡(0)0

#
a
, 𝑖𝑓	𝑡(0) ≠ 0

𝑡(𝑖),																																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

where 𝑡 is a transform spectrum of a signal, 𝑡(0) is the DC coefficient, and 𝑡!" is 

sharpened transform spectrum. The following steps are the same as the classical 

BM3D method, except for the weight definition for aggregation. The weight of the 

estimated patch is calculated by considering the total variance of the thresholded and 

sharpened block-matched group. 

 

The alpha-rooting method can be applied to both 2D and 3D spectrum of the group. 

When the results of the two approaches are analyzed subjectively, we can say that 

details of the images can be preserved based on the alpha value. Therefore this 

application is promising to apply to color images and is open to improvement. 

All improvements on the classical BM3D are not done by using only traditional 
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mathematical approaches, also the classical BM3D is tried to improve with some deep 

learning approaches. One of them is the BM3D-Net (Yang and Sun, 2018). Although 

most recently learning-based algorithms have been used widely, the researchers want 

to emphasize that combinations of traditional and deep learning approaches may 

broaden the horizon of the new applications. In this manner, the processing steps of 

the BM3D are adapted to the Convolutional Neural Network (CNN) structure. The 

proposed BM3D-Net algorithm contains five layers which are extraction, convolution, 

nonlinear transform, convolution, and aggregation. The extraction layer takes the place 

of the block-matching process of the BM3D. The convolution layer, nonlinear 

transform layer, and the other convolution layer stand for the wavelet transform, 

shrinkage of the wavelet transform coefficients, and inverse transform respectively. 

The last layer, the aggregation layer, is for the reconstruction process to reach the 

estimated noise-free image. Besides these five layers representing all the steps of the 

classical BM3D, this proposed algorithm has an additional loss layer to train the 

network. According to the objective results, BM3D-Net can provide satisfactory 

outcomes as much as the BM3D provides, and has the potential to be developed by 

using deeper neural network architectures. 

 

2.3 Image Denoising Via Sparse And Redundant Representations Over Learned 

Dictionaries 

Another well-known and effective algorithm is presented in (Elad and Aharon, 2006). 

The K-Singular Value Decomposition (K-SVD) method is an iterative image 

denoising method that follows a sparse representation of the given signal by using the 

current dictionary and dictionary learning steps respectively. Indeed, fixed, off-the-

shelf  dictionaries also can be employed in the same optimization approach. However, 

the main contribution of the K-SVD is to learn the dictionary by updating the atoms 

(columns) of the dictionary based on examples that use the corresponding atom. 

 

As it is mentioned before, the K-SVD algorithm has two main steps. The first one is 

sparse coding. According to the sparse coding, the estimation of the true (noise-free) 

image can be calculated as a linear combination of the dictionary atoms by minimizing 

the number of non-zero coefficients in the sparse representation of the given data. In 

order to model this process mathematically, a local “sparseland model” is created with 
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an error boundary, a number of atoms to be used from the dictionary, and a redundant 

dictionary. To find the weights, although other pursuit algorithms can be employed, 

the K-SVD employs the Orthogonal Matching Pursuit (OMP) algorithm. After sparse 

coding is done, the next step is updating the dictionary by considering the calculated 

sparse signal in the previous step. In order to do that, each atom of the current 

dictionary should be updated individually by dealing with the corresponding sparse 

signals (examples). The update step is based on the minimization of the residual 

between the examples and generated examples with the dictionary atom and its 

corresponding sparse coefficients by using the Singular Value Decomposition (SVD). 

 

In summary, the K-SVD is one of the famous and benchmark methods in image 

denoising, especially among the methods that are using learned dictionaries. 

Moreover, due to the novelty of this study, many other traditional and deep learning 

based studies that use a similar approach are derived from K-SVD (Li and Liu, 2009; 

Scetbon, Elad and Milanfar, 2021). 

 

2.4 Weighted Nuclear Norm Minimization with Application to Image Processing 

The image denoising problem has been extensively studied in the last two decades, 

especially after the utilization of similar patches of noisy images to estimate noise-free 

images. Grouping the non-local similar patches and processing the groups has become 

an inspiration source for many other studies. This approach is also attractive for the 

low rank matrix factorization (LRMF) problem, hence a group of similar noisy patches 

provides a low rank matrix. With the provided low rank matrix coming from the noisy 

patches, the main aim is to find the denoised image patches by exploiting the nuclear 

norm minimization (NNM) as a convex relation method of the LRMF. Since the 

classic norm minimization adjusts the singular values with equal weights to preserve 

the convexity of the objective function, this method is not effective and flexible for 

practical problems usually. The proposed method in (Gu et al., 2014), called Weighted 

Nuclear Norm Minimization (WNNM), removes this main disadvantage of the NNM 

by applying weighted soft-threshold to singular values to keep the prior and significant 

data contained by higher singular values. Moreover, the proposed method 

mathematically analyzes the weighting process by considering different conditions 

and properties of the weights. To evaluate the performance of the algorithm, PSNR 
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statistics can be compared with the statistics of the BM3D which is one of the 

benchmark algorithms. As a result, WNNM has better performance, even in preserving 

small details in images. 
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CHAPTER 3: METHODOLOGY 
In this chapter, different approaches have been proposed for the image denoising 

problem. According to Eq. (2), the main goal is to find an estimation of the image 𝑋, 

 𝑌(𝑖) = 𝑋(𝑖) + 𝑁(𝑖) (2) 

where 𝑌 stands for the noisy image, 𝑋 represents the clean noise-free image, 𝑁 is the 

noise, and 𝑖 denotes the 2D spatial coordinate of each pixel. As mentioned, to find 𝑋 

at once is not an easy optimization problem because of the data size. Therefore, patches 

of the clean image (𝑥$) should be estimated  by using patches of noisy image (𝑦$) to 

reconstruct the estimated clean image (𝑋?), where (𝑥@$) denotes the estimated clean 

patches. By using controlled data set of clean and noisy images, the performance of 

the algorithm can be defined as the equation Eq. (3), 

 𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑖𝑛C𝑋 − 𝑋?C
%
% (3) 

where the above equation is an error minimization problem. These notations and the 

error minimization model will be used throughout the thesis. More specifically, the 

required notation and the models are explained in the remaining part of this chapter. 

The whole study can be divided into two subtitles: (i) traditional approaches and (ii) 

learning approaches. 

 

3.1 Traditional Approaches 

3.1.1 Version 1 

In this version, pixel based processing is employed by considering the patch size of n-

by-n where n is an odd number. It means for each pixel of a noisy image, 𝑌(𝑖), there 

is a corresponding reference patch (𝑦$) which is containing the pixel at the center. By 

finding the similar patches in a search window size of t.n-by-t.n where t is an odd 

number. Due to the adjustments to the size of patches and search windows, it is ensured 

that the reference patch (𝑦$) is located at the center of the related search window (𝑠$). 

To explain the process on one pixel, similar patches of the reference patch (ỹ$,') are 

extracted from the corresponding search window to create a dictionary (𝐷$) peculiar 

to the reference pixel as it is shown in Figure 3. The weights (𝜔$,(()) of the atoms 

(columns) of the 𝐷$ are calculated by using the LLE approach by considering the 

constraints on 𝑤$,(() given as ∀𝜔$,(()(𝑗) ∈ [0,1] and ∑ 𝜔$,(()(𝑗) = 1*  where 𝑗 =

{1,2,3, … , 𝑛%}. By using the LLE weights and the 𝐷$, the 𝑥@$ is calculated. 
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Figure 3. Selecting similar patches to the reference patch from the corresponding 

search window. 

The 𝑋?(𝑖) value, located at the center of the 𝑥@$, should be placed back into the 𝑋?. In the 

first trial of this version, all patches inside the 𝑠$ are used. In the second trial, to select 

closer patches in terms of similarity distance, an error boundary is defined according 

to the percentage of the maximum distance. Moreover, in the third trial, in order to 

determine the similar patches, a PCA based dimension reduction method is employed 

on 𝐷$ where each atom of 𝐷$ has n2 elements. By applying dimension reduction, not 

only computational cost is decreased but also the noisy coefficients are eliminated by 

keeping a higher PCA coefficient. Because the PCA is based on the eigenvectors, 

higher coefficients contain the significant components of the data (Wold, Esbensen 

and Geladi, 1987). 

 

3.1.2 Version 2 

The main difference between Version 1 and Version 2 is that estimated values are 

considered to reconstruct the image. More clearly, the estimated values of the 

reference pixels are relocated in the Version 1, but in the Version 2 whole estimated 

patches, 𝑥@$, are relocated. According to that, the core idea of our approaches are 

represented with Eq (4). 

 
𝑎𝑟𝑔	 min

+!,#,$$%
V𝑦$ −W𝜔$,',(() . ỹ$,'

'

V
%

%

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 

∑ 𝜔$,',(()' = 1	 ∧  0 < 𝜔$,',(() < 1, ∀𝑖, 𝑘 

(4) 

Since patches are overlapping, the equally weighted average of the overlapping values 

of each pixel should be relocated. According to the Version 1 results, the same 

procedure as Version 1 Trial 3 procedure is employed except the reconstruction of  𝑋?. 
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3.1.3 Version 3 

Although all atoms of the 𝐷$ are used to calculate the 𝑥@$ in the Version 2, all atoms 

may not be required for the calculation. By using iterative approach to select the atoms 

one by one, the calculation of 𝑥@$ continue until the sum of squared error (SSE) is less 

than a predefined error boundary 𝜀 which is defined in Eq. (5), 

 𝜀 = (𝑐𝜎𝑛)% (5) 

where 𝑐 is a constant number, 𝜎 is the standard deviation of the noise appearing in the 

noisy image 𝑌. The usage of the iterative approach by considering the 𝜀 is originated 

from Dabov et al. (2007b). The selection of atoms is done based on maximum 

correlation values for each iteration. In the first iteration, the correlation between the 

normalized 𝐷$ and the normalized 𝑦$ is considered. For the further steps of the iterative 

calculation, the correlation between the normalized 𝐷$ and normalized version of error 

vector defined as 𝑒 = 𝑦$ − 𝑥@$. If the ∑ 𝑒%(𝑗)* , where 𝑗 = {1,2,3, … , 𝑛%}, is less than 

the 𝜀, the iterative calculation should be stopped. 

 

In the first trial, same approach of searching similar patches as Version 2 is performed 

by adding an iterative calculation of 𝑥@$. Since finding similar patches is done in a 

corresponding search window, similar patches can be repeated in the 𝐷$. The reuse of 

atoms can cause calculation of  𝑥@$ repeats themselves using the identical atoms without 

decreasing the error 𝑒. Thus, in Trial 2, the step of keeping unique atoms is adopted. 

The iterative calculation of 𝑥@$ is modified for Trial 3 by including a residual dictionary 

update stage. In each iteration, 𝐷$,-. = 𝐷$ − 𝑒 updating is done before selecting the 

atom that has a higher projection value onto 𝐷$. Up to this point, the reconstruction of  

𝑋? is based on an equally weighted average of overlapping 𝑥@$ for each pixel. However, 

the error of each calculation is not equal, so for reconstruction of 𝑋?, overlapping 𝑥@$ 

patches should be weighted based on difference between 𝜀 − ∑ 𝑒%(𝑗), 𝑗 =*

{1,2,3, … , 𝑛%}. For Trials 5 and 6, the difference from Trial 4 is the number of atoms 

and the step of finding unique atoms. In Trial 5, without finding the unique atoms, at 

least eight atoms are considered. In Trial 6, a fixed number of atoms is considered. 

 

3.1.4 Version 4 

In our approach and in studies we consider as reference ones (Elad and Aharon, 2006; 

Dabov et al., 2007b), the main aim is to find the coefficients of each atom that can 
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sparsely represent the noise-free patch. From this perspective, the L1-norm 

minimization approach can be employed to find the optimum coefficient values by 

considering the linear programming equation as in Eq. (6) for the first trial, 

 min
+!

𝑓/𝜔$ 	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	 `
𝐴-0𝜔$ = 𝑏-0
𝑙1 ≤ 𝜔$

 (6) 

where 𝐴-0 is defined as the concateanation of the dictionary 𝐴-0 = [𝐷$ , −𝐷$], and 𝑓 is 

defined as 𝑓 = 	 [1, … , 1]#2132,& . 𝐴-0. 𝑙1 is a lower boundary given as a column vector 

of all zeros. The dictionary 𝐷$ consists of all unique neighbor patches extracted from 

the corresponding 𝑠$ except the reference 𝑦$. According to solution of the problem, 𝑋? 

can be calculated as eqaually weighted average of overlapping estimated denoised 

patches, 𝑥@$, defined as 𝑥@$ = 𝐴-0𝜔$. In the second trial, almost the same procedure as 

Trial 1 is employed except the definition of 𝑓. It is defined as a row array of all ones. 

 

3.1.5 Version 5 

Version 5 is derived from the residual dictionary updating calculation of Version 3. 

To extract the dictionary, all possible patches of downsampled (𝑌↓) of the 𝑌 are used 

without corresponding search window. The main idea of resizing is to change the noise 

behavior from coarse to fine (Zhang and Gunturk, 2008). In the first trial, the patches 

extracted from the original size of 𝑌 are omitted to create the dictionary. The number 

of atoms used for calculation is fixed. For the reconstruction part, an equally weighted 

averaging of the overlapping patches is employed. The main difference between Trials 

1 and 2 is the original size of the 𝑌 is used to create a dictionary. In Trial 3, Trial 2 is 

exploited by considering the weighted reconstruction of the overlapping patches. In 

addition to Trial 3, only the original size is used for Trial 4. Up to this point, to resize 

the 𝑌, bicubic filters are used. However, to obtain  𝑌↓ of the 𝑌, Gaussian pyramids also 

can be employed. This approach has the advantage of using a Gaussian filter for 

resizing by changing the behavior of the noise at the same time. While the original 

level (starting) level is used for Trial 5, the original level is not used for Trial 6. 

 

3.1.6 Version 6 

The main aim of using similar patches is to exploit the sparse representation of the 

noise-free patch. To increase the sparsity, a shrinkage process (e.g. hard-thresholding) 

can be performed on 2D or 3D transform spectrum of similar patches. This shrinkage 
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approach is named as “collaborative filtering” in the study Dabov et al. (2007b). By 

applying collaborative filtering on the Discrete Cosine Transform (DCT) of each 𝑛-

by-𝑛 patch, the coefficients that are representing the high frequency components, such 

as noise, will be eliminated. Therefore, the 2D collaborative filtering is utilized on the 

selected atoms from the dictonary. The iterative calculation by using residual 

dictionary updating is employed with a fixed number of similar patches. Thus, Version 

6 is derived from Version 5 Trial 3 by adding the shrinkage on the 2D DCT spectrum. 

 

3.2 Transfotmation Matrix Learning 

The main purpose of the approach explained here is to reveal the relationship between 

𝜔$,(() of noisy patches and clean pathces by learning the transformation matrix (𝑇5) 

utilizing a set of clean images (𝜃6) and a set of corresponding noisy images (𝛽6) at a 

certain level of noise specified by standard deviation of the noise 𝜎. 

 

3.2.1 Learning Dictionary With Original Sized Images 

In this version, only original sized images are used to learn the transformation matrix. 

Using a dataset (Set12), 𝑁 samples noisy patches (𝑏7) are selected randomly from 

each noisy image (𝛽6) and the locations of these samples are kept. For each sample, a 

fixed number of similar (k-Nearest Neighbor,k-NN) patches are found in the dictionary 

containing all possible patches from 𝛽6. Between each 𝑏7 and its k-NN patches, 

𝜔7,((),8 are calculated and stored by a concatenatenation step. As a next step, 𝜔7,((),9 

between N samples of clean patches (𝑎7), which have the same locations with 𝑏7 

patches, and k-NN patches of 𝑏7 patches is calculated by concatenation. When the 

process is completed as defined above for each image in both data set, 𝑇5 is calculated 

according to Eq. (7), 

 𝑇5 = 𝜔((),9 . 𝜔((),8/ . (𝜔((),8 . 𝜔((),8/ )2# (7) 

where 𝜔((),9 and 𝜔((),8 are the concatenated weights coming from each 𝜃6 and 𝛽6, 

respectively. After 𝑇5 is found, a test image 𝑌 is used. For each 𝑦$ of 𝑌, the LLE 

weights are calculated between 𝑦$ and its k-NN patches represented as 𝑦$,'77. The 

calculated weights are transformed to 𝜔$,((),/' by using the 𝑇5. To obtain 𝑥@$ patches, 

Eq. (8) is applied. 𝑋? is reconstructed via equally weighted average of overlapping 𝑥@$ 

patches. 
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 𝑥@$ = 𝑦$,'77 . 𝜔$,((),/' (8) 

The whole procedure is the definition of the first level of this approach. For further 

levels, at the beginning of the process, while keeping set of 𝛼 images is same, set of 𝛽 

images should be updated with 𝑋? images of the previous level. The algorithm of the 

first level is given in Algorithm 1. 

 

Algorithm 1. The first level of transormation matrix learning by using original sized 

images 
 Learning 

  Input: Set of Noisy Images (𝛽), Set of Clean Images (𝜃) 

  Output: Transformation Matrix (𝑇() 

  for each 𝛽) and 𝜃) do 

   Select 𝑁 noisy patches randomly (𝑏*,+) (i: location) 

  for each 𝑏*,+ do 

   Find k-NN patches 

  Calculate 𝜔*,,,-,. and store in 𝜔,,-,. 

  Extract 𝑎*,+ 

  Calculate 𝜔*,,,-,/ and store in 𝜔,,-,/ 

  end 

  end 

  Calculate 𝑇( ← 𝜔,,-,. , 𝜔,,-,/ 

 Testing 

  Input: Noisy Test Image (Y), 𝑇( 

  Output: Estimated Noise-Free Image (𝑋*) 

  Extract all patches of Y (y) 

  for each 𝑦+ do 

   Find k-NN patches 

  Calculate 𝜔,,-  

  Transform weights: 𝜔,,-,0! = 𝑇( . 𝜔,,-  

  Calculate 𝑥/+ = k-NN. 𝜔,,-,0! 	 

  end 

  Reconstruct 𝑋* ← 𝑥/ 

 

3.2.2 Learning Dictionary With Resized Images 

In Section 3.2.1, the structure of the learning algorithm to find the 𝑇5 is defined. In this 

section, the same structure is used with a difference about the set of images. In the 
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previous setup, sample patches are extracted from original sized 𝜃6 and 𝛽6 images. 

In addition to that approach, resized versions of images (𝜃6,↓, 𝛽6,↓) are used to extract 

samples by excluding the original size. By adjusting the resolution, the behavior of the 

noise can be changed as it is mentioned in Section 3.1.5. The rest of the procedure 

applied identically and the structure of the algorithm is given in Algorithm 2. 

 

Algorithm 2. The first level of transormation matrix learning by using downsampled 

images 
 Learning 

  Input: Set of Noisy Images (𝛽), Set of Clean Images (𝜃) 

  Output: Transformation Matrix (𝑇() 

  for each 𝛽) and 𝜃) do 

   Down sample 𝛽) and 𝜃) → 𝛽),↓ ,	𝜃),↓ 

  for each 𝛽),↓ ,	𝜃),↓	do 

   Select 𝑁 noisy patches randomly (𝑏*,+) (i: location) 

  for each 𝑏*,+ do 

   Find k-NN patches 

  Calculate 𝜔*,,,-,. and store in 𝜔,,-,. 

  Extract 𝑎*,+ 

  Calculate 𝜔*,,,-,/ and store in 𝜔,,-,/ 

  end 

  end 

  end 

  Calculate 𝑇( ← 𝜔,,-,. , 𝜔,,-,/ 

 Testing 

  Input: Noisy Test Image (Y), 𝑇( 

  Output: Estimated Noise-Free Image (𝑋*) 

  Extract all patches of Y (y) 

  for each 𝑦+ do 

   Find k-NN patches 

  Calculate 𝜔,,-  

  Transform weights: 𝜔,,-,0! = 𝑇( . 𝜔,,-  

  Calculate 𝑥/+ = k-NN. 𝜔,,-,0! 	 

  end 

  Reconstruct 𝑋* ← 𝑥/ 
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3.3 Preserving High Frequency Components 

Image denoising algorithms try to find the best estimation of the noise-free image 𝑋?. 

To obtain 𝑋?, the effect of the noise on pixel intensity values should be diminished. 

However, by decreasing the effect of the noise, image denoising algorithms can waste 

the details and features of images, because features and noise are represented by high 

frequency components on the frequency spectrum of images. Therefore, the outcomes 

of any image denoising algorithm are smoothed images. According to the visual results 

of our approach given in Chapter 4, our approach can denoise image, but it is not  

successful to preserve the details and the features. For this reason, our approach needs 

to be developed on this subject of preserving features. There are three ways to be 

considered: 1) Feature mapping, 2) alpha rooting (Dabov et al., 2007c), 3) High 

Frequency Component Learning. 

 

3.3.1 Feature Mapping 

There are several methods to obtain the weights of images representing the significant 

and informative image content. According to the studies of Mertens, Kautz and van 

Reeth (2009) and Karakaya, Ulucan and Turkan (2022), PCA and Well-Exposedness 

methods can be employed. 

 

3.3.1.1 Version 1 

In this section, PCA mapping is utilized to estimate 𝑥@$ patches. It is expected to be 

useful to preserve details, since it is Singular Value Decomposition (SVD) based 

method (Wold, Esbensen and Geladi, 1987). At the beginning, k-NN patches (𝐷$) of 

each 𝑦$ are extracted from all possible patches coming from  𝑌. 𝐷$ is transformed by 

using the PCA coefficients of 𝐷$. To ensure that all weights belong to atoms of 

transformed 𝐷$ are 𝜔$ ∈ [0,1], transformed 𝐷$ should be normalized column-wise and 

row-wise respectively. All atoms of multiplication of 𝐷$ 	and normalized, transformed 

𝐷$ (weights) are summed up to obtain 𝑥@$. 𝑋? is reconstructed by using equally weighted 

average of overlapping 𝑥@$ patches. 

 

3.3.1.2 Version 2 

The main difference between Version 1 and 2 is that Well-Exposedness mapping is 

employed instead of PCA mapping. This mapping is indicating the intensity values or 
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brightness of pixels. Therefore, it could be beneficial to distinguish the details. For the 

second trial of Version 2, weights of Well-Exposedness reversed by extracting from 

one. Rest of the structure of Version 2 is preserved.  

 

3.3.1.3 Version 3 

In this section, both mapping methods are used. In the first trial, to find the transformed 

𝐷$, weights of the PCA and Well-Exposedness methods are multiplied. In the second 

trial, just reversed Well-Exposedness weights differs from the first trial. Moreover, 

two level process is applied for Trial 2. As the third trial, by considering the Level 2 

results of Trial 2, iterative residual based dictionary updating approach is added and 

employed to find LLE weights for the reconstruction step. 

 

3.3.2 Aplha Rooting 

In this section, the core method is the alpha rooting approach to preserve the significant 

features in images by filtering out the noise (Dabov et al., 2007c). In the first trial, k-

NN patches (𝐷$) of each noisy patch 𝑦$ are found from all possible patches of  𝑌. Each 

2D k-NN pathches with 𝑦$ are transformed by using DCT. To eliminate the DCT 

coefficients that represent the noisy particles, hard-thresholding is applied by 

considering the thresholding limit, and this hard-thresholding process is notated as Γ: 

where 𝜆 is the limit. As a next step, the alpha rooting method is applied to augment the 

thresholded non-zero DCT coefficients by considering the DC coefficient as it is given 

in Eq. (1). Hard-thresholded and sharpened via alpha rooting DCT coefficients are 

applied inverse DCT. 𝜔$,(() is calculated by using the processed 𝑦$ and the processed 

𝐷$ to find 𝑥@$. To reconstruct 𝑋?, equally weighted average of overlapping 𝑥@$ patches is 

used. In the second trial, a residual based iterative approach is employed to keep useful 

and important coefficients rather than hard-thresholding. When the l2-norm based 

residual between the transformed data including 𝑦$ and 𝐷$ is less than the stopping 

criteria defined as 𝑛%𝜎%, keeping the DCT coefficients should be stopped. 𝜔$,(() 

calculation and the reconstruction process are applied same as in the first trial. In the 

third trial, only the stopping criteria differs from the Trial 2. It is defined as 𝑛%𝜎%𝑐%, 

where the 𝑐 is a constant number (Dabov et al., 2007b). For the fourth trial, instead of 

an equally weighted average of overlapping 𝑥@$ patches, the group variance based 

weighting is employed for the reconstruction step where the group contains 𝑦$ and 
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corresponding 𝐷$. The other steps are used the same as Trial 2. 

 

3.3.3 High Frequency Component Learning 

According to experimental results of the methods reported in Sections 3.1 and 3.2, the 

pale side of the developed methods is preserving the details and features. In Sections 

3.3.1 and 3.3.2, approaches preserving details are nested in the whole step. It means 

that steps of denoising and keeping features have been done at the same time. 

However, in this section, conservation of details and features is considered as a further 

and disjoint step of denoising . By using a basic learning algorithm similar to the 

algorithms defined in Sections 3.2.1 and 3.2.2, the transformation matrix providing 

possible details of images by processing noisy patches is determined to be found.  

  

In the first trial, the learning algorithm explained in Section 3.2.1 is used to find a 

transformation matrix. However, as the set of noisy images (𝛽), the results of Trial 2 

of the algorithm mentioned in section 3.3.1.3 are considered (𝛽;<=>). To reveal the 

transformation matrix of high frequency components, 𝑎?@ pathces and 𝑏;<=> pathces 

are extracted from the images containing details (high frequency components=𝜃$,?@) 

and pre-found outcomes (𝛽;<=>) respectively. Since, the processed images are 

denoised sufficiently successful but they are smoothed, the images containing details 

can be obtained as the difference between original images and processed (denoised) 

images such that 𝜃$,?@ = 𝜃$ − 𝛽$,;<=>. The LLE weights calculation of each 𝑥@$,?@ and 

the reconstruction of 𝑋??@ steps are used as they are defined in Section 3.2.1. 𝑥@$,?@ and 

𝑋??@ stand for patches and image containing details. At the end, final estimated noise-

free image can be calculated as 𝑋?$ = 𝛽$,;<=> + 𝑋??@. 

 

In Trial 2, the main difference from the first trial is that 2D gradient of the processed 

images 𝛽;<=>,A<BC are employed. Therefore, 𝑎?@ patches are extracted from the details 

(𝜃?@), 𝑏;<=> patches are found from 𝛽;<=>,A<BC images. According to the results of 

Trial 1, the noisy images is not an efficient way to find the high frequency components. 

Therefore, to obtain the estimated details, the learning algorithm should be initialized 

by considering the details which are presented via gradient. 
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In the third trial, there is a method combination of the alpha rooting approach 

mentioned in Section 3.3.2 and the transformation matrix learning approach by using 

the multi-resolution images approach mentioned in Section 3.2.2. To summarize the 

procedure one more time to emphasize the differences; there are two sets of images: 

1) clean (original) images (𝜃), 2) noisy images (𝛽). 𝑁 samples (𝑏7 patches) are 

selected randomly from each downsampled noisy image 𝛽$,↓ by excluding the original 

size of the images. For each 𝑏$, k-NN patches are extracted from all possible patches 

of 𝛽$,↓. Before finding 𝜔7,((),8!,↓, the hard-thresholding and alpha rooting procedures 

are applied on 𝑦$,↓ and its k-NN patches. The calculated 𝜔7,((),8!,↓ and the locations of 

each sample’s k-NN patches are stored. N samples from the clean image (𝑎7 patches), 

𝜃$,↓ are selected by according to the stored locations of the noisy samples. For each 

𝑎7, k-NN pathces of corresponding 𝑏7 are used, and hard-thresholding approach  and 

alpha rooting approach are employed on only the k-NN patches, because 𝑎7 patches 

are noise-free. All hard-thresholding and alpha rooting are done according to the 

algorithm explained in Section 3.3.2 Trial 2. By using 𝜔7,((),8!,↓ and 𝜔7,((),9!,↓, 𝑇5 is 

calculated to apply for LLE weights of thresholded and alpha rooting applied patches 

and related k-NN patches of noisy test images in order to find estimated noise free 

patches. For the reconstruction step, the weighted average of overlapping estimated 

noise-free patches is employed. 
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CHAPTER 4: EXPERIMENTAL RESULTS & DISCUSSION 
In this chapter, experimental results of each methodological approach are presented 

visually and statistically to evaluate the effects of the parameters and the performance 

of the algorithms. Moreover, visual and statistical results of several benchmark 

methods are shown for comparison such as BM3D (Dabov et al., 2007b), K-SVD (Elad 

and Aharon, 2006), WNNM (Gu et al., 2014), and Expected Patch Log-Likelihood 

(EPLL) (Zoran and Weiss, 2011). The quantitative results contain four statistics: 1) 

Peak-Signal-to-Noise-Ratio (PSNR), 2) Structural Similarity Index Measurement 

(SSIM), 3) Visual Information Fidelity (VIF), and 4) Information Fidelity Criterion 

(IFC). 

 

Our approach is developed on MATLAB R2022a. “Set12” dataset is used as original 

image set. These images are widely used greyscale images in image processing 

applications. All images are shown in Figure 4 with their names and sizes of images 

either 256x256 or 512x512. The noisy images are derived from the Set12 images 

artifically to make controlled experiments. The standard deviation of the additive 

Gaussian white noise is defined 𝜎 = 25 with mean 𝜇 = 0 for all noisy images. 

 

      

      
Figure 4. Images of Set12 Dataset. 

 

4.1 Results of Traditional Approaches 

In this section, visual and objective results of the methods described in Section 3.1 are 

presented. Also, the evaluation of parameters and algorithms can be observed by 

analyzing the experimental results. 
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4.1.1 Version 1 

In order to make a feasebility study, a pixel-based approach is employed to reconstruct 

𝑋? by using calculated 𝜔(() between 𝑦$ patches and corresponding k-NN patches. To 

determine the optimum parameter values such as 𝑛 and 𝑡, several tests have been done 

by considering n∈[5,7,9,13,15] and t∈[3,5]. According to the test results of Version 1 

Trial 1, although the best results are reached with 𝑛 = 15 and 𝑡 = 5, these are not 

applicable values for parameters of patch size (n-by-n) and window size (tn-by-tn) 

respectively because of the computational cost and blur occurrence in denoised 

images. Therefore, the useful cases should consider n∈[5,7,9] and t∈[3]. PSNR 

comparisons and visual comparisons of patch sizes are shown in Figure 5 and Figure 

6 by considering the outcomes of Version 1 Trial 1. 

 

 
Figure 5. Patch size effect on PSNR by considering Version 1 Trial 1 in terms of 

overall PSNR. 

     
a) 𝑛 = 5  b) 𝑛 = 7 c) 𝑛 = 9 d) 𝑛 = 13 e) 𝑛 = 15 

Figure 6. Patch size effect on blur by considering Version 1 Trial 1. 
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Moreover, the statistics of Version 1 Trial 1 are given in Table 1 for the parameters 

𝑛 = 5 and 𝑘 = 3, which means window size is 15-by-15. 

 

Table 1. Statistical results of Version 1 Trial 1 including PSNR, SSIM, VIF and IFC 

of each image of Set12 (N-O: Noisy Vs. Original, E-O: Estimated Vs. Original). 

Image  
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

Cameraman 20,54 21,30 0,35 0,37 0,19 0,20 2,02 2,07 

House 20,19 20,91 0,28 0,30 0,14 0,15 1,42 1,47 

Peppers 20,28 21,12 0,36 0,38 0,18 0,20 1,92 1,99 

Starfish 20,38 21,24 0,47 0,50 0,24 0,25 2,59 2,66 

Butterfly 20,22 21,21 0,44 0,48 0,23 0,25 2,64 2,72 

Jetplane 20,33 21,14 0,38 0,40 0,20 0,21 2,13 2,17 

Parrot 20,59 21,42 0,39 0,42 0,22 0,23 2,36 2,45 

Lena 20,24 20,93 0,60 0,62 0,13 0,13 1,36 1,41 

Barbara 20,30 21,09 0,70 0,72 0,16 0,17 1,80 1,87 

Boats 20,28 21,01 0,66 0,68 0,17 0,18 1,95 1,99 

Man 20,25 20,94 0,67 0,69 0,17 0,18 1,86 1,91 

Couple 20,27 20,99 0,69 0,71 0,19 0,20 2,10 2,14 

Average 20,32 21,11 0,50 0,52 0,18 0,20 2,01 2,07 

 

According to Table 1, although there is not significant improvement in statistics,  the 

method introduced as Version 1 Trial 1 is important to determine suitable values of 

parameters. Also it is important to distunguish the parts of the algorithm that need to 

be improved. As the further trials are mentioned in Section 3.1.1, Trial 2 includes 

exploiting the similar patches, also Trail 3 has a PCA based dimension reduction 

approach while finding the similar pathces. The mentioned approach in Version 1 Trial 

3 not only beneficial to decrease the computational cost but also useful to extract the 

similar patches that are filtered by keeping higher PCA coefficients. However, the 

question of how many coefficients are required needs to be answered to determine the 

optimal parameters’s values for further versions of the algorithm. According to Figure 

7, the effect of the dimension reduction size does not have a significant effect on the 

statistical results, especially for n=5 and n=7. Therefore, the dimension reduction size 
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may be selected as equals to n to keep computational cost low. Also, statistical results 

of Version 1 Trial 3 are shown in Table 2 by considering the most suitable values of 

parameters rather than the values providing the highest results. 

 
Figure 7. The effect of the number of the PCA coefficient for dimension reduction in 

terms of overall PSNR. 

Table 2. Statistical results of Version 1 Trial 3 including PSNR, SSIM, VIF and IFC 

of each image of Set12 (n=5, dimension reduction size =n). 

Image  
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

Cameraman 20,54 22,56 0,35 0,40 0,19 0,21 2,02 1,92 

House 20,19 22,91 0,28 0,36 0,14 0,17 1,42 1,47 

Peppers 20,28 22,42 0,36 0,42 0,18 0,21 1,92 1,95 

Starfish 20,38 22,45 0,47 0,53 0,24 0,25 2,59 2,49 

Butterfly 20,22 22,15 0,44 0,51 0,23 0,25 2,64 2,60 

Jetplane 20,33 22,07 0,38 0,42 0,20 0,20 2,13 1,91 

Parrot 20,59 22,63 0,39 0,45 0,22 0,24 2,36 2,26 

Lena 20,24 22,94 0,60 0,69 0,13 0,14 1,36 1,34 

Barbara 20,30 22,87 0,70 0,77 0,16 0,19 1,80 1,84 

Boats 20,28 22,78 0,66 0,73 0,17 0,19 1,95 1,82 

Man 20,25 22,69 0,67 0,73 0,17 0,18 1,86 1,73 

Couple 20,27 22,78 0,69 0,75 0,19 0,20 2,10 1,95 

Average 20,32 22,60 0,50 0,56 0,18 0,20 2,01 1,94 
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4.1.2 Version 2 

In this section, the results of the method explained in Section 3.1.2 are presented. The 

main development is that overlapping estimated pathces are used rather than estimated 

pixels for the reconstruction step. Moreover, the parameter about similarity of pathces 

is examined. This parameter can affect the dictionary size, since there is no a fixed size 

of dictionary. According to the optimal parameters, overall statistics of Set12 and some 

sample outcomes are given in Table 3 and Figure 8 respectively. 

 

Table 3. Overall statistics of Version 2. 

Patch Size 
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

5 20,32 25,31 0,50 0,68 0,18 0,27 2,01 2,30 

7 20,32 25,91 0,50 0,71 0,18 0,29 2,01 2,35 

9 20,32 26,20 0,50 0,72 0,18 0,30 2,01 2,37 

 

   

   
a) n=5 b) n=7 c)n=9 

Figure 8. Samples outcomes (Cameraman, House) of Version 2 with different patch 

sizes.  

As it is understood from the table and figure, although higher patch size value provides 

better statistics, blurring and computational cost causes problem. Therefore, the main 
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aim should be to diminish artifacts with lower patch size values. 

 

4.1.3 Version 3 

According to the methods that are explained in Section 3.1.3, the most innovator step 

is using iterative approach since it increases the sparsity of the representation of 

estimated noise-free patches (𝑥@$). The question should be answered that how many 

iterations are required to obtain the error below the pre-defined error boundary. As 

using this iterative approach, utilizing the atoms of the dictionary is also analyzed in 

terms of similarity of the pathces, the number of the atoms in the dictionary and 

uniqueness of the atoms. For these terms, several parameters are analyzed and tested. 

The performance of the algorithm is improved a little bit in terms of the statistics. 

However, with these parameters, all images can not be processed because of the lack 

of the sufficient number of atoms in the dictionary. Therefore, some of these concepts 

are eliminated such as uniqueness. The second important contribution in Version 3 is 

using the residual-based dictionary updating. Since it has successful effect on the 

statistics, it has combined with the methods that are using “at least” and “fixed” 

number of atoms cases by excluding the uniqueness of atoms. To reconstruct 𝑋? 

weighted average of 𝑥@$ patches are employed. According to the all tests, the most 

successful, applicable to all images, and promising approach is Version 3 Trial 6. The 

statistical results and some samples of the method are presented in Table 4 and Figure 

9 respectively. 
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a) Original b) n=5 c) n=7 d) n=9 

    
e) Original f) n=5 g) n=7 h) n=9 

Figure 9. Sample outcomes of Version 3 Trial 6 by using Cameraman and House 

images by considering patch sizes (n) are 5, 7 and 9, dimension reduction size equals 

to patch size (n), and the number of atoms and iterations are 16. 

According to Table 4 and Figure 9, the performance of the propesed approach is 

improved significantly. Since the statistical results are very close to each other, 

computational cost should be considered primarily. However, the effect of the patch 

size on blurring can be observed by analyzing Figure 9. The bigger patch size prevents 

the block artifacts by blurring, but it fails to preserve the details although smoother 

images make feel more successful. 

 

4.1.4 Version 4 

Since the general idea is to optimize the weights of atoms to obtain estimated patches, 

L1-norm based approach is employed as it is explained in Section 3.1.4. By linear 

programming, two basic optimization approaches have been tested. However, none of 

them have promising results.  

 

4.1.5 Version 5 

This method is developed based on Version 3. According to the experience gained in 

Version 3, number of atoms in the dictionary is fixed. The first major difference is that 

patches are not extracted from corresponding search window, extracted from all image. 

The second major difference is using multi-resolution versions of the image to extract 

patches and their LLE weights. The noise behavior can change from coarse to fine due 
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to downsampling. Additionally, it could have great benefit to increase sparsity because 

it seem like a filtering process before finding similar patches, thus it is expected to 

increase the success of finding similar patches. To understand how it performs, 

resizing is applied by including and excluding the original size. The reconstruction is 

done with and without weights to interpret the effect on blocking artifacts. Moreover, 

Gaussian pyramid is employed by including and excluding the original sizes of images 

to obtain multi-resolution images. It is expected to be more successful than the other 

resizing process, because there is a Gaussian filtering that can diminish the effect of 

the noise between each level of Gaussian pyramid. However, since each level of the 

pyramid has half size of the previous level, it can be disadvantageous to create 

sufficiently large dictionary. Also this kind of resizing can break the relevance between 

the patches extracted from original size images and resized images. To compare the 

performances of the trials, Cameraman images are given in Figure 10 with fixed eight 

atoms and 𝑛=5. As it is seen, visually satisfying results could not be obtained. For 

example, although the outcome of Version 5 Trial 6 has highest PSNR (26,2801 dB), 

details of the image are not preserved very successfully. To see Version 5 noise 

removing and detail preserving performance from a closer perspective, Figure 11 is 

given by condisering the Butterfly image. 

    

a) Original  
b) Version 5 Trial 1 

PSNR=24,9329 

c) Version 5 Trial 2 

PSNR=24,6632 

d) Version 5 Trial 3 

PSNR=24,6634 

    
e) Noisy (𝜎=25) 

PSNR=20,5396 

f) Version 5 Trial 4 

PSNR=23,9891 

g) Version 5 Trial 5 

PSNR=24,6217 

h) Version 5 Trial 6 

PSNR=26,2801 

Figure 10. Sample outputs of Cameraman processed by using Version 5 trials. 



 

 

31 

    

    
a) Original b) Trial 1 c) Trial 2 d) Trial 3 

    

    
e) Noisy (𝜎 = 25) f) Trial 4 g) Trial 5 h) Trial 6 

Figure 11. Sample outputs of Butterfly processed by using Version 5 trials. 

In addition, overall statistics of each trial of Version 5 are given in Table 5 by 

considering patch size as 5 and number of the atoms as 8. When Table 5 is considered, 

it is obvious that Trial 6 which is employing Gaussian pyramid by including the 

original image has the brightest results. Besides the pyramids, rest of the trial results 

are close to each other. In the first trial, the coefficients of resizing are [0.90, 0.80, 

0.75, 0.50, 0.25] which means the original size is excluded, and number of atoms 

(number of selected k-NN patches) is fixed as 8 and 16. In Trial 2, the coefficients of 

resizing are [1.00, 0.90, 0.80, 0.75, 0.50, 0.25] which means the original size is used, 

and for the reconstruction step, equally weighted average of overlapping estimated 

patches. The main difference between Trial 2 and Trial 3 is that Trial 3 employs 

weighted recontruction step. In Trial 4, only the original size is used by considering 

weighted reconstruction step. Between all these trials, there is not a significant 

improvement. Nevertheless, to see the effect of these approaches on details of images, 



 

 

32 

sample outcomes are presented in Figure 12. 
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a) Original b) Test 1 c) Test 2 d) Test 3 

    

    
e) Noisy (𝜎 = 25) f) Test 4 g) Test 5 h) Test 6 

Figure 12. Butterfly image outcome samples of Version 5 Trial 6. Blurring effect 

(loosing details) increases with the increasing patch size.  

The description of the parameters of the trials mentioned in Figure 12 is; the patch size 

(n) is 5, and the number of atoms (number of k-NN ) is fixed as 8 for the first two tests. 

The difference between Test 1 and Test 2 is the number of levels of Gaussian pyramid. 

By excluding the Level 0 (original size), Level 1 and 2 are used for Test 1, and Level 

1, 2 and 3 are used for Test 2. The same pattern is followed for other patch size values 

which are 7 and 9. All test results are reported in Table 6. According to the table, the 

patch size does not affect considerably. Although the only and major difference 

between Trial 5 and Trial 6 is whether exploiting Level 0 or not, Trial 5 does not have 

a good performance as much as Trial 6 has. 
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Table 6. Test performances of Version 5 Trial 6. 

# Test n Levels 
PSNR SSIM VIF IFC 

N-O E-O N-O E-O N-O E-O N-O E-O 

1 5 1,2 20,32 26,70 0,50 0,76 0,18 0,28 2,01 2,30 

2 5 1,2,3 20,32 26,68 0,50 0,76 0,18 0,28 2,01 2,29 

3 7 1,2 20,32 27,22 0,50 0,81 0,18 0,33 2,01 2,32 

4 7 1,2,3 20,32 27,22 0,50 0,81 0,18 0,33 2,01 2,32 

5 9 1,2 20,32 26,78 0,50 0,82 0,18 0,36 2,01 2,22 

6 9 1,2,3 20,32 26,80 0,50 0,82 0,18 0,36 2,01 2,22 

 

4.1.6 Version 6 

As it is explained in Section 3.1.6, a shrinkage method (hard-thresholding) is applied 

on DCT transform of each k-NN patches where 𝜆 is the hard-threshold limit. Also, by 

including the original size, the multi-resolution approach is used with the resizing 

coefficients [1.00, 0.90, 0.80, 0.75, 0.50, 0.25]. The thresholding limit as determined 

as 2 (Dabov et al., 2007b) and 𝜎. The number of k-NN patches is fixed as 8, and patch 

sizes (n) are 5, 7 and 9. According to Table 7 and Figure 13, 𝜆 has significant effect 

on the performance of the algorithm. With the optimum value of 𝜆, performance can 

be maximized. By considering the results, there is no sufficient and satisfying 

improvement on statistics and also visual quality of outcomes. Increasing the patch 

size is not a suitable solution to filter out noise by keeping details as it can be seen in 

Figure 13. It is obvious especially by focusing on the are intersecting dark and light 

parts of the wing. 

 

Table 7. Statistical performance of Version 6. 

n 𝝀 
PSNR SSIM VIF IFC 

N-O E-O N-O E-O N-O E-O N-O E-O 

5 2 20,32 24,57 0,50 0,65 0,18 0,24 2,01 2,22 

5 𝜎 20,32 26,29 0,50 0,73 0,18 0,27 2,01 2,32 

7 2 20,32 26,21 0,50 0,72 0,18 0,26 2,01 2,27 

7 𝜎 20,32 27,64 0,50 0,80 0,18 0,31 2,01 2,35 

9 2 20,32 26,92 0,50 0,75 0,18 0,28 2,01 2,27 

9 𝜎 20,32 28,05 0,50 0,83 0,18 0,33 2,01 2,33 
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a) Original b) n=5, 𝜆=2 c) n=5, 𝜆=	𝜎 d) n=7, 𝜆=2 

    

    
e) Noisy (𝜎 = 25) f) n=7, 𝜆=	𝜎 g) n=9, 𝜆=2 h) n=, 𝜆=𝜎 

Figure 13. Outcome samples of Version 6. 

 

4.2 Results of Transformation Matrix Learning Approach 

According to all the given statistics and visual outcome images in Section 4.1, the 

methods that are employed by condsidering the reference studies, desired and expected 

results could not be achieved. Thus, to use LLE-based basic learning algorithm can be 

more reasonable and effective rather than the traditional methods. As a consequence, 

in this section, performance of the algorithms explained in Sections 3.2.1 and 3.2.2 are 

expressed to interpret the behavior of the algorithm for further improvements. 

 

4.2.1 Results of Learning Dictionary With Original Sized Images 

The details of the learning algorithm is explained in Section 3.2.1. According to the 

procedure, there are several parameters critical to analyze the performance of the 

algorithm. These parameters are n, N and k for k-NN patches. Two n values are 
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accepted which are 7 and 9. The value of k representing the number of the selected 

nearest neighbor patches, and it is fixed to  k=8, 16, 24. The parameter that is expected 

to make difference for learning algorithm is N where it is the number of sample patches 

selected randomly. All patches of images are not used for purpose of learning to avoid 

overfitting problem. Since LLE weights of each sample patch are stacked to calculate 

T, N can affect the results directly. To understand the impact of N, several values of N 

are used in a large scale. Thus, N is determined as [250,1000,5000,10000]. After 

obtaining the T, it is applied for all patches of the noisy images for testing. Moreover, 

the algorithm is repeated itself to increase the level of the process. Applying the same 

procedure on processed images should increase success of the algorithm. By using 

these values of three parameters the performance of the algorithm that exploits the 

original sized images, statistics of each combination of parameters are given in Table 

8, 9, 10, and 11 

 

Table 8. Overall PSNR performance of the transformation matrix learning approach 

using only original sized images. 

n k N 
PSNR 

N-O 

PSNR E-O 

Level 1 Level 2 Level 3 Level 4 Level 5 

7 8 250 20,3237 26,6502 28,0104 28,1525 28,0748 27,9924 

7 8 1000 20,3237 26,6518 28,0071 28,1198 28,0428 27,9496 

7 8 5000 20,3237 26,6511 28,0180 28,1319 28,0603 27,972 

7 8 10000 20,3237 26,6500 28,0113 28,1298 28,0519 27,9582 

7 16 250 20,3237 26,7859 27,8038 27,8431 27,7360 27,6125 

7 16 1000 20,3237 26,7866 27,8159 27,8416 27,7378 27,6277 

7 16 5000 20,3237 26,7867 27,8196 27,8544 27,7583 27,6491 

7 16 10000 20,3237 26,7859 27,8111 27,8462 27,7490 27,6379 

7 24 250 20,3237 26,8667 27,5255 27,4073 27,2274 27,0558 

7 24 1000 20,3237 26,86039 27,5349 27,3914 27,1825 26,9995 

7 24 5000 20,3237 26,8639 27,5270 27,3882 27,2034 27,0431 

7 24 10000 20,3237 26,8642 27,5176 27,3820 27,1841 27,0039 

9 8 250 20,3237 27,2805 28,1025 28,1010 27,9952 27,8908 

9 8 1000 20,3237 27,2792 28,0992 28,1291 28,0242 27,9146 

9 8 5000 20,3237 27,2790 28,1057 28,1210 28,0099 27,8995 

9 8 10000 20,3237 27,2788 28,1027 28,1232 28,0106 27,9033 
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Table 8 (continued). Overall PSNR performance of the transformation matrix learning 

approach using only original sized images. 
9 16 250 20,3237 27,2502 28,0389 28,1443 28,0629 27,9967 

9 16 1000 20,3237 27,2398 28,0277 28,1417 28,0410 27,9190 

9 16 5000 20,3237 27,2459 28,0343 28,1417 28,0768 28,0140 

9 16 10000 20,3237 27,2465 28,0312 28,1446 28,0793 28,0186 

9 24 250 20,3237 27,1732 27,8320 27,8642 27,7645 27,6850 

9 24 1000 20,3237 27,1710 27,8358 27,8975 27,7933 27,7317 

9 24 5000 20,3237 27,1626 27,8151 27,8679 27,7305 27,6042 

9 24 10000 20,3237 27,1679 27,8159 27,8630 27,7307 27,6054 

 

Table 9. Overall SSIM performance of the transformation matrix learning approach 

using only original sized images. 

n k N 
SSIM 

N-O 

SSIM E-O 

Level 1 Level 2 Level 3 Level 4 Level 5 

7 8 250 0,4986 0,7180 0,8172 0,8427 0,8469 0,8466 

7 8 1000 0,4986 0,7180 0,8172 0,8425 0,8464 0,8459 

7 8 5000 0,4986 0,7180 0,8172 0,8426 0,8467 0,8463 

7 8 10000 0,4986 0,7179 0,8172 0,8426 0,8466 0,8460 

7 16 250 0,4986 0,7299 0,8209 0,8404 0,8423 0,8406 

7 16 1000 0,4986 0,7300 0,8210 0,8404 0,8423 0,8408 

7 16 5000 0,4986 0,7302 0,8209 0,8405 0,8426 0,8412 

7 16 10000 0,4986 0,7300 0,8209 0,8404 0,8425 0,8410 

7 24 250 0,4986 0,7405 0,8214 0,8342 0,8332 0,8297 

7 24 1000 0,4986 0,7403 0,8213 0,8341 0,8324 0,8286 

7 24 5000 0,4986 0,7406 0,8213 0,8340 0,8327 0,8295 

7 24 10000 0,4986 0,7407 0,8213 0,8339 0,8324 0,8286 

9 8 250 0,4986 0,7551 0,8348 0,8453 0,8447 0,8433 

9 8 1000 0,4986 0,7552 0,8346 0,8457 0,8452 0,8437 

9 8 5000 0,4986 0,7552 0,8347 0,845527 0,8449 0,8433 

9 8 10000 0,4986 0,7551 0,8346 0,8455 0,8449 0,8434 

9 16 250 0,4986 0,7613 0,8365 0,8470 0,8467 0,8460 

9 16 1000 0,4986 0,7615 0,8363 0,8470 0,8464 0,8445 

9 16 5000 0,4986 0,7615 0,8363 0,8469 0,8469 0,8463 

9 16 10000 0,4986 0,7614 0,8363 0,8470 0,8470 0,8464 
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Table 9 (continued). Overall SSIM performance of the transformation matrix learning 

approach using only original sized images. 
9 24 250 0,4986 0,7644 0,8347 0,8429 0,8419 0,8406 
9 24 1000 0,4986 0,7647 0,8346 0,8434 0,8424 0,8416 
9 24 5000 0,4986 0,7647 0,8344 0,8430 0,8414 0,8392 
9 24 10000 0,4986 0,7647 0,8344 0,8428 0,8413 0,8391 

 

Table 10. Overall VIF performance of the transformation matrix learning approach 

using only original sized images. 

n k N 
VIF 

N-O 

VIF E-O 

Level 1 Level 2 Level 3 Level 4 Level 5 

7 8 250 0,1845 0,3077 0,3848 0,4211 0,4352 0,4387 

7 8 1000 0,1845 0,3078 0,3848 0,4214 0,4353 0,4391 

7 8 5000 0,1845 0,3077 0,3848 0,4215 0,4354 0,4392 

7 8 10000 0,1845 0,3077 0,3849 0,4215 0,4356 0,4394 

7 16 250 0,1845 0,3162 0,3932 0,4266 0,4381 0,4404 

7 16 1000 0,1845 0,3163 0,3933 0,4270 0,4383 0,4405 

7 16 5000 0,1845 0,3164 0,3932 0,4270 0,4384 0,4408 

7 16 10000 0,1845 0,3163 0,3932 0,4269 0,4382 0,4406 

7 24 250 0,1845 0,3237 0,3976 0,4262 0,4337 0,4333 

7 24 1000 0,1845 0,3236 0,3973 0,4265 0,4342 0,4336 

7 24 5000 0,1845 0,3238 0,3976 0,4264 0,4341 0,4337 

7 24 10000 0,1845 0,3238 0,3976 0,4265 0,4339 0,4333 

9 8 250 0,1845 0,3389 0,4237 0,4498 0,4513 0,4461 

9 8 1000 0,1845 0,3389 0,4235 0,4493 0,4508 0,4455 

9 8 5000 0,1845 0,3389 0,4236 0,4496 0,4516 0,4468 

9 8 10000 0,1845 0,3389 0,4236 0,4495 0,4514 0,4462 

9 16 250 0,1845 0,3458 0,4322 0,4555 0,4562 0,4512 

9 16 1000 0,1845 0,3460 0,4320 0,4557 0,4570 0,4536 

9 16 5000 0,1845 0,3460 0,4320 0,4558 0,4565 0,4516 

9 16 10000 0,1845 0,3460 0,4320 0,4557 0,4564 0,4515 

9 24 250 0,1845 0,3496 0,4351 0,4571 0,4568 0,4517 

9 24 1000 0,1845 0,3499 0,4349 0,4569 0,4566 0,4510 

9 24 5000 0,1845 0,3498 0,4349 0,4570 0,4571 0,4527 

9 24 10000 0,1845 0,3498 0,4350 0,4571 0,4570 0,4525 
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Table 11. Overall IFC performance of the transformation matrix learning approach 

using only original sized images. 

n k N 
IFC 

N-O 

IFC E-O 

Level 1 Level 2 Level 3 Level 4 Level 5 

7 8 250 2,0129 2,4163 2,4419 2,3526 2,2436 2,1720 

7 8 1000 2,0129 2,4165 2,4411 2,3438 2,2356 2,1640 

7 8 5000 2,0129 2,4166 2,4436 2,3466 2,2392 2,1688 

7 8 10000 2,0129 2,4166 2,4420 2,3463 2,2377 2,1654 

7 16 250 2,0129 2,4093 2,4062 2,2996 2,1835 2,1050 

7 16 1000 2,0129 2,4088 2,4090 2,2985 2,1829 2,1070 

7 16 5000 2,0129 2,4083 2,4104 2,3025 2,1895 2,1145 

7 16 10000 2,0129 2,4086 2,4082 2,3005 2,1868 2,1105 

7 24 250 2,0129 2,3963 2,3522 2,2129 2,0816 1,9904 

7 24 1000 2,0129 2,3954 2,3559 2,2121 2,0751 1,9831 

7 24 5000 2,0129 2,3954 2,3545 2,2100 2,0778 1,9905 

7 24 10000 2,0129 2,3952 2,3516 2,2095 2,0736 1,9815 

9 8 250 2,0129 2,4571 2,4295 2,2980 2,2032 2,1441 

9 8 1000 2,0129 2,4565 2,4301 2,3037 2,2085 2,1470 

9 8 5000 2,0129 2,4565 2,4321 2,3031 2,2062 2,1448 

9 8 10000 2,0129 2,4565 2,4314 2,3034 2,2059 2,1449 

9 16 250 2,0129 2,4468 2,4270 2,3008 2,2073 2,1533 

9 16 1000 2,0129 2,4438 2,4276 2,3033 2,2052 2,1432 

9 16 5000 2,0129 2,4453 2,4289 2,3037 2,2117 2,1580 

9 16 10000 2,0129 2,4455 2,4282 2,3044 2,2126 2,1602 

9 24 250 2,0129 2,4292 2,3985 2,2553 2,1552 2,0974 

9 24 1000 2,0129 2,4273 2,3998 2,2615 2,1594 2,1049 

9 24 5000 2,0129 2,4256 2,3978 2,2594 2,1513 2,0856 

9 24 10000 2,0129 2,4270 2,3977 2,2570 2,1493 2,0837 

 

In addition to the statistical results, to interpret on the effects of the level of progress, 

number of k-NN patches, and patch size, visual outcomes and explainations are 

presented in Figure 14, 15, and 16. . Moreover, to focus on the details, sample 

outcomes are presented as zoomed in, since detail preserving is important as much as 

removing the noise. 
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 Cameraman House Lena 

a)  

   

b) 

   

c) 

   

d) 

   

Figure 14. Visual outcomes of the approach described as transformation matrix 

learning by using only original sized images with the parameters n=9, k=16, and 

N=10000. a) Original Image (X) b) Noisy Image (Y) (𝜎=25) c) Estimated Noise-Free 

Image (𝑋?) of Level 1 d) Level 2 𝑋? e) Level 3 𝑋? f) Level 4 𝑋? g) Level 5 𝑋? 
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e) 

   

f) 

   

g) 

   
Figure 14 (continued). Visual outcomes of the approach described as transformation 

matrix learning by using only original sized images with the parameters n=9, k=16, 

and N=10000. a) Original Image (X) b) Noisy Image (Y) (𝜎=25) c) Estimated Noise-

Free Image (𝑋?) of Level 1 d) Level 2 𝑋? e) Level 3 𝑋? f) Level 4 𝑋? g) Level 5 𝑋? 

According to the methodology of an iterative procedure with levels, the processed 

image does not perform as it is supposed to work at some levels. The statistics are 

inclined to settle down, even to be worse. Therefore, to compare the effect of other 

parameters, Level 3 outcomes can be considered according to the given statistics. To 

investigate the visual quality of outcomes of all levels and differences between levels, 

example images are in given in Figure 14 for the parameters n=9, k=16, and N=10000. 

As it is seen from Figure 15 and the statistics, k does not have significant importance 

in terms of removing noise and keeping details. In addition to that, Figure 16 is given 

to interpret about the effect of the patch size. According to this figure, although noise 

removing performance of bigger patch size is better statistically, it fails to keep details 

and introduces blur. Also the parameter N can be important for the performance of the 
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algorithm. Therefore, it is worth to study on N especially for the ramdomly selection 

process. 

 

   

   
a) X b) Y (𝜎=25) c) 𝑋? (k=8) 

 

  

 

 

  

 

 d) 𝑋? (k=16) e) 𝑋? (k=24)  

Figure 15. The effect of k on Butterfly with parameters n=9 and N=10000 (Level 3). 
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a) X b) Y (𝜎=25) c) 𝑋? (n=7) d) 𝑋? (n=9) 

Figure 16. The effect of the patch size with parameters k=16 and N=10000 (Level 3). 

 

4.2.2 Results of Creating Dictionary With Resized Images 

As it is explained in Section 3.2.2, there is a little difference between Algorithm 1 and 

Algorithm 2 that are mentioned in Section 3.2.1 and 3.2.2. The difference is that 

Algorithm 2 uses resized versions of both noisy and clean images, without original 

images. Therefore, in this section, rather than focusing on analysis of impacts of the 

parameters, the effect of the mentioned difference is emphasized. To compare the 

reults visually, the parameters are accepted as n=9, k=16, N=10000, and level 3. In 

addition to that, resizing coefficient are [0.90, 0.80, 0.75, 0.50, 0.25]. Nevertheless, all 

statistical results of this algorithm are given in Table 12, 13, 14 and 15 by including 

all combinations of the paramaters. Furthermore, to distinguish the effect of number 

of levels and to compare two approaches of transformation matrix learning method, 

Figure 17 and 18 are presented respectively. The impact of the number of levels can 

be noticed easily by checking Figure 17. Based on the experience gained from the 

method that uses only original sized images, this approach is tried up to level 3 because 

it is expected that all statistics settle down after that level, thus level 3 results are the 

highest results based on Table 12, 13, 14 and 15. According to the these tables and 

figures, the performance of Algorithm 2 by considering the parameters n=9, k=16, 

N=10000, and level 3 is better than the method employing Algorithm 1 with a little 

difference. This difference is not clear visually as it can be seen in Figure 18. Also, 

Figure 19 is presented to understand the impact of the algorithm and patch size on 
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keeping details of images. As it can be observed, noise removing performance is 

improved significantly. 

 

Table 12. Overall performance of the transformation matrix learning approach by 

using multi-resolution images in terms of PSNR statistics. 

n k N 
PSNR 

N-O 

PSNR E-O 

Level 1 Level 2 Level 3 

7 8 250 20,3237 26,5414 28,1635 28,3106 

7 8 1000 20,3237 26,5415 28,1619 28,3121 

7 8 5000 20,3237 26,5412 28,1621 28,3106 

7 8 10000 20,3237 26,5414 28,1620 28,3106 

7 16 250 20,3237 26,5457 28,1374 28,3151 

7 16 1000 20,3237 26,5473 28,1376 28,3084 

7 16 5000 20,3237 26,5491 28,1377 28,3087 

7 16 10000 20,3237 26,5485 28,1375 28,3093 

7 24 250 20,3237 26,5333 27,9915 28,0697 

7 24 1000 20,3237 26,5362 27,9922 28,0773 

7 24 5000 20,3237 26,5362 27,9915 28,0772 

7 24 10000 20,3237 26,5365 27,9915 28,0767 

9 8 250 20,3237 27,3192 28,2420 28,2071 

9 8 1000 20,3237 27,3194 28,2411 28,2059 

9 8 5000 20,3237 27,3190 28,2399 28,2041 

9 8 10000 20,3237 27,3190 28,2400 28,2051 

9 16 250 20,3237 27,3382 28,3021 28,3569 

9 16 1000 20,3237 27,3380 28,3002 28,3612 

9 16 5000 20,3237 27,3377 28,2992 28,3594 

9 16 10000 20,3237 27,3380 28,3002 28,3605 

9 24 250 20,3237 27,2909 28,2254 28,2634 

9 24 1000 20,3237 27,2908 28,2186 28,2649 

9 24 5000 20,3237 27,2905 28,2196 28,2674 

9 24 10000 20,3237 27,2910 28,2208 28,2695 

 

  



 

 

45 

Table 13. Overall performance of the transformation matrix learning approach by 

using multi-resolution images in terms of SSIM statistics. 

n k N 
SSIM 

N-O 

SSIM E-O 

Level 1 Level 2 Level 3 

7 8 250 0,4986 0,71025 0,8137 0,8435 

7 8 1000 0,4986 0,71036 0,8137 0,8435 

7 8 5000 0,4986 0,71024 0,8137 0,8434 

7 8 10000 0,4986 0,7106 0,8137 0,8434 

7 16 250 0,4986 0,7115 0,8141 0,8440 

7 16 1000 0,4986 0,7116 0,8141 0,8440 

7 16 5000 0,4986 0,7117 0,8140 0,8440 

7 16 10000 0,4986 0,7117 0,8140 0,8440 

7 24 250 0,4986 0,7127 0,8121 0,8403 

7 24 1000 0,4986 0,7128 0,8122 0,8404 

7 24 5000 0,4986 0,7128 0,8123 0,8404 

7 24 10000 0,4986 0,7128 0,8122 0,8404 

9 8 250 0,4986 0,7527 0,8352 0,8468 

9 8 1000 0,4986 0,7528 0,8353 0,8468 

9 8 5000 0,4986 0,7527 0,8352 0,8468 

9 8 10000 0,4986 0,7527 0,8352 0,8468 

9 16 250 0,4986 0,7553 0,8375 0,8503 

9 16 1000 0,4986 0,7555 0,8375 0,8504 

9 16 5000 0,4986 0,7554 0,8375 0,8504 

9 16 10000 0,4986 0,7554 0,8375 0,8504 

9 24 250 0,4986 0,7550 0,8364 0,8491 

9 24 1000 0,4986 0,7551 0,8363 0,8491 

9 24 5000 0,4986 0,7550 0,8364 0,8492 

9 24 10000 0,4986 0,7550 0,8364 0,8492 

 

Table 14. Overall performance of the transformation matrix learning approach by 

using multi-resolution images in terms of VIF statistics. 

n k N 
VIF 

N-O 

VIF E-O 

Level 1 Level 2 Level 3 

7 8 250 0,1845 0,3031 0,3805 0,4195 

7 8 1000 0,1845 0,3031 0,3805 0,4193 

7 8 5000 0,1845 0,3031 0,3805 0,4194 
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Table 14 (continued). Overall performance of the transformation matrix learning 

approach by using multi-resolution images in terms of VIF statistics. 
7 8 10000 0,1845 0,3031 0,3805 0,4194 

7 16 250 0,1845 0,3046 0,3831 0,4230 

7 16 1000 0,1845 0,3046 0,3832 0,4232 

7 16 5000 0,1845 0,3047 0,3831 0,4233 

7 16 10000 0,1845 0,3047 0,3831 0,4232 

7 24 250 0,1845 0,3055 0,3827 0,4216 

7 24 1000 0,1845 0,3055 0,3828 0,4216 

7 24 5000 0,1845 0,3055 0,3829 0,4216 

7 24 10000 0,1845 0,3056 0,3828 0,4216 

9 8 250 0,1845 0,3371 0,4217 0,4504 

9 8 1000 0,1845 0,3371 0,4218 0,4506 

9 8 5000 0,1845 0,3371 0,4217 0,4505 

9 8 10000 0,1845 0,3371 0,4217 0,4505 

9 16 250 0,1845 0,3407 0,4280 0,4579 

9 16 1000 0,1845 0,3408 0,4279 0,4578 

9 16 5000 0,1845 0,3407 0,4280 0,4578 

9 16 10000 0,1845 0,3407 0,4280 0,4577 

9 24 250 0,1845 0,3410 0,4286 0,4592 

9 24 1000 0,1845 0,3411 0,4287 0,4592 

9 24 5000 0,1845 0,3410 0,4287 0,4591 

9 24 10000 0,1845 0,3410 0,4287 0,4590 

 

Table 15. Overall performance of the transformation matrix learning approach by 

using multi-resolution images in terms of IFC statistics. 

n k N 
IFC 

N-O 

IFC E-O 

Level 1 Level 2 Level 3 

7 8 250 2,0129 2,4286 2,4851 2,3960 

7 8 1000 2,0129 2,4286 2,4846 2,3962 

7 8 5000 2,0129 2,4285 2,4849 2,3963 

7 8 10000 2,0129 2,4286 2,4846 2,3962 

7 16 250 2,0129 2,4302 2,4984 2,4273 

7 16 1000 2,0129 2,4302 2,4986 2,4258 

7 16 5000 2,0129 2,4303 2,4985 2,4264 

7 16 10000 2,0129 2,4302 2,4983 2,4259 

7 24 250 2,0129 2,4225 2,4818 2,4003 
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Table 15 (continued). Overall performance of the transformation matrix learning 

approach by using multi-resolution images in terms of IFC statistics. 
7 24 1000 2,0129 2,4224 2,4819 2,4020 

7 24 5000 2,0129 2,4226 2,4817 2,4019 

7 24 10000 2,0129 2,4225 2,4817 2,4018 

9 8 250 2,0129 2,4784 2,4662 2,3382 

9 8 1000 2,0129 2,4782 2,4661 2,3367 

9 8 5000 2,0129 2,4782 2,4660 2,3367 

9 8 10000 2,0129 2,4783 2,4660 2,3368 

9 16 250 2,0129 2,4875 2,4979 2,3805 

9 16 1000 2,0129 2,4872 2,4972 2,3809 

9 16 5000 2,0129 2,4874 2,4972 2,3811 

9 16 10000 2,0129 2,4875 2,4974 2,3812 

9 24 250 2,0129 2,4819 2,4983 2,3798 

9 24 1000 2,0129 2,4815 2,4977 2,3816 
9 24 5000 2,0129 2,4818 2,4976 2,3816 
9 24 10000 2,0129 2,4818 2,4975 2,3812 
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 PSNR = 20,5396 PSNR = 20,1889 PSNR = 20,2382 

Figure 17. Visual samples for comparison of levels of the transformation matrix 

learning using multi-resolution images approach with the parameters n=9, k=16, and 

N=10000. 
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 PSNR = 26,6373 PSNR = 29,0370 PSNR = 28,2268 

Le
ve

l 2
 

   
 PSNR = 27,1563 PSNR = 31,7443 PSNR = 30,4415 

Le
ve

l 3
 

   
 PSNR = 27,1056 PSNR = 32,1520 PSNR = 30,7348 

Figure 17 (continued). Visual samples for comparison of levels of the transformation 

matrix learning using multi-resolution images approach with the parameters n=9, 

k=16, and N=10000. 
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 Cameraman House Lena 

a) 

   
 PSNR = 26,8780 PSNR = 32,0683 PSNR = 30,5814 

b) 

   
 PSNR = 27,1056 PSNR = 32,1520 PSNR = 30,7348 

Figure 18. Visual samples for comparison of both transformation matrix learning 

approaches with the parameters n=9, k=16, N=10000, and level 3. a) The approach 

using original sized images b) The approach using multi-resolution images 

 

    

    
a) X b) Y (𝜎=25) c) 𝑋* (n=7) c) 𝑋* (n=9) 

Figure 19. The effect of patch size by employing Algorithm 2 with parameters k=16, 

N=10000 and level 3. 
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4.3 Results of Preserving High Frequency Components 

In Sections 3.1 and 3.2, the main aim is to remove the noise. According to the 

experimental results presented in Sections 4.1 and 4.2, denoising performance is 

satisfying whereas algorithms fail to preserve details, so blurring occurs. Therefore, 

keeping details should be further studied. The analysis of a feature mapping method is 

carried out in Section 4.3.1. The results of the alpha rooting based algorithm is 

presented in Section 4.3.2. These two methods aim to find estimated noise-free image 

by removing noise and keeping details at the same time. However, the last approach 

that is explained in Section 3.3.3 is a post-processing of denoising that aims to find the 

high frequency components (details) to add in the processed images. The results of the 

last approach are given in Section 4.3.3. 

 

4.3.1 Results of Feature Mapping 

The methods using feature mapping such as PCA, Well-Exposedness are expected to 

incresase performace since these maps are suppposed to reveal the important parts of 

the images. The approach mentioned in Section 3.3.1.3 has the highest statistics for 

level 2 of Trial 2 and Trial 3. Hence, the statistics of feature mapping for Trials 2 and 

3 are given in Table 16. As it is seen, k does not affect the performance considerably, 

and better results are obtained by considering n=7. 

 

Table 16. The statistics of denoising with feature mapping for Trial 2 (Level 2) and 

Trial 3. 

 n k 
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

Tr
ia

l 2
 L

ev
el

 2
 

5 8 20,3237 27,2896 0,4986 0,7510 0,1845 0,3133 2,0129 2,3910 

5 16 20,3237 27,4201 0,4986 0,7670 0,1845 0,3238 2,0129 2,3861 

7 8 20,3237 27,8105 0,4986 0,8160 0,1845 0,3758 2,0129 2,3618 

7 16 20,3237 27,7127 0,4986 0,8194 0,1845 0,3843 2,0129 2,3048 

9 8 20,3237 27,5334 0,4986 0,8275 0,1845 0,4098 2,0129 2,2666 

9 16 20,3237 26,9757 0,4986 0,8209 0,1845 0,4152 2,0129 2,1554 
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Table 16 (continued). The statistics of denoising with feature mapping for Trial 2 

(Level 2) and Trial 3. 

Tr
ia

l 3
 

5 8 20,3237 27,8102 0,4986 0,8015 0,1845 0,3441 2,0129 2,3665 

5 16 20,3237 27,7602 0,4986 0,8118 0,1845 0,3543 2,0129 2,3475 

7 8 20,3237 27,6995 0,4986 0,8357 0,1845 0,4092 2,0129 2,2287 

7 16 20,3237 27,2801 0,4986 0,8314 0,1845 0,4158 2,0129 2,1578 

9 8 20,3237 27,1991 0,4986 0,8281 0,1845 0,4334 2,0129 2,0754 

9 16 20,3237 26,5383 0,4986 0,8158 0,1845 0,4327 2,0129 1,9516 

 

4.3.2 Results of Alpha Rooting 

In this section, the results of the method explained in Section 3.3.2 are presented. 

According to the purpose of the alpha rooting based algorithm, the outcome images 

shoud be denoised successfully by keeping the details. Therefore, Trial 2 in Section 

3.2.2 is developed by using iterative hard-thresholding approach. Even if the outcome 

images have blocking artifacts as it is illustrated in Figure 20, the statistical results are 

promising to study on. 

  
a) Cameraman (PSNR = 28,3912) b) House (PSNR = 30,5559) 

  
c) Butterfly (PSNR = 28,2473) d) Lena (PSNR = 30,3755) 

Figure 20. Samples of outputs of the method explained in Section 3.3.2 Trial 2 with 

the parameters n=5, k=8.  



 

 

52 

Moreover, Trial 3 is developed based on Trial 2 with a small improvement that is about 

the stopping criteria of the iterative approach. This improvement does not have 

significant impact on the performance of the algorithm as it can be seen in Figure 21. 

 

  
a) Cameraman (PSNR = 28,2209) b) House (PSNR = 31,2091) 

  
c) Butterfly (PSNR = 28,4199) d) Lena (PSNR = 30,9278) 

Figure 21. Samples of outputs of the method explained in Section 3.3.2 Trial 3 with 

the parameters n=5, k=8. 

In the fourth trial,  the weighting procedure of Trial 2 is changed for the reconstruction 

part, and variance of similar patches based weighting procedure is applied to remove 

blocking artifacts. The visual outputs can be seen in Figure 22. 
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a) Cameraman (PSNR = 28,5285) b) House (PSNR = 30,8554) 

  
c) Butterfly (PSNR = 28,6091) d) Lena (PSNR = 30,5357) 

Figure 22. Samples of outputs of the method explained in Section 3.3.2 Trial 4 with 

the parameters n=5, k=8. 

Nevertheless, statistical results are just above the statistical results of previous 

approaches. Moreover, by focusing on the Cameraman’s face and the wing of 

Butterfly, preserving high frequency components is partly accomplished. 

 

4.3.3 Results of High Frequency Component Learning 

As it is understood by checking the output samples and the statistics of previous 

methods, the missing part in the proposed  methods is preserving the details. Therefore, 

in this section, a method is described to find possible details of the denoised images 

that are processed by  previously developed algorithms. Then, final outputs can be 

calculated as a blended version of denoised images and their estimated details. 

According to the given explanation of the method in Section 3.3.3, the outputs of the 

first trial are not reasonable. Therefore, 2D gradient of the noisy images are used for 

Trial 2. Example outputs of Trial 2 are given in Figure 23. The first idea to reach a 

final denoised image can be adding possible high frequency components to the 

denoised image. However, because of intensity values of the details, the result can be 
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saturated as it presented in Figure 24. Thus, to blend these two results, a constant 

multiplier or a map of details should be determined by optimizing it.  

 

  
a) Details of Cameraman b) Details of House 

  
c) Details of Butterfly d) Details of Lena 

Figure 23. Visual examples of possible details of images. 

 

 
Figure 24. Saturated example 

The method described in Section 3.3.3 Trial 3 is a transformation matrix learning 

algorithm. Therefore, the output should be a denoised image. This is the main 
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difference between Trial 1 and Trial 2. It is developed as the combination of alpha 

rooting approach and multi-resolution images based learning algorithm. Since both are 

partly successful, the combination method should be more successful in both denoising 

and keeping details. To analyze this expectation, this method is employed up to level 

3 with parameters n=7, k=8, and N=5000. These parameters are selected to decrease 

the computational cost, since these parameters provide very close results to those of 

parameters n=9, k=16, and N=10000. The highest results are obtained with level 3. 

The statistical results and visual outputs are given Table 17 and Figure 25 respectively.  

 

Table 17. Comparison of overall statistics of the method described in Section 3.2.2 

with the parameters n=9, k=16, and N=10000 and the method described in Section 

3.3.3 Trial 3 with the parameters n=7, k=8, and N=5000. (Level 3 is considered for 

both.) 
n k N PSNR E-O SSIM E-O VIF E-O IFC E-O 

9 16 10000 28,3605 0,8504 0,4577 2,3812 

7 8 5000 27,9749 0,8373 0,4073 2,2987 
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a) Cameraman (PSNR = 26,9785) b) House (PSNR = 30,7343) 

  
c) Butterfly (PSNR = 27,7976) d) Lena (PSNR = 29,6739) 

Figure 25. Level 3 sample outputs of the method described in Section 3.3.3 Trial 3 

with the parameters n=7, k=8, and N=5000. 

 

4.4 Comparison with Benchmark Studies 

According to the statistical results and visual assessments given in Sections 4.1, 4.2 

and 4.3, some of our algorithms have very promising results. These methods are 

selected to compare with well-known benchmark algorithms such as BM3D (Dabov 

et al., 2007b), KSVD (Elad and Aharon, 2006), EPLL (Zoran and Weiss, 2011), 

WNNM (Gu et al., 2014). Totally, four proposed approaches  are selected which are 

explained in Section 3.2.2 (transformation matrix learning by using multi-resolution 

images), Section 3.3.2 Trial 2,3, and 4 (alpha rooting based high frequency learning 

approach by using iterative thresholding). The statistical comparison is given Table 18 

by considering overall performances for Set12. Also, sample outputs of the methods 

mentioned in Section 3.2.2 and Section 3.3.2 Trial 4 are presented in Figure 26 and 

27.The parameters for both methods are given as n=9, k=16, N=10000, level 3 and 

n=5, k=8 respectively. According to Figure 28 and 29, the proposed algorithm 
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explained in Section 3.3.2 Trial 4 is partly good at preserving the details, but it cannot 

eliminate the noise successfully. The other developed algorithm explained in Section 

3.2.2, denoising performance is satisfying, but it fails to preserve  details. Therefore, 

the method of Section 3.3.2 Trial 4 has promising statistical and visual results in 

comparision with the benchmark studies. Moreover, to see examples besides Set12 

images, Figure 30 and  

Table 19 are given for Castle and Tiger images from BSD68 dataset (Martin et al., 

2001). It is obvious that the method mentioned in 3.2.2 makes output images over-

smoothed, and the method mentioned as Trial 4 of Section 3.3.2 has more successful 

in keeping details, but it should be improved for better denoising performance. 

 

Table 18. Statistical comparison with reference studies by using Set12 (𝜎 = 25). 

Method 
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

BM3D 20,3237 29,5504 0,4986 0,8757 0,1845 0,3919 2,0129 2,3244 

KSVD 20,3237 29,3354 0,4986 0,8667 0,1845 0,4268 2,0129 2,3462 

WNNM 20,3237 30,1081 0,4986 0,8876 0,1845 0,4582 2,0129 2,5840 

EPLL 20,3237 29,6294 0,4986 0,8796 0,1845 0,3989 2,0129 2,3891 

Section 

3.2.2 
20,3237 28,3606 0,4986 0,8504 0,1845 0,4577 2,0129 2,3812 

Section 

3.3.2 

Trial 2 

20,3237 28,6754 0,4986 0,8447 0,1845 0,3360 2,0129 2,3224 

Section 

3.3.2 

Trial 3 

20,3237 28,8664 0,4986 0,8554 0,1845 0,3696 2,0129 2,1754 

Section 

3.3.2 

Trial 4 

20,3237 28,8748 0,4986 0,8497 0,1845 0,3461 2,0129 2,3185 
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Cameraman House Peppers Starfish 

PSNR = 27,1056 PSNR = 32,1520 PSNR = 28,6858 PSNR = 26,9175 

    
Butterfly Jetplane Parrot Lena 

PSNR = 27,7319 PSNR = 26,3491 PSNR = 26,9980 PSNR = 30,7348 

    
Barbara Boats Man Couple 

PSNR = 28,9613 PSNR = 28,5058 PSNR = 28,2616 PSNR = 27,9236 

Figure 26. Outputs of the method explained in Section 3.2.2 with the parameters 

defined as n=9, k=16, N=10000 and level 3. 
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Cameraman House Peppers Starfish 

PSNR = 28,5285 PSNR = 30,8554 PSNR = 29,2662 PSNR = 28,0290 

    
Butterfly Jetplane Parrot Lena 

PSNR = 28,6091 PSNR = 28,0310 PSNR = 28,2516 PSNR = 30,5357 

    
Barbara Boats Man Couple 

PSNR = 28,0730 PSNR = 28,8614 PSNR = 28,9365 PSNR = 28,5202 

Figure 27. Outputs of the method explained in Section 3.3.2 Trial 4 with the parameters 

defined as n=5 and k=8. 
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Figure 28. Comparison with the benchmark studies. 
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Figure 28 (continued). Comparison with the benchmark studies. 

 

 



 

 

62 

    

    
Original BM3D KSVD WNNM 

    

    

Noisy EPLL Section 3.2.2 
Section 3.3.2 

Trial 4 

Figure 29. Comparison with the benchmark studies by focusing on details. 
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 PSNR = 28,9409 PSNR = 27,7049 

Figure 30. Comparison with the benchmark studied by using samples except Set12 

images. 
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 PSNR = 28,6976 PSNR = 27,6431 

Figure 30 (continued). Comparison with the benchmark studied by using samples 

except Set12 images. 
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Table 19. Statistical comparison with the benchmark studies by using samples except 

Set12 images. 

Method Image 
PSNR 

N-O 

PSNR 

E-O 

SSIM 

N-O 

SSIM 

E-O 

VIF 

N-O 

VIF 

E-O 

IFC 

N-O 

IFC 

E-O 

BM3D 
Castle 20,3043 29,2677 0,3103 0,8411 0,1461 0,3617 1,5920 1,7128 

Tiger 20,3165 28,0368 0,4378 0,7988 0,2077 0,3655 2,3692 2,4408 

KSVD 
Castle 20,3043 28,9409 0,3103 0,8344 0,1461 0,3835 1,5920 1,7229 

Tiger 20,3165 27,7049 0,4378 0,7720 0,2077 0,3884 2,3692 2,3792 

WNNM 
Castle 20,3043 29,5660 0,3103 0,8522 0,1461 0,4066 1,5920 1,8321 

Tiger 20,3165 28,3023 0,4378 0,8036 0,2077 0,3949 2,3692 2,5463 

EPLL 
Castle 20,3043 29,4813 0,3103 0,8491 0,1461 0,3713 1,5920 1,8055 

Tiger 20,3165 28,2713 0,4378 0,8083 0,2077 0,3676 2,3692 2,5483 

Section 

3.2.2 

Castle 20,3043 27,0798 0,3103 0,7989 0,1461 0,3976 1,5920 1,7294 

Tiger 20,3165 27,2803 0,4378 0,7416 0,2077 0,4309 2,3692 2,3809 

Section 

3.3.2 

Trial 4 

Castle 20,3043 28,6976 0,3103 0,7955 0,1461 0,3008 1,5920 1,7703 

Tiger 20,3165 27,6431 0,4378 0,7825 0,2077 0,3370 2,3692 2,4945 
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CHAPTER 5: CONCLUSION 
Image denoising is one of the important problems to be solve in image processing , 

since the noise is inevitable truth for images. Although, the technology and successful 

methods are developed for image capturing, encoding, decoding and broadcasting, the 

noise can affect image quality easily. Therefore, denoising is a fundamental step for 

various types of image processing applications. Although it has been studied for 

decades, still the ultimate and perfect solution can not be found, so it is a challenging 

and active research topic. 

 

In this study, the main aim is to develop Locally Linear Embedding (LLE) based image 

denoising algorithms, because LLE is not a common approach for image denoising. 

LLE is known as a dimensionality reduction algorithm in data science. By utilizing the 

data representation and reconstruction properties of LLE, estimated noise-free images 

are obtained from self-information cintained in noisy images by using traditional 

patch-based approaches and basic learning algorithms. During this research journey, 

several well-known and successful algorithms such as BM3D (Dabov et al., 2007b), 

KSVD (Elad and Aharon, 2006), WNNM (Gu et al., 2014) are used as inspiration 

sources. 

 

During the study, many approaches have been tested and analyzed as much as possible. 

It was important to understand the impacts of the parameters and to guide the proposed 

approach. As a further study, the implementation codes of these algorithms can be 

converted into more effecient programming languages to test the computational cost, 

to transfer the process into GPUs to utilize parallel processing. This further study may 

reveal unclear relationships and impacts, that could not been seen, of parameters by 

considering wide range of parameter values and by solving more complex optimization 

problems in a short simulation times. Also, larger datasets containing wide variety of 

image resolution and content should be employed by considering different levels of 

noise to obtain more robust blind image denoising algorithms for different noise types. 

As it is mentioned, Set12 has been used in this study, but it may not be sufficient to 

make an exact comment about the performance of the algorithms, especially for the 

learning-based structures. In addition to that, more complex learning algorithms may 

be more successful. Moreover, some parameters, such as patch size and hard-
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thresholding limit, could be more sensitive to image content and resolution to prevent 

blocking artifacts and over-smoothness.  

 

As a result of these improvements, for any level of noise and any size of images, an 

algorithm can be  designed for blind denoising of grey scale images, even be extended 

to color images. Additionally, the patch size and its shape may be adaptive based on 

image content. For example, smaller patch size could work more effectively for the 

regions that are containing details. Finally, this study has been completed with 

comprehensive experiments and  promising image denoising results. The proposed 

denoising performance can compete against well-known algorithms in literature. 
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