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ABSTRACT 
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Advisor: Asst. Prof. Dr. Faezeh Yeganli 

 

January, 2021 

 

   Sleep experts frequently perform sleep assessments by analyzing the 

neurophysiological signals obtained by the patient in sleep laboratories. It’s a very 

tough, boring and time costly job basically. Restrictions of manual sleep stage 

recording expanded the need for the production of Automatic Sleep Stage 

Classification systems (ASSC). The designation of the sleep phases applies to the 

recognition of the different periods of sleep and is a crucial step in allowing doctors to 

recognize and treat associated sleep abnormalities. In an effort to define the study gaps 

and potentially incorporate a realistic approach, this work seeks to analyze progress 

and difficulties with many Electroencephalograms (EEG) including the evoked 

response and other approaches used in each of the phases for sleep staging, englobing 

the data processing, feature extraction and classification. In this thesis, the sleep-edf 

dataset of healthy subjects measures several classifiers. For a testing accuracy of over 

85%, the optimized model proves remarkable progress. The findings illustrate the 

disparity between the different classifiers. Finally, respectable classification 
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accuracies can be obtained using the 2 EEG channels combined by healthy people. In 

fact, it is possible to generalize algorithms further so they can be used by more 

individuals. 

 

Keywords: Machine Learning, Electroencephalograms (EEG), Biomedical Signal 

Processing, Feature Extraction, Feature Engineering, Sleep. 
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ÖZET 

 

 

 

AUTOMATIC SLEEP STAGE SCORING BASED EEG EVIKED RESPONSE 

 

 

 

Diai, Wassim 

 

 

 

Elektrik ve Elektronik Mühendesliği Yüksek Lisans Programı 

 

Tez Danışmanı: Asst. Prof. Dr. Faezeh Yeganli 

 

Ocak, 2021 

 

Uyku uzmanları sıklıkla uyku laboratuvarlarında ki hastalardan elde ettiği 

nörofizyolojik sinyalleri analiz ederek uyku değerlendirmeleri yaparlar. Bu iş 

temelinde çok zor, sıkıcı ve zamana mal olan bir iştir. Manuel uyku aşaması kaydının 

kısıtlanması, Otomatik Uyku Aşaması Sınıflandırma sistemlerinin (ASSC) üretimine 

olan ihtiyacını artırdı. Uyku evrelerinin belirlenmesi, farklı uyku dönemlerinin 

tanınması için gereklidir ve doktorların ilişkili uyku anormalliklerini tanımasına ayrıca 

tedavi etmesine izin veren çok önemli bir adımdır. Çalışma boşluklarını tanımlamak 

ve potansiyel olarak gerçekçi bir yaklaşımı dahil etmek için, bu çalışma 

Elektroensefalogram (EEG) konusunda yer alan uyku evreleme aşamalarının her 

birinde kullanılan uyandırılmış yanıt ve diğer yaklaşımlar dahil, veri işleme, özellik 

çıkarma ve sınıflandırma konularında ki ilerlemeleri ve zorlukları analiz etmeyi 

amaçlamaktadır. Bu tezde, sağlıklı deneklerin uyku-edf veri seti birkaç sınıflandırıcıyı 

ölçmektedir. % 85'in üzerinde bir test doğruluğu için optimize edilmiş model, kayda 

değer bir ilerleme olduğunu kanıtlıyor. Bulgular, farklı sınıflandırıcılar arasındaki 

eşitsizliği göstermektedir. Son olarak, sağlıklı kişiler tarafından birleştirilen 2 EEG 
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kanalı kullanılarak ilgili sınıflandırma doğrulukları elde edilebilir. Aslında, 

algoritmaları daha fazla kişi tarafından kullanılabilmesi için daha fazla genellemek 

mümkündür. 

 

Anahtar Kelimeler: Makine Öğrenme, Elektroensefalogramlar (EEG), Biyomedikal 

Sinyal İşleme, Özellik Çıkarma, Özellik Mühendisliği, Uyku. 
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CHAPTER 1: INTRODUCTION 

 

Sleep is a vital necessity that allows our body and brain to relax and benefit from more 

physiological balance, keeping us refreshed when we get up. Having enough lively 

sleep allow the body to refresh and survive and continue recharged and avoid diseases. 

Without enough sleep, our brain wouldn’t behave properly. It can damage our mental 

skills, our capacities to work, think and store memories (Mukherjee et al., 2015). 

Seven to nine hours of nocturnal sleep would be enough for adults. Various factors can 

forbid us from enough sleep (stress, work schedules…). A good nutrition and concrete 

habit can guarantee an adequate amount of sleep nocturnally. However, persistent in- 

sufficiency of sleep may be the red alarm to ring for a sleep disorder. 

When we mention “sleep disorder” we can’t turn our eyes off without mentioning the 

most common abnormality which is the sleep apnea, in which the breathing operation 

stops and starts repeatedly. Another common type of sleep disorder is Insomnia, in 

which the patient has difficulty falling asleep or staying asleep, most of times treatment 

connect a combination of medical treatments and new lifestyle regime. 

Indeed, sleep stages scoring can be decisive to regulate sleep and ensuring the patient 

comfort. It can give us an idea about the process which remain closely to understand 

better how the brain handles sleep. The EEG surveys the sleep classes, then analyzed 

and interpreted by specialists. It can be our guiding light to present a clear picture 

about sleep disorders. 

In heart, brain and mental disorders, diagnosis and treatment in fields of medicine, 

electroencephalography (EEG) have long been involved (Siuly, Li, and Zhang, 2016). 

EEG signals analysis has proved its worth and recognized as a notorious method to the 

issue of withdrawing information of Human brain. 

Nowadays, EEG are widely analyzed for several health care reading: brain computer 

interfaces, sleep stage scoring, apnea detection and epilepsy seizure detection (Siuly, 

Li, and Zhang, 2016). An EEG major advantage is to breakthrough brain problems 

detecting disorders. However, a plenty of EEG channels are visualized, analyzed by 

clinicians to have better idea about abnormalities which can propagate and be more 

dangerous in the nearest future. This project target to classify sleep into different stages 

with respect to the AASM and Rechtschaffen Kales (Moser et al., 2009), implementing 
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various signal processing and segmentation techniques, essentially filtering, feature 

extraction and data normalization, we adopted the evoked response which is an 

electrical potential in a specific pattern recorded from a definite side of the nervous 

system, especially the brain, applying Fpz-Cz and Pz-Oz. We relate to a certain time 

frame while introducing EEG Epoching, which is derived from a permanent EEG 

signal called ’epochs’ and is usually time-closed in reference to an activity or 

describing an operation, in another word, the epochs define a set of EEG signals which 

represent the same sleep phase. 

In this thesis, we test and evaluate some machine learning models including Support 

Vector Machine (Chatterjee, and Bandyopadhyay, 2016), Random Forest (Reddy Edla 

et al., 2018), Decision Tree (Guan, Zhao, and Yang, 2019), Multilayer Perceptron 

(Chatterjee, and Bandyopadhyay, 2016), and many others. The evaluation focuses on 

the task of sleep classification using the sleep physionet dataset (Imtiaz, and 

Rodriguez-Villegas, 2015); for this purpose, we preprocessed the data in a way that 

we clean it from noise and obtain the two ordered EEG channels from the 

polysomnography, 30s events from annotations then were extracted. 

In this project, we will clarify how the statistical values based discrete wavelet trans- 

form coefficients were viable to use as input for our classification models. The 

classifiers take two vectors (X, Y), first represents the extracted features, while Y 

present the target Labels (Sleep Stages). The work demonstrates that with first divided 

and merged EEG channels later we have identified a short Methodology in which 

sleeping phases can be graded with the best methods of machine learning as well as to 

achieve 85 % of testing accuracy. As a bonus we will investigate the use of other 

channels like EOG, ECG and EMG submental. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Sleep Overview 

Sleep is defined as an indispensable need for our daily regime, that it makes up about 

a third of our lifetime’s. As water and food, benefiting from enough healthy sleep at 

recommended times is as crucial to survival. sleep confusion, deprivation were behind 

different mental and emotional issues (Brown, 2012) (Killgore, 2010). Sleep can occur 

in all vertebrates, including birds, fish and reptiles, alongside human beings and 

animals (Cirelli, and Tononi, 2008). In order to guarantee an efficient communication 

between the body organs and the brain neurons, sleep represent the bridge between the 

mental and physical health in parallel with daily life challenges. It lies behind all 

essential functions within human beings, including the nervous system, brain, skin, 

leaf and physiology, cognitive system, behavior and sensitivity to disease. Scientists 

prove the sleep deficiencies or sleep usage in un- healthy situations or in conjunction 

with disabilities of some sort, can threaten human health and disrupt the wheel of the 

human body’s mechanisms, as well as the risk of developing diseases such as diabetes, 

heart, arterial problems and obesity in some cases beside depression. Thus, research 

suggest sleeping healthy in order to remove fatigue and help the body work to balance 

blood pressure and get rid of toxins acquired during the day that constitute a negative 

addition the organs responsible for energy production and antibiotics beside strong 

natural immunity. 

 

2.2 Sleep Stages 

2.2.1 Two Types of Sleep 

The normal phases of sleep have already been identified correctly by the specialists. 

Sleeping specialists choose to be separated into two main phases, rapid eye movement 

o (REM) and non-rapid eye-movement (NREM). The above may in turn be classified 

into phases 1, 2, 3 and 4, which are a continuum in relative depth. Everyone has special 

properties, involving changes in the rhythm of the brain wave, eye motions and tone 

of muscle. Electro-encephalographic (EEG) recording tracing electrical signals of 

brain functions has exposed sleep cycles and phases (Loomis, Harvey, and Hobart, 

1937) (Dement, and Kleitman, 1957). 
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NREM and paradoxical sleep switch cyclically over a duration of sleep (Figure 1). The 

function of varying between these two sleep categories is not yet established, but sleep 

disturbances include abnormal cycling and/or missing sleep classes (Kryger, Roth, and 

Dement, 2005). 

 

 

Figure 1. Sleep Stages During a Single Night. (Source: Kryger, Roth, and Dement, 

2005) 

 

2.2.2 NREM and REM Sleep Cycles 

The sleep ration starts in parallel with NREM stage 1, gradually moving to the stage 

2, stage 3, 4 until it reaches the REM stage. It must be noted that the individuals do 

not settle into one single stage of sleeping throughout the hall night, but rather there is 

an alternation between the REM and NREM stages (Figure 1). REM sleep accounts 

for between 20 and 25% of overall sleep spent, while NREM accounts for 70% to 80% 

of sleep spent. A Mean period of 70 to 100 minutes for the first stage of NREM-REM 

sleep. The second and subsequent periods last about 90 to 120 minutes (Kryger, Roth, 

and Dement, 2005). Sleep is paradoxical and is longer in the last third of the night 

period of ordinary adults as the evening progresses. Stage 2 continues to account for 

the bulk of orthodox sleep as the series of sleep increases, while stage 3 and stage 4 

frequently totally disappear. 

 

2.2.3 NREM Sleep Classes 

During NREM sleep, 4 stages are each correlated with distinct physiology and brain 

action. The signals of EEG patterns typical of the four NREM phases are shown in the 

figure 2. Other instruments are being used to map the signature variations in muscle 
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sound and eye motion. The image shows a K-complex in stage 2, with two spindles in 

sleep for underlining. 

 

 

Figure 2. NREM Four Stages Characteristics (EEG). (Source: Kryger, Roth, and 

Dement, 2005). 

 

Sleep Stage 1: 

In sleep-stage pedaling, NREM phase 1 sleep forms a temporary function. Besides 

newborns, people with narcolepsy and other specific neurological conditions, the 

series of sleep of the normal human starts in first phase of NREM. In the initial period, 

this period typically holds out from 1 to 7 minutes, accounting for 2 to 5% of overall 

sleep, and is quickly disturbed by rowdy sounds. In stage 1, brain function on the EEG 

shifts from wakefulness (marked by rhythmic alpha waves) to mixed-frequency low-

voltage waves. A wakeful relaxation condition is synonymous with alpha waves and 

it has an eight to 13 period per second frequency (Kryger, Roth, and Dement, 2005). 

Sleep Stage 2:  

Step 2 sleep spends around 10 to 25 minutes in the first period and rises over every 

subsequent cycle, essentially reflecting 45 to 55% of sleep total. In second sleep phase 

a person needs to wake up more extreme stimuli than in stage 1.  Various frequencies 

operation with the participation of sleep spindles and K-complexes, comparatively low 

voltage, can be seen in brain functions of EEG (Figure 2). Sleep spindles are 

hypothesized to be essential for memory consolidation. Individuals learning a new task 
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have a much higher sleep spindle density than people in a control group (Gais et al., 

2002). 

Stage 3 and 4, Slow-Wave Sleep: 

Third and fourth sleep phases are listed mutually as slow-wave sleep (SWS), much of 

which happens in the first night’s third. Each has distinctive features. Step 3 duration 

is just a few minutes and accounts for around 3 to 8% of night sleep. The EEG 

demonstrates elevated behavior of high voltage, slow wave (Figure 2). Step four is the 

last NREM process in which 10 to 15% of the sleep takes approximately 20-40 minutes 

in the significant levels. The threshold for anticipation is the greatest in the fourth step 

of all NREM phases. This is highlighted by high-voltage activity levels on the EEG 

and slow waves (Kryger, Roth, and Dement, 2005). 

 

2.2.4 REM Sleep 

REM sleep is characterized by the occurrence of desynchronized activity of brain 

waves (low voltage, mixed frequency), muscle atonia and rapid eye movement bursts 

(Carskadon, and William C, 2005).” Saw- tooth,” theta activity and sluggish alpha 

activity are both characteristic to REM sleep, and they have 3-7 counts per second. 

The REM time can last just 1-5 minutes during the initial cycle; however, it steadily 

extends with the progress of the sleep episode (Carskadon, and William C, 2005). 

NREM and REM sleep are subject to different physiological variations (Table 1). 

 

2.3 Electroencephalogram and Polysomnography 

2.3.1 EEG Definition 

EEG (Electroencephalography) indicates the potential calculation that represents 

electrical behavior of a human brain. Which is an easily accessible operation which 

demonstrates how over time the brain behaves. EEG is commonly used in the study of 

brain processes and neurological diseases by doctors and biomedical experts. The 

study of electricity in the brain using the EEG documents is one of the main methods 

for neurology evaluation such as seizures, brain tumors, headache, sleep disturbances, 

dementia and anesthetic control throughout surgery (Hazarika et al., 1997) (Adeli, 

Zhou, and Dadmehr, 2003). Hans Berger brought the first EEG recording machine into 

the world in 1929. The German word” electrenkephalogram,” used by Berger (Collura, 
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1993) a neuropsychiatrist at Jena University, Germany, to prove the graphical 

representations of electrical subjects in the brain. 

 

Table 1. Differences Between NREM and REM 

Physiological act NREM REM 

Brain activity Wakefulness declines Engine and sensory rises 

Heart rate 
Bogs down from 

consciousness 
Increases and varies 

Blood pressure Wakefulness declines Increases (up to 30 percent) 

Sympathetic nerve activity Wakefulness declines Wakefulness rises 

Blood flow to brain Wakefulness declines Increases from NREM 

 

It indicated that currents in the brain shifted due to the physiological state of the brain, 

including sleep, anesthesia and epileptics. It was a groundbreaking theory that helped 

develop a modern medical research branch called neurophysiology. A variety of small 

disks labeled electrons are positioned with short term glues on the scalp zone at various 

positions during the EEG test. The amplifier (One boost per electrode couple), an EEG 

grabbing system are attached to each electrode. Last but not least, on a computer 

screen, brain neural waves are translated to wavy lines to monitor results. Figure 3 

gives an example of how electrodes on the scalp are mounted on a computer screen 

when the EEG signal is registered. The electrodes sense minor electrical charges 

generated by brain cell activity. The charges are amplified and can be written on paper 

as a graph on the screen of the device. The read is then read by a professional. 

 

 

Figure 3. A Sample of EEG Recording (Source: Siuly, Li, and Zhang, 2016) 
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EEG records may have between 1 and 256 electrodes registered in parallel depending 

on their application. The word EEG records are multi-channel. A channel normally 

consists of one pair of electrodes. During EEG recording, each channel generates a 

signal. Depending on where the message in the head is taken, two forms of EEGs exist: 

scalp and intracranial. Small electrodes with strong electrical and mechanical 

interaction are mounted on the scalp of the scalp EEG. During procedure the 

intracranial EEG results in special electrodes inserted in the brain. The EEG is 

designated the electrocorticogram from the cortical surface. by using subdural 

electrodes (ECOG). In normal adults, the EEG magnitude usually varies from 1 to 100 

V and when tested with subdural electrodes, such as needle electrodes, it is about 10-

20 mV. Although the brain architecture is standardized and the cortex functional, EEG 

can differ based on where the recording electrodes are located. The topic of how the 

electrodes is mounted is critical because the various lobes of the brain cortex process 

different kinds of activity. The international 10-20 electrode scheme is the traditional 

way of locating scalp electrodes (Klem et al., 1961). The ”10” and the ”20” reflect true 

differences of 10 to 20 percent of the entire front   or the left lengths of the skull 

between the neighboring electrodes. The following two points decide the positions: 

nasal location between the forehead and the nose, eye level and ossify prominence on 

the midline at the base of the skull behind the head.  

 

 

Figure 4. 10- 20 Electrode Localization Model (Source: Siuly, Li, and Zhang, 2016) 

 

The figure 4 indicates the location of the electrode in the brain by the international 10-

20 method. The lobe is marked by a letter at any position and the location is identified 

by a number. The letters F, T, C, P and O are Frontal, Temporary, Central, Parietal and 
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Occipital. An electrode positioned in the midline is referred to as a” z”. The electrode 

locations on the right hemisphere are even numbers, while those on the left hemisphere 

are odd numbers. Since an EEG tension signal is a variation within the voltages of two 

electrodes, the EEG monitor can be mounted in many ways for the EEG reading 

system. The electrode positioning is known as an assembly. 

 

2.3.2 EEG Signal’s Structure 

The human brain is made up of about 100 billion nerve cells called neurons, and these 

neurons sustain the brain’s electrical burden. Neurons have the same features and have 

the same components as other cells; however, they relay electric signals and transfer 

orders to one another For long trips due to their electrochemical character. There are 

three essential bits of neurons: cell body (soma), axon and dendrites (Carlson, 2005) 

(Ghaedi et al., 2019) as shown in Figure 5 Neurotransmitter receptor sites which can 

also be sent with a paired axon. 

 

 

Figure 5. Structure of a Neuron (Source: Sanei, and Chambers, 2013) 

 

On either of these ends of the cell, dendrites can be found. Neurons can interact with 

each other via the axon-dendrite connection. The action potential is an occurrence in 

which the ion pumps along the exterior side of an axon, quickly altering the ionic 

structure of the axon so that an electric pulse will pass rapidly from the axon to the 

next dendrite (Siuly, Li, and Zhang, 2016). As the ionic charge varies immediately, a 

voltage appears both within and outside the neuron’s cell membrane (Carlson, 2005) 

(Schaul, 1998) (Ghaedi et al., 2019). These neurons emission a chemical called 

neurotransmitters (Carlson, 2005) (Ghaedi et al., 2019). Figure 5 displays the 

interneuron coordination system. The current flow that contributes to surface EEG is 
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demonstrated in figure 6 during a net excitational input. Local current flows arise when 

neurons are stimulated by an electrochemical concenter. Neurons can be separated into 

two sub-sets of electric activity: action potential (AP) and post-symptomatic potential 

(PSP). When the PSP exceeds the postsynaptic neuron threshold level, neuron fires are 

started and an AP is initiated (Siuly, Li, and Zhang, 2016). 

Low frequency summed inhibitory and excitatory PSPs within pyramidal neuronal 

cells establish the electric dipoles between soma and apical dendrites that record 

electrical potential on the surface (Figure 6). These PSPs summarize the cortex and 

spread to the scalp surface of the EEG recorded. 

 

 

Figure 6. Exemplar of the Formation of Very Small Electrical Regions in Pyramid 

Cells by Neuronal Currents (Source: Freeman, and Zhai, 2009) 

 

Nerve cell APs are much shorter in their theoretical field distribution than PSPs. 

Consequently, APs make no major contribution to scalp or therapeutic EEG 

registrations. On the scalp (Carlson, 2005) (Schaul, 1998) (Ghaedi et al., 2019) only 

large populations of activated neurons can produce record-able electrical activity. The 

voltage is usually too small to be calculated precisely with the current technology when 

created from a single cell. 

 

2.3.3 EEG Signals Design and Features 

Frequency is one of the key factors for the diagnosis of medical EEG abnormalities 

and for recognizing the cognitive research’s adaptive behaviors. Frequency means 
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repeated rhythmic operation (in Hz). As frequency, the number of cycles in a second. 

The human EEG potential is manifested as an aperiodic random oscillation, with 

millions of vibrating neuron populations as its source. With sporadic oscillations. The 

amplitudes and rhythms of these signals vary in stable adults from state to state such 

as sleep and awakeness. 5 main brain waves of varying frequency ranges are present. 

Specific bands such as 0.5-4 Hz (delta, d), 4-8 Hz (theta, h), 8-13 Hz (alfa, a), 13-30 

Hz (beta, b) and more than 30 Hz are listed in these frequency bands, from low to high 

frequency bands (gamma, c) (Niedermeyer, and Silva, 2005) (Fisch, and Spehlmann, 

1999). 

 

 

Figure 7. Normal EEG Rhythms (Source: Siuly, Li, and Zhang, 2016) 

 

In pathological brain disorders such as epilepsy, higher frequencies are also more 

prominent. Descriptions of this pattern of EEG are given by the figure 7. The Delta 

wave varies from (0.5-4) Hz, and the form is the strongest and the largest in amplitude 

between waves. It is mostly linked to deep sleep, extreme brain and waking conditions. 

Amplitude is typically greater than 20 V for the Theta wave scales between 4 and 8 

Hz. The theta comes from emotional tension, in particular from anger or deceit and 
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unconscious content, artistic motivation and deep contemplation. The alpha contains 

the frequency spectrum of 8 to 13 Hz, with an amplitude of 30-50 m V, and is located 

predominantly in the back of the head (occipital lobe), when the eyes of this subject 

are closed or relaxed. It is typically related to extreme psychiatric activity, depression 

and stress. Mu activity is also considered alpha activity from sensorimotor zones. The 

beta is in 13-30 Hz. Beta is available. It is observed symmetrically on both sides in the 

frontal region at low amplitude and varying frequencies. The brain produces beta 

waves while it is excited and constantly involved in mental function. These waves are 

the qualities of a healthy power. Beta is the brain wave typically related to active 

things, active interest and an external emphasis or the resolution of concrete issues. 

The frequency of gamma waves is 30 Hz and beyond. Often this rhythm has a 

maximum frequency of about 80 to 100 Hz. It is related to multiple cognitive and 

motor functions. The figure 8 of regular EEG recording is shown. This illustrates the 

average or regular amount of beta activation in an awake EEG. Beta behavior is also 

easier to detect when awakening or drowsiness is comfortable. Electrical impulses 

from non-cerebral origins in EEG are known as artifacts. 

 

 

Figure 8. Regular EEG Recording (Source: Siuly, Li, and Zhang, 2016) 

 

 EEG data are virtually often infected by such devices. The artifacts’ amplitude is 

widely related to the scale of the desired cortical signals. It belongs to substantial 

expertise causes of scientifically accurate interpretation of EEGs. Figure 9 indicates 
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the most common four artifact forms of human EEG recording. 

1- Electrooculographic system triggered by muscle arousal (related to blinking, for ex- 

ample). A major amplitude in frontal electrodes is prominent, sluggish, positive pulse. 

2- The artefact of electrode caused by poor interaction between P3 electrode and skin 

(and hence greater impedance). 

3- Swallowing artefact. 

4- Common electrode reference anomaly due to terrible skin/depleting touch. Big 

wave on all channels identical. 

 

 

Figure 9. An example of the Greatest Kinds of EEG Artefacts (Source: Bin Heyat, 

and Siddiqui, 2015) 

 

2.4 Data Preprocessing 

Data are used to input and provide the learner with decision-making data when the 

algorithm is a grading or regression. Ideally, the extraction or collection of features as 

a separate procedure is not necessary in machine learning; the classifier must use some 

function to exclude those that are meaningless. The sophistication of a learner is 

determined by the data, consistency and quantity. This affects the nature of both space 

and time as well as the amount of training examples needed for a learner (Alpaydin, 

2020). In the following lines we discuss about methods of extraction which are less 

new to the original features. Where the data has a large number of characteristics, its 

size must either be reduced, or a lower-dimensional representation can be sought that 

retains those properties. 
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2.4.1 Feature Extraction Using Wavelet Transform 

Feature extraction works to enhance the success of data collection and retrieval by 

identifying the most distinguishable, descriptive and minimized elements or features. 

Significant vectors for classification problems remain the most common and suitable 

signal presentation (Subasi, 2019). The wavelet transform defines the time-frequency 

properties of a waveform in another way. But rather than time segments, the waveform 

may be divided into scale segments (Semmlow, 2004). Wavelets consist of two 

parameters, one for time scaling and one for time sliding. A wavelet is a time-

concentrated energy oscillating function for improved transient signals. The band-pass 

filter functionality is only one of several mathematical aspects a wavelet function 

should include. Wavelet analysis attempts at both time and frequency to reach a 

suitable position. Two new degrees of freedom, sliding and scaling, allow study of 

precisely built structures and global waveforms in signals. The essential concept of 

evaluation of signals in various scales with an increasing resolution level is described 

by a multiresolution analysis (Sörnmo, and Laguna, 2005) 

 

2.4.1.1 The Continuous Wavelet Transforms (CWT) 

A wavelet family Ψ(𝑠, 𝜏) is differentiated by sliding and scaling Ψ(𝑡) mother wave 

with τ and s parameters which are continuously evaluated. 

 

 Ψ(𝑠, 𝜏)(𝑡) =
1

√𝑠
(
𝑡 − 𝜏

𝑠
) (1) 

 

Where  
1

√𝑠
 component assures the same energy is available to all the scaled functions. 

The wavelet expands for s >1 and contracts for 0 <s <1. The Ψ(𝑠, 𝜏)(𝑡)sampling 

function still has an oscillating pattern. The mother’s wavelet Ψ(1,0) (t) ≡ Ψ(𝑡), takes 

its normal shape for s=1 and τ =0, along with other members of its family generated 

with dilation and contracture. The fact that a wavelet is contract for a smaller time 

scale means that it is more located and located more often due to the increased 

bandwidth of the bandpass response and the change to higher frequency ranges. A 

contrast of the x(𝑡) signal with the probing function Ψ(𝑠, 𝜏), is defining a continuous 

wavelet transforming (CWT) (𝑠, 𝜏)(𝑡)of an x(𝑡) continuous-term signal. 
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 𝜔(𝑠, 𝜏) = ∫ 𝑥(𝑡)Ψ(𝑠, 𝜏)(𝑡)𝑑𝑡
+∞

−∞

 (2) 

 

Build two-dimensional time domain mapping. The CWT can be treated as a linear 

filter since the above equation reflects the convolution between the signal X(𝑡) and 

the impulsively response filter 
Ψ(𝑡/𝑠)

𝑠
. As the CWT splits the waveform into 

coefficients between the two factors s and τ, the initial waveform of wavelet 

coefficients needs to be restored with a double integration (Bodenstein, Schneider, and 

Malsburg, 1985): 

 

 𝑥(𝑡) =
1

𝐶(𝜓)
∫ ∫ 𝜔(𝑠, 𝜏)(𝑡)

𝑑𝜏𝑑𝑠

𝑠2

+∞

0

∞

−∞

 (3) 

Where: 

 𝐶(𝜓) = ∫
|𝜓(𝑓)|2

|𝑓|

∞

0

𝑑𝑓 < ∞ (4) 

 

and (f) represents the Fourier transform of (t). The easiest wavelet is the haar 

wavelet, which belongs to the Walsh’s. The Mexican hat wavelet, defined by the 

equation bellow, is another common wavelet: 

 

 Ψ(𝑡) = (1 − 2𝑡2)𝑒−𝑡
2
 

(5) 

 

The Morlet wavelet is given by the equation, named according to a pioneer of wavelet 

analysis: 

 

 Ψ(𝑡) = 𝑒−𝑡
2
𝑐𝑜𝑠(𝜋√

2

𝑙𝑛2
𝑡) (6) 

 

There have been proposals for a vast range of wavelets, each of which has something 

especially suited for those applications. Wavelets interchange the location of time and 

frequency (Subasi, 2019). 
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2.4.1.2 The Discrete Wavelet Transforms (DWT) 

It is a redundancy which produces innumerable coefficients that are very important to 

correctly represent the original input signal. This is the main issue for CWT. This 

redundancy is only costly if you have to rebuild the first signal, since the estimation 

struggle is rendered quite pointless with all the coefficients. The discrete wavelet trans- 

form (DWT) generates the frugality of the coefficient by limiting scaling variance and 

sliding to power of 2; thus, it is often called the transformation of the dyadic wavelet 

transform with the same abbreviation (DWT). However, from the discrete coefficients 

of the dyadic Wavelet Transform, we can still correctly construct the original signal 

(Bodenstein, Schneider, and Malsburg, 1985). The DWT also constitutes a non-

redundant bilateral change as it is a part of orthogonal family (Barni, and Bartolini, 

2004). the discrete wavelet transform (DWT)is presented as: 

 

 𝜔(𝑗, 𝑘) = ∫ 𝑥(𝑡)𝜓(𝑗, 𝑘)(𝑡)𝑑𝑡
+∞

−∞

 (7) 

 

2.5 Machine Learning 

2.5.1 Machine Learning Overview 

Machine learning is characterized as methodologies using experience to boost 

efficiency or accurately predict. Experience reveals the prior knowledge for the 

learner, which is naturally gathered and made available for investigation by the 

electronic data records. These data may be in the form of digitized training sets for 

human beings or other knowledge gathered from ecosystem experiences. Machine 

learning is meant to con- struct predictive algorithms competently and reliably. As in 

other programming fields, their space and time complexity are important parameters 

for the consistency of these approaches. Since a learning method’s output is dependent 

on the input and functions used, machine learning is usually related to analytical 

information and statistics. Algorithms of interest are usually input based approaches 

that incorporate essential computer science principles with concepts such as 

probability, statistics and optimization. In addition, such applications are dealing with 

large trees of learning concerns. The major categories of knowledge difficulties are 

grouping, regression, classification, clustering and Minimization of dimension (Mohri, 

Rostamizadeh, and Talw, 2018). 
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2.5.2 Machine Learning Framework: 

A machine learning background must begin with the compilation of data and then turn 

it into helpful data using machine learning techniques in order to solve an empirical 

problem or to discover actual machine learning. A map of machine learning consists 

basically of input recovery, extraction components, training, simulation and 

implementation (Harrington, 2012) (Sarkar, Bali, and Sharma, 2018). 

 

 

Figure 10. Machine Learning Framework. 

 

2.5.3 Supervised Machine Learning 

To generate models by supervised, labelled data and forecast effects for hided test data 

samples we employ the supervised algorithms. Some techniques, such as feature 

scaling, extraction and collection, have to begin in the way they are used for training 

or teaching the model and in the testing or evaluation process, the same functionality 

has to be retrieved from unseen test data samples. Figure 11 shows a classical map of 

supervised algorithms. The two stages of model preparation and estimation are 

emphasized, as can be seen in the figure 11. As previously stated also, for both model-

training data and new data samples, the model forecasts performance, similar phases 

of data analysis, feature scaling, extraction, selection and dimensional reductions are 

used. This is a key point to consider when constructing every supervised model.  The 

model also incorporates a controlled machine learning process, training data and 

associated labels, as seen in the figure. During the prediction process (testing), the 

generated model takes new data samples features and yield predicted labels (Sarkar, 

Bali, and Sharma, 2018). 
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Figure 11. Supervised Machine Learning Framework. 

 

2.5.4 Classification 

Classification-based functions are a subsection of supervised machine learning in 

which the primary purpose of predicting responses or outputs in relation to what the 

model learned in the training process is a categorical input data. Any output reply 

therefore belongs to a particular discrete class or group. A broad variety of different 

problem areas can be overcome by machine learning, and the common classification 

algorithms are logistic regression, linear discrimination, the artificial neural network, 

the supported vector machines, the k-nearest neighbors, the naive bayes and the 

decision tree. A correct classifier requires to be trained from the training data during a 

classification task. Classification is just one set of missions that a model should learn 

through. Regression and clustering are the other types (Flach, 2012). 

 

2.5.4.1 Logistic Regression 

While it is called, it is not a regression, but a classification model. Logistic regression 

is an easy, more powerful way of dealing with binary and linear problems. It is a simple 

to carry out classification model that produces very good results with linear groups. It 

is a commonly used algorithm for business classification. The logistic regression 

model such as Adaline and Perceptron is a binary classification statistical approach 

that can be applied to a multi-class classification. Scikit-learn has an excellent version 

of the implementation of logistical regression which supports multi-level classification 

tasks (Raschka, 2015). 
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2.5.4.2 Artificial Neural Networks 

An artificial neural network (ANN) is a concept inspired by the brain and workings of 

the human mind. The nodes are like neurons in our brain and their interconnections. 

The ANN and the human brain are somewhat distinct. The brain operates parallel to 

several neurons, while the computer has only a small number of processors. In contrast 

to the digital processors, neurons are simpler and slower in rate. Another distinction 

between the brain and computer structures is the computing capacity on a broader 

scale. Neurons are made up of parallel operating networks called synapses. The 

operating system processor is active when the system’s memory is passive. In the 

brain, though, the memory and the retrieval unit are separated over the neurons, and 

the memory is positioned in the synapses (Alpaydin, 2020). A regular ANN has a layer 

of input, an output layer, and a minimum layer of one hidden layer between input and 

output as seen in Figure 12. ANN has often a variety of node layers, specified link 

patterns and layer ties, relation weights and triggering node (neuron) functions that 

map outputs. The weights are adjusted during the preparation period. There is a similar 

arrangement in a deep neural Network (DNN), but there are two or three” hidden 

layers” of the inputs of neurons 

 

 

Figure 12. Artificial Neural Networks (ANN) model (Source: Subramanian, 2018) 

 

2.5.4.3 Support Vector Machines 

Support Vector Machines (SVMs), one of the most reliable and robust machine-

learning algorithms. SVMs looks to find the most effective classification feature for 

class labels in the training data in the course of the two-class learning process. In the 
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case of the linearly separable dataset, a comparison of the dividing hyperplanes passes 

through the middle and distinguishes all groups is the function of the linear feature of 

classification. Due to the presence of a range of linear hyper-aircraft, the SVM’s 

function is expanded to ensure the most appropriate margin, is used by increasing the 

margin to the limit of the groups. The concept of margin is instinctively the class-to-

class space. This margin is mathematically the shortest space possible between the 

hyperplane point and the closest data points. The motive behind the investigation of 

SVMs is to decide the most severe margin of hyperplanes which make best use of 

generalization. It makes the highest results in classification of training data and 

classifies potential data completely (Wu et al., 2008). 

 

2.5.5 Performance Evaluation Parameters 

A significant aspect of its architecture are standards for the assessment of a 

methodology’s performance. Different types of performance assessment 

measurements occur in the pattern recognition field. The stability of a method’s 

efficiency is measured based on conventional requirements for bio-medical signal 

analysis in this project. These include accuracy of classification, sensitivity (or true 

positive rate TPR) or recall, False alarm rate (FAR) and receiving operating 

characteristic (ROC) curve. We often use the k-fold cross validation approach to assess 

the efficiency of the existing methods to minimize overfitting. The definitions of these 

performance parameters (Siuly, Li, and Wen, 2011) (Guo et al., 2009) (Siuly, and Li, 

2015) are provided below: 

• Classification accuracy: Total of acceptable assessments divided by total number 

of cases 

• Sensitivity: The estimate of real positive decisions divided by the actual set of 

successful cases 

• Specificity: The total of real negative judgments divided by the actual number of 

negatives 

• FAR: the proportion of false positive by negative class expected 

• ROC: A useful tool to display, organize and pick a performance dependent 

classifier (Fawcett, 2006). The ROC curve shows the sensitivity on the X axis (true 

positive rate) and the 1-specificity on the Y axis, respectively. The region of the 

ROC curve is an essential factor for measuring the output of a binary classifier and 
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the value is always from 0 to1. If the ROC curve region is 1, it implies a perfect 

descriptive capacity for the classifier. If the area is equal to 0.5, the classifier has 

no distinguishing force and there can be no appropriate classifier less than 0.5 

(Fawcett, 2006). 

• k-fold cross-validation procedure: Cross-validation is an analysis outcome 

research validation method. It is commonly used in predictive environments, and 

we want to estimate how correctly a predictive model is used in practice. The cross-

validation method includes the separation of multiple subsets, the analysis on one 

subset (called the training set) and the analysis on the other subset are validated 

(called the validation set or testing set). Multiple cross validation rounds are 

conducted with separate components and the validation to minimize uncertainty. 

Over the rounds, the results are summed. The data set is partitioned into k mutually 

excluding subsets roughly of the same size and repeated k times in the k-fold cross 

validation step (folds) (Sengür, 2009) (Ryali et al., 2010) (Siuly, and Li, 2012). 

Every time, one of the subassemblies is used as a test set and the other k 1 sub - 

assemblies are assembled to create a training set. The average accuracy is then 

estimated over all k samples. Figure 13 demonstrates a design of how the extracted 

vectors of this analysis are distributed by a k-cross-validation-system, mutually 

dependent subgroups. The feature vector set is separated into k sub-sets and the 

method repeats k times as seen in figure 13 (folds). As seen in the figure, one subset 

is used every time as a test set, the other nine subsets as a training set. Every k-

time outcome on the test set is averaged over the iterations k-fold cross validation 

efficiency. A substantial explanation for cross validation rather than conventional 

validation is the fact that there are not enough data for partitioning into different 

training and testing sets without compromising considerable modeling or testing 

capabilities. (e.g., devising the data into two sets of 70% for training and 30% for 

testing). 
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Figure 13. K-Fold Cross-Validation Design 

 

2.6 Related Works 

In (Huang et al., 2013), 2 EEG (FP1 and Fp2) channels were divided into EEG signals 

in near stationary elements, features extraction, reduction based Short Time Fast 

Fourier (STFT) and Fuzzy C-means (FCM)respectively. Multiclass SVM was used to 

build an ASSC system that matched an accuracy of 70.92 %. The study by (Radha et 

al., 2014) employed 6 major EEG signals and various signal processing characteristics 

including time domain, frequency domain and non-linear capabilities were employed. 

In addition, Random Forests and SVM were listed for five stages of sleep. The findings 

revealed the optimum efficiency using the frontal EEG signals, with spectral linear 

characteristics and an RF, which was better than the SVM. The precision data from 6, 

5, 4 stages, 3 and 2 stages as 81, 57 percent, 86,53 percent, 87,49 percent and 95,05, 

respectively, were recorded by (Hassan, Bashar, and Hassan Bhuiyan, 2015), using the 

Bootstrap Aggregation Algorithm with a number of statistics and specimen features 

extracted from a single EEG channel. On the other hand, (Rodríguez-Sotelo et al., 

2014) Generated entropy metrics, Q-algorithm for dimensionality reduction, and J-

mean clustering for 2 EEG-channel automatic stage sleep score. The efficiency of 

automated data achieves maximum classification accuracy of up to 80%.According to 

(Lan et al., 2015), spectral functionality was derived on the basis of Fast Fourier 

Transform (FFT) of PSG data for the classification of sleep stages with a DT classifier 
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based on multichannel and achieved a precision of 84%.Moreover, (Zhu, Li, and Wen, 

2014) applied classification for the sleep stage based on extraction, using a single EEG 

channel and a multiclass SVM as classifier, nine graph field functions in the Visibility 

Map (VM) and Horizontal VG (HVG).  

 

Table 2. Sleep Studies EEG Feature Extraction Techniques-Based Signal Processing 

Technique Features sleep stage classification 

Time Domain 

• standard statistics 

• Integrated EEG 

• Tsallis entropy 

• (Aboalayon, and Faezipour, 

2014), (Aboalayon et al., 

2016), (Khalighi et al., 2011) 

• (Correa, and Leber, 2010), 

(Correa, Orosco, and Laciar, 

2014), (Kumari B. M, 2014) 

• (Khalighi et al., 2013), 

(Khalighi et al., 2011) 

Frequency Domain 

• Non-parametric 

Analysis 

• coherence analysis 

• median frequency 

• (Khalighi et al., 2013), 

(Liang et al., 2012), (Chen, 

Wang, and Wang, 2013) 

• (Krakovská, and Mezeiová, 

2011) 

• (Gudmundsson, Runarsson, 

and Sigurdsson, 2005) 

Time-Frequency 

Domain 

• WT 

• STFT 

• Choi Williams 

• (Khalighi et al., 2013), 

(Zoubek et al., 2008) 

• (Sanders, McCurry, and 

Clements, 2014) 

• (Fraiwan et al., 2012) 

 

The specificity of the six-stage classification was 87.5% using the SVM Classification. 

Hsu et al (Hsu et al., 2013) categorized 5 sleep phases with 87.2% precision based on 

six energy features from the same EEG channel implementing Elman recurrent neural 

classifier (ERNC). (Čić, Šoda, and Bonković, 2013) approached with a total accuracy 

of 90% by SVM classification and the use of a single EEG channel-based time-

frequency features created by the EMD system and using the Generalized ZERO 

Crossing Method (GZC) on obtained intrinsic mode functions (IMF). Three features, 
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the average power method, the preferential frequency band approach and an EEG uni-

channel were fed into a sleep stage classification with (Sanders, McCurry, and 

Clements, 2014) as inputs to the LDA classification method. Using the combination 

of the average power and CFC characteristics, the proposed method graded correctly 

up to an average of 75%, which outperformed each solution individually. Table 2 listed 

different EEG-based signal processing techniques used in each ASSC stage. Koch El 

in (Koch et al., 2014) tackled the issue of classification of the sleep stage by the use of 

a multi-PSG signals based Latent Dirichlet model that included 2 EEG and 2 EOG 

channels. The average accuracy of the model was 68.3%. 
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CHAPTER 3: RESEARCH METHODS 

 

Generally, health care’s data is sensitive compared to others, hence as shown in figure 

14 input collection and segmentation, processing of data, feature selection or 

dimension reduction and classification can be the focus of a four-phase classification 

process. The biomedical data are typically recorded and pre-processed from the human 

body. 

 

 

Figure 14. Biomedical Data Classification Substructure (Source: Subasi, 2019) 

 

The input may contain noise beside missing parts or labels which should be eliminated 

or investigated, the noise was and is still a nightmare for the data pre-processing, the 

artefacts might take us far away from our main goal, it can lead to low accuracy and 

distorted results. Therefore, the pre-processing step is crucial to delete cropped epochs 

to amplify informative details of EEG raw signals. Some multi-channel-based 

techniques for automated sleep stages scoring are investigated here. The features are 

then examined and converted from biomedical data into a functional vector. A 

dimension reduction is used in the next stage to avoid the data redundancy from the 

functional group, building a minimized functional. During the latest phase, the reduced 

vector is identified by a classifier (Subasi, 2019). In the following section the database 

and algorithms used to attend the goal of this project will be investigated. The 

following gives a short overview of the methods for pre-processing data, extraction of 

the features and classification procedures. A new concept is created with EEG signal 

to identify sleep phases in various groups, in the following sections As shown in figure 

15, our procedure commence with generating a new channel order where we use only 

2 EEG channels instead of multi different channels, then we create EEG epochs based 
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on different events found in annotation files, the evoked response from each group of 

epochs will be used as input for our classification model after extracting the valuable 

features using the wavelet transform and statistical methods, several machine learning 

classifiers will be examined in the next lines. 

 

 

Figure 15. Proposed Automatic Sleep Stage Classification Procedure. 

 

3.1 Dataset 

For this dissertation, the dataset was collected from the online data archive of 

Physionet (Goldberger et al., 2000). Physionet provides is an open door to a range of 

physiological signals and signal processing’s open-source applications. There are 

various PSG (Polysomnographic) collections, but Sleep-EDF Expanded Database 

were used for this study (Kemp et al., 2000). The Sleep-EDF database includes 197 

polysomnographic full-night sleep records, including EEG, EOG, EMG and event 

indications. Such reports also include breathing and body temperature. According to 

the Rechtchaffen and Kales manual the associated sleep cycles have been marked 

manually by well qualified technicians and are also accessible. 

 

3.1.1 Data and Annotation Files 

PSG (polysomnography) files include full-night polysomnography of sleep EEG 

registrations (from Fpz- Cz and from Pz-Oz electrodes), EOG files (horizontal and 
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submental chin EMG and an incident symbol). The dossier containing sleep-cassette 

PSG.edf files also often include oronasal respiration and rectal body temperature. 

Hypnograms include sleep stages labeled W, R, 1, 2, 3, 4, M (Movement time) and ? 

(not scored). The qualified technicians have manually labelled all hyperlinks 

(recognized by the eighth letter of the filename) in compliance with the 1968 

Handbook of Rechtchaffen and Kales. But based on Fpz-Cz/Pz-Oz EEG instead of 

C4-A1/C3-A2 EEG. 

 

3.1.2 Sleep Cassette Study and Data 

A 1987-1991 research on the impact of age in sleep on stable Caucasians between 25 

and 101 years of age, without sleep drugs collected 153 Sleep Cassette files 

(Mourtazaev et al., 1995). For two posterior days-night cycles at the subject homes 

two PSGs of about 20 hours were reported each. Though subjects continue their usual 

work, a changed Walkman-like tape recorder was worn as it is mentioned in Bob’s 

1987 thesis chapter VI.4 (Kemp, 1987). Sampling frequency for both EOG and EEG 

were fixed at 100 Hz. Electro rectified and high pass filtered, the submental EMG 

signal, which was later low pass filtered after sampling at 1Hz the resulting EMG cover 

expressed in 𝜇V rms (root-mean-square). The airflow, the temperature of the rectal 

body and the incident predictor were all sampled at same sampling frequency (1Hz). 

we need to mention that there are two-night recordings per subject except for subjects 

13, 36 and 52 which have one file missing each owing to missing recording hardware. 

 

3.2 Data Pre-processing 

After the 67 data subjects have been downloaded, the aim is to acquire epochs and its 

associated ground real, in order to do this, we use the MNE, open-source Python 

software, to explore, simulate and evaluate the neurophysiological data of humans 

such as MEG, EEG, sEEG, ECoG and more. We use the fetcher to load the data and 

extract for each a pair of files for all individuals; PSG.edf: polysomnography included. 

The raw data that is compatible with EEG cask data. Hypnogram.edf with the expert’s 

annotations. Now that we have our input recording, we combine the two files (PSG & 

Hypnogram) in an object of Raw then Events can be derived from annotations 

including descriptions to meet the epochs (Figure 16). An annotation is defined by an 

onset, a duration, and a string description. It can contain information about the sleep, 
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but it can contain details on signals marked by a human: bad data segments, sleep 

scores, sleep events (spindles, K-complex) etc. An Annotations object is a container 

of multiple annotations. 

 

 

Figure 16. Subject 1 First Night’s PSG Recording 

 

We can observe that our raw object contains 7 channels, EEG Fpz-Cz, EEG Pz-Oz, 

EOG horizontal, Resp oro-nasal, Temp rectal and Event marker. 

 

3.2.1 Staging Criteria 

The American Academy of Sleep Medicine’s sleep rating norm was used to obtain im- 

proved outcomes. This manual is even before RK rules and this standard is adopted by 

most of the studies conducted in recent years. Previous findings typically transform 

sleep from RK to AASM simply by inserting slow wave sleep stages S3+S4, which 

produce stage N3. This transition cannot be treated as completely correct, as the 

updated regulations have modified the length of each night sleep level. In addition, the 

new regulations recommend a 500Hz sampling frequency, whereas most data sets 

(including the data used in this study) contain 100Hz sampling frequency of signals. 
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In addition, the EEG channels suggested are F4-M1, C4-M1, O2-M1, and F3-M2, C3-

M2, and O1- M2 backup channels. In this study, EDF-x EEG signals from Fpz-Cz and 

Pz-Oz were analyzed. We will establish a new channel order consisting of just two 

channels that we will use for the remainder of the study. 

 

 

Figure 17. Raw Object Obtained After Combining Hypnogram and PSG for Subject 

1 

 

The Sleep Physionet dataset is labeled with eight labels: wake (W), Stage 1, Stage 2, 

Stage 3, Stage 4, from light to deep sleep, REM sleep (R) where REM is the briefing 

for Rapid Movement Sleep, Motion (M) and Stage (?) in all segments not scoring. We 

only operate with 5 classes: Wake (W), Stage 1, Stage 2, Stage 3/4 and Sleep for REM 

(R). To do so, we pick which events we want and apply an event identifier to each 

event. In addition, there are long wake regions before and after the night for the 

recordings. We only slice per recording 30 mins of wake time before the first 

occurrence and 30 mins after the last occurrence of sleep stages so as to limit the effect 

of class imbalance. As a result, for this analysis, an AASM manual is used, meaning 

that samples are classed at 30 seconds or 3000 data points (f=100Hz) using 5 

classification stages (W, N1, N2, N3, R). 
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Figure 18. Sleep Stages-Based Event-Id from the First Night (1st Subject) 

 

3.2.2 Epoch Determination 

The EEG signals are considered to be non-stationary and aperiodic, and the amplitude 

of their signals is continually changing. We split the EEG signals of a class into certain 

subsets, that we name epochs in this study, for representative values of a particular 

time frame.  

 

 

Figure 19. Sleep Stage 1 Epochs Extracted from the Raw EEG from Subject 1 

 

Thus, in a time window, each epoch contains EEG data. It should be remembered that 

there are many EEG channel data in any epoch. In general, EEG raw input is the 

columns of an epoch as shown in figure 19, Our EEG data is 3D (number of epochs, 

number of channels, number of times), after the epoching procedure, where time is a 
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duration in each period, and epochs are the number of components we have derived of 

the continuous EEG. In order to make the process of visualization simpler, we reshape 

our signal to become (number of times, (number of channels * number of epochs))). 

 

3.2.3 Evoked Response Potential 

A pattern reported by electrodes from a certain part of the nervous system is an 

evocative response potential. The amount of work done to transfer a charging unit 

within a field without acceleration is an electric force. These electrical signals are used 

in disease control and diagnosis. However, ’Event-related potential’ (ERP) may be 

viewed as stereotyped neurophysiological reactions to a voluntary action or an external 

factor. ERPs are acquired by averaging the random electroencephalogram (EEG), for 

example repetitive displays of a similar stimulus, for multiple instances of the same 

phenomenon. Assuming the event’s start is known, the ERP is a time series that 

includes the brain reflex, known as a period or epoch, useful for the distinction of the 

subject’s brain states in response to the multiple stimuli in the sense of the test or study. 

This makes ERP analysis the optimal, long-term method in the interaction between 

brain and machine (BCI). Therefore, we use intervals of sleep to estimate evocative 

answers from various classes of sleep. 

 

 

Figure 20. Sleep Stage 1 Evoked Response’s from Subject 1 
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3.2.4 Feature Engineering 

After we dropped the bad epochs, we extracted the evoked response from the epochs 

obtained from our two channels, The Evoked response input must be translated into 

significant features which reflect the signal information. Power spectral density is one 

possible way in which the variations in the electromagnetic processing of the brain are 

defined in sleep stage scoring. This segment discusses the study of the 

electroencephalogram (EEG) based power spectrum density (PSD). If we analyze the 

spectral power track of the epochs clustered by sleeping periods, we can see that there 

are various sleep signature characters. These signatures continue to be similar among 

different data subjects (Figure 21). 

 

 

Figure 21. PSD of the Epochs Grouped by Sleep Stages from Subject 1 and 2 

 

3.2.4.1 Feature Extraction 

Feature extraction for any form of EEG-related research is considered the most 

effective protocol. An effective feature extraction technique is essential for an efficient 

classification to remove insightful and distinctive features from the initial data frame. 

Generally, if the derived functionalities do not precisely reflect the input investigated 

and are not useful, it can be difficult to describe the identification of the classes or 

features using the classification algorithms (Siuly, Li, and Zhang, 2016). In order to 

construct features that better represent raw data, the essence of the signal should be 

known. EEG signals are non-stationary, meaning the statistics of the signal are time 

shifting. This means that the time domain signal analysis is not enough. The use of 

time domain characteristics, frequency domain features, time-frequency domain 



 
 
 

33 

features, entropy characteristics and non-linear attributes reveals multiple elements of 

the EEG signals. 

 

3.2.4.2 Wavelet Transform 

Wavelet Transform is a popular method of time-frequency distribution and in the last 

two decades has been widely used for signal visualization and interpretation in many 

sectors. It uses both time and frequency features. Thanks to its compact way to 

describe the time-frequency domain of a signal, wavelet transformation is sufficient 

for the study of a non-stationary signal. It is thus an effective method to evaluate and 

derive the EEG signal from its functionality. By moving and scaling wavelets over 

various frequency ranges, the input signal is breaking down. The vector of coefficients 

can be accessed and used as an input of the classifier by the use of the multi-resolution.   

A wavelet family is weighted and shifted such that the EEG signal from the Evoked 

Response is optimally approximated. Both fine and coarser signal resolution 

characteristics are recorded by the wavelets. The characteristics of the Evoked 

Response signal are the wavelet coefficients. The extraction of features using wavelets 

has been commonly used to examine EEG, opening up the possibility of a 

geographical, spectral and time highly detailed explanation. 

 

3.2.4.3 Wavelet Families 

The Wavelet Transform consists of several distinct wavelet families. The wavelet 

families vary because the compact and smooth look of the wavelet has been made for 

each family. Which implies that each form of wavelet has a different shape, 

compactness and usability, which suits the functions that our signal seeks best, and it 

is useful for a different purpose. For this analysis, we examine various discrete wavelet 

families using 2 distinct EEG channels (Daubechies, Coiflets, Biorthogonal, Symlets). 

 

3.2.4.4 Discrete Wavelet Transform 

The Discrete Wavelet Transform still acts as a filter bank in operation. It is thus used 

as a case of high-pass and low-pass filters. An explanation for this, the filter banks are 

a highly useful way to break a signal in many frequency sub-bands. The study can 

often produce the same characteristics correlated with the specific sleep phases during 
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each Evoked response phase of the loop. For each level of sleep, sleep EEG signals 

have been analyzed using discrete wavelet transformation in this project (DWT). DWT 

is often used to dissolve the Evoked Response EEG waves into a comprehensive 

coefficient. We selected 6 stages of decomposition for this purpose beside a 

mathematical approach of statistical values related to the coefficients of each 

decomposition level. The features extracted from this study almost correspond to the 

desired features (Figure 22). 

 

 

Figure 22. Coefficients Extracted from the DWT for Evoked Response 1 from First 

Subject. 

 

3.2.4.5 Statistical Values 

Now that we extracted valuable features from the EEG evoked response signals by 

employing discrete wavelet transform (DWT), it’s time to compute statistical 

parameters of Discrete wavelet sub-bands. Several statistical values (features), which 

are the significant indication values for the distribution of the evoked response data, 

can be derived from each sampled data point. The statistical components derived from 

every coefficient of evoked potential signals are presented below. A number of data 

points of each evoked response were determined from various stages of sleep for each 

feature: 
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Mean: This statistical element has been used for EEG signals (2 channels). It’s 

determined the average of an evoked potential. The data points of an epoch (electrical 

potential) were summed and consequently divided by the total number of data points 

(N), while Xi present every single data point. 

 

 𝜇 =
∑ 𝑋𝑖𝑖=𝑁
𝑖=1

𝑁
 

(8) 

 

Skewness: The asymmetry frequency of a grouping measurement.  The skewing of 

the normal grouping is zero, when the negative and positive skewing show the data is 

biased, respectively, left and right, where 𝑌̅ presents the average, v the standard 

deviation while the summed data points present N. 

 

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑ (𝑌𝑖 − 𝑌̅)3𝑖=𝑁
𝑖=1

𝑁 ∗ 𝑠3
 

(9) 

 

Kurtosis: That is the maximum of a frequency distribution relative to the normal 

distribution in the graph with regard to the concentration of variables adjacent to the 

mean. Where 𝑌̅ presents the average, v the standard deviation while the summed data 

points are N. Kurtosis is considered also a higher-order-statistics measure (fourth 

moment). 

 

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑌𝑖 − 𝑌̅)4𝑖=𝑁
𝑖=1

𝑁 ∗ 𝑠4
− 3 

(10) 

 

Beside calculating the median, Ratio, RMS and standard deviation from frequency 

sub-bands. Heretofore, we examinate three stages from our model, we defined the 

epochs from 67 subject recordings using 2 channels (EEG Fpz-Cz, EEG Pz-Oz), 

evoked response potential from the epochs were obtained describing the 5 sleep stages, 

discrete wavelet transform with different wavelets families takes lead to extract 

important features from our EEG evoked responses, 48 statistical values per evoked 

potential were extracted. 
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Table 3. Number of Statistical Values Extracted from DWT Sub Bands 

Statistical 

values 
Mean 

std 

deviation 
skewness kurtosis median ratio RMS 

Number of 

values 
7 7 7 7 7 7 6 

 

The shape of total extracted features using the first channel or second separated will 

be: 

[(Number of classes∗ Number of signals), number of features] = [335, 48]  

Using 2 EEG channels Combined: 

[2 ∗ (Number of classes ∗ Number of signals), number of features] = [670, 48]  

In order to organize our data via the corresponding labels, we associate with every 

feature extracted the appropriate sleep stage using the 5 labels (N1, N2, N3, REM, 

WAKE). 

 

3.2.4.6 Features Normalization 

Normalization using min-max scaling is a commonly used approach which is accept- 

able when the values are expected in a restricted length. For some machine learning 

techniques standardization could be more realistic as diverse linearly models allocate 

weight to 0 or small random parameters to around 0. The function columns are focused 

at mean 0 by standardization with standard deviation 1, in such a manner that the 

columns establish a regular distribution. Standardization also preserves useful 

knowledge on the outliers and makes it less vulnerable than the min-max scaling which 

scales the data into a small range of values. Standardization is also introduced in scikit-

learn as a standard scaler category, like min-max scaler. The regular scaler must also 

be illuminated as it fits on the training data and these parameters can be used for 

converting the test set or other fresh data points. The features derived from evoked 

responses are of different ranges, and the outcomes of these measures may be 

influenced by this variation. This bias has been avoided by using the standardization 

function approach. We used normalization in this thesis. The classification of features 

has been measured and affected by this theory. The features have been revamped to 

have a zero mean and unit deviation in standardization. For several machine learning 

techniques, this rescaling is essential. It is necessary to refer that we used Label 
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encoding, it involves converting each value in the columns to a number. Consider our 

label columns in the extracted features data frame, each label is assigned a unique 

integer based on alphabetical ordering. 

 

3.3 Classification 

Classification is called the method of marking the data in relevant groups. The initial 

phase in the classification plan is to define the traits or attributes that highlight or make 

for the greater discrimination between the various categories. A classification model 

is enhanced to afford a basis for applying the behavior of the classification processes. 

The optimal model of the classification system should be used, even though it can be 

updated as the construction of the classifier progresses. It is introduced and” trained” 

to detect the selected data components or to define the appropriate mapping input-to- 

output. After training and feeding, the model is able to identify particular inputs. The 

program can then be checked and analyzed using measurements such as machine speed 

and classification accuracy (Hastie, Tibshirani, and Friedman, 2009). For sleep stage 

classification variety of the classifiers have been used. In this thesis we will compare 

the recently emerged methods. Five different classifiers were chosen as follows: 

Linear discriminant Analysis (LDA), Multi-layer perceptron (MLP), Support vector 

machine (SVM), Random Forest (RF), Gradient Boost (GB) and Bagging. 

 

3.3.1 Linear Discriminant Analysis 

LDA is a classification algorithm employed to locate a linear feature composition that 

distinguishes two or more data groups. As a linear grouping, the following mixture can 

be used. The groups can usually be normally allocated in LDA. It can be used for either 

reduction or classification of dimensions like PCA. In our case, which we deal with 

five categories, the priory probabilities for category 1 (N1), category 2 (N2), category 

3 (N3), category 4 (Wake), and category 5 (REM) areρ1, ρ2, ρ3, ρ4, ρ5, the class 

means, and overall mean are 1, 2, 3, 4, 5 and the class variances are cov1, cov2, cov3, 

cov4, cov5 respectively. 

 

 𝜇 = 𝜌1 ∗ 𝜇1 + 𝜌2 ∗ 𝜇2 + 𝜌3 ∗ 𝜇3 + 𝜌4 ∗ 𝜇4 + 𝜌5 ∗ 𝜇5 (11) 
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Then scatters inside and within classes are used to reflect the appropriate class 

dissimilarity criteria. The scatter measurements are determined as follows: 

 

 𝑆𝜔 =∑ 𝜌𝑖 ∗ 𝑥 ∗ 𝑐𝑜𝑣(𝑖)
𝑁

𝑖=1
 (11) 

 

where N goes to the sum of sleep stages. In our practical case, class covariances and 

average are not defined, but from the training set they can be estimated. 

 

3.3.2 Multi-layer Perceptron 

A regular ANN seems to have an input layer, an output layer and at least one hidden 

layer between input and output. ANN often has a number of node levels, specified 

connection patterns and layer ties, linking weights and node activation functions that 

map output to weighted inputs. The weights are adjusted during the training. The back- 

propagation technique is an ANN-training procedure and has two principal phases; 

propagation and weight update. 

 

3.3.2.1 Propagation 

1. The input data sample vectors distributed through the neural network to produce 

from the output layer the output values. 

2. Evaluate the generated output group for that input data vector to the real (wanted) 

output vector. 

3. The output unit error is measured. 

4. Back-propagate error for any link (neuron). 

 

3.3.2.2 Update 

1. Measure the gradient by multiplying the input activation and output errors. 

2. Using the rate of learning in the first weight to calculate by subtraction the 

proportion of the gradient and then change the weight of the node. By using 

different epochs, these two steps are replicated several times before accurate 

findings are obtained. Back propagation is typically used along with algorithms for 

optimization such as stochastic gradient descent. Multi-layer sensor (MLP) is an 
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artificial neural totally connected feed forward network of three layers or more 

(input, output, and minimum one hidden layer). Back-propagation should be used 

to train the model of MLPs (Sarkar, Bali, and Sharma, 2018). 

 

3.3.3 Support Vector Machine (SVM) 

SVM does not allow multi-class classification by nature in its simplest form. It 

facilitates differential grouping and division into two groups of data points. The same 

theory is used to map input points into high dimensional surface for reciprocal linear 

differentiation between each two groups after splitting the multi classification problem 

into several binary classification problems. The one-to-one strategy splits up the 

dilemma of multiple classifications into multiple concerns. Another method we may 

use is One- to-Rest. A binary classifier is per class couple. The classification is set as 

a binary classification of each class. A single SVM is binary and can discriminate 

between two classes. In order to distinguish data points from 5 groups of our dataset 

according to the two overview approaches; the classifier can use 5 SVMs in the One-

to-Rest approach. In one of the five phases of sleep each SVM will estimate 

membership. In the One-to-One approach, it will use 10 SVMS. 

 

3.3.4 Random Forest 

The Random Forest exercises a decision tree as the key classifier, which is to define 

the knowledge and apply this ensemble learning strategy. The ensemble methodology 

blends many qualified classifiers with a view to classifying new instances. A random 

forest is a classification category made up of tree-organized classifier. The individual 

random variables are indistinguishable in such classifiers. In comparison, for the best-

known class each tree makes the unit vote. A random vector is independent of the 

previous random vectors and is used for the development of a tree. For random forests, 

the upper limit for the acquisition of generalization errors will be calculated to the 

degree of two fundamental parameters: the precision of the different classifications 

and their interrelationship. In the case of random forest, there are two parts for error 

generalization. These sections are defined as the power of the individual classifiers in 

the forest and their association according to the raw margin. The correlation must be 

minimized to improve the consistency of the random forest to ensure the power stays 

unchanged. (Goel, and Abhilasha, 2017). 
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3.3.5 Gradient Boost (GB) 

With their “bagging” procedure, Breiman (Breiman, 1996) developed the concept of 

randomness in order to increase its reliability in the function estimation process. 

Original AdaBoost application often employed random sampling, although this was 

assumed a deterministic weighting approximation as long as the application of the 

simple learner does not endorse observational weights but rather as an integral feature. 

Breiman subsequently proposed a hybrid bagging enhancing technique (“adaptive 

bagging”) for additive expansion suitable to the least squares. The simple learner is 

replaced by the required bagged base learner in normal boosting operations, while at 

each boost, the “out of bag” residues are supplied with the ordinary residue. Driven by 

Breiman, the gradient boosting change has been limited, so randomness as an integral 

part of the method is combined. A sub-sample of the training data is taken from the 

whole training dataset at each run randomly (without replacement). This selected sub-

sample is then used to match the simple learner and determine the update model for 

the real iteration instead of the entire sample (Friedman, 2002). 

 

3.3.6 Bagging 

Bagging identified as a set learning classifier trained with randomly chosen inputs 

from a training data frame that improves design variation. In the event of a grouping 

or predictive forecast, the moderate solution is to adopt a weighted choice or a 

weighted mean. This enables one to distinguish test events in order to generate 

accurate predictions for a certain machine learning model. The bagging often covers 

the initial training results, instead of taking individual samples from the domains. 

Bagging is special because the initial training data is re-sampled instead of using 

independent domain datasets. Parallel to the final model with equal weights, separate 

models are composed with many samples. The classifier still succeeds from the initial 

training data with much better predictions than the real classifier and never has 

substantially bad results. This is intended to neutralize the gap by modifying the initial 

preparation details by canceling and duplicating those cases. The classifier promotes 

accuracy and eliminates variation and prejudices by preventing overfitting. However, 

the partial model, robust in the variations in samples training results, does not greatly 

improve (Witten, Frank, and Hall, 2011)  
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CHAPTER 4: RESULTS 

 

In its expanded Sleep-EDF database, the proposed Automatic Sleep Stage scheme 

(ASSC) is standing on the two independent, EEG double-raw signal. The EEG signals 

have been filtered and segmented into 30-seconds epochs, indicating that the evoked 

responses mentioned in the processing step are obtained as averages. New feature sets 

were drawn from the EEG evoked responses of 67 EEG recordings using the discrete 

wavelet transform, to assess the efficiency of our proposed ASSC process. Our 

analysis is based on the criteria available to define the sleep cycle, which include 5 

stages: wake, Stage 1, Stage 2, Stage 3 and REM. For classification tasks, various 

types of wavelets were used to train and analyze inputs at various proportion ranges 

alongside multiple machine learning algorithms, namely: 50% and 50%; 70% and 

30%; and 80% and 20%. For each percentage stage, classifiers have been randomized 

and tested, and the best accuracy was recorded. We also evaluated the efficiency of 

various classifiers, as a certain classifier will produce better results than other 

classifiers in ASSC systems. According to (Hassan, Bashar, and Hassan Bhuiyan, 

2015), A perfect Machine learning classifier does not exist, since a set of machine 

learning models which work very well in one field can work terribly in another. 

Therefore, we have done experiments using various types of classifiers to ensure that 

the logic of algorithm and it’s practical in outside of this paper and have decided that 

it is best for the most diverse results. Moreover, on the basis of our survey, a range of 

ASSC programs have taken into account tests and enhanced results.  

 

 

Figure 23. Confusion Matrix (Source: Subasi, 2020) 
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Our research involves SVM, LDA, MLP, Bagging, Random Tree, and Gradient Boost, 

amongst the most widely used classifications in the ASSC on the basis of our study. 

Calculation of the accuracy, sensitivity, and characteristics with TP, FP, FN and TN 

values will determine the output of these classifiers, where TP corresponds to true 

negatives, FP is false positive, and FN is false negatives. The following are the 

equations of precision, adaptation and specificity: 

 

Firstly, the recall indicates the ratio of classes correctly identified by classes not 

correctly sorted: 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(12) 

 

The ratio of proper classification of all relevant instances can be expressed by the 

formula to determine the precision of the model: 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(13) 

 

The model’s precision is the percentage of instances accurately identified positively 

over other positive instances: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(14) 

 

In the following tables we describe the benefits of the suggested approach and 

importance of the experimental results for each algorithm or method applied. These 

tables highlight each sleep stage’s comparison, sensitivity and specificity with the 

general accuracy of all six classifications analyzed: SVM, LDA, MLP, Bagging, RF 

and Gradient Boost. 
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4.1 EEG Fpz Cz 

 

Table 4. LDA Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 52 50 85 72 36 

73.5 
Precision 55 62 78 62 44 

30 
F1 56 63 68 72 45 

74.35 
Precision 53 62 81 68 45 

50 
F1 43 56 67 49 39 

83.23 
Precision 50 47 79 45 42 

 

Table 5. MLP Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 40 36 86 63 55 

100 
Precision 50 40 75 55 67 

30 
F1 59 47 88 71 53 

99.57 
Precision 59 50 90 75 48 

50 
F1 47 48 82 54 31 

97 
Precision 56 40 80 47 43 

 

Table 6. Bagging Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 50 40 90 67 40 

98.1 
Precision 44 50 88 67 42 

30 
F1 59 63 84 65 33 

97.43 
Precision 55 52 100 72 38 

50 
F1 45 54 81 63 36 

98.2 
Precision 45 50 78 62 41 
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Table 7. RF Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 45 50 91 65 43 

100 
Precision 50 62 83 62 40 

30 
F1 50 68 85 58 40 

100 
Precision 53 59 94 54 47 

50 
F1 43 63 88 64 51 

100 
Precision 45 65 86 60 53 

 

Table 8. GB Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 38 45 88 58 38 

100 
Precision 44 50 79 56 38 

30 
F1 51 46 83 68 46 

100 
Precision 45 47 89 68 47 

50 
F1 52 54 80 66 54 

100 
Precision 57 51 89 57 56 

 

Table 9. SVM Performance from First Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 65 73 93 67 61 

99.25 
Precision 63 73 93 73 58 

30 
F1 60 56 75 39 37 

81.19 
Precision 75 45 66 69 39 

50 
F1 46 53 80 70 27 

91.61 
Precision 36 50 76 74 47 
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4.2 EEG Pz-Oz 

 

Table 10. LDA Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 25 48 72 77 62 

73.50 
Precision 33 61 72 76 32 

30 
F1 47 48 84 65 32 

78.63 
Precision 59 36 100 63 32 

50 
F1 31 43 69 66 54 

85.62 
Precision 30 35 80 70 59 

 

Table 11. MLP Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 43 62 74 76 48 

99.25 
Precision 42 57 71 88 45 

30 
F1 42 41 89 59 59 

97.43 
Precision 53 35 95 52 58 

50 
F1 30 50 82 59 54 

97.60 
Precision 29 42 82 63 67 

 

Table 12. Bagging Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 32 62 77 70 30 

99.62 
Precision 29 57 77 81 30 

30 
F1 43 53 81 65 54 

98.71 
Precision 56 45 78 63 53 

50 
F1 43 66 78 66 51 

98.2 
Precision 35 60 76 79 70 
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Table 13.  RF Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 50 65 91 71 86 

100 
Precision 50 62 91 83 75 

30 
F1 35 69 87 76 40 

100 
Precision 33 64 90 88 33 

50 
F1 45 63 81 70 51 

100 
Precision 41 59 84 76 54 

 

Table 14. GB Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 42 62 74 76 60 

98.13 
Precision 38 57 71 88 60 

30 
F1 45 52 84 70 43 

100 
Precision 56 47 84 64 42 

50 
F1 42 55 82 71 43 

100 
Precision 36 55 82 79 47 

 

Table 15. SVM Performance from Second Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 75 80 100 80 67 

84.85 
Precision 75 75 100 86 67 

30 
F1 60 51 69 76 48 

91.45 
Precision 57 53 67 79 50 

50 
F1 43 64 86 67 50 

100 
Precision 46 63 83 66 50 
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4.3 EEG Fpz-Cz & EEG Pz-Oz 

 

Table 16. LDA Performance from Combined Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 25 48 72 77 62 

74.3 
Precision 30 40 75 67 80 

30 
F1 38 59 74 55 35 

75.64 
Precision 35 52 100 50 40 

50 
F1 35 48 63 60 36 

82.63 
Precision 31 45 69 65 38 

 

Table 17. MLP Performance from Combined Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

48 
F1 54 59 77 83 50 

94.4 
Precision 58 48 77 77 75 

30 
F1 33 58 86 60 44 

97.86 
Precision 33 56 100 50 54 

50 
F1 38 48 77 58 40 

100 
Precision 33 48 74 58 48 

 

Table 18. Bagging Performance from Combined Channel. Accuracy: Training 

Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 48 62 88 79 26 

99.62 
Precision 47 56 92 65 43 

30 
F1 40 60 77 51 41 

99.57 
Precision 32 56 100 53 47 

50 
F1 39 44 85 66 21 

100 
Precision 31 38 87 75 35 
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Table 19. RF Performance from Combined Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 57 67 86 80 75 

100 
Precision 67 62 90 86 60 

30 
F1 46 68 86 71 41 

100 
Precision 55 63 95 61 47 

50 
F1 41 56 85 58 23 

100 
Precision 35 45 87 66 37 

 

Table 20. GB Performance from Combined Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 47 56 74 75 19 

100 
Precision 44 47 71 69 40 

30 
F1 46 58 76 70 14 

100 
Precision 38 52 89 70 20 

50 
F1 44 53 83 57 31 

98.80 
Precision 41 51 86 50 42 

 

Table 21. SVM Performance from Combined Channel. Accuracy: Training Accuracy 

Test Percentage 
Sleep Stages 

Accuracy 
N1 N2 N3+N4 Wake REM 

20 
F1 40 80 96 94 67 

84.85 
Precision 100 75 92 89 67 

30 
F1 50 71 93 73 67 

85.89 
Precision 45 65 100 83 67 

50 
F1 42 61 81 67 53 

95.20 
Precision 45 53 80 69 62 

 

Because we’re facing a multi classification problems. Especially a balanced model 

with five sleep stages, precision is calculated as the sum of true predicted values for 
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sleep stages divided by the total of wrong positives and true positives for different 

sleep stages. We can define precision and recall for each of the classes. For example, 

if we take a look on the random forest in the 2 channels experiment with a test 

percentage of 20%, the precision for the sleep stage 1 is the number of correctly 

predicted sleep stages which is 16 out of all predicted sleep stages (15+1+0+4+7), 

which refers to 16/27=56%. Same process applied on all the sleep stages from different 

channels, for the training accuracy it appoint the sleep stages correctly defined or 

recognized from the train set which varies depending on the train test split percentage, 

for example, implementing the second channel for a 30-70 test train percentage 

respectively, by dint of MLP classifier we achieved 97.43 % which means that from 

235 features (70% of the dataset), almost 229 classes were correctly classified and it’s 

the same process for all the training columns showed in tables above. On the other 

hand, recall and precision together form the F1-score. Above we saw a summary of 

the precision and F1 for the five classes, if we take a look on the table 19, for the Wake 

sleep stage using (20-80) test-train split: 

 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒(𝑊𝑎𝑘𝑒) = 2 ∗
80% ∗ 86%

80%+ 86%
= 82% 

(15) 

 

Where 80% and 86% present the precision and recall respectively of the wake stage. 

In a similar way, we can perform the F1 score for the other 4 sleep classes via different 

channel distribution. As seen from the tables above, the remaining sleep classes had 

different classification accuracies. From our observation, good accuracy results took 

place in the sleep stage 3 that reached more than once 100 % using different machine 

learning methods from different type of channel’s organization. Overall, the precision, 

and training accuracy results for random forest were somehow better for all sleep 

stages except the 2 first evoked responses belonging to sleep stage 1 and 2 respectively. 

About the test classification accuracy, the SVM proved that it can be a significant 

model for multiple sleep stages classification, despite the fact of being a binary 

classifier, it per- formed well face to 5 sleep stages. With using the symlet 12 as a type 

of wavelet, 20% and 80% as testing training percentage respectively, from first 

channel (EEG Fpz-Cz) we achieved a test accuracy of 71.64%. The next experiment 

investigates the use of SVM with second channel (EEG Pz-Oz), adopting the same 
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data splitting percentage, the algorithm attained almost 86% accuracy, which is the 

best test result if we consider that we would like to avoid an overfitted model. Using 

the 2 channels above combined allowed us to reach various accuracies depending on 

the test-train percentage, 85.17% of precision using 80%-10%-10% of train-test-valid 

data respectively, 60% using the 50-50 test train, which was not an efficient split idea 

due to the limited size of dataset used in this experience. The sleep stage 3 was easy 

to predict even for a bad test-train split percentage, the wake stage was hard to predict 

for other classifiers, the random forest using EEG Pz-Oz achieved 88%. About the 

REM the top score of identification was 80% performed by linear discriminant 

analysis using the EEG channels combined. 
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CHAPTER 5: CONCLUSION 

 

This Thesis provided a global, overall survey of automatic sleep stages classification 

applied evoked response and machine learning. Including preprocessing, feature ex- 

traction, normalization and classification. Our algorithm map has four main sections. 

The study affords important information for the reader to explore various biomedical 

signal handling methodologies that have been adopted for same purpose, also negotiate 

their efficiency. Moreover, a new method was adopted that could be easily applied 

using EEG signals and various evoked responses from different signals captured from 

human brain. The principal method of the EEG multi-canal input uses mainly 

denoising techniques to clear the raw of noise. The technique developed in this work, 

used evoked response instead of using the total of the grouped epochs which can be 

hard to do with limited hardware techniques. Statistical features based discrete wavelet 

transform provided a productive approach for extracting and well describing important 

features from different sleep stages. The use of normalization is due to change 

numerical columns in the data frame to a common scale, with respect to the ranges of 

values. It is needed to avoid different extracted features ranges. The experiments 

managed in this thesis used various machine learning classifiers. The proposed method 

achieves a test accuracy of 85% using SVM. Therefore, our feasible methodology 

makes our approach faster and easy to implement using evoked responses instead of 

heavy files of EEG channels, it is worth mentioning that the more our dataset is larger 

the more our model is flexible to achieve better accuracy, thing we realized after using 

the 2 EEG channels combined even with deficient machine learning methods. 

 

5.1 Future Work 

Since our model achieved a good accuracy compared to other’s seen in the Literature 

review, we hope to develop an enhanced model for Epileptic seizure prediction, which 

is a global neurological condition affecting more than 50 million people. In recent 

years, there were several initiatives in medical science to better meet modern diagnosis 

and therapies. Even though we can use a cloud-based application monitoring for 

epileptic seizure prediction. Wearable sensors, smartphones and other device can help 

to conduct the input EEG signal by using multiple channel (more than 100 channel), 
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these devices are connected to the cloud using a communication protocol. In order to 

classify the patient case (Emergency, Home Care, doctor.), our methodology would be 

based on feature extraction from evoked responses, feature selection due to the large 

number of features and then classification using deep learning methods (LSTM, CNN, 

RNN…). 
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