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Advisor: Asst. Prof. Dr. Mehmet Türkan 

 

August, 2020 

 

High dynamic range imaging (HDRI) is a challenging technology but yet demanding 

for modern imaging applications. Low-cost image sensors have limited dynamic 

range, and it is not always possible to capture and display natural scenes with high 

contrast and information loss in any exposure is inevitable. Three solutions for HDRI 

are using expensive high dynamic range (HDR) cameras with HDR-compatible 

displays, tone mapping operators for low dynamic range (LDR) screens and capturing 

and fusing multiple exposures of the same LDR scene via image fusion algorithms. 

Companies that produce user grade devices prefer multi-exposure fusion (MEF) 

approaches to obtain HDR-like images for LDR screens due to its low cost. Hence, 

merging a stack of images containing different exposures of the same scene into a 

single informative image is an attractive research field. In this thesis, a novel, simple 

yet effective method is proposed for static scene MEF and state-of-the-art MEF 

techniques have been investigated. The developed technique is based on weight map 

extraction via linear embeddings (LE) and watershed masking (WSM). To the best of 
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available knowledge, this is the first time LE and WSM are employed in MEF. The 

comprehensive experimental comparisons demonstrate very strong visual and 

statistical results, and this approach should facilitate future MEF studies. 

 

Keywords: Multi-exposure fusion, Linear embedding, Watershed masking, High 

dynamic range. 
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YÜKSEK DİNAMİK ARALIKLI GÖRÜNTÜLEME İÇİN ÇOKLU 

POZLAMAYLA GÖRÜNTÜ BİRLEŞTİRME ALGORİTMALARI 
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Elektrik ve Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Dr. Öğr. Üyesi Mehmet Türkan 

 

Ağustos, 2020 

 

Yüksek dinamik aralıklı görüntüleme (YDAG) zorlu bir teknolojidir, ancak modern 

görüntüleme uygulamaları için gereklidir. Düşük maliyetli görüntüleme sensörleri 

sınırlı dinamik aralığa sahiptir ve yüksek zıtlıktaki doğal sahneleri yakalayıp ekrana 

yansıtmak her zaman mümkün değildir. Ayrıca herhangi bir pozda bilgi kaybetmek 

kaçınılmazdır. YDAG için üç çözüm yüksek dinamik aralığa (YDA) sahip pahalı 

kameralar ile YDA ile uyumlu monitörler kullanmak, düşük dinamik aralığa (DDA) 

sahip ekranlar için ton haritalama operatörleri kullanmak ve resim birleştirme 

algoritmalarıyla aynı DDA sahneye ait birden fazla pozu çekip birleştirmektir. 

Kullanıcı sınıfı cihazlar üreten şirketler, düşük maliyetleri nedeniyle DDA ekranlar 

için YDA benzeri görüntüler elde etmek adına çoklu pozlama füzyonu (ÇPF) 

yaklaşımlarını tercih etmektedir. Bu nedenle, aynı sahnenin farklı pozlarını içeren bir 

görüntü yığınını tek bir bilgilendirici görüntü oluşacak şekilde birleştirmek çekici bir 

araştırma alanıdır. Bu tezde statik sahne ÇPF için özgün, basit ama etkili bir yöntem 

önerilmiştir ve güncel ÇPF metotları incelenmiştir. Geliştirilen teknik, doğrusal 
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gömme (DG) ve nehir sınırı maskelemesi (NSM) yoluyla ağırlık haritasının 

çıkarılmasına dayanmaktadır. DG ve NSM bilindiği kadarıyla ÇPF için ilk kez 

kullanılmıştır. Kapsamlı deneysel karşılaştırmalar çok güçlü görsel ve istatistiksel 

sonuçlar göstermektedir ve bu yaklaşım gelecekteki MEF çalışmalarına yardım 

sağlayacaktır. 

  

Anahtar Kelimeler: Çoklu pozlama füzyonu, Doğrusal gömme, Nehir sınırı maskesi, 

Yüksek dinamik aralık. 
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CHAPTER 1: INTRODUCTION 
 

   We are living in the era of digital immortality; we capture every moment we love by 

using a camera. However, if scenes have high contrast which is the difference between 

intensities of the darkest and the brightest pixels present in an image, these moments 

cannot be saved as we remembered. The vividness of the colors might be damaged, or 

unwanted bright or dark areas can occur in images. Since, the contrast ratio of the 

human visual system (HVS) is around 16,000:1, it can capture all the high-level and 

low-level details, with vivid colors without any problem, but most of the user-grade 

devices cannot capture or demonstrate the images as we see (Hoefflinger, 2007). In 

order to deduce the reasons behind the information loss emerging in images, the 

concept of dynamic range should be scrutinized. The dynamic range has several 

distinct definitions for the HVS and imaging equipment (Eilertsen, 2018). While for 

cameras it is defined as the saturation-to-noise ratio and is dependent on the imaging 

sensor capacity, for screens it is the ratio between the darkest and brightest pixel 

values. On the other hand, for the HVS, dynamic range is the ratio between the smallest 

and largest perceptible luminance of the scene. Furthermore, dynamic range can be 

categorized as LDR and HDR. LDR images are 8 bit/color channel (255:1) and 

previously images containing more than 24 bit/pixel  were considered as HDR images 

(Guan and Qiu, 2007). However, with the improvements in imaging technologies, 

currently 32 bit/color channel images are considered as HDR photographs. Important 

note here that, 96 bit/pixel is a high ratio for equipment but compared to outdoor 

sunlight or human eye it is significantly low (Mccollough, 2008). A detailed 

comparison for dynamic range is provided in Table 1. 

   Although in the near future HDR compatible equipment will become widely 

available to consumers, today most of the imaging devices are in LDR due to high 

economic costs. As a result of the big dynamic range gap between the standard 

equipment capacity and natural scenes (Table 1), the captured images through LDR 

cameras may contain undesirable outcomes, i.e., faulty exposures1 might cause the   

 

 
1 While long exposures cover the details in dark regions, short exposures preserve the details in bright 

areas. Hence, long exposures result in over exposed and short exposures result in under exposed images 

(Fig.2). 



 

2 

Table 1. Detailed Dynamic Range Comparison (Source: Hoefflinger, 2007). 

Equipment or Capture Type Dynamic Range 

Human Eye 1,000,000 : 1 

Outdoor Sunlight 100,000 : 1 

Computer Monitor 500 : 1 

Digital Single Lens Reflex Camera 300 : 1 

Compact Digital Camera 100 : 1 

High Quality Matte Print 50 : 1 

    

   The three common approaches to prevent the detail loss are; (i) using HDR cameras 

with HDR-compatible displays, (ii) using HDR cameras to capture the scene and then 

applying tone mapping operators to project the image to LDR screens, (iii) capturing 

multiple exposures of the same LDR scene and then fuse them via image fusion 

algorithms. Although the first solution provides a simple way to overcome the 

problem, both the HDR cameras and the HDR screens are currently unaffordable to 

most of the consumers (examples of the currently available HDR compatible devices 

are given in Appendix A). The remaining two approaches which are based on software 

are more attractive to both researchers and user-grade technology manufacturers. The 

first method is tone mapping which is matching the real measured values in an image 

to the capabilities of the screens by preserving the colors and details in the image 

(Reinhard et al., 2002). There are two main approaches for tone mapping; Global Tone 

Mapping which is mapping each pixel’s intensity and global image characteristics 

without considering its spatial location, and Local Tone Mapping which also considers 

the spatial location of a pixel. While local tone mapping preserves the fine details 

better than global tone mapping, global tone mapping is computationally efficient and 

tends to produce less artifacts compared to local tone mapping (Eilertsen, 2018).  

   There are successful implementations of tone mapping (Akyuz and Reinhard, 2006; 

Kiser et al., 2012; Eilertsen, Mantiuk and Unger, 2015; Kim and Lee, 2020), however 

several drawbacks exist such as, low subjective contrast and color saturation reduction 

which damage the image’s visual quality (Akyuz and Reinhard, 2006; Kiser et al., 

2012). Therefore, due to the high economic cost of HDR sensors and the problems 

regarding the tone mapping approach, companies producing user-grade devices mostly 
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prefer the image fusion approach to obtain HDR-like images. Image fusion is a basic 

image processing technique that combines a stack of input images into a single output 

image which contains more information than any other inputs (Li, Kang and Hu, 2013). 

From medical imaging to military applications, image fusion algorithms are one of the 

well-known methods to create informative images for wide range purposes (Li et al., 

2017). After the general idea of fusing a multi-exposure sequence was first introduced 

in (Burt and Kolczynski, 1993), image fusion has been actively used to acquire HDR-

like content. There are two main approaches for image fusion; pixel-based or patch- 

(block-) based image fusion. In pixel-based image fusion, the output image is acquired 

by combining the values and intensities of the input images based on its average 

(Mertens, Kautz and Van Reeth, 2009; Raman and Chaudhuri, 2009). In block-wise 

image fusion, the features are extracted from a kernel, and then the fusion process is 

conducted patch-by-patch (Ma and Wang, 2015; Ma et al., 2017). Furthermore, the 

adoption of image fusion for multi-exposure sequences is called as MEF and it is 

defined as merging a stack of images containing different exposures of the same scene 

into a single image. These different exposures can either be static, which means the 

exposures can contain only very slight movement i.e. the motion of tree leaves, or 

dynamic where during capturing the images in a stack motion is present i.e. moving 

objects.  

   The general idea of MEF can be explained as follows. As demonstrated in Fig.1, 

each exposure has distinct parts which carry different information such that, the under 

exposed image has significant information in the sky, the flowers and the tower are 

visually more plausible in the over exposed image, and the normal exposed image 

carries small amount of general details of the image. The main aim of MEF is to keep 

the most informative parts, i.e. the best detailed regions, of the differently exposed 

images (e.g., under, normal and over) and blend them into a single informative image 

without damaging the fine details and color information. The acquired HDR-like 

image can be projected at any LDR screen without any significant information loss.   

   In recent decades, many successful MEF studies have been performed (Mertens, 

Kautz and Van Reeth, 2009; Li and Kang, 2012; Li, Kang and Hu, 2013; Ma and 

Wang, 2015; Paul, Sevcenco and Agathoklis, 2016; Lee, Park and Cho, 2018; Hayat 

and Imran, 2019).  Although, the blending operation, which can be defined as the 

weighted sum of the input images, is nearly similar for each study, the MEF studies 
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mainly differ in the way of determining the fusion weight maps of different exposures. 

The measurement of fusion weights is indeed a challenging task and, for both static 

and dynamic contents, weight maps should be carefully considered since they enable 

us to keep the most informative parts of the distinct exposures. Furthermore, to 

eliminate artifacts such as halos in the sharp changeovers in the reconstructed images, 

the jitter effect in between exposures or to prevent ghosting2 effect in the dynamic 

scenes, weight maps should be thoroughly formed. 

   In this thesis, MEF techniques are investigated and a simple yet effective MEF 

method based on LE (Roweis and Saul, 2000) and WSM (Beucher and Lantuejoul, 

1979) is developed for static scenes. While initial fusion maps are extracted through 

LE of image pixel/patch spaces, a WSM procedure is used for adjusting these maps to 

refine informative parts of images for the final fusion step. Since, visual quality 

assessment is subjective, to present objective results the performance of the proposed 

approach is compared with the well-known MEF algorithms using the perceptual 

quality assessment method introduced in (Ma, Zeng and Wang, 2015).  This thesis 

presents promising visual and statistical experimental results and it will enlighten the 

path of the future work and open new doors in this research domain. 

 

 

a) Under Exposed 

 

b) Normal exposed             

 

c) Over exposed             

 

    

 
2 If during the capture of distinct exposures camera movement occurs or moving objects are present 

ghosting emerges (Wu et al., 2010). 

Figure 1. Different Exposures of the Tower Sequence (Source: Ma and Wang, 2015). 
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   The rest of the thesis is organized as follows. The following chapter of this thesis 

explains the well-known MEF studies, and gives information related to their 

advantages and disadvantages. The proposed novel MEF algorithm is explained in 

detail in Chapter 3. The dataset, which is used in this study, the experimental setup, 

the perceptual quality assessment method, and obtained experimental results are given 

comprehensively in Chapter 4. Finally, a conclusion of the thesis with a brief summary 

and possible future directions is given in Chapter 5. 
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CHAPTER 2: LITERATURE REVIEW 

 

   In recent decades, many successful MEF studies have been performed, e.g., 

(Mertens, Kautz and Van Reeth, 2009; Li and Kang, 2012; Li, Kang and Hu, 2013; 

Ma and Wang, 2015; Paul, Sevcenco and Agathoklis, 2016; Lee, Park and Cho, 2018; 

Hayat and Imran, 2019). Since in this thesis traditional processing techniques are 

adopted for weight estimation, the comprehensive literature review focuses on the 

studies based on classical methods but also provides additional examples of weight 

estimation based on neural networks. Furthermore, only the milestone MEF methods 

in the literature are explained in detail and used for the comparison with the proposed 

method. 

 

2.1 Mertens’ Method: Exposure Fusion 

   Although, Mertens’ method (Mertens, Kautz and Van Reeth, 2009) is one of the 

oldest MEF algorithm, the method still gives superior results compared to most of the 

remainder approaches. This pixel-based MEF approach is designed for the static 

scenes and does not require any post-processing or tone mapping after the obtainment 

of the fused image which is the main advantage of the study. Because of this advantage, 

most of the studies available today follow the weight map extraction scheme of this 

method. 

   As aforementioned, all MEF studies differ in the extraction of the weight maps. The 

main reason of calculating the weight maps is to keep the best parts in the stacks at the 

fusion stage. For instance, in input stacks, there might be some colorless or flat regions 

due to the over or under exposure. Hence, while to these non-informative parts less 

weights are assigned, detailed regions containing vivid colors with fine details should 

be assigned with higher weights. The extraction of distinct weight maps can carry out 

this assignment and Mertens introduced three different weights; contrast (C), 

saturation (S) and well-exposedness (WE) which carry different information and are 

called as “quality measures”.   

   Covering the texture information is one of the challenging tasks in the MEF studies. 

Therefore, to keep the fine details such as textures or edges, Mertens calculates C by 

simply applying a Laplacian filter to the gray scaled version of each image in the stack. 



 

7 

During the calculation of C, while edges and textures take high importance, flat regions 

take less.  

   Another challenge in MEF methods is recovering the color information, since the 

colors in the over or under exposed images is damaged due to clipping. To acquire a 

more visually appealing fused image and to solve the toneless color problem, S is 

calculated via taking the standard deviation of each channel in RGB domain.  

   The final weight WE is calculated to keep the most informative intensities which are 

nonzero in both under and over exposed images in the stack. To do so, each intensity 

value is weighted according to its closeness to 0.5 via Gaussian curve. This Gaussian 

curve is applied to each channel separately then, WE is calculated by multiplication of 

resulted maps. To combine the information and to obtain a final scaler weight map as 

in Eqn. 1, each quality measure is multiplied and normalized so that they sum to one 

at each pixel.  

 𝑊𝑖,𝑗,𝑛 = 𝐶𝑖,𝑗,𝑛 × 𝑆𝑖,𝑗,𝑛 × 𝑊𝐸𝑖,𝑗,𝑛 (1) 

 

where, 𝑖, 𝑗 is the corresponding pixel location on 𝑛𝑡ℎ input image (I) in image stack 

𝐼𝑛 = {𝐼1, 𝐼2, … , 𝐼𝑛, … , 𝐼𝑁}. 

   As a general fusion approach, the weighted blending of input images is calculated as 

follows, 

 𝐹𝑖,𝑗 = ∑  𝑊′𝑖,𝑗,𝑛 

𝑁

𝑛=1

𝐼𝑖,𝑗,𝑛  (2) 

 

where, 𝑊′𝑖,𝑗,𝑛 = [∑ 𝑊𝑖,𝑗,𝑛 
𝑁
𝑛=1 ]

−1
𝑊𝑖,𝑗,𝑛 . 

   However, most of the time, this approach can produce undesirable outputs which 

contain disturbing seam effects or halo effects. To avoid this problem, Mertens adapted 

the pyramidal image decomposition technique into his approach. To blend the images, 

the Gaussian pyramid of the weight maps and Laplacian pyramid of the input images 

are taken. Then, fusion is carried out at each pyramid level (ℓ) separately, and the fused 

image is obtained by collapsing each ℓ of the fused image as follows, 
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 𝐿{𝐹}ℓ
𝑖,𝑗 = ∑ 𝒢{𝑊′}ℓ𝑖,𝑗,𝑛 𝐿{𝐼}ℓ𝑖,𝑗,𝑛

𝑁

𝑛=1

 (3) 

 

where, 𝒢 and L denotes the Gaussian and Laplacian pyramids, respectively. 

 

2.2 Raman’s Method: Bilateral Filter Based Compositing for Variable Exposure 

Photography 

   In (Raman and Chaudhuri, 2009), the main aim is fusing the exposures while 

preserving the details in both over and under exposed images. The approach is based 

on an edge preserving filter which is known as the bilateral filter (Tomasi and 

Manduchi, 1998). As Mertens’ approach, this method is also designed for static scenes. 

As mentioned before, preserving the texture of the scene is challenging and Raman 

aimed to solve this problem via a simple approach. The main goal of the study is to 

keep strong textures in the images while eliminating the weak ones. Therefore, the 

bilateral filter can be used effectively, since it assigns high weights to the strong 

regions (edges or textures) and smoothens non-informative weak regions. Thus, 

Raman created a function based on bilateral filter which detects both regions and give 

weights according to their importance.  Furthermore, a sum-to-one constraint is 

applied to form each exposure’s weight map as follows, 

 𝐵𝐹𝑖,𝑗,𝑘 =
(𝜏 + |𝐼𝑖,𝑗,𝑛 − 𝐼𝑖,𝑗,𝑛

𝐵𝐹 |)

∑ (𝜏 + |𝐼𝑖,𝑗,𝑛 − 𝐼𝑖,𝑗,𝑛
𝐵𝐹 |)𝑁

𝑘=1

 (4) 

 

where, 𝐼𝑖,𝑗,𝑛
𝐵𝐹  is the filtered input images, and 𝜏 is a constant value which is selected as 

70 during the study, and ∑ 𝐵𝐹𝑖,𝑗,𝑛 = 1𝑁
𝑛=1 . 

   After finding the weight maps, the fused image is obtained via Eqn. 2. Although this 

method is simple and cost effective, Raman’s approach presents statistically weak 

results when the image sequence contains multiple over or under exposed images. 

Moreover, since the algorithm focuses on covering the details, it produces toneless 

colored fused images.  

 



 

9 

2.3 Gu’s Method: Gradient Filed Multi-Exposure Images Fusion for Dynamic 

Range Visualization 

   In (Gu et al., 2012), an approach which tolerates a little movement for dynamic 

image fusion yet usually results in ghosting effects, is proposed to fuse static images. 

The proposed method is based on the gradient field modification and the distance of 

intensities in feature space which is calculated via Euclidean metric.  

   This study demonstrates weak results in fusing LDR images. Its performance could 

be improved by choosing another effective metric based on HVS models. Moreover, 

since the method mostly focuses on detail enhancement, the algorithm fails when 

preserving the colors and causes artificial looking, low-light results.   

 

2.4 Li’s Method (Li12): Detail-Enhanced Exposure Fusion   

   In (Li, Zheng and Rahardja, 2012), a quadratic optimization-based MEF method 

extracts the fine details from each LDR image in the stack then fuses them by using 

Mertens’ approach to create sharper edged HDR-like content. An initial fused image 

is obtained via Mertens’ algorithm. Then, this initial image is enhanced with the vector 

of fine details which is formed from the gradients of each exposures’ luma component. 

The largest absolute gradient value is used to find the most detailed position among 

other exposures but since this maximum value is commonly noisy, the desired vector 

field is adjusted as follows,  

 𝑣𝑞 = 
∑ 𝑊𝑛,𝑞 ∇ log(Yn,q)

𝑁
𝑛=1

∑ 𝑊𝑛,𝑞
𝑁
𝑛=1

 (5) 

 

where, Yn is the luma component of 𝑛𝑡ℎ image in the sequence, 𝑊 is the weight of the 

gradient vector, and q = 1,2. 

   Then the fine details are extracted by solving a quadratic optimization problem given 

in Eqn. 6, 

 min
ℒ𝑑

[
 
 
 
‖ℒ𝑑‖2 +

(

 ‖
𝑣1 −

𝜕ℒ𝑑

𝜕𝑥

√|𝑣1|1.2 + 10−4
‖

2

2

+ ‖
𝑣2 −

𝜕ℒ𝑑

𝜕𝑦

√|𝑣2|1.2 + 10−4
‖

2

2

)

 

]
 
 
 

  (6) 
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where, ℒ𝑑 is vector containing fine details. 

   Finally, the initial fused image which is acquired via the method in (Mertens, Kautz 

and Van Reeth, 2009) is combined with the fine details obtained in Eqn. 6 to create 

sharper edged HDR-like images as follows, 

 𝐹 = 𝐹𝑖𝑛𝑡 exp (ℒ𝑑) (7) 

 

where, 𝐹𝑖𝑛𝑡 is the initial fused image. 

   The main advantage of this study is that the method creates sharper looking images 

whose details are preserved while covering the colors. Since the initial fused images 

are based on the successful method of Mertens, it is not surprising that visually 

appealing images are obtained. However, in some cases artificial looking images are 

acquired because, the fine details significantly surpass the color information.  

 

2.5 S. Li’s Method: Fast Multi-exposure Image Fusion with Median Filter and 

Recursive Filter 

   The study (Li and Kang, 2012) which can fuse both static and dynamic scenes is 

carried out successfully. The following quality measurements are extracted: local 

contrast and brightness for static images, and color dissimilarity weight for dynamic 

images. The main advantage of this study its fastness and ability to preserve details in 

most of the images in a stack. Moreover, the method can be used for infrared image 

fusion. On the other hand, while eliminating the motion in images, artifacts occur 

which affect the color of the image and the statistical results. The reason behind this 

drawback is, since the approach takes RGB channels separately, the usage of the color 

information and preserving the correlation between the channels is hard to accomplish.  

   To preserve the fine details in each image in the sequence, local contrast is first 

calculated via the convolution of the gray image and high pass filter, then winner-take-

all approach is applied to obtain a local contrast weight map (𝒜) as follows, 

 

𝒜𝑖,𝑗,𝑛 = 𝐼𝑖,𝑗,𝑛
𝑔

∗ ℎ𝑖,𝑗 

𝒜𝑖,𝑗,𝑛
′ = {

1, 𝐴𝑖,𝑗,𝑛 = max {𝐴𝑖,𝑗,𝑛 , 𝑛 = 1,2, … .𝑁}

0, 𝑒𝑙𝑠𝑒
 

(8) 
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where, 𝐼𝑔 is the gray image of an input image, h is high pass filter and * denotes the 

convolution operation.  

   To mainly cover the colors of the images in the stack, brightness of each pixel is 

determined to decide if a pixel is too dark or too bright. By using the hat function 

which is often employed in MEF methods to eliminate the negative effects of under or 

over exposed pixels, the created brightness weight map (𝔅) is constructed by only 

pixels which are neither under nor over exposed. The hat function takes the value of 1 

if the intensity value is in between the selected threshold value (𝛽) or 0 if not. 𝔅 is 

acquired as follows,  

 𝔅𝑖,𝑗,𝑛 = {
1, 𝛽 <   𝐼𝑖,𝑗,𝑛 

𝑔
<  255 − 𝛽

0, 𝑒𝑙𝑠𝑒
 (9) 

 

where, 𝛽 is in between 10-30 during this study. 

   To prevent the ghosting effect in dynamic scenes, firstly histogram equalization3 is 

performed onto the input images. Then, median filtering is applied to each image since 

it is widely used in motion detection methods (Li, Yu and Yang, 2007). Finally, the 

color dissimilarity weight map (𝒞) is calculated and adjusted by morphological 

operators to remove noise as follows, 

 𝒞𝑖,𝑗,𝑛 = (exp(
(𝐼𝑖,𝑗,𝑛

𝐸 − 𝐼𝑖,𝑗,𝑛
𝑀 )

2

𝛿2
) ⊕ 𝑠1) ⊖ 𝑠2 (10) 

 

where, 𝐼𝐸 is the histogram equalized input image, 𝐼𝑀 is the filtered input image, 𝛿 

equals to 0.1 for controlling the Gaussian curve, 𝑠1 and 𝑠2 are disk-like structuring 

elements, ⊕ and ⊖ denote dilation and erosion operations, respectively. 

   After finding each weight map, the weight feature for the fusion stage is computed 

via multiplying each weight map. If the scene is static the 𝒞 is not considered in the 

computations below. But if the scenes are dynamic then firstly, brightness and color 

dissimilarity features are multiplied to prevent weighting the same pixels of different 

 
3 Histogram equalization is a technique to adjust an image’s intensity values (Gonzalez, Woods and 

Eddins, 2004). 
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exposures with motion as follows, 

 

𝒟𝑛 = 𝒞𝑛 × 𝔅𝑛 

𝒟𝑖,𝑗,𝑛
′ =  [∑ 𝒟𝑖,𝑗,𝑛 

𝑁

𝑛=1

]

−1

𝒟𝑖,𝑗,𝑛 . 
(11) 

    

   Some of the pixels at the same location in the input stack may be labelled as both 

over and under exposed. To prevent this problem, only the pixels under an average 

score (1/𝑁) are labeled as zero (Eqn.12),  

 𝒟𝑖,𝑗,𝑛
′ = {

0, 𝒟𝑖,𝑗,𝑛
′ < 1/𝑁

1, 𝑒𝑙𝑠𝑒
 (12) 

 

where, N is the number of images in the stack, and when 𝒟𝑖,𝑗,𝑛
′ = 0, that pixel is from 

either under exposed or over exposed or from moving objects in 𝑛𝑡ℎ image in stack.  

   After preventing this problem, the final weight is obtained as follows,  

 𝑊𝑛
′ = 𝒟𝑛

′ × 𝒜𝑛 . (13) 

   

      However, the calculations above results in noisy and sharp images since they are 

formed only by 1s and 0s. That is why, the edge-preserving recursive filter is used to 

refine the final weight map. Then fusion is conducted via the general fusion approach 

(Eqn. 2). 

 

2.6 S. Li’ Method (Li13): Image Fusion with Guided Filtering 

   In another successful work of S. Li (Li, Kang and Hu, 2013), a novel method is 

designed for not only MEF but also for multi-spectral, multi-focus and multi-modal 

fusion which is the main advantage of the study. The research can be divided into two 

stages, (i) weight map extraction and adjustment through guided filtering, (ii) fusion 

of adjusted weight maps and layers, i.e. base layer and detail layer, via weighted 

average method. Two-scale decomposition is used in order to separate each source 

image into base layer and detail layer which contain the intensity and fine details, 

respectively. The base layer and detail layer of each exposure in the image stack is 
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obtained as, 

 

𝐵𝑛 = 𝐼𝑛 ∗ 𝑍 

𝐷𝑛 = 𝐼𝑛 − 𝐵𝑛 

 

(14) 

where, B is the base layer, 𝑍 is the average filter which has a size of 31 x 31, and D is 

the detail layer. 

   After the obtainment of two layers, the weight maps are formed from the pixel 

saliency which demonstrates the pixel’s unique quality. Then, they are adjusted via a 

guided filter which is an edge-preserving smoothing filter. The Laplacian filter is 

firstly applied to each input image in the stack, then the local means of absolute value 

is convolved with the Gaussian low-pass filter to form saliency maps of each exposure 

(SM) (Eqn. 15), and lastly weight maps are obtained via Eqn. 16. 

 𝑆𝑀𝑛 = |𝐼𝑛 ∗ 𝐿| ∗ 𝒢𝑟,𝜎 (15) 

 

 𝑊𝑛 = {
1, 𝑆𝑀𝑛 = max

1≤𝑛≤𝑁
 { 𝑆𝑀𝑛 } 

0,                                           𝑒𝑙𝑠𝑒 
 (16) 

 

where, L is Laplacian filter, W is the weight map, and 𝒢 is Gaussian filter with 

parameters size r, and 𝜎 is set to 0.5. 

   Since, each W of exposures is mostly noisy which causes artifacts in the fusion stage, 

the problem is solved by using spatial consistency. If two neighbor pixels’ information 

such as brightness or color are close to each other, they are assigned similar weights. 

To carry out this assignment, instead of solving the problem via optimization-based 

methods, a guided filtering is applied to each W to obtain the final fusion weight maps 

of both layers. In this approach, the pixel’s local variance is investigated. If the local 

variance is small, then the pixel is assumed to be in a flat region but if the local variance 

is large that means the pixel is on an edge. By this approach, the pixels with similar 

values take similar weights. After obtainment of the weight maps, fusion is carried out 

as follows,  
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 𝐹 =  ∑[(𝑊𝑛
𝐵 × 𝐵𝑛) +

𝑁

𝑛=1

(𝑊𝑛
𝐷 × 𝐷𝑛)] (17) 

 

where, 𝑊𝐵 and 𝑊𝐷 are the filtered weight maps of the base layer and detail layer, 

respectively. 

 

2.7 Paul’s Method: Multi-Exposure and Multi-Focus Image Fusion in Gradient 

Domain 

   In (Paul, Sevcenco and Agathoklis, 2016), a novel approach is introduced for both 

MEF and multi-focus image fusion purposes in YCbCr color space. There are two main 

ideas behind taking this spatial domain for the image fusion process. The first one is 

that the HVS is more sensitive to the luminance channel than the chrominance 

channels. The second reason of selecting the Y channel is that, as proposed in Li12’s 

study, the gradient magnitude of this channel in over or under exposed images is much 

lower than any image with better exposure in the image stack which implies that by 

taking the maximum magnitude of gradient at each pixel location, visually appealing  

images can be obtained. Therefore, the weight extraction and the reconstruction of 

each channel is conducted separately. Subsequently, fusion is conducted by combining 

each reconstructed channel.  

   As aforementioned, the reconstruction process of the Y channel is carried out by 

using the gradient information of an image in stack. After finding the gradient 

components in both directions, the magnitude is calculated to find the fused luminance 

gradient as follows, 

 

𝜙𝑖,𝑗,𝑛
𝑞 = 𝐼𝑖+1,𝑗,𝑛 − 𝐼𝑖,𝑗,𝑛  

𝑧𝑖,𝑗 = max
1≤𝑛≤𝑁

√  (𝜙𝑖,𝑗,𝑛
2 )2+ (𝜙𝑖,𝑗,𝑛

2 )2     

𝜙𝑖,𝑗 
𝑞 = 𝜙𝑧𝑖,𝑗

𝑞
 

 

(18) 

where, 𝜙𝑖,𝑗,𝑛
𝑔

 is the gradient of the 𝑛𝑡ℎ images’ Y channel in q-direction, 𝑧 is the 

maximum gradient magnitude at pixel location, and 𝜙𝑖,𝑗 
𝑔

is the fused luminance 

gradient. 
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   Then by using the gradient reconstruction technique inspired from (Sevcenco, 

Hampton and Agathoklis, 2015), the Y channel is reconstructed. Afterwards, to prevent 

intensity clipping problems in the reconstructed Y channel, a post-processing step is 

performed via nonlinear mapping to ensure the outcomes of the pixel intensities of the 

reconstructed channel lies in the required range. To finalize the reconstruction of the 

Y channel, histogram equalization is applied. 

   Finally, the Cb and Cr channels are reconstructed via a straightforward pixel-based 

approach as follows, 

 

𝐶𝑏𝑖,𝑗 = ∑ 𝑤𝑏𝑖,𝑗,𝑛 × (𝐶𝑏𝑖,𝑗,𝑛 − 128) + 128

𝑁

𝑛=1

 

𝐶𝑟𝑖,𝑗 = ∑ 𝑤𝑟𝑖,𝑗,𝑛 × (𝐶𝑟𝑖,𝑗,𝑛 − 128) + 128

𝑁

𝑛=1

 

(19) 

 

where, 𝑤𝑏𝑖,𝑗,𝑛 =  
|𝐶𝑏𝑖,𝑗,𝑛 −128 |

∑ |𝐶𝑏𝑖,𝑗,𝑛 −128|𝑁
𝑛=1

 , and 𝑤𝑟𝑖,𝑗,𝑛 = 
|𝐶𝑟𝑖,𝑗,𝑛 −128 |

∑ |𝐶𝑟𝑖,𝑗,𝑛 −128|𝑁
𝑛=1

 . 

   Then, the fused image is obtained by combining reconstructed channels, Y, Cb, Cr. 

 

2.8 Ma’s Method: Robust Multi-Exposure Image Fusion: A Structural Patch 

Decomposition Approach 

   This study is an update of the patch-wise MEF method introduced in (Ma and Wang, 

2015) which is only for static scenes, but the study (Ma et al., 2017) modifies the 

previous version of the work by adding the motion detection algorithm for dynamic 

scenes. Important note here that, since the dynamic cases are out-of-context for this 

thesis, only the part of the algorithm designed for static cases is explained in detail. 

   The patches at the same locations for each image in the stack are extracted without 

separating the color channels to avoid the problems mentioned in Gu’s and S. Li’s 

method. Then, for each patch (𝑥𝑛), three components are extracted which are signal 

strength (cs), signal structure (ss), and local mean intensity of the patch (𝜇𝑥𝑛
) (Eqn.20), 

 𝑥𝑛 = 𝑐𝑠𝑛 ⋅ 𝑠𝑠𝑛 + 𝜇𝑥𝑛
 (20) 
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where, 𝑥𝑛 = {𝑥𝑛 | 1 ≤ 𝑛 ≤ 𝑁}, N is the number of exposures in the stack,  

𝑐𝑠𝑛 = ‖𝑥𝑛 − 𝜇𝑥𝑛
‖, 𝑠𝑠𝑛 = 

𝑥𝑛−𝜇𝑥𝑛

‖𝑥𝑛−𝜇𝑥𝑛‖
 , and ‖. ‖ denotes the 𝑙2 norm. 

   Since, this decomposition is invertible, the patches of fused image are obtained via 

determining each component separately and inverting the decomposition. 

Subsequently, these patches are combined to obtain fused image.  

   Signal strength is related to local contrast and since, higher contrast shows better 

visibility, the highest cs among all exposure patches is selected for reconstruction of 

cs as follows, 

 𝑐𝑠̂ = max
1≤𝑛≤𝑁

𝑐𝑠𝑛 . (21) 

   

   For the reconstruction of ss, the power weighting function is used to adjust each 

patch’s signal structure impact as follows,  

 𝑠𝑠̂ =  
∑ (‖𝑥𝑛 − 𝜇𝑥𝑛

‖
𝜗
) 𝑠𝑠𝑛 

𝑁
𝑛=1

∑ (‖𝑥𝑛 − 𝜇𝑥𝑛
‖

𝜗𝑁
𝑛=1 )

 (22) 

 

where, 𝜗 ≥ 0, and larger 𝜗 indicates larger strength. 

   Similarly, 𝜇 is adjusted by a weighting function which takes 𝜇𝑥𝑛
 and the global mean 

intensity value of the exposure (𝜇𝐼𝑛) as inputs. This weighting function is the updated 

version of the WE function introduced in Mertens’ method, and in this study, it is used 

as follows, 

 𝐿𝐺(𝜇𝐼 , 𝜇𝑥) = exp (−
(𝜇𝐼 − 0.5)2

2𝜎𝑔
2

− 
(𝜇𝑥 − 0.5)2

2𝜎𝑙
2 ) (23) 

 

where, each 𝜎 controls the Gaussian curves of 𝜇𝐼 and 𝜇𝑥𝑛
, respectively. 

   Then, the reconstructed mean intensity of the local patch is obtained as follows, 

 𝜇̂ =
∑ 𝐿𝐺(𝜇𝐼𝑛 , 𝜇𝑥𝑛

)𝜇𝑥𝑛
 𝑁

𝑛=1

∑ 𝐿𝐺(𝜇𝐼𝑛 , 𝜇𝑥𝑘
)𝑁

𝑛=1

 . (24) 
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   Finally, the reconstructed components are used to form the fused patches (Eqn. 25).  

 𝑥̂ = 𝑐𝑠̂ ⋅  𝑠𝑠̂ + 𝜇̂  (25) 

       

   These patches are combined through a moving window with a fixed stride. The 

overlapped regions of patches are averaged to form the fused image. According to the 

experimental results, the designed method generates detailed, high quality color MEF 

images with very few ghosting effects which makes this study very successful.  

 

2.9 H. Li’s Method: Multi-Exposure Fusion with CNN Features  

   After presenting their potential with several image processing applications, in (Li 

and Zhang, 2018) convolutional neural networks (CNNs) are used to extract features 

and weight maps for both static and dynamic scene MEF. This study not only designs 

a MEF algorithm but also compares several CNNs models such as, denoising, super-

resolution and classification networks to analyze their performance on feature 

extraction for MEF purposes. According to the reported results, rather than using the 

third layer of the denoising and the super-resolution networks, the first layer of the 

classification network should be employed since it is more efficient for feature 

extraction due to its lower computational cost. After determining the most effective 

CNNs model, two different weight maps; the feature vectors related to visibility 

measurement (V) and temporal consistency (T) are extracted via CNNs. Weight map 

V is calculated by taking the 𝑙1 norm of the feature vector which is extracted from 

convolutional layer (Eqn. 26), 

 𝑉𝑖,𝑗,𝑛 = ‖𝐶𝑁𝑁(𝐼𝑛)‖1 (26) 

 

where, CNN(.) is the pre-trained deep classification network. 

   T is calculated for dynamic scenes. As previously mentioned, the ghosting effect is 

the biggest problem for dynamic scenes. To prevent this effect, motion detection is 

performed via calculating the Euclidean distance between two normalized feature 

vectors which are extracted from CNNs. When there is a motion in the image stack, 

this Euclidean distance will give smaller similarity value. To map the similarity 

between the features into a range of [0,1], a gaussian kernel is used and T is obtained 
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(Eqn.27),  

 

𝑡𝑖,𝑗,𝑛
2 = ‖𝐶𝑁𝑁̂(𝐼𝑖,𝑗,𝑛) − 𝐶𝑁𝑁̂(𝐼𝑖,𝑗,𝑛′)‖

2

2
 

𝑇𝑖,𝑗,𝑛 = ∑ 𝑒𝑥𝑝
−𝑡𝑖,𝑗,𝑛

2

2𝜎2

𝑁

𝑛=1

 

(27) 

 

where, 𝑛′ is another input image in the stack and 𝜎 is the standard deviation which is 

determined as 0.05 during this study. 

   Then, mask (ℳ) is calculated via the hat function to simply adjust the weights 

according to the importance of the pixels (Eqn.28).  

 ℳ𝑖,𝑗,𝑛 = {
1, 𝛽 <    𝐼𝑖,𝑗,𝑛   < 1 − 𝛽

0,  𝑒𝑙𝑠𝑒
 (28) 

    

   Lastly, the final fusion weight map is calculated as follows,  

 𝑊𝑖,𝑗,𝑛 = 
𝑉𝑖,𝑗,𝑛 × 𝑇𝑖,𝑗,𝑛 × ℳ𝑖,𝑗,𝑛

∑ 𝑉𝑖,𝑗,𝑛 × 𝑇𝑖,𝑗,𝑛 × ℳ𝑖,𝑗,𝑛 +  𝛼𝑁
𝑛=1

 (29) 

 

where, 𝛼 is a small coefficient which is added to prevent division by zero. 

   The fused image is obtained via linear weighted combination of images in the 

exposure stack as in Eqn. 2.   

   The most attractive part of this study is that CNNs can help to determine weight 

maps without solving any complicated optimization problems. The designed model 

produces desirable MEF images with low cost. However, there are two drawbacks of 

this study; the method is very slow and since CNNs are like black boxes, fine tuning 

the CNNs’ parameters is a challenging task. 

   All the MEF approaches which are explained in detail are well-known MEF 

algorithms in the literature. The common part of all the studies is the fusing approach 

of the input stack. However, the weight map extraction differs and to the best of 

available knowledge, there is no study which can extract the weight maps via LE and 

watershed masks. Consequently, this thesis focuses on a novel MEF approach for static 



 

19 

scenes by taking advantage of LE and WSM. The proposed MEF algorithm which is 

called MDO-MEF is explained in the next Chapter of this thesis.  
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CHAPTER 3: PROPOSED MEF APPROACH 

 

   As mentioned previously, MEF studies are diverse in the fusion weight extraction 

stage and adjusting these weight maps is a challenging procedure. The proposed 

approach here depends on patch-based weight estimation (per pixel) via LE of images 

and WSM for obtaining global fusion maps. To the best of available knowledge, the 

proposed MEF method is a novel framework taking the advantage of LEs of image 

pixel/patch spaces and WSM of images. A simple flowchart of the proposed MEF 

algorithm is demonstrated in Fig. 2.  

   The block diagram in this figure illustrates two branches for extracting linear 

embedding weights (LEW) and WSM from the given stack of image exposures. These 

maps and masks are then combined to obtain global fusion masks in order to obtain a 

fused image. In the following, the developed method is detailed including the 

determination of three main exposures; LE of pixel/patch spaces of images for 

extracting weight maps; watershed masking together with the reasons why it is 

preferred rather than a binary masking; and the blending procedure of multi-exposure 

images to obtain HDR-like fusion, which is later to be enhanced in a final post-

processing step. 

 

 

 

 

Figure 2. Proposed MDO-MEF Method’s Simple Flowchart. 
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3.1 Determination of the Exposures 

   Although it can be extended to any number of exposures, the proposed MEF 

algorithm blends three different exposures to obtain a fused image. These exposures 

will be referred to as the “under exposed”, “normal exposed” and “over exposed” in 

remaining parts of this study. These exposures need to be carefully determined 

especially when the input stack has more than three images. The proposed method for 

determining the exposures consists of three steps. The first stage is to compute the 

histogram of each image in the sequence and extract the probability density function 

(PDF) of each histogram to form the feature vector. Secondly, a decision is made to 

label the images according to three clusters which are under, normal and over exposed 

through k-means clustering algorithm. Lastly, the images in the same cluster are 

averaged through a sliding window operation and the three exposures are obtained. In 

the following part of the thesis, the determination of the exposures is explained in 

detail. A simple flowchart of the determination of exposures is illustrated in Fig. 3 and 

the proposed algorithm is provided in Appendix B.   

 

3.1.1 Histograms 

   Histogram are widely used in image processing and they are utilized to count the 

number of distinct pixel intensities. Since 8-bit images are employed in this thesis, the 

range of the histograms is between 0 and 255. As a straightforward approach, 

histograms of different exposures can be utilized effectively in separating the stack of 

input images into three clusters. Therefore, the PDFs of histograms are employed as 

features in k-means clustering to determine the three exposure clusters of images 

named as under, normal and over exposed. A PDF demonstrates the occurrence 

probability of a pixel in an image. The PDFs of histograms are used as features because 

each image in the input sequence has a unique pixel intensity distribution. For instance, 

while the majority of the pixels in the over exposed image in the sequence tend to have 

values near to 200-255, most of the pixel values in the under exposed image are around 

0-50. On the other hand, the normal exposed image’s pixel intensities tend to spread 

nearly uniformly in the scale of 0-255. Based on these observations, all the images in 

the input sequence can be divided into 3 labels (under, normal, over) via a clustering 

algorithm. 
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3.1.2 k-Means Clustering 

   k-means is an unsupervised clustering algorithm where K items are labeled into k 

number of clusters (Khan and Ahmad, 2004). The main goal is to maximize the 

similarities of data points in the same cluster and to minimize the resemblance of 

different clusters (Khan and Ahmad, 2004). In the k-means clustering algorithm, K 

data points are placed into clusters depending on the Euclidean distance between data 

points and the centroids of each cluster. Hence, data points closest with the same 

cluster centroid are placed into the same cluster (Jain, 2010). Since k-means is an 

unsupervised clustering method, the first assignment of the k data clusters, and initial 

centroids are decided arbitrarily. It is an iterative algorithm with the update of centroids 

and the data point assignments to the nearest centroids, until there is no change in data 

points belonging to k distinct clusters (Basu, Davidson and Wagstaff, 2008).  

   In this thesis, the feature vector based on the PDFs of the histograms are given to the 

k-means clustering algorithm. The cluster number is assigned to 3 beforehand and a 

condition is added to ensure that each cluster contains at least one image. Since k-

means clustering is initialized uniformly at random from the range of the feature 

vectors, the algorithm runs 1000 iterations 5 times to obtain consistent results. 

Moreover, instead of determining each centroid based on the Euclidean distance, 

according to practical observations one minus the sample correlation between data 

points is used as distance metric. 

 

Figure 3. Determination of the Exposures. 
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3.1.3 Finding the Exposures via Sliding Window 

   After grouping the exposures in the image stack, a sliding window based averaging 

technique is applied in each cluster to obtain three different exposures (i.e., under, 

normal, over) of images to be used in the fusion process.  The sliding window 

technique is based on a simple averaging procedure to combine images in the same 

cluster. Instead of a pixel-based averaging in these clusters, the averaging operation 

here operates on a very small neighborhood of pixel patches (e.g., 5×5 pixels) and 

overlaps between adjacent patches are implicitly allowed which are finally averaged 

uniformly in these regions. This enforces all image patches to agree on the overlapped 

areas, hence satisfying local compatibility and smoothness while reducing the noise 

and artifacts in the combined image per exposure cluster. 

 

3.2 Weight Maps via Linear Embeddings 

   After the exposures are determined, the weight map extraction begins with the 

novel LE approach.  

   In image processing, there is an observation which suggests that natural images are 

sampled from low-dimensional manifolds. Hence, densely sampled images, or rather 

small texture patches, can be successfully reconstructed as a linear combination of 

their neighbors. This is generally referred to as neighbor embedding in image 

processing tasks (Chang, Yeung and Xiong, 2004; Türkan, Thoreau and Guillotel, 

2012, 2013, 2014), and is inspired by the manifold learning algorithms for 

dimensionality reduction (Roweis and Saul, 2000; Tenenbaum, De Silva and 

Langford, 2000; Donoho and Grimes, 2003). In this study, the manifold sampling 

assumption is unified with exposure images in a given stack, which results in a new 

framework for weight map extraction in MEF. The general idea originates from the 

well-known dimensionality reduction technique called locally linear embeddings 

(LLE) (Roweis and Saul, 2000), based on the assumption that each exposure image is 

sampled from a manifold structure and all these exposures should lie on or close to a 

locally linear patch of the underlying sampled manifold.  

   The LLE algorithm aims to map J-high dimensional data to lower dimensional data 

space while preserving the structure of the manifold. To do so, the algorithm firstly 
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takes a data consisting of 𝜂 real-valued column vectors 𝒷𝑗 and identifies the 𝓂 nearest 

neighbors 𝒷𝑗𝓀
 by using Euclidean distance, where 𝓀 = 1,… ,𝓂 , and 𝑗 ∈ 𝐽.  

   Each data point 𝒷𝑗 can be approximated by its neighbors 𝒷𝑗𝓀
 with the selection of 

optimal weights 𝑊𝑗𝓀. 𝑊𝑗𝓀 can be computed by solving the least-squares problem in 

Eqn. 30 with a sum-to-one constraint while minimizing the reconstruction error given 

in Eqn. 31. Important note here that, enforcing the weights with the sum-to-one 

constraint leads to invariance to translations, rescalings and rotations, hence, the 

intrinsic geometric characteristics in each neighborhood are preserved.  

 𝔼𝑗(𝑊𝑗𝓀) =  ‖∑𝑊𝑗𝓀(𝒷𝑗 − 𝒷𝑗𝓀
)

𝓀

‖

2

2

            𝑠. 𝑡       ∑𝑊𝑗𝓀 = 1,

𝓀

 ∀𝑗 (30) 

 

 𝔼(𝑊) =   ∑‖𝒷𝑗 − ∑𝑊𝑗𝓀𝒷𝑗𝓀

𝓀

‖

𝑗 2

2

 (31) 

    

   Then, the optimum weighting coefficients are calculated as follows,  

 𝓌𝑗
𝑻 = 

[ℬ̂𝑗
𝑇ℬ̂𝑗]

−𝟏
𝟏

𝟏𝑇[ℬ̂𝑗
𝑇ℬ̂𝑗]

−𝟏
𝟏

 (32) 

 

where, ℬ̂𝑗 = [𝒷𝑗1 − 𝒷𝑗 |… |𝒷𝓂 − 𝒷𝑗] and 𝓌𝑗 = [𝑊𝑗1 | … |𝑊𝑗𝑘].  

   In this thesis, the weight maps are extracted based on this approach. After 

determining three exposure images, namely, 𝒰 (under exposed), 𝒩 (normal exposed) 

and 𝒪 (over exposed) via clustering and sliding window, a patch-based scheme is 

designed for characterizing the intrinsic properties of manifold structures of spatially 

local pixel/patch spaces of these exposures. While representing three exposure images 

by matrices U, N and O of sizes r × c pixels, n × n image patches are extracted with 

lexical ordering of image pixels, i.e., i = 1...rc. Note that n × n patches 𝒖𝑖, 𝒏𝑖 and 𝒐𝑖 

extracted from U, N and O respectively, are centered around the pixel indexed by i 

and they are all collocated patches originating from each different exposure. These 

image patches are later transformed into the stacked column vectors of size n2 × 1. The 
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parameter n is fixed to a sufficiently small neighborhood of size 5 pixels. Let us denote 

these patch triplets in a set as 𝓟 = {𝒖𝑖, 𝒏𝑖, 𝒐𝑖}∀𝑖 . 

   The main objective is to characterize point-based structures by means of patch 

manifolds through spatially collocated exposure patches. Local geometric properties 

of each n × n neighborhood indexed by i can be linearly characterized by solving three 

optimization problems given in Eqn. 33 as follows, 

 

{𝐖𝑖
1,𝐖𝑖

2} = arg min
{𝑤1,𝑤2}

‖𝒐𝑖 − [𝒖𝑖   𝒏𝑖] [
𝑤1

𝑤2
]‖

2

2

   𝑠. 𝑡   𝑤1 + 𝑤2 = 1 

{𝐖𝑖
3,𝐖𝑖

4} =  arg min
{𝑤3,𝑤4}

‖𝒖𝑖 − [𝒏𝑖   𝒐𝑖] [
𝑤3

𝑤4
]‖

2

2

   𝑠. 𝑡   𝑤3 + 𝑤4 = 1    

{𝐖𝑖
5,𝐖𝑖

6} =  arg min
{𝑤5,𝑤6}

‖𝒏𝑖 − [𝒖𝑖   𝒐𝑖] [
𝑤5

𝑤6
]‖

2

2

   𝑠. 𝑡   𝑤5 + 𝑤6 = 1 

(33) 

 

where each individual patch in the set 𝓟 is linearly embedded into remaining two 

exposures path subspaces leading to a set of weights {𝑤𝑗}𝑗=1

6
 and {𝐖𝑖

𝑗
}
𝑗=1

6
 denotes the 

set of linear embedding weight maps at each pixel location i, ∀i.  

   Note that there exists a sum-to-one constraint in each optimization in order to enforce 

the approximation to lie in the subspace of the patch to be embedded and also to 

provide invariance to translations. The optimization problems in Eqn. 33 can be easily 

solved by means of an inner product (Gram) matrix similar to Eqn. 32.  

   An example of the extracted six weight maps from Tower stack in given in Fig. 4. It 

can be clearly observed that each embedding weight map highlights specific parts of 

the exposures to be blend. In short, 𝐖1 and  𝐖5 originate from 𝒰 for reconstructing 

𝒪 and 𝒩, respectively. Similarly, 𝐖2 and  𝐖3 comes from the image 𝒩 for 𝒪 and 𝒰; 

and  𝐖4 and  𝐖6 are extracted from 𝒪 for 𝒰 and 𝒩. These weight map pairs obtained 

from the same exposures are later combined absolutely in Eqn. 34 to form fused linear 

embedding maps, namely 𝐄1
′ , 𝐄2

′ , and 𝐄3
′  for 𝒰, 𝒩 and 𝒪 images, respectively. 
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a) W1 

 

b) W2 

 

c) W3 

 

d) W4 

 

e) W5 

 

f) W6 

Figure 4. An Example of Extracted Weight Maps via LE. 

 

 

𝐄1
′ = |𝐖1| + |𝐖5| 

𝐄2
′ = |𝐖2| + |𝐖3| 

𝐄3
′ = |𝐖4| + |𝐖6| 

(34) 

    

   Since 𝐄1
′ , 𝐄2

′ , and 𝐄3
′  are calculated from different exposures in the image stack, they 

are normalized to sum-to-one and then smoothed to provide local smoothness in the 

transition regions while avoiding possible noise and artifacts. The resulting embedding 

weights 𝐄1, 𝐄2, and 𝐄3 are obtained as follows, 

  𝐄k = (𝐄k
′  ⊗ [  ∑ 𝐄k

′

3

k=1

  ]

−1

) ∗ 𝓖 (35) 

 

where 𝓖 is a Gaussian smoothing kernel, ⊗ and ∗ denote the element-wise 

multiplication and the convolution operators, respectively.  

   Figure 5 exemplifies the obtained final linear embedding weight maps for the Tower 

stack. The procedure of acquiring the LE maps is provided as an algorithm in 

Appendix B. 
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a) E1 

 

b) E2 

 

c) E3 

Figure 5. The Final Embedding Maps to be used in the Further Stages of the Algorithm. 

 

3.3 Watershed Mask Construction based on Morphological Operations 

   A general strategy in MEF studies is to employ binary masks, e.g., hat function 

explained in Section 2.5. These masks often produce artifacts in the regions where 

sharp texture and color changes occur in the scene. Regular smoothing filters can be 

applied to avoid these artifacts but this process may cause another undesirable artifact, 

e.g., halo effects. Alternatively, edge-aware smoothing such as cross-bilateral filters 

can be employed; however, it is not trivial to control the spatial and intensity values 

via sufficient parameters in these types of filters.  

   In this thesis alongside LE weights, the weight maps acquired from morphological 

operations verified via watershed segmentation (Beucher and Lantuejoul, 1979) are 

used. WSM is adopted for mask extraction in order to acquire natural texture and color 

transitions while avoiding unwanted effects and artifacts in the fused image, i.e. to 

remove small blemishes without disturbing the overall structures. The aim is to avoid 

over segmentation results in the watershed transform. It is worth mentioning here that, 

to the best of available knowledge, it is the first time that the watershed segmentation 

is employed in the HDR-MEF problem. 

   Introduced in 1979, the watershed method is based on placing a water source and 

separating basins through the water flood while the image is considered as a landscape 

consisting of valleys and ridges. The distinct heights in an image are acquired 

mathematically through its gradient map. Dark regions in the image tend to have a 

lower height, whereas areas with brighter pixels correspond to the ridges. Each basin 

forms a region and the image is segmented into several regions in contrast to binary 

masks with two regions only.  



 

28 

   The watershed algorithm has widely been used for segmentation tasks in various 

image processing problems (Chung and Khan, 2019; Khan et al., 2019; Zhang, 2019). 

In this work, the watershed segmentation is used to verify the effectiveness of the 

masks obtained from morphological operations.  

   Two main operations, erosion and dilation, are defined as follows, 

 𝐼 ⊖ 𝒮 =  ⋂𝐼−𝒮

𝓈∈𝒮

                            𝐼 ⊕ 𝒮 =  ⋃𝐼𝒮
𝓈∈𝒮

 (36) 

 

where, I is the input image and 𝒮 is the structuring element which represent the subset 

of pixels within the input window that we wish to consider, 𝒮 = { 𝓈 | 𝓈 ∈ 𝒮 }, ⊖ and 

⊕ denote erosion and dilation, respectively. 

   From these two fundamental spatial image processing filters, two operators used in 

this thesis; opening-by-reconstruction and closing-by-reconstruction, can be derived. 

Note here that, while opening is an erosion followed by a dilation, opening-by-

reconstruction is an erosion followed by a morphological reconstruction which is 

proposed in (Vincent, 1993). Similarly, closing-by-reconstruction is a dilation 

followed by a morphological reconstruction.  

   The parameter selection (the shape, and neighborhood size) for opening and closing 

operations depends on the watershed segmentation and it is a practical process. If the 

regions of the created masks can be segmented via watershed segmentation, then the 

parameters can be used for the construction of the WSM. After this process, WSMs 

can be used as effective weight maps in the fusion process. 

   To carry out the morphological operations, the parameters of the structuring element 

need to be determined carefully to create efficient WSMs and this determination is 

based on the watershed segmentation as mentioned above. After several 

implementations a disk-shaped morphological structuring element with 11 

neighborhood size is employed to perform morphological operations.  

   The prior process of the mask construction is the determination of the exposures, 𝒰, 

𝒩, and 𝒪. After finding each exposure in the sequence, the mask construction process 

begins with the conversion of each image to a grayscale image. After gathering the 

grayscale images, first the opening-by-reconstruction process is carried out. 
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Morphological reconstruction recovers all the details in the image, and high-intensity 

objects are identified while eliminating details smaller than the selected structuring 

element. 

   Afterwards, a dilation operation is performed on reconstructed image by opening 

with the same structuring element to expand the objects in the images by filling the 

object boundaries. Since, morphological operations are sensitive to the shapes, the 

low-level features and high-level features can be covered in the images’ masks.  

   Lastly, the complements of the reconstructed images obtained by opening-by-

reconstruction and the dilated version of it are used for the final morphological 

reconstruction. The complement of these maps is taken to form a watershed mask. For 

better understanding the outline of the algorithm to create WSMs is provided in 

Appendix B. As seen in Fig. 6, each region carries specific information such as clouds, 

sun and tower and these regions can be segmented via watershed segmentation. This 

concludes that, the specific parameters for morphological operations are effectively 

chosen. 

 

 

a) 𝐌𝟏 

 

b) 𝐌𝟐 

 

c) 𝐌𝟑 

 

 

 

 

Figure 6. Watershed Masks of the Tower Stack. 
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3.4 Exposure Fusion 

   The global fusion masks are obtained in Eqn. 37 via a linear combination of the 

extracted information contained in the WSMs and the LEW maps as follows, 

 

𝐆𝟏 = 𝐌𝟏 ⊗ 𝐄𝟑 

𝐆𝟐 = 𝐌𝟐 ⊗ 𝐄𝟐 

𝐆𝟑 = 𝐌𝟑 ⊗ 𝐄𝟏 

(37) 

 

where 𝐆𝟏, 𝐆𝟐, and 𝐆𝟑 represent the global fusion masks for under, normal, and over 

exposed images, respectively.  

   Note here that global fusion masks are obtained in a way that the extracted LE 

information contained in over and under exposures are exchanged in between via the 

corresponding WSMs. Therefore, well-exposed regions in both under and over 

exposures are highlighted while normal exposure image contributes to both. These 

global fusion masks are demonstrated in Fig. 7 for the Tower stack.  

 

 

a) 𝐆𝟏 

 

b) 𝐆𝟐 

 

c) 𝐆𝟑 

 

 

Figure 7. Global Fusion Masks of the Tower Stack, (a) for Under Exposed, (b) for 

Normal Exposed and (c) Over Exposed. 
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   The fused image F can be recovered through a weighted blending of input images 

with the corresponding global fusion masks as given in Eqn. 38 and illustrated in Fig. 

8. 

 𝐅 = 𝐔 ⊗ 𝐆𝟏 +  𝐍 ⊗ 𝐆𝟐 +  𝐎 ⊗ 𝐆𝟑 (38) 

    

   After obtaining the fused image F, a simple contrast enhancement based post-

processing is employed in order to correct local low-light regions or unsatisfactory 

color intensities. To achieve this, the top 1% and the bottom 1% of all pixel values of 

the image are saturated to stretch the contrast of F. The final output obtained through 

this post-processing presents both statistically superior results and visually more 

plausible and natural-looking images. The algorithm for the fusion process is provided 

in Appendix B. 

 

3.5 Failed Attempts During Algorithm Development 

   The algorithm developed in this thesis produces both statistically and visually 

satisfying results. However, its development was a troublesome and laborious process. 

Figure 8. The Exposure Fusion Process. 



 

32 

Although, while its development, several approaches resulted in unsatisfying 

outcomes, the experience gathered during these attempts led to form a successful novel 

algorithm. Therefore, in this part, the attempts which have significant impact on the 

development of the algorithm are mentioned. 

   During the determination of the exposures, firstly the images in the sequence were 

manually grouped and the mean of the exposures in the same group was taken to form 

𝒰, 𝒩, and 𝒪. However, manually separating the images in the stack caused too bright 

or too dark fused images. Therefore, this method was replaced with k-means clustering 

which is based on image features and results in objective outcomes. Moreover, after 

clustering the images, it was observed that a straightforward averaging approach 

results in noisy exposures. Therefore, instead of using a simple direct averaging 

method, a sliding window operation is employed which produces noiseless exposures. 

   Moreover, to produce a cost efficient LE method pixel-wise and patch-wise LE 

approaches were analyzed. It was observed that, weight extractions via the patch-wise 

LE method resulted in lower computational cost without reducing the statistical fusion 

outcomes. Furthermore, in order to obtain the optimal weights via LE, three different 

weight summation methods were analyzed which were uniformly summing (as in Eqn. 

34), controlling the weights via their variance and exponential variance. According to 

the statistical fusion results, Eqn. 34 demonstrated the best outcomes. Thus, weight 

maps of the exposures are extracted via a patch-wise LE method where the LEW are 

formed via uniform summation. 

   To adjust the LE weights and give more significance to informative parts in each 

exposure, at first the hat function was adopted to create binary masks. However, binary 

masks produced artifacts and color distortions especially at edges where sharp 

changeovers were present. To deal with these problems, binary masks were smoothed 

at transition points. Even though smoothing improved the results, the halo effect 

problem could not be solved. Therefore, WSM, which is based on morphological 

operations are adopted to produce effective masks. In addition, during the creation of 

global fusion masks, the emergence of noise was observed. Therefore, gaussian 

functions are applied to 𝐄′ to remove the noise. 
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CHAPTER 4: EXPERIMENTAL RESULTS 

 

   After the MEF algorithm is designed, both statistical and the visual analyses are 

conducted to observe the performance of the method. During these analyses, the output 

images of the proposed approach are compared with the fused images obtained from 

the MEF algorithms which are mentioned in Chapter 2.   

 

4.1 Dataset and Experimental Setup 

   To perform a comprehensive analysis, 2 publicly available HDR datasets are used 

(Ma, Zeng and Wang, 2015; Merianos and Mitianoudis, 2019), hence two sets of 

experiments are conducted. While, in (Ma, Zeng and Wang, 2015), 13 different image 

sequences containing a diverse number of exposures are available, in (Merianos and 

Mitianoudis, 2019) 5 different high-resolution image stacks, each with 3 exposures are 

present. Although, the first dataset is adequate to analyze the proposed method’s 

performance, the utilization reasons of the second dataset are; increasing the variety of 

the analysis and measuring the execution time of the algorithm in high-resolution 

images. The detailed information about the employed images are given in Table. 2 and 

all experiments are carried out on an AMD Ryzen(TM) 5 3600x CPU @ 3.80GHz 6-

core 16GB RAM machine using MATLAB R2019b.  

 

Table 2. Features of the 18 Image Stacks with Different Number of Exposures used in 

the Experiments. 

Name Size Name Size 

Tower 512 x 341 x 3 Balloons 339 x 512 x 9 

Venice 341 x 512 x 3 Belgium 384 x 512 x 9 

Garden  340 x 512 x 3 Desk 384 x 512 x 15 

Farmhouse 341 x 512 x 3 M. Capitol 384 x 512 x 30 

Landscape 341 x 512 x 3 Flowers 720 x 1080 x 3 

Lighthouse 340 x 512 x 3 SeaRock 720 x 1080 x 3 

Kluki 341 x 512 x 3 SecretBeach 720 x 1080 x 3 

Cave 384 x 512 x 4 OldHouse 720 x 1080 x 3 

Office 340 x 512 x 6 Rovinia 720 x 1080 x 3 
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4.2 The Perceptual Quality Assessment Algorithm 

   The performance of the proposed MEF approach is compared statistically with other 

algorithms using the perceptual quality assessment method, which is a multi-scale 

structural similarity framework (MEF-SSIM) (Ma, Zeng and Wang, 2015). MEF-

SSIM basically measures patch structural consistency for MEF and provides statistical 

analysis results in the range [0, 1], in which outcomes closer to 1 indicate better 

perceptual quality. 

    In order to assess the quality of the fused image, MEF-SSIM forms a multi-input 

(i.e., distinct exposures) structural comparison element (SCE) based on structural 

similarity index (SSIM) (Wang et al., 2004). While neglecting the patch luminance 

components because of under/over exposedness, SCE depends only on contrast and 

structure components of input images in as follows, 

 𝑆𝐶𝐸({𝑥𝑛}, 𝑦) =  
2 𝜎𝑥̂𝑦 + 𝜃

𝜎𝑥̂
2 + 𝜎𝑦

2 +  𝜃
 (39) 

 

where, 𝑥𝑛 represents collocated set of patches in all N images in the input stack and 𝑦 

is the corresponding patch in the fused image. 𝑥̂ =  𝑐̂ ⋅ 𝑠̂ denotes the desired output 

(fused) patch as a function of the desired contrast 𝑐̂, i.e., the highest contrast of 𝑥𝑛, and 

the desired structure 𝑠̂, i.e., a weighted average of the input structure vectors. 𝜎𝑥̂
2 and 

𝜎𝑦
2 demonstrate local variances of 𝑥̂ and 𝑦 respectively, 𝜎𝑥̂𝑦 is the local covariance 

between 𝑥̂ and 𝑦. 𝜃 is a small constant handling the low contrast saturation effects 

(Wang et al., 2004). 

    The MEF-SSIM comparison is applied on local patches across the entire image, 

resulting in a spatial quality map which gives an indication of the structural quality. 

These local values are then averaged to acquire the overall MEF-SSIM score of the 

fused image. The luminance consistency in the fused image is further considered with 

a multi-scale extension by a set of scale-level quality scores. 

 

4.3 Comprehensive Experimental Results 

   In the first set of experiments, the proposed MEF algorithm is compared against 

eleven well-known approaches including Mertens, Gu, Li12, S.Li, Li13, Ma, H.Li, 
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Paul, and Raman. Important note here that, the default settings without any 

optimization for each algorithm are adopted for comparison and results provided for 

Ma, H. Li, and Paul are obtained by executing the code reached from  the webpages 

(Ma Algorithm, 2017; Li CNN Algorithm, 2018; Paul Algorithm, 2016) In Table 2, 

LCE and GBE stand for two simple methods which linearly combine input exposures 

using local energy and global energy as weight maps, respectively.  Furthermore, LEW 

and WSM denote linear embedding maps and watershed masking applied individually 

to the see their effectiveness in MEF problem as weight map, respectively. 

   The proposed algorithm produces highly competitive results among all MEF-SSIM 

scores, and it is able to outperform most of the state-of-the-art approaches on the 

average with given image sequences (Table 2). Moreover, LEM and WSM are 

employed individually in the fusion process in order to demonstrate the impact of the 

extracted weights in the proposed algorithm. Although these individual weights 

sometimes outperform their combination, the combined algorithm is clearly more 

effective on average and the results can be seen in Table 3. 

   It is also worth mentioning here that the proposed method produces visually more 

plausible results for several image sequences in cases when statistical results do not 

provide the best results reported in Table 3. 

   The fused images obtained for Office, Garden and Venice result in 0.991, 0.990, 

0.977 MEF-SSIM scores respectively, which provide superior results when compared 

with the other methods. As observed in Fig. 9 for Office, the proposed MEF algorithm 

produces better visual details in the shelf region especially for the toys, when compared 

with Mertens and S.Li. Moreover, the specific features of the MathWorks Environment 

and the Peppers image can be seen more clearly on the computer screen. However, it 

is important to note that there is a slight saturation problem (e.g., the pathway behind 

the tree) in the proposed result. 

   The algorithm tends to lose information in cases with excessively over exposed 

images in the stack. Nevertheless, this method produces the best score statistically, 

with visually plausible output image for this stack. 
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a) Office stack has 6 input exposures. 

 

b) Mertens (0.984) 

 

c) S. Li (0.972) 

 

d) Proposed (0.991) 

 

   As seen in Fig. 10, specific features in Garden are better preserved in the output of 

the proposed algorithm. While the colors for the sky appear artificial in Mertens, both 

Ma and the proposed method uncover a natural sky scene. Additionally, the reflections 

on the water are more informative and visually plausible in the proposed output. 

However, the details on the rooftop and ivies seem to have a lower contrast when 

compared to Ma. 

   In the fused Venice image obtained via the proposed method, the details are greatly 

preserved as shown in Fig. 11. Even though the algorithm produces a brighter image 

than the remaining methods, the fine details are generally much more effectively 

recovered. In particular, the sky is more natural, and clouds are more vivid. The 

specific features on the boat can be easily distinguished and the details are more visible 

on the scene, while some details are lost (e.g., of the boat) in Mertens which has the 

second best MEF-SSIM score.  

   As it can be seen in Table 3, the proposed algorithm has the second best MEF-SSIM 

scores for Tower, M. Capitol and Landscape stacks. The visual comparison of the 

fused Tower stack is given in Fig. 12. Although MEF-SSIM scores of Mertens, Ma 

and Li13 are slightly better than the proposed method, lack-of-contrast regions and 

detail-loss in several areas are present in the outputs of these algorithms. Since the 

Eiffel Tower has low contrast, highlights are almost non-existent in the dark regions 

in Mertens and Li13. Also, there are lost details mainly on the upper side of the tower 

in these methods. The proposed algorithm in contrast shows better visual quality with 

Figure 9. Visual Comparison of the Proposed Method with Mertens and S.Li for Office 

(Source: Ma, Zeng and Wang, 2015). 
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brighter details of the tower and more natural looking clouds. 

 

a) Garden stack has 3 input exposures. 

 

b) Mertens (0.989) 

 

c) Ma (0.985) 

 

d) Proposed (0.990) 

 

 

a) Venice stack has 3 input exposures. 

 

b) Mertens (0.966) 

 

c) Li13 (0.954) 

 

d) Proposed (0.978) 

 

    

Figure 10. Visual Comparison of the Proposed Method with Mertens and Ma for 

Garden (Source: Ma, Zeng and Wang, 2015). 

 

Figure 11. Visual Comparison of the Proposed Method with Mertens and Li13 for 

Venice (Source: Ma, Zeng and Wang, 2015). 
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a) Tower stack has 3 input exposures 

 

b) Mertens (0.986) 

 

c) Li13 (0.986) 

 

d) Proposed (0.981) 

Figure 12. Visual Comparison of the Proposed Method with Mertens and Li13 for 

Tower (Source: Ma, Zeng and Wang, 2015).  

 

   Compared to the other stacks, the M. Capitol has the most exposures with 30 input 

images. Since there are many exposures, even though the over exposed image is too 

bright and the under exposed image is too dark, the proposed algorithm successfully 

fused the input images which can be seen in Fig. 13.  The proposed algorithm’s MEF-

SSIM score is not high as Ma’s score, but it manages to preserve the fine details at 

marbles, roof window and the lamp on the balcony. Although, Mertens’s algorithm is 

statistically the most successful MEF method on average, colors at the roof windows 

look artificial which look more natural in both Ma’s algorithm and the proposed 

method. Moreover, while the wall near the lamp in the small balcony is too bright in 

Ma’s and Mertens’ output which causes an artificial looking region, the fused image 

via the proposed method covers the details at this region without any artifacts.  
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a) M.Capitol stack has 30 input exposures. 

 

b) Ma (0.983) 

 

c) Mertens (0.977) 

 

d) Proposed (0.981) 

Figure 13. Visual Comparison of the Proposed Method with Mertens and Ma for 

M.Capitol (Source: Ma, Zeng and Wang, 2015). 

 

   For the Landscape stack in Fig. 14, the colors of the fused image via the proposed 

method look more vivid, while both the output images of Ma and Mertens appear 

generally toneless in the image.  
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a) Landscape stack has 3 input exposures. 

 

b) Ma (0.993) 

 

c) Mertens (0.976) 

 

d) Proposed (0.986) 

Figure 14. Visual Comparison of the Proposed Method with Mertens and Ma for 

Landscape (Source: Ma, Zeng and Wang, 2015). 

 

   The algorithm gives the third best MEF-SSIM scores in Belgium, Lighthouse, Cave 

and Balloons stacks when compared to other methods. The visual comparison and the 

input exposures of Belgium are demonstrated in Fig. 15. Even though, the fused images 

of each method are visually plausible, the writings on the black board are more 

readable in both Mertens and Ma, and the colors are more natural in the proposed 

method’s output. The details outside the house can be seen in all of the resulted images, 

but in the fused image of the proposed method, the details are more clearly observable, 

and the colors are more naturally looking.  

   For Lighthouse in Fig. 16, the specific features and fine details in low light regions, 

i.e., sand, the rocks and house, are more visible in the proposed method compared to 

Mertens. On the other hand, Mertens and Li12 preserve more details on the sea and 

sky whereas some saturation problems exist in these regions in the proposed output. 

As aforementioned, this undesired outcome occurs when the number of input image is 

not much, and the stack has extremely over exposed image. 
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a) Belgium stack has 9 input exposures. 

 

b) Ma (0.973) 

 

c) Mertens (0.971) 

 

d) Proposed (0.969) 

 

 

 

a) Lighthouse stack has 3 input exposures. 

 

b) Mertens (0.980) 

 

c) Li12 (0.968) 

 

d) Proposed (0.974) 

Figure 16. Visual Comparison of the Proposed Method with Mertens and Li12 for 

Lighthouse (Source: Ma, Zeng and Wang, 2015). 

 

   Fig. 17 further compares the fused Cave stack with four different exposures. Li13 

presents the best MEF-SSIM score for this image and Mertens has a similar statistical 

score to the proposed algorithm. The left-side of the cave entrance is artificially dark 

in Li13, but more natural in the proposed result. In addition, in Mertens, the fused 

image has less contrast especially at the top of the cave and at the rock on the right.  

   A visual comparison of the fused outputs for the Balloons stack containing nine 

Figure 15. Visual Comparison of the Proposed Method with Mertens and Ma for 

Belgium (Source: Ma, Zeng and Wang, 2015). 
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exposures can be seen in Fig. 18. For the Balloons stack, the MEF-SSIM scores are 

close to each other in the top three MEF approaches but the visual qualities are distinct. 

Although, Ma’s score is slightly higher than the proposed method’s, there are artifacts 

which can be clearly seen in the sun and the clouds in Ma’s result. Since, the input 

sequence contains an extremely over exposed image, the clipped regions which are in 

the surroundings of the sun can be seen in the proposed image. But still, the proposed 

method offers a visually plausible output with natural looking colors. 

 

 

a) Cave stack has 4 input exposures. 

 

b) Mertens (0.974) 

 

c) Li12 (0.978) 

 

d) Proposed (0.968) 

Figure 17. Visual Comparison of the Proposed Method with Mertens and Li13 for 

Cave (Source: Ma, Zeng and Wang, 2015). 

 

 

a) Balloons stack has 9 input exposures. 

 

b) Mertens (0.969) 

 

c) Ma (0.965) 

 

d) Proposed (0.964) 

 

Figure 18. Visual Comparison of Different Methods for Balloons (Source: Ma, Zeng 

and Wang, 2015). 
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   In the final part of the first set of the experiments, Kluki, Farmhouse and Desk stacks 

are analyzed. Among all other MEF methods which are compared in this thesis, the 

proposed method was 4th among them for these stacks. The main reason of this 

decrease in the statistical performance is that all these stacks contain images which 

have extremely over exposed regions in most informative parts. For instance, the Fig. 

19 demonstrates the exposures of the Kluki sequence. Both normal exposed and over 

exposed images have extreme brightness in the sky region. Although the sun and 

clouds are still visible in the outputs, these areas still look over exposed for both Ma’s 

algorithm and the proposed method. For this stack, Mertens covers all the details in 

the clouds and sunlight. On the other hand, while the grass is too dark in Ma’s output 

and too bright in Mertens’ outcome, it is natural looking in the result of the proposed 

method.  

   For the Farmhouse stack (Fig. 20), preserving the details inside the room and outside 

the windows is a challenging task since the room is dark for both under and normal 

exposed images, and outside the window is too bright for over and normal exposed 

images in stack. In Li13’s method it is observable that, the details both inside the room 

and the outside the lower window can be seen clearly, and the details outside the 

window and the objects in the room look sharp and the colors are vivid. Also, in Ma’s 

result the inside of the room is brighter than the proposed algorithm’s result. On the 

other hand, the details outside the window are still too bright for both Ma’s and 

proposed method’s outcome. 

   The Desk sequence (Fig. 21) has 15 exposures and preserving the details on the paper 

and inside the lamp is troublesome. The fused image via the proposed algorithm 

appears to be bright and there is an artificial looking dark spot on the middle part of 

the paper. Hence, the statistical result is low, and the visual quality is not plausible as 

Mertens’ method or as S. Li’s algorithm. 

   As a final note for the first set of experiments, all experimental results given above 

are fused in 1.76s on the average, ranging between 1.5s to 2.5s. 
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a) Kluki stack has 3 input exposures. 

 

b) Mertens (0.980) 

 

c) Ma (0.970) 

 

d) Proposed (0.960) 

Figure 19. Visual Comparison of the Proposed Method with Mertens and Ma for Kluki 

(Source: Ma, Zeng and Wang, 2015). 

 

 

a) Farmhouse stack has 3 input exposures. 

 

b) Li13 (0.985) 

 

c) Ma (0.984) 

 

d) Proposed (0.979) 

Figure 20. Visual Comparison of the Proposed Method with Li13 and Ma for 

Farmhouse (Source: Ma, Zeng and Wang, 2015). 
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a) Desk stack has 15 input exposures. 

 

b) Mertens (0.969)             

 

c) S.Li (0.964)            

 

d) Proposed (0.932) 

Figure 21. Visual Comparison of the Proposed Method with Mertens and S.Li for Desk 

(Source: Ma, Zeng and Wang, 2015). 

 

   As mentioned previously, the proposed MEF algorithm is tested with high-resolution 

images in order to increase the variety of the analysis and to observe the resolution’s 

impact on the execution time. The dataset in this second setup includes five different 

static image stacks, namely Flowers, SeaRock, SecretBeach, OldHouse, Rovinia, of 

sizes 720×1080 pixels with three exposures each as it can be seen in Table 1. While 

the best MEF-SSIM scores in Table 4 are reached via the proposed approach (0.969 

on average), the average execution times of the best three algorithms are 0.50s, 7.85s 

and 6.37s for Mertens, Ma and the proposed method, respectively. The MEF-SSIM 

scores for Mertens, Raman and S.Li are aligned with (Merianos and Mitianoudis, 

2019) and the results provided for Ma are obtained through the code available at (Ma 

Algorithm, 2017) . 
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Table 4. MEF-SSIM Scores for each Stack  (Source: Merianos and Mitianoudis, 2019). 

Algorithms 

 Mertens Raman S.Li Ma Proposed 

Flowers 0.964 0.906 0.921 0.987 0.989 

SeaRock 0.932 0.896 0.913 0.933 0.958 

SecretBeach 0.951 0.927 0.888 0.899 0.963 

OldHouse 0.974 0.959 0.907 0.987 0.991 

Rovinia 0.934 0.881 0.913 0.935 0.943 

Average 0.951 0.914 0.908 0.948 0.969 

    

   The visual comparisons are also provided in Figs. 22, 23, 24, 25, 26 for Flowers, 

SeaRock, SecretBeach, OldHouse, Rovinia, respectively. It can be observed from these 

illustrations that the details and colors are better preserved in the proposed technique 

which results in more natural-looking outputs. Furthermore, the obtained images are 

more vivid and visually appealing. This mainly results from the successful usage of 

LE and WSM to fuse an image stack, which has a significant potential. 

 

 

a) Flowers stack has 3 input exposures. 

 

b) Mertens (0.964) 

 

c) Ma (0.987) 

 

d) Proposed (0.989) 

Figure 22. Visual Comparison of Different Methods for Flowers (Source: Merianos 

and Mitianoudis, 2019). 
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a) SeaRock stack has 3 input exposures. 

 

b) Mertens (0.932) 

 

c) Ma (0.933) 

 

d) Proposed (0.958) 

Figure 23. Visual Comparison of Different Methods for SeaRock (Source: Merianos 

and Mitianoudis, 2019). 

 

 

a) SecretBeach stack has 3 input exposures. 

 

b) Mertens (0.951) 

 

c) Ma (0.899) 

 

d) Proposed (0.963) 

Figure 24. Visual Comparison of Different Methods for SecretBeach (Source: 

Merianos and Mitianoudis, 2019). 
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a) OldHouse stack has 3 input exposures. 

 

b) Mertens (0.974) 

 

c) Ma (0.987) 

 

d) Proposed (0.991) 

Figure 25.Visual Comparison of Different Methods for OldHouse (Source: Merianos 

and Mitianoudis, 2019). 

 

 

a) Rovinia stack has 3 input exposures. 

 

b) Mertens (0.934) 

 

c) Ma (0.935) 

 

d) Proposed (0.943) 

Figure 26. Visual Comparison of Different Methods for Rovinia (Source: Merianos 

and Mitianoudis, 2019). 
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CHAPTER 5: CONCLUSION 

 

   While capturing or projecting HDR content, preserving the information in highlights 

and shadows is a challenging task due to the dynamic range gap between equipment. 

In order to obtain high quality images containing vivid colors and fine details, HDR 

compatible devices can be used. While in the near future, HDR compatible equipment 

is expected to be widely accessible, currently due to their high cost, they are not 

preferred on user grade level. Hence, currently imaging technology manufacturers seek 

the solution not in hardware but in software. Therefore, two main approaches used in 

HDRI are tone mapping and MEF. However, due to problems in tone mapping such 

as low subjective contrast, ghosting and color saturation reduction which damage the 

overall quality of the image, most of the current capturing devices use the MEF 

approach. Hence, HDR-like image reconstruction through MEF is a common study 

field in image processing and computer vision, and weight map extraction typically 

presents the novel part of different algorithms. Therefore, this thesis initially analysis 

the most impactful studies in the literature then proposes a novel MEF algorithm based 

on LE of pixel/patch spaces of images and WSM. In the developed method, LEW are 

extracted from differently exposed images and the corresponding WSM are used to 

adjust these maps according to the informative parts of input images for the final fusion 

step. After a fused image is acquired, the low-light areas and unsatisfactory color 

intensities are corrected via a simple local brightness enhancement algorithm. To the 

best of available knowledge, the proposed framework in this study is novel since it 

exploits LE of image spaces and WSM of images for the first time in MEF. The 

proposed algorithm is compared with several state-of-the-art techniques. In the 

comprehensive comparison in Chapter 4, it is observed that the proposed algorithm 

produces natural-looking HDR-like contents with mostly superior statistical results 

compared to existing techniques.  

   The main drawback of the proposed method is that the visual quality and statistical 

scores tend to decrease slightly when the input stack contains excessively over exposed 

or excessively dark under exposed images. This problem can simply be solved by 

manually discarding extreme exposures; alternatively, automated techniques can be 

envisaged by means of, for example, outlier detection techniques. Since this process 

was not within the scope of this thesis, such extension is designated as future work. 
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Furthermore, the proposed algorithm can be adapted for dynamic image stacks in the 

future. As a final remark, the main computational complexity lies on the three 

optimization problems given in Eqn. 33 for LE. This run-time complexity can be 

greatly reduced by parallel implementations on GPU processors. 
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