
 
  

                                   

 

 

 

 

DESIGN AND IMPLEMENTATION OF NOISE FILTERS 

IN POSITION AND ORIENTATION ESTIMATION OF 

AUTONOMOUS AGRICULTURAL VEHICLES 

 

 

AYTUĞ GÜNER 

 

Master’s Thesis 

 

 

Graduate School 

Izmir University of Economics 

Izmir 

2022 



 
  

 

 

 

 

DESIGN AND IMPLEMENTATION OF NOISE FILTERS 

IN POSITION AND ORIENTATION ESTIMATION OF 

AUTONOMOUS AGRICULTURAL VEHICLES 

 

 

 

AYTUĞ GÜNER 

 

 

 

A Thesis Submitted to 

The Graduate School of Izmir University of Economics 

Master of Science Program in Electrical and Electronics Engineering 

 

 

 

 

 

 

 

 

Izmir 

2022 



iii 
 

ABSTRACT 
 

 

 

DESIGN AND IMPLEMENTATION OF NOISE FILTERS IN 

POSITION AND ORIENTATION ESTIMATION OF AUTONOMOUS 

AGRICULTURAL VEHICLES 

 

 

 

Güner, Aytuğ 

 

 

 

M.Sc. in Electrical and Electronics Engineering 

 

Advisor: Prof. Dr. N. Süha Bayındır 

 

January, 2022 

 

An autonomous agricultural vehicle is designed using cost effective sensors such as an 

IMU, a wheel odometry, a magnetometer and a laser sensor. The main aim of this 

project is to move the autonomous agricultural vehicle on a straight path between the 

trees in an orchard until it detects a sign plate at the end of the lane. Hence we have 

concentrated on estimating the orientation of the vehicle along the axis of the lane, 

rather than trying to estimate the exact location of it. In order to get more accurate 

orientation information, the advantages and disadvantages of the accelerometer, 

gyroscope, magnetometer, and wheel odometry are combined with filters such as the 

complementary, Madgwick, Kalman, and the integrated Kalman filter and the 

accuracies of the filters in different environmental conditions are compared in terms 

of the mean error. Using the orientation information obtained from the filters, the 

autonomous agricultural vehicle can move on a straight path in an orchard. 



iv 
 

Furthermore, a different type of approach is developed using a laser distance sensor to 

move the autonomous agricultural vehicle on a straight path between the trees. Using 

the laser distance sensor, the distance and the angle between the autonomous 

agricultural vehicle and the trees are determined and taking the trees as reference, it 

travels on a straight path between the trees. Various filters are developed and 

implemented using the ROS platform and the python script on the autonomous vehicle 

and the performance of these filters are examined on MATLAB. 

 

Keywords: autonomous agricultural vehicle, filter, complementary filter, Madgwick 

filter, Kalman filter, integrated Kalman filter, wheel odometry 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ÖZET 
 

 

 

OTONOM TARIM ARAÇLARININ KONUM VE YÖN TAHMİNİ 

İÇİN GÜRÜLTÜ FİLTRELERİ TASARIMI VE UYGULAMASI 

 

 

 

Güner, Aytuğ 

 

 

 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Prof. Dr. N. Süha Bayındır 

 

Ocak, 2022 

 

 

Otonom bir tarım aracı, IMU, tekerlek kilometre sayacı, manyetometre ve lazer 

sensörü gibi uygun maliyetli sensörler kullanılarak tasarlanmıstır. Bu projenin temel 

amacı, otonom tarım aracını, bir meyve bahçesindeki ağaçların arasında, şeridin 

sonunda bir işaret  levhası algılayana kadar düz bir yol üzerinde hareket ettirmektir. 

Bu nedenle, aracın tam konumunu tahmin etmeye çalışmak yerine, şeridin ekseni 

boyunca aracın yönünü tahmin etmeye odaklandık.  Daha doğru yön bilgisi elde etmek 

için ivmeölçer, jiroskop, manyetometre ve tekerlek kilometre sayacının avantaj ve 

dezavantajları tamamlayıcı, Madgwick, Kalman ve entegre kalman filtresi gibi filtreler 

uygulanarak birleştirilmis  ̧ ve filtrelerin farklı çevre koşullarındaki doğrulukları, 

ortalama hata bulunarak karşılaştırılmıştır. Filtrelerden elde edilen yön bilgisini 

kullanarak, otonom tarım aracı bir meyve bahçesinde düz bir yolda hareket 



vi 
 

ettirilmiştir. Ayrıca, otonom tarım aracını ağaçlar arasında düz bir yolda hareket 

ettirmek için bir lazer mesafe sensörü kullanılarak farklı bir yaklaşım türü geliştirildi. 

Lazer mesafe sensörü kullanılarak otonom tarım aracı ile ağaçlar arasındaki mesafe ve 

açı belirlendi¸ ve ağaçları referans alarak ağaçların arasında düz bir yol üzerinde aracın 

hareketi sağlanmıştır. Otonom araç üzerinde ROS platformu ve python betiği  

kullanılarak çeşitli filtreler geliştirilip uygulanmakta ve bu filtrelerin performansı 

MATLAB üzerinde incelenmektedir. 

 

Anahtar Kelimeler: otonom tarım aracı, filtre, tamamlayıcı filtre, Madgwick filtre, 

Kalman filtre, tümleşik Kalman filtre, tekerlek kilometre sayacı 

 

 

 

 

  



vii 
 

 

 

 

 

 

 

 

To my nephew … 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

ACKNOWLEDGEMENTS 
 

I would like to express my gratitude to my advisor Prof. Süha Bayındır for 

inspiring me to choose the field of agricultural robotics and for giving me the 

motivation and encouragement along this journey.  

Also, I would like to thank my family for their unconditional love, patience, 

and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................ iii 

ÖZET............................................................................................................................ v 

ACKNOWLEDGEMENTS ...................................................................................... viii 

TABLE OF CONTENTS ............................................................................................ ix 

LIST OF TABLES ...................................................................................................... xi 

LIST OF FIGURES ................................................................................................... xii 

CHAPTER 1: INTRODUCTION ................................................................................ 1 

CHAPTER 2: SYSTEM DESCRIPTION .................................................................... 5 

2.1. Wheel Odometry .............................................................................................. 12 

2.2. Inertial Measurement Unit (IMU) ................................................................... 14 

2.3. Laser Distance Sensor ..................................................................................... 17 

2.4. Camera ............................................................................................................ 18 

2.5. Robotic Operating System (ROS) .................................................................... 19 

CHAPTER 3: IMU CALIBRATION ........................................................................ 26 

3.1. Implementation ................................................................................................ 29 

3.2. Results ............................................................................................................. 30 

CHAPTER 4: NOISE FILTERS ................................................................................ 33 

4.1. Pre-Filter ......................................................................................................... 34 

4.1.1. Implementation ......................................................................................... 36 

4.1.2. Results ....................................................................................................... 38 

4.2. Complementary Filter ..................................................................................... 41 

4.3. Madgwick Filter .............................................................................................. 43 

4.4. Kalman Filter .................................................................................................. 48 

4.4.1. Implementation ......................................................................................... 51 

4.5. Integrated Kalman Filter ................................................................................. 53 

4.6. Results ............................................................................................................. 55 

CHAPTER 5: LASER DISTANCE SENSOR ........................................................... 62 

5.1. Implementation ................................................................................................ 63 

CHAPTER 6: CONCLUSION ................................................................................... 65 



x 
 

REFERENCES ........................................................................................................... 69 

APPENDICES ........................................................................................................... 72 

Appendix A – Raspberry Pi and LM393 Connection ............................................. 72 

Appendix B – Raspberry Pi and MPU6050 Connection ........................................ 72 

Appendix C – Raspberry Pi and QMC5883L Connection...................................... 72 

Appendix D – IMU Messages ................................................................................. 73 

Appendix E – Odometry Messages ......................................................................... 74 

Appendix F – Filter Messages ................................................................................ 74 

Appendix G – Complementary Filter Class ........................................................... 75 

Appendix H – Kalman Filter Class ........................................................................ 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF TABLES 

  

Table 1. The variables and parameters used in the filter……………………..……….37 

Table 2. Kalman Filter Prediction Step Coefficients, Matrices, and Definitions.…...49 

Table 3. Kalman Filter Measurement Step Coefficients, Matrices, and Definitions…50 

Table 4. Kalman Filter Update Step Coefficients, Matrices, and Definitions……......51 

Table 5. The Absolute Mean Errors in Filters……………………………..………...59 

Table 6. Computational Costs of the Filters and Nodes……………...……………...60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF FIGURES 

 

Figure 1. Overall system design………....…………………………………………….5 

Figure 2. Autonomous agricultural vehicle….…………………………………....…..5 

Figure 3. Orchard field………………………….…………………………….………7 

Figure 4. Autonomous agricultural vehicle test field……...…………………………..7 

Figure 5. Autonomous agricultural vehicle real-time monitoring………..………..…..7 

Figure 6. ROS nodes and topics diagram…………………………………...………....9 

Figure 7. Laser distance sensor tested field……………………………………..……10 

Figure 8. Autonomous agricultural vehicle test field for laser distance sensor………11 

Figure 9. ROS nodes and topics diagram for laser distance sensor ……………….….11 

Figure 10. LM393 speed sensor module ……..…………………………..……….....12 

Figure 11. Wheel speed encoder ………………………………………..…………...12 

Figure 12. MPU6050………………………………………………………...………14 

Figure 13. QMC5883L ………………………………………………………..…….14 

Figure 14. 360-degree laser distance sensor (LDS-1)………………………...…...…17 

Figure 15. Raspberry Pi camera module v2………………..………………………...18 

Figure 16. ROS message communication …………………………………………...20 

Figure 17. Master node-subscriber node………..…………………………………....21 

Figure 18. Master node, subscriber node, and publisher node …..…………………...21 

Figure 19. TCPROS request and response …………………………………………..22 

Figure 20. TCP/IP message transmission ……………………………………...…….22 

Figure 21. ROS nodes and topics for IMU and wheel odometry ………………...…..23 

Figure 22. ROS nodes and topics for laser distance sensor ………………………..…24 

Figure 23. Case 1: ROS nodes and topics to evaluate computational costs ………….24 



xiii 
 

Figure 24. Case 2: ROS nodes and topics to evaluate computational costs ……….…24 

Figure 25. Raw accelerometer data ……..………………………………...…………30 

Figure 26. Offset Removed accelerometer data………………...………...……..…...30 

Figure 27. Raw gyroscope data …………………………………………..………….31 

Figure 28. Offset Removed gyroscope data …………………………….…………...31 

Figure 29. Raw magnetometer data ………………………………………...……….31 

Figure 30. Offset Removed magnetometer data …………………………..……..…..31 

Figure 31. Raw magnetometer data …………………………………………………32 

Figure 32. Offset Removed Magnetometer data ……………………..………...……32 

Figure 33. Raw magnetometer data ……………………………………….………...32 

Figure 34. Offset Removed magnetometer data …………………..…...…………….32 

Figure 35. Roll(ϕ), Pitch(θ), and Yaw (ψ) angles ……………………...…………….33 

Figure 36. Pre-Filtered acc. in x-axis ………………………………….…………….38 

Figure 37. Pre-Filtered acc. in y-axis…………………………………...………..…..38 

Figure 38. Pre-Filtered acc. in z-axis…………………………………...……………38 

Figure 39. Pre-Filtered gyro. in x-axis………….………………………...….………39 

Figure 40. Pre-Filtered gyro. in y-axis……………….…………..……………...…...39 

Figure 41. Pre-Filtered gyro. in z-axis………………….……………………...…….39 

Figure 42. Pre-Filtered magne. in x-axis……………………………….…………….39 

Figure 43. Pre-Filtered magne in y-axis………………………………...………...….39 

Figure 44. Pre-Filtered magne. in z-axis…………………………………...….....…..39 

Figure 45. Pre-Filtered acc. in x-axis…………………………….……………..……40 

Figure 46. Pre-Filtered acc. in y-axis……………………………………….…..……40 

Figure 47. Pre-Filtered acc. in z-axis…………………………………………...…....40 



xiv 
 

Figure 48. Pre-Filtered gyro. in x-axis………………………..…………...…...…….40 

Figure 49. Pre-Filtered gyro. in y-axis…………………………….…………...…….40 

Figure 50. Pre-Filtered gyro. in z-axis…………………….……………...…..…..….40 

Figure 51. Pre-Filtered magne. in x-axis…………………………………......…..…..41 

Figure 52. Pre-Filtered magne. in y-axis……………...…………………………...…41 

Figure 53. Pre-Filtered magne. in z-axis…………………...…………………...……41 

Figure 54. Complementary Filter Stationary………………………………………...56 

Figure 55. Complementary Filter Movement……………………….……………….56 

Figure 56. Complementary Filter Magnetic Disturbance…………………...……….56 

Figure 57. Madgwick Stationary…………………………………………………….56 

Figure 58. Madgwick Movement………………………………………………..…..56 

Figure 59. Madgwick Magnetic Disturbance………………………………………...56 

Figure 60. Kalman Stationary………………………………………………..………57 

Figure 61. Kalman Movement………………………………………..……………...57 

Figure 62. Kalman Magnetic Disturbance………………………………..………….57 

Figure 63. Kalman Odom and Gyro Stationary…………………………..………….57 

Figure 64. Kalman Odom and Gyro Movement…………………………………..….57 

Figure 65. Kalman Odom and Gyro Magnetic……………………….…………..…..57 

Figure 66. Kalman Odom, Magne, and Gyro Stationary………………………..……58 

Figure 67. Kalman Odom, Magne, and Gyro Movement……………………….……58 

Figure 68. Kalman Odom, Magne, and Gyro Magnetic ……………………...……...58 

Figure 69. Integrated Kalman Stationary…………………………………………….58 

Figure 70. Integrated Kalman Movement……………………………………...…….58 

Figure 71. Integrated Kalman Magnetic …………….………………………...…….58 



xv 
 

Figure 72. The laser sensor tested field…………..…………………………………..62 

Figure 73. Raspberry Pi and LM393 Connection………………………………….…72 

Figure 74. Raspberry Pi and MPU6050 Connection…………………………………72 

Figure 75. Raspberry Pi and QMC5883L Connection………………………..……...72 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1: INTRODUCTION  

 

Autonomous agricultural vehicles are the alternatives of tractors to accomplish 

basic cultivation tasks such as ploughing, seeding and harvesting, with self-driving 

capabilities (Biber et al., 2012). They are used to decrease the labor force and to 

accomplish agricultural tasks day or night (Sowjanya et al., 2017). The main problem 

in autonomous agricultural vehicles is to achieve correct orientation and position 

estimation with affordable sensors because the agricultural environment could consist 

of different types of challenges, such as rain, snow or magnetic disturbances which 

could interfere with the sensors’ observations (Hague et al., 2000). Furthermore, the 

wheel slippage may cause errors in the odometry information. The main aim of this 

project is to move the autonomous agricultural vehicle on a straight path between the 

trees in an orchard until it detects a sign plate at the end of the lane. Hence, we have 

concentrated on estimating the orientation of the vehicle along the axis of the lane, 

rather than trying to estimate the exact location of it. 

 

The advance of technology in micro electromechanical system (MEMS) have 

enabled the production of small and affordable IMU’s and speed sensors whose are 

improved over the years (Han et al.,2020). In spite of the advance in technology, each 

sensor has advantages and drawbacks and using only one sensor, accurate calculation 

of orientation and position autonomous agricultural vehicle is not possible due to the 

biases, noises and environmental conditions. Sensor fusion algorithms can be used to 

acquire accurate orientation and position of autonomous agricultural vehicle from 

affordable sensors by making use of their advantages (Gui, Tang, and Mukhopadhyay, 

2015). The well-known sensor fusion algorithms or noise filters are the complementary 

filter (Treffers and Wietmarschen, 2016), the Kalman filter (Welch, and Bishop, 2001) 

and the Madgwick filter (Madgwick et al., 2011). 

 

One of the sensor fusion algorithms is the complementary filter (Treffers and 

Wietmarschen, 2016). The complementary filter applies high-pass filter and low-pass 

filter to the given data in order to estimate the orientation of the autonomous 



2 
 

agricultural vehicle. The complementary filter algorithm is easy to implement, and it 

has low computational cost (Gui, Tang, and Mukhopadhyay, 2015). Other sensor 

fusion algorithm is the Kalman filter which is recursive. The Kalman filter estimates 

the orientation noise information and the covariance matrix of the inputs (Treffers and 

Wietmarschen, 2016). It is more complex than the complementary filter in terms of 

computational cost since it involves matrix inversions and covariance matrix 

calculations (Madgwick et al., 2011). On the other hand, the Madgwick filter has a 

simpler algorithm than that of the Kalman filter and it uses the quaternion 

representation of the given data to estimate the orientation (Madgwick et al., 2011). 

Besides, the Madgwick filter is designed for only the IMU and the Magnetic Angular 

Rate and Gravity (MARG) estimations (Madgwick et al., 2011). 

 

In this thesis, the navigation problem is examined using different types of 

sensors such as the speed sensor, inertial measurement unit (IMU), and Laser distance 

sensor. In addition, an autonomous agricultural vehicle is developed to plow a field in 

an orchard using cost effective sensors with reasonable drift from the navigation path. 

The first aim of this project is to move the autonomous agricultural vehicle on a straight 

line using the orientation information estimated from the IMU, magnetometer and the 

odometry sensors and to stop the vehicle when it detects a stop sign using a camera. 

The second aim of this project is to move the autonomous agricultural vehicle on the 

lanes between the trees in an orchard using only the laser distance sensor data. 

 

The autonomous agricultural vehicle control system consists of a speed sensor, 

an inertial measurement unit (IMU), a laser distance sensor, a camera, a motor driver, 

two DC motors an arduino uno and a raspberry pi 3 modules. The arduino uno is used 

to drive the motors according to the information coming from the raspberry pi using 

UART communication. All sensors are directly connected to the raspberry pi and the 

sensor information are obtained using a python script developed on the robotic 

operating system platform (ROS). 

 

 



3 
 

In order to control the autonomous agricultural vehicle, accurate orientation 

and position information is necessary. To determine the orientation and position 

information, a speed sensor and an IMU are used on the autonomous agricultural 

vehicle. The wheel odometry information is obtained using the speed sensor from 

which the orientation and position values are calculated. As a second source of 

information, the IMU is also used to obtain the orientation values. The main problem 

is that the orientation and position estimation from the IMU and wheel odometry can 

be inaccurate due to the electrical noises and magnetic disturbances around the sensors. 

In order to eliminate the noise on the orientation and position data, various filters such 

as the complementary filter (Treffers and Wietmarschen, 2016), Madgwick filter 

(Madgwick et al., 2011), Kalman filter (Welch, and Bishop, 2001) and integrated 

Kalman filter (El-Diasty,2014), are designed and implemented on the IMU and the 

wheel odometry data. 

 

A laser distance sensor is used on the autonomous agricultural vehicle to obtain 

the orientation of the vehicle by making use of the distances between the vehicle and 

the trees around the vehicle. Various methods are developed for calculating the 

orientation from the distance information which is obtained from the laser distance 

sensor. In the field, there are four trees around the vehicle and the laser sensor detects 

the distance between the vehicle and the trees. Taking the trees as a reference, the 

orientation of the autonomous agricultural vehicle is determined. Using only the 

orientation information calculated from the laser distance sensor, the autonomous 

agricultural vehicle travels on a straight path between the trees. However, there is one 

disadvantage of this method where the data obtained from the laser sensor is not 

reliable under bright sunlight which interferes with the laser signal and causes errors 

in the orientation data. A better solution could have been obtained by using a radar 

distance sensor coupled with a laser distance sensor whose outputs could be fused with 

a Kalman filter to obtain an accurate orientation information even under bright sunlight 

conditions. 

 

The algorithms are developed, and the implementations are made using a 

python script developed on the robot operating system (ROS) platform which is an 



4 
 

open source platform on which it is very easy to develop robotic applications (Quigley 

et al.,2009). In this thesis, ROS platform is used to visualize the sensor data, calculate, 

and monitor the position and orientation data of the autonomous agricultural vehicle 

remotely. 

 

The thesis consists of 6 chapters. Chapter 2 introduces general description of 

the autonomous agricultural vehicle, and of the sensors that are used in autonomous 

agricultural vehicle. Chapter 3 explains the calibration procedures and 

implementations on the IMU. In order to reduce noise and to obtain accurate 

orientation, pre-filter method is implemented on the IMU and the implementation of 

the filter is explained in Chapter 4. In addition, the implementation of different types 

of filters, namely the complementary, Madgwick, Kalman and integrated Kalman 

filters, using the IMU and the wheel odometry data and the comparison of the filters 

are stated in Chapter 4. Chapter 5 explains how to obtain orientation information using 

the laser distance sensor and navigate the vehicle on a straight path between the trees 

with minimum drift from the central axis. Comparison of the performances of the 

methods developed and the results obtained are included in the last chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

CHAPTER 2: SYSTEM DESCRIPTION 

 

The autonomous agricultural vehicle is designed using a speed sensor, an 

inertial measurement unit (IMU), a laser distance sensor, a camera, a motor driver, two 

DC motors an arduino uno and a raspberry pi 3 module as shown in Figure 1. 

Moreover, the designed autonomous agricultural vehicle is shown in Figure 2. 

 

 

 

Figure 1. Overall system design  

 

 

 

Figure 2. Autonomous agricultural vehicle 



6 
 

A UART communication is established between the arduino and the raspberry 

pi modules in order to adjust the speed of the motors. The MPU6050, QMC5883L, 

laser distance sensor, raspberry pi camera, and the speed sensors are connected to the 

raspberry pi module. The sensor information are obtained using the python script 

developed in this project, on the robot operating system (ROS). Furthermore, in order 

to visualize the sensor data and monitor the orientation and position of the autonomous 

agricultural vehicle, a TCP/IP communication is established between the raspberry pi 

and the remote pc using the ROS platform. 

 

The autonomous agricultural vehicle system consists of two parts. The first part 

is the determination of the orientation using the IMU the wheel odometry data in order 

to move the autonomous agricultural vehicle on a straight line and to stop the vehicle 

when it detects a stop sign using a camera. The second part is to move the autonomous 

agricultural vehicle on the lanes between the trees in an orchard using only a laser 

distance sensor data. 

 

The main aim of this project is to move the autonomous agricultural vehicle on 

a straight path between the trees in an orchard until it detects a sign plate at the end of 

the lane. Hence, we have concentrated on estimating the orientation of the vehicle 

along the axis of the lane, rather than trying to estimate the exact location of it. In order 

to calculate accurate orientation of the autonomous agricultural vehicle, different types 

of filters are implemented on the IMU and the wheel odometry data and the filter 

results are tested to move the autonomous agricultural vehicle on a straight line in an 

orchard as shown in Figure 3. The test path is 2 meters long and at the end of the field, 

there is a stop sign. The test field and real-time monitoring of the orientation of the 

autonomous agricultural vehicle are shown in Figure 4 and Figure 5 respectively. 

 

 

 

 



7 
 

 

 

Figure 3. Orchard field 

 

 

 

Figure 4. Autonomous agricultural vehicle test field 

 

 

 

Figure 5. Autonomous agricultural vehicle real-time monitoring 



8 
 

In the first part of this thesis, an algorithm is developed and tested on the 

autonomous agricultural vehicle using the python script on the ROS platform. The 

algorithm consists of multiple ROS packages and multiple nodes as shown in Figure 

6. The nodes called Imu, filter, agv_filter, motor and odom are defined on the 

autonomous agricultural vehicle program to collect the sensor data and navigate the 

vehicle and the nodes called AGV_remote_control, Filter_yaw_plot, and 

Filter_monitor_and_record, are defined on the remote PC program in order to visualize 

and monitor the orientation of the autonomous agricultural vehicle. On the autonomous 

agricultural vehicle side, the Imu node publishes pre-filtered accelerometer, 

gyroscope, and magnetometer data and the odom node publishes odometry 

information which is calculated from the speed sensor. The filter node subscribes both 

to the IMU node and the odom node and it estimates the orientation of the autonomous 

agricultural vehicle by using different types of filters. The estimated orientation data 

from the filters are published by the agv_filter node. The agv_filter node determines 

the state of autonomous agricultural vehicle to keep the autonomous agricultural 

vehicle on a straight path and it publishes the velocity information to the motor node. 

The motor node collects the velocity information and using the velocity information, 

the Arduino Uno adjusts the speed of the motors via the UART communication 

established between the arduino uno and the raspberry pi modules. On the remote PC 

side, the orientation information calculated by the filters and sensors are collected with 

the filter_monitor_and_record node and filter_yaw_plot nodes in order to monitor, 

record and visualize the orientation data. The AGV_remote_control node is used to 

initialize the Imu and the Odom nodes, and to start and control the autonomous 

agricultural vehicle. 

 



9 
 

 

 

Figure 6. ROS nodes and topics diagram 

 

The agv_filter node consists of 3 states. Initially, the vehicle orientation angle 

is zero and the first state is to check whether the yaw angle is within the specified 

limits. The limits for the yaw angle are ±5 degrees. If the vehicle is not in this range, 

then the autonomous vehicle rotates itself to make the yaw angle zero.  The second 

state is to move the vehicle on a straight path. If the yaw angle is in the range, then the 

autonomous vehicle’s angular speed is zero and linear speed is 0.5 m/s. The last state 

is to stop the vehicle. If the stop sign is detected by camera, then the autonomous 

vehicle stops. 

 

The algorithm, that is implemented on the agv_filter node, is tested with 

different calculated yaw angles using the odometry, gyroscope and the magnetometer 

data. The complementary filter, Madgwick filter, Kalman filter and the integrated 

Kalman filter are implemented on this node. The autonomous vehicle completes its 

movement successfully with the yaw angles calculated by all the filters, when there is 

no magnetic disturbance around the vehicle. When there is a magnetic disturbance on 



10 
 

the path of the autonomous vehicle, the movement of the autonomous vehicle was not 

completed correctly using the calculated yaw angles from magnetometer, 

complementary filter, Madgwick filter, and Kalman filter. On the other hand, when the 

yaw angles are obtained using the odometry and the gyroscope data fused by the 

integrated Kalman filter, the autonomous vehicle completes its movement 

successfully, even when there is a magnetic disturbance on the path of the autonomous 

vehicle. 

 

In the second part of this thesis, a laser distance sensor is used to move the 

autonomous agricultural vehicle on the lanes between the trees in an orchard as shown 

in Figure 7. The field is also shown in Figure 8. This is the alternative way to move 

autonomous agricultural vehicle on a straight path. In this method, the paths in the 

orchard and the initial position of autonomous agricultural vehicle are known. Instead 

of calculating the orientation, the laser distance sensor measures the distance and angle 

between the autonomous agricultural vehicle and the trees to move the autonomous 

agricultural vehicle on a straight path. 

 

 

 

Figure 7. Laser distance sensor tested field 

 



11 
 

 

 

Figure 8. Autonomous agricultural vehicle test field for laser distance sensor 

 

An algorithm is developed and implemented on the autonomous agricultural 

vehicle using a python script developed on the ROS platform in the second part of this 

thesis. The developed algorithm consists of multiple ROS packages, and nodes. These 

nodes lidar, lidar_scan_data, agv_lidar, and the motor, are defined in the autonomous 

agricultural vehicle program and the nodes agv_lidar_control, and lidar_monitor are 

defined on remote PC program in order to monitor laser distance sensor data, and 

control the autonomous agricultural vehicle. The communication between each nodes 

are shown in Figure9. In the autonomous agricultural vehicle side, the laser distance 

sensor data is obtained using the lidar node and the laser distance sensor data is 

configured according to the sensor position on the autonomous agricultural vehicle 

using the lidar_scan_data node. The lidar_scan_data node publishes the distance 

information that is acquired from the angles between 0 and 360 degrees. The agv_lidar 

node collects distance information from all the angles to determine location of the 

trees. According to the distance and the corresponding angles of trees, it publishes the 

velocity information to the motor node.  

 

 

 

Figure 9. ROS nodes and topics diagram for laser distance sensor 



12 
 

2.1. Wheel Odometry  

 

In order to determine the orientation and position of the autonomous vehicle, 

wheel odometry information is essential. In this thesis, the wheel odometry is 

calculated using the motion sensors and the wheel speed encoder that are connected to 

the two rear wheels of the autonomous vehicle. 

 

The LM393 speed sensor module shown in Figure 10, contains a comparator 

and an infrared light sensor. The infrared light sensor contains an IR LED and a photo- 

transistor which are separated with a gap (Aswinth, 2019). On the other hand, the 

wheel speed encoder, which is shown in Figure 11, contains slots and it is mounted on 

the motor. The infrared light sensor can detect the slots on the wheel speed encoder 

and the output of the motion sensor becomes 1 when the slot is detected. Otherwise, 

the output of the sensor is zero. By counting the number of slots, the speed of the motor 

can be calculated. 

 

 

 

Figure 10. LM393 speed sensor module                   Figure 11. Wheel speed encoder 

 

The motion sensor and raspberry pi connections are made as shown in 

Appendix A. In order to calculate speed of the motor, the slots that are detected by 

motion sensor is counted from two motors using the GPIO interrupt of Raspberry pi. 

The wheel speed encoder contains 20 slots. By counting number of slots with 

speed sensor module in short period of time and knowing the radius of the wheel, the 



13 
 

speed of motor can be determined. The speed of the one motor can be calculated using 

formula shown in equation 1. The radius of wheel of autonomous vehicle, denoted as 

r, is 3.30cm and the calculated speed for the left motor is denoted as 𝑉𝑙 In the equation, 

the 𝑠𝑙𝑜𝑡𝑡1  and 𝑠𝑙𝑜𝑡𝑡0 are the total number of slots counted by the speed sensor 

module at time 𝑡1 and 𝑡0 respectively. The slot is the total number of slots that speed 

encoder has. Similarly, the speed of the right motor, 𝑉𝑟, can be calculated using the 

formula shown in equation 1. 

 

                                      𝑉𝑙 =
2∗𝜋∗𝑟∗

𝑠𝑙𝑜𝑡𝑡1−𝑠𝑙𝑜𝑡𝑡0
𝑠𝑙𝑜𝑡

𝑡1−𝑡0
                                     (1) 

 

Using the calculated speed for both motors, the orientation and position of the 

autonomous vehicle can be determined. The yaw angle at time t can be calculated as 

the summation of previous yaw angle 𝜓𝑜𝑑𝑜𝑚,𝑡−1, and of difference of left and right 

motor speed as shown in equation 2. The distance between wheels, denoted as L, is 

10.5 cm. 

 

    𝜓𝑜𝑑𝑜𝑚,𝑡 = 𝜓𝑜𝑑𝑜𝑚,𝑡−1 +  
𝑉𝑟−𝑉𝑙

𝐿
∗ ∆𝑇 = 𝜓𝑜𝑑𝑜𝑚,𝑡−1 +

𝑉𝑡ℎ

𝐿
∗ ∆𝑇                   (2) 

 

The rate of change of position in x-axis and y-axis can be calculated as shown 

in equation 4 and 5. The Vx is the average of the speed of left, and of right motor as 

shown in equation 3. 

 

                                                         𝑉𝑥 =
𝑉𝑙+𝑉𝑟

2
                                                           (3) 

 

                              ∆𝑥 = cos(𝑉𝑡ℎ ∗ ∆𝑇) ∗ 𝑉𝑥 ∗ ∆𝑇                                                 (4) 

 

                             ∆𝑦 = −cos(𝑉𝑡ℎ ∗ ∆𝑇) ∗ 𝑉𝑥 ∗ ∆𝑇                                             (5)                                



14 
 

The final position in x-axis, 𝑥𝑜𝑑𝑜𝑚,𝑡, and y-axis, 𝑦𝑜𝑑𝑜𝑚,𝑡, can be obtained using 

∆x and ∆y as shown in equation 6 and 7.  In the equation, the 𝑥𝑜𝑑𝑜𝑚,𝑡−1 and 𝑦𝑜𝑑𝑜𝑚,𝑡−1 

are the previous calculated orientations in x-axis and y-axis. 

 

 𝑥𝑜𝑑𝑜𝑚,𝑡 = 𝑥𝑜𝑑𝑜𝑚,𝑡−1 + sin(𝜓𝑜𝑑𝑜𝑚,𝑡−1) ∗  ∆𝑥 − sin(𝜓𝑜𝑑𝑜𝑚,𝑡−1) ∗  ∆𝑦          (6)                                               

 

 𝑦𝑜𝑑𝑜𝑚,𝑡 = 𝑦𝑜𝑑𝑜𝑚,𝑡−1 + sin(𝜓𝑜𝑑𝑜𝑚,𝑡−1) ∗  ∆𝑥 + cos(𝜓𝑜𝑑𝑜𝑚,𝑡−1) ∗  ∆𝑦          (7)                                               

                                                                                                                                             

2.2. Inertial Measurement Unit (IMU) 

  

The inertial measurement unit, which contains the accelerometer, gyroscope, 

and magnetometer data, is used in order the determine the orientation of the vehicle. 

For the accelerometer and gyroscope data, the MPU6050 is used and for the 

magnetometer data, the QMC5883L is used as shown in Figure 12 and Figure 13. 

 

 

 

                   Figure 12. MPU6050                          Figure 13. QMC5883L 

 

The MPU6050 has a 16-bit analog to digital converter (ADC) to digitize the 

accelerometer and gyroscope data and it uses I2C communication to receive these data 

(Fedorov et al., 2015). In order to read data from MPU6050, the connection between 

raspberry pi and MPU6050 are made as shown in Appendix B. Moreover, a package 



15 
 

in python is created to read data from the relative register of the MPU6050 and the 

conversion of the digital data to the relative units are also made in the same package. 

 

For the accelerometer, the full-scale ranges are ±2g, ±4g, ±8g, and ±16g. Since 

the MPU6050 has a 16-bit ADC, the sensitivity of the sensor can be calculated as 

shown in the equations 8, 9, 10, and 11 for each full-scale range in terms of  
𝑚𝑔

𝐿𝑆𝐵
. 

 

                                               𝑆2𝑔 =
4

216 = 0.061
𝑚𝑔

𝐿𝑆𝐵
                                                      (8) 

 

                                               𝑆4𝑔 =
8

216 = 0.122
𝑚𝑔

𝐿𝑆𝐵
                                                      (9) 

 

                                              𝑆8𝑔 =
16

216 = 0.244
𝑚𝑔

𝐿𝑆𝐵
                                                     (10) 

 

                                              𝑆16𝑔 =
32

216 = 0.488
𝑚𝑔

𝐿𝑆𝐵
                                                   (11) 

 

Using these formulas, the sensitivity of the accelerometer is obtained as 

0.00060  
𝑚

𝑠2⁄

𝐿𝑆𝐵
, 0.0012 

𝑚
𝑠2⁄

𝐿𝑆𝐵
, 0.0024 

𝑚
𝑠2⁄

𝐿𝑆𝐵
, and 0.0048 

𝑚
𝑠2⁄

𝐿𝑆𝐵
 for ±2g, ±4g, ±8g, and ±16g 

respectively. 

 

The full-scale ranges are ±250 ° 𝑠⁄ , ±500 ° 𝑠⁄ , ±1000 ° 𝑠⁄ , and ±2000 ° 𝑠⁄  for the 

gyroscope. The sensitivity of the sensor can be calculated as shown in equations 12, 

13, 14, and 15 for each full-scale ranges in terms of 
°

𝑠⁄

𝐿𝑆𝐵
 . 

 

                                            𝑆±250 =
500

216 = 0.0076
∘/𝑠

𝐿𝑆𝐵
                                            (12) 



16 
 

 

                                            𝑆±500 =
1000

216
= 0.0153

∘/𝑠

𝐿𝑆𝐵
                                          (13) 

 

                                            𝑆±1000 =
2000

216 = 0.0305
∘/𝑠

𝐿𝑆𝐵
                                        (14) 

 

                                            𝑆±2000 =
4000

216 = 0.0610
∘/𝑠

𝐿𝑆𝐵
                                        (15) 

 

Similarly, the QMC5883L has a 16-bit ADC and it uses I2C communication. 

The connection between the sensor and raspberry pi are made as shown in Appendix 

C and a package is developed to read sensor data in python. Moreover, the conversion 

of the raw digital data to relative units are made in the same package. 

 

The QMC5883L offers two full-scale ranges which are ±2Gauss(G), and ±8G 

for the magnetometer. The sensitivity of the sensor are 
1

1200
, and 

1

3000
 for ±2G, and 

±8G respectively in terms of  
𝐺

𝐿𝑆𝐵
.  The sensitivity for ±2G and ±8G can be obtained 

as 0.0083 and 0.033 respectively in terms of 
µT

𝐿𝑆𝐵
. 

 

In this thesis, for the accelerometer, the ±2g full-scale range is selected, and 

according to that the sensitivity of the measurement is 0.00060 
𝑚

𝑠2⁄

𝐿𝑆𝐵
. For the gyroscope, 

the full-scale range is taken as ±250 ° 𝑠⁄  and the sensitivity is obtained as 0.0076 
°

𝑠⁄

𝐿𝑆𝐵
. 

Lastly, the magnetometer full-scale range is chosen as ±2G with a sensitivity of 0.0083 

µT

𝐿𝑆𝐵
. 

 

 



17 
 

2.3. Laser Distance Sensor 

 

The laser distance sensor, is shown in Figure 14, is used to collect distance 

information around the vehicle and to calculate orientation of the vehicle. 

 

 

 

Figure 14. 360-degree laser distance sensor (LDS-1) 

 

The laser distance sensor has full scan rate of 360 degrees with 1 degree 

resolution and the laser distance sensor supports UART communication (David, 2020). 

The distance accuracy of the sensor is ±15mm in between 120mm and 499mm and 

±5.0% in between 500mm and 3500mm (David, 2020). 

 

The communication between the laser distance sensor and raspberry pi is 

established with UART communication. The sensor data is obtained using ROS 

package that is called HLS-LFCD2 (David, 2020). The package gives distance 

information that are taken from in all degrees as an array with publishing the data under 

the scan topic. In this thesis, the distance information, which is in terms of meter, is 

taken using scan topic and it is used on the autonomous vehicle implementation to find 

orientation of the vehicle. 

 

 



18 
 

2.4. Camera 

 

Raspberry pi Camera module, is shown in Figure 15, is used to detect a traffic 

sign and the autonomous vehicle rotates in one direction when the traffic sign is 

detected. 

 

 

 

Figure 15. Raspberry Pi camera module v2 

 

The raspberry pi camera module has 8 Megapixels camera and it has video 

resolution of 480p, 720p, and 1080p with frame rate of 90, 60, and 30 respectively 

(Pagnutti et al., 2017). In this thesis, the raspberry pi camera module is used with video 

resolution of 480p and the frame rate of 30. The configuration of the camera module 

is done by using picamera library and the video capturing property is done by using 

python script with picamera library on ROS platform. 

 

In order to detect a traffic sign, which is stop sign, haar cascade classifier 

method (Khan,2019) is used. The xml file is created that contains information to detect 

stop sign. Using opencv (Khan,2019) library on python script and using xml file, the 

stop sign is detected. In autonomous agricultural vehicle implementation, the 

information is taken with subscribing cam topic when the stop sign is detected. 

 



19 
 

2.5. Robotic Operating System (ROS) 

 

Robotic operating system (ROS) is an open-source platform which provides 

hardware abstraction, messaging between devices and package management to 

develop and improve function definitions (Yoonseok, 2017). ROS is actually a meta-

operating system unlike the conventional operating systems such as Windows, Linux, 

and Android. A meta-operating system can operate processes like scheduling, 

monitoring, and visualization of data including error inspection (Yoonseok, 2017). 

 

 The main concepts used while developing ROS programs, are master, node, 

package, message, topic, publisher, and subscriber. Master is the main node that 

provides connection and message communication between the nodes. In order to run 

the master, roscore command is used and when it is executed, the connection between 

all nodes could be established and the data could be transferred between the nodes 

(Yoonseok, 2017). Node is the smallest unit on ROS ecosystem (Yoonseok,2017) 

which is an executable program that can be written in python or C++. Furthermore, a 

ROS ecosystem is developed with packages where each package could consist of a 

launch file, a message file, and multiple nodes. A ROS package also includes ROS 

dependencies, libraries, and configuration files in order to run the nodes properly. In 

order to transfer data between nodes, messages are used which consist of variables of 

type integer, floating, array, and Boolean (Yoonseok, 2017). In order to get 

information or publish information from one node to another, topics are used. In ROS, 

publishers are used to transfer a message with the corresponding topic to the nodes 

which subscribe to the related topic. On the other hand, a subscriber subscribes a topic 

which is published by a publisher to receive a message. In the ROS ecosystem, there 

could be multiple publishers and subscribers to transmit and receive messages under 

various topics. 

 

In ROS, there are some commands, such as roscore, rosrun, and roslaunch to 

execute an application. Initially, the roscore command is used to run the master node 

which communicates with the other nodes using the XML-Remote Procedure Call 

(XML- RPC) which is an HTPP-based protocol (Yoonseok, 2017) and other nodes can 



20 
 

register to the master node using the XMLRPC. In this thesis, the roscore command is 

executed on the remote PC and the autonomous agricultural vehicle is on the same 

network to register the nodes to the master. When the registration of nodes is 

completed with  the master, the nodes can communicate between each other using the 

TCPROS of the TCP/IP protocols (Yoonseok, 2017). Furthermore, the rosrun 

command is used to run a node in any ROS package and the roslaunch command is 

used to run multiple nodes using a single launch file. In order to run the roslaunch 

command, the launch file should be included in the ROS package. 

 

The message communication system between nodes is shown in Figure 16. 

This type of communication is called Topic communication in ROS. This 

communication is asynchronous, and it is unidirectional. In this type of 

communication, the publisher and subscriber nodes can communicate between each 

other using the same type of message and topic. In this example, the publisher node 

name is wheel odometry which publishes the wheel odometry information under the 

odom topic with the messages of x, y, ϕ. The subscriber receives this information from 

the publisher by registering to the odom topic. As you can see in Figure 16, there could 

be multiple subscribers to receive this information from the publisher node. 

 

 

 

Figure 16. ROS message communication 

 



21 
 

The message communication system is started by running the master node with 

the roscore command. In the ROS ecosystem, the name of the nodes, topics and the 

message types are registered to the master node using the XMLRPC as shown in Figure 

17. In this case a subscriber node sends its name, topic name, and message type to the 

master node using the XMLRPC. 

 

 

 

Figure 17. Master node – subscriber node 

 

Similarly, the publisher node sends its node name, topic name, and message 

type to the master node using the XMLRPC as shown in Figure 18, when the node is 

executed by the rosrun command. If the topic name and the message type of the 

subscriber, and the publisher are matched, then the master node sends the publisher’s 

information to subscriber. 

 

 

 

Figure 18. Master node, subscriber node, and publisher node 



22 
 

Furthermore, the subscriber node sends a request to the publisher in order to 

establish direct communication with the publisher using the XMLRPC and the 

publisher node sends a response that contains its TCP server information. After that, a 

client server is created on the subscriber node in order to communicate with the 

publisher node using the TCP/IP protocol, namely the TCPROS as shown in Figure 

19. 

 

 

 

Figure 19. TCPROS request and response 

 

When the TCPROS communication is established between the publisher node 

and the subscriber node, the messages sent by the publisher node, are transferred to 

the subscriber node as shown in Figure 20. 

 

 

 

Figure 20. TCP/IP message transmission 

 

In this thesis, all algorithms are developed using python script on the ROS 

platform. The first application developed on the ROS platform moves the autonomous 

agricultural vehicle on a straight path using the IMU and the wheel odometry data. The 



23 
 

general layout of the communication between the remote PC and the autonomous 

agricultural vehicle, the nodes and the topics, that are defined on both sides, are shown 

in Figure 21. The master node is run on the remote PC side and the nodes 

AGV_remote_control, Filter_monitor_and_record, and Filter_yaw_plot are defined 

on the remote PC side in order to monitor, visualize and control the autonomous 

agricultural vehicle. On the other hand, the nodes, that are implemented on the 

autonomous agricultural vehicle side, are Imu, filter, odom, motor, and agv_filter. The 

communication between nodes are established using the topic based communication 

and different type of messages are defined to transfer data between nodes. The 

messages that are defined under the topics of imu_info, odom_info and filter_info are 

shown in Appendices D, E, and F respectively. 

 

 

 

Figure 21. ROS nodes and topics for IMU and wheel odometry 

 

In the second application, an algorithm is developed, using a laser distance 

sensor on the ROS platform, to move the autonomous agricultural vehicle on the lanes 

between the trees in an orchard. The nodes and topics, that are used on this application, 

are shown in Figure 22.  Similarly, the master node is run on the remote PC side and   

the nodes agv_lidar_control and lidar_monitor, are defined on the remote PC side. In 

order to move the autonomous agricultural vehicle, lidar, lidar_scan_data, agv_lidar 

and motor nodes are defined on the autonomous agricultural vehicle side. 



24 
 

 

 

Figure 22. ROS nodes and topics for laser distance sensor 

 

Furthermore, each of the filters are implemented separately on the ROS 

platform in order to evaluate the CPU and the memory usages. Some of the filters, 

mentioned in Chapter 4, use only the IMU information, and others use both the wheel 

odometry, and the IMU information in order to estimate the orientation of the 

autonomous agricultural vehicle. For that reason, two different cases are created and 

implemented on the ROS platform as shown in Figure 23, and Figure 24. 

 

 

 

Figure 23. Case 1: ROS nodes and topics to evaluate computational costs 

 

 

 

Figure 24. Case 2: ROS nodes and topics to evaluate computational costs 

 



25 
 

 In the first case, the filter_cc node estimates the orientation of the autonomous 

vehicle using only one of the developed sensor fusion algorithms. The node is executed 

separately for each of the filters that use only the IMU information and it publishes the 

filter result to the agv_filter_cc node. The agv_filter_cc node decides the state of the 

autonomous agricultural vehicle and publishes the velocity information to the motor 

node in order to move the vehicle on a straight line. 

 

In the second case, the filter_cc node, which estimates the orientation of the 

autonomous agricultural vehicle, is developed to calculate the computational cost of 

the filters that use both the wheel odometry, and the IMU information. Similarly, the 

node is executed separately for each of the filters which publishes the filter result to 

the agv_filter_cc node. The agv_filter_cc node decides the state of the autonomous 

agricultural vehicle and publishes the velocity information to the motor node in order 

to move the vehicle on a straight line. 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

CHAPTER 3: IMU CALIBRATION 

 

In this part, the accelerometer, gyroscope, and magnetometer offsets are 

explained. The accelerometer and gyroscope values are acquired from the MPU6050, 

and the magnetometer values are obtained from the QMC5883L.  

 

The signals obtained from the sensors have a DC offset in the measurement. 

The mean values of these signals give information about the DC offset. If the mean 

value of a signal is zero, then the DC offset is zero. When we measure the outputs of 

the sensors and calculate the mean value of each signal, we can easily observe that the 

mean values are not zero. Due to the mechanical and electrical factors, each of these 

sensors have offset which should be eliminated in order to get more reliable results in 

order to determine the orientation of the vehicle accurately. In order to eliminate the 

DC offset, each sensors’ output should be monitored, and the correction method should 

be determined for each sensor separately. 

 

1. Accelerometer DC offset : The DC offset the accelerometer can be 

observed by collecting raw data from the MPU6050 sensor. While 

collecting the raw data, the sensor must be locked in a fixed place in 

order to reduce error due to the effect of movement of the sensor. After 

locking the sensor in a fixed place, the mean value of the signal can be 

calculated from each axis to determine the DC offset. Then, the 

calculated offset can be subtracted from each axis separately. 

Moreover, the gravitational force or gravitational field of the earth 

should be considered in the z-axis to use the accelerometer data in the 

calculation of orientation (Treffers and Wietmarschen, 2016). When 

the sensor is placed upwards facing the z-axis, the raw value collected 

from the sensor on the z-axis should be observed as 1g (9.8 𝑚 𝑠2⁄ ). The 

DC offset calculated on the z-axis can be subtracted from the raw value, 

but the gravity component should be left as 1g. 

 



27 
 

2. Gyroscope DC offset :  The gyroscope offset calculation is similar to 

that of  the accelerometer offset. In order to collect gyroscope data 

correctly, the sensor must be locked in a fixed place. When the sensor 

is locked in a fixed place, the angular velocity should be observed as 

zero. If it is not zero, then this is because of the DC offset. In order to 

eliminate the offset, the mean value of the signal which is collected 

from each axis should be subtracted separately from the raw data 

(Treffers and Wietmarschen, 2016). 

 

3. Magnetometer DC offset : The magnetometer sensor QMC5883L 

senses the earth’s magnetic field (Treffers and Wietmarschen,2016) 

and the offset can cause error in the calculation of orientation relative 

to the earth’s magnetic field. The electronic devices near the 

magnetometer sensor can contain components that disturb the 

measurement of the earth’s magnetic field. This causes the offset in the 

magnetometer data. The errors or offset on the magnetometer can be 

categorized as hard iron and soft iron errors (Renaudin, Afzal, and 

Lachapelle, 2010). The hard iron errors occur when the magnetic 

material is permanently magnetized which can add constant values in 

all axes which are the offsets on the magnetometer data (Kok and 

Schön, 2016). On the other hand, soft iron errors occur when the 

material is magnetized by an external magnetic field (Kok and Schön, 

2016). The hard iron errors can be eliminated easily by collecting raw 

magnetometer data where the sensor is locked in a fixed place and 

rotated 180 degrees. When the sensor is locked in a fixed place, the 

magnetometer measurements contain positive or negative earth 

magnetic field and the hard iron offset. When the sensor is rotated 180 

degrees in the same place, the magnetometer measurements consist of 

both the hard iron offset and the opposite sign of the earth’s magnetic 

field which is measured before being rotated 180 degrees. The 

summation of both measurements give us twice the hard iron offset 

(Treffers and Wietmarschen, 2016). Dividing the obtained value by two 

and subtracting the value from the raw magnetometer data, we can 



28 
 

remove the hard iron offset. The process can be summarized 

mathematically as follows: 

 

                         𝑋 = 𝑒𝑎𝑟𝑡ℎ𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑓𝑖𝑒𝑙𝑑 + 𝑜𝑓𝑓𝑠𝑒𝑡                      (16) 

 

                                                𝑌 = −𝑒𝑎𝑟𝑡ℎ𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑓𝑖𝑒𝑙𝑑 + 𝑜𝑓𝑓𝑠𝑒𝑡                     (17) 

 

                                                     𝐻𝑎𝑟𝑑𝐼𝑟𝑜𝑛𝑂𝑓𝑓𝑠𝑒𝑡 = (X + Y)/2                               (18) 

 

Another way of calculating the hard iron offset is to measure the raw 

magnetometer data while rotating the sensor 360 degrees on all three 

axes. For each axes, summation of the maximum and minimum values 

of the magnetometer data give us twice the hard iron offset. Similarly, 

half of the calculated value can be subtracted from the raw 

magnetometer data in order to get rid of the hard iron offset. In this 

thesis, this process is applied using the python script on the Robot 

Operating System (ROS) platform. Furthermore, the soft iron errors can 

be obtained by rotating the sensor in all directions while collecting the 

raw magnetometer data in all axes. The soft iron errors can be observed 

by plotting the magnetometer data in any axes with respect to any other 

axes of the magnetometer. If the obtained graph is a perfect sphere, then 

there is no soft iron offset. If the graph is an ellipsoid, then there is a 

soft iron offset; in other words, there is a scaling error in data. In order 

to eliminate soft iron errors, the obtained ellipsoid must be compared 

with the perfect sphere and the results gives us the scaling vector which 

should be applied to the raw magnetometer data (Treffers and 

Wietmarschen, 2016). In this thesis, the process of soft iron offset 

detection is implemented, but the scaling vector is not obtained and is 

not applied to the raw magnetometer data since the acquired signals 

from the magnetometer sensor do not contain substantial soft iron 

errors. 

 



29 
 

3.1. Implementation 

 

The calibration procedure is applied using a Raspberry Pi module and the ROS 

platform. The accelerometer, gyroscope, and magnetometer data are collected from 

the MPU6050 and the QMC5883L sensors. Then the mean value of each signal is 

calculated and saved in an excel file. Moreover, the collected data from the sensors are 

sent to a remote PC using the ROS. On the remote PC side, the collected data is saved 

in a text file in order to visualize the signal in MATLAB. While collecting data, the 

data are also visualized on the remote PC thanks to the ROS platform. 

 

1. Gyroscope DC offset: The raw gyroscope data is obtained from the 

MPU6050, while it is locked in a fixed place. On all three axes, 1000 

samples are acquired, and the mean value of each signal is calculated.  

The calculated mean values   of each axis are stored in an excel file. In 

the normal operation of the sensor, the calculated mean values are read 

from the excel file and subtracted from raw gyroscope data in order to 

eliminate the DC offset. 

 

2. Accelerometer DC offset: The raw accelerometer data is acquired from 

the MPU6050, while it is locked in a fixed place where the z-axis points 

upwards. Similar to the gyroscope offset procedure, 1000 samples are 

collected. The mean value of each signal is calculated and the mean 

values are saved into the excel file for further usages. The calculated 

mean values are subtracted from the raw accelerometer data to get rid 

of the DC offset in the normal operation of the sensor. Since the 

sensor’s z-axis points upward, the calculated mean value for the z-axis 

should be around 1g. In order to use the accelerometer data in 

orientation calculation, the calculated offset is subtracted from the z-

axis and 1g is added to the corrected the value. 

 

3. Magnetometer DC offset: The raw magnetometer data is obtained from 

the QMC5883L, while the sensor is on the autonomous vehicle. In 



30 
 

order to obtain the hard iron offset, firstly, the vehicle is rotated around 

each axis and for each rotation 1000 samples are taken separately with 

a 50 Hz sampling rate. The collected data is saved in a NumPy array, 

and the maximum and minimum values of each sample are determined. 

Then, the summation of the maximum and minimum values are 

obtained to get twice the offset. Lastly, the obtained value is divided by 

two to get hard iron offset in each axes. The calculated hard iron offsets 

are subtracted from the raw magnetometer to completely get rid of hard 

iron errors in the normal operation of the sensor. 

 

3.2. Results 

 

The raw accelerometer data, which is obtained from MPU6050, is in terms of 

𝑚
𝑠2⁄  as shown in Figure 25. It can be easily seen that the x-axis and y-axis values are 

not zero. The z-axis values are around 1g (9.8 𝑚 𝑠2⁄ ), but with a small offset. When 

the DC offset is removed from the accelerometer data, we can see that x-axis and y-

axis values are around zero, and z-axis values are around 9.8 𝑚 𝑠2⁄  (1g) as shown in 

Figure 26. 

 

       

Figure 25. Raw accelerometer data                    Figure 26. Offset Removed accelerometer 

                data 

 

The raw gyroscope data and the offset removed gyroscope data are shown in 

Figure 27 and Figure 28 respectively. In all three axes of the raw gyroscope data, the 

values are not around zero which means that there is a DC offset. When the procedure 



31 
 

to remove the offset from the gyroscope data is applied, it can be seen that the values 

are centered around zero as shown in Figure 28. 

 

               

Figure 27. Raw gyroscope data                    Figure 28. Offset Removed gyroscope 

                    data 

 

The raw magnetometer data x vs y, y vs z, and x vs z are shown in Figure 29, 

Figure 31, and Figure 33 respectively. It can be easily see that the data is not around 

the center (0, 0) due to the hard iron offset. On the other hand, the hard iron offset 

removed magnetometer data x vs y, y vs z and x vs z, are centered around as can be 

seen in Figure 30, Figure 32, and Figure 34 respectively. 

 

                     

Figure 29. Raw magnetometer data                    Figure 30. Offset Removed magnetometer 

               data 

 

 



32 
 

                     

Figure 31. Raw magnetometer data                    Figure 32. Offset Removed magnetometer

                data 

 

                     

Figure 33. Raw magnetometer data                    Figure 34. Offset Removed magnetometer

                data 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

CHAPTER 4: NOISE FILTERS 

 

Determination of orientation is the key for autonomous vehicles and the 

orientation of the autonomous vehicle is determined using the roll (ϕ), pitch (θ), and 

yaw (ψ) angles. The yaw angle, also called the heading, is the most important angle to 

control the vehicle. It shows the rotation around the z-axis. The roll and pitch angles 

represent the rotations around the x-axis and y-axis respectively. The roll (ϕ), pitch (θ), 

and yaw (ψ) are shown in Figure 35. 

 

  

 

Figure 35. Roll(ϕ), Pitch(θ) and Yaw (ψ) angles 

 

The roll, pitch, and yaw angles can be calculated using the accelerometer, 

gyroscope, and magnetometer data. Using the accelerometer data, the roll and pitch 

angles can be calculated, but the calculated angles can be inaccurate. Since the 

accelerometer data is collected in the autonomous car, the vibration of the car while it 

is not moving or vibrations while it is moving can affect the measurement and cause 

errors in the calculation of the angles. Therefore, the calculation of the roll and pitch 

angles using accelerometer data is not sufficient (Gui, Tang, and Mukhopadhyay, 

2015) to determine the orientation angle accurately. The gyroscope data also could be 

used in the calculation of the roll, pitch, and yaw angles since the gyroscope 

measurements provide the angular velocities in all three axes. In order to calculate the 

angles, the integral of these angular velocities obtained from the gyroscope data should 



34 
 

be taken. This can cause a problem in the long term since the gyroscope data tends to 

drift. On the other hand, the gyroscope information is only reliable in a short period of 

time (Gui, Tang, and Mukhopadhyay,2015). Furthermore, the magnetometer data can 

also be used in the yaw angle calculation. The magnetometer data is accurate in a long 

period of time whereas it can be not accurate in the short term due to the effect of 

external magnetic disturbances and noise. 

 

Moreover, the wheel odometry provides orientation and position information 

of the autonomous vehicle as mentioned in section2. In order to get more accurate 

orientation information, the advantages and disadvantages of the accelerometer, 

gyroscope, magnetometer and wheel odometry can be combined with filters. In this 

thesis, different types of filters, which are complementary, Madgwick, Kalman, and 

integrated Kalman filter, are implemented on IMU data. Moreover, the Kalman filter 

is implemented on both the IMU and the wheel odometry data. 

 

In order to reduce noise on the IMU data, a pre-filter is implemented. The pre- 

filter response on the IMU data is used as the input for the noise filters namely the 

complementary, Madgwick, Kalman and the integrated Kalman filter. Moreover, the 

filters are implemented using the ROS platform and python script on the autonomous 

vehicle and the performance of the filters are examined on MATLAB. 

 

4.1. Pre-Filter 

 

In this section, the pre-filter method is explained. The data obtained from the 

accelerometer, gyroscope, and the magnetometer are noisy and in order to reduce the 

effect of noise in the orientation calculation, a pre-filter is applied on the IMU data. 

The pre-filter method is taken from Charlotte Treffer’s master thesis (Treffers and Wi- 

etmarschen, 2016). In my thesis, I used the ROS platform and python scripts to develop 

my application. The original method was written in C++, therefore, I developed a 

python version of the method as presented below. 

 



35 
 

 

def NF(value, CV, NP, NPS, NPL): 
    if(value<CV-NP or value>CV+NP): 
        filtered_value = value 
    else: 
        if(value<CV-NPS or value>CV+NPS): 
            filtered_value=(value+CV)/2 
        else: 
            filtered_value=(1-NPL)*CV +NPL*value 
    return filtered_value 

 

 

In this method, there are two variables called value (V) and compared value 

(CV), and three parameters called noise parameter (NP), noise parameter second 

(NPS), and noise parameter low (NPL). In the function, value is the current raw 

accelerometer, gyroscope or magnetometer data on the x-axis, y-axis or z-axis. The 

first if-statement checks whether the value is smaller than the compared value minus 

the noise parameter or greater than compared value plus the noise parameter. If this 

statement is true, then there is a real change in the data and the filter’s output is equal 

to the value. If there is no significant change in the value, then the value is compared 

with compared value plus and minus noise parameter second. If the case is true, then 

the filter output is the average of the value and previous value which is compared 

value. Otherwise, a low pass filter is applied using the parameter which is noise 

parameter low. 

 

In summary, there are two threshold parameters which are NP and NPS. If the 

current data, accelerometer, gyroscope, or magnetometer, is above the first threshold 

(NP), then the filter output is the current data. If it is below the NP and above the NPS, 

then the filter output is the average of the current data and of previous filter output.   If 

the current data is below the two-threshold parameter that means that the data is not 

changed significantly on the current state, then the filter applies low-pass filter to the 

data. The NP and NPS values are determined separately for the accelerometer, 

gyroscope, and the magnetometer data while the autonomous vehicle is stationary. If 

the vehicle is stationary, the data should not change too much. If it changes then the 

pre-filter applies low-pass filter to the signal to obtain more accurate results and to get 

rid of the noise. 



36 
 

4.1.1. Implementation 

 

The pre-filter is implemented using the python script on the ROS platform. The 

pre-filter is implemented on a single python package for the accelerometer, gyroscope 

and the magnetometer. 

 

1. Pre-Filter implementation in accelerometer data: The accelerometer 

data obtained from the MPU6050 are noisy. In order to use the 

accelerometer data in the orientation calculations, the noise should be 

reduced. The pre-filter is used to reduce the measurement noise in the 

accelerometer data. In this method, the value is the accelerometer value, 

and the compared value is the previous output of the pre-filter. If the 

current accelerometer value is smaller than the previous output of the 

filter minus NP or greater than the previous output of the filter plus NP, 

then the output of the filter is set to the current accelerometer value. If 

this is not the case, the current accelerometer value is compared with 

the previous accelerometer value plus and minus NPS. If the current 

accelerometer value is smaller than the previous output of the filter 

minus NPS or greater than the previous output of the filter plus NPS, 

then the filter output is set to the average of the current accelerometer 

value and previous output of the filter. If the current accelerometer 

value is much smaller, then the low-pass filter is applied. The cut-off 

frequency of the low-pass filter is 𝐹𝑐 =
𝑁𝑃𝐿

(1−𝑁𝑃𝐿)∗2∗𝜋∗∆T
= 0.20 𝐻𝑧 

where ∆T is the sampling time which is about 0.02 seconds and the 

NPL is 0.025. Furthermore, the NP and NPS parameters are determined 

by observing the sensor output when the sensor is stationary as 0.2095 

𝑚
𝑠2⁄  and 0.1796 𝑚 𝑠2⁄  respectively. 

 

2. Pre-Filter implementation in gyroscope data: The gyroscope data which 

are acquired from the MPU6050 are very noisy and this noise causes 

drift. In order to prevent the drift problem, the pre-filter is applied. In 

the pre-filter method, the value is the gyroscope data and the compared 



37 
 

value is zero. Since the compared value is zero, averaging can be 

avoided by taking the NP and NPS parameters as the same. Moreover, 

the NPL value is taken as zero and the low-pass filter is not applied. 

Basically, the pre-filter output is the current gyroscope data when the 

current value is smaller than the negative NP or greater than the NP or 

NPS. Otherwise, the filter output is zero. Similarly, after the 

observation of gyroscope data, the NP or NPS parameters are 

determined as 0.267 ° 𝑠⁄ . 

 

3. Pre-Filter implementation in magnetometer data: The magnetometer 

data which are obtained from the QMC5883L are noisy even when the 

sensor is at the stationary position. In order to get more reliable results 

in the orientation calculation, the pre-filter is also implemented on the 

magnetometer data. A similar procedure is applied as we did on the 

accelerometer data. First, the offset removed magnetometer data are 

collected, while the sensor is stationary and the collected data are 

plotted in MATLAB. As a result, the NP and NPS values are 

determined as 3 µT. In the pre-filter implementation, the variable value 

is the current magnetometer data, and the compared value is the 

previous output of the filter. The NPL coefficient is the same as the 

NPL parameter calculated for the accelerometer. Also, the working 

principle of this pre-filter is same as that of the pre-filter implemented 

for the accelerometer data. 

 

The pre-filter variables and parameters are summarized in Table 1. 

 

Table 1. The variables and parameters used in the filter 

Data Value Compared Value NP NPS NPL 

Accelerometer Curr. Acc. Data Prev. filter output 0.2095 0.1796 0.025 

Gyroscope Curr. Gyro. Data 0 0.267 0.267 0 

Magnetometer Curr. Magne. Data Prev. filter output 3 3 0.025 



38 
 

4.1.2. Results 

 

The offset removed accelerometer, gyroscope, and magnetometer data in each 

axes are compared with the pre-filter results. The sensor outputs and the filter outputs 

were collected while the vehicle is stationary and when the vehicle is rotated in one 

direction. 

 

The pre-filter output for the accelerometer and the offset removed 

accelerometer data on the x-axis, y-axis, and z-axis are shown in Figure 36, Figure 37, 

and Figure 38 respectively. The green line in the graphs represent the offset removed 

accelerometer data and the red line represents pre-filter output. The results show that 

pre-filter has reduced the noise considerably, whereas the offset removed 

accelerometer signal is quite noisy. For the offset removed accelerometer data, the 

absolute mean errors are 0.031169 ± 0.045067, 0.042499 ± 0.060542, and 0.041376 ± 

0.055739 on the x-axis, y-axis, and z-axis respectively. On the other hand, the pre-

filtered accelerometer data has the absolute mean errors of 0.013518 ± 0.021376 on 

the x-axis, 0.009036 ± 0.006746 on the y-axis, and 0.033788 ± 0.048860 on the z-axis. 

 

           

Figure 36. Pre-Filtered         Figure 37. Pre-Filtered           Figure 38. Pre-Filtered acc. 

acc. in x-axis                        acc. in y-axis                           in z-axis 

           

The comparison of the offset removed gyroscope data with the pre-filter output 

for the gyroscope data on all axes, while the vehicle is stationary, are shown in Figure 

39, Figure 40, and Figure 41. We can see that the pre-filter output for the gyroscope 

data is around zero. These results also show that the pre-filtered gyroscope data can be 

used in the orientation calculation without drift problems since the noise is reduced 

significantly. For the offset removed gyroscope data, the absolute standard deviations 



39 
 

are 0.084670 ± 0.103286, 0.08188 ± 0.106602, and 0.073284 ± 0.093619 on the x-

axis, y-axis, and z-axis respectively. On the other hand, the pre-filtered gyroscope data 

have the absolute mean errors 0.003407 ± 0.032598 on the x-axis, 0.005872 ± 

0.041098 on the y-axis, and 0.000363 ± 0.010549 on the z-axis. 

 

             

Figure 39. Pre-Filtered         Figure 40. Pre-Filtered           Figure 41. Pre-Filtered gyro. 

gyro. in x-axis                     gyro. in y-axis                        in z-axis 

            

Figure 42, Figure 43, and Figure 44 show the pre-filter output values for the 

magnetometer data and the offset eliminated magnetometer data on all three axes while 

the vehicle is stationary. We can see that the pre-filter has reduced the noise in the 

magnetometer data significantly. For the offset removed magnetometer data, the 

standard deviations are 0.236397, 0.303134, and 0.695758 on the x-axis, y-axis, and 

z-axis respectively. On the other hand, the pre-filtered magnetometer data have the 

standard deviations of 0.033477 on the x-axis, 0.044426 on the y-axis, and 0.240160 

on the z-axis. 

 

          

Figure 42. Pre-Filtered         Figure 43. Pre-Filtered          Figure 44. Pre-Filtered magne. 

magne. in x-axis                 magne. in y-axis                  in z-axis 

 

The pre-filter output values for the accelerometer and the offset removed 

accelerometer data, while the vehicle is rotating in one direction, are shown in Figure 



40 
 

45, Figure 46, and Figure 47. The graphs show that the pre-filter response is very fast 

while the vehicle is rotating in one direction and when the vehicle is stationary. We 

can also see that the pre-filter applies a low-pass filter to the noisy signal when the 

vehicle is stationary. On the other hand, the filter output is equal to the measured 

accelerometer data, when the vehicle changes its direction. 

 

               

Figure 45. Pre-Filtered         Figure 46. Pre-Filtered       Figure 47. Pre-Filtered acc. 

acc. in x-axis                          acc. in y-axis                        in z-axis 

 

The pre-filter results for the gyroscope data on all axes, while the vehicle is 

rotating in one direction, are shown in Figure 48, Figure 49, and Figure 50. We can 

see that the pre-filter output is zero when the vehicle is stationary, and it is equal to the 

current gyroscope data while the vehicle is rotating in one direction. 

 

             

Figure 48. Pre-Filtered         Figure 49. Pre-Filtered           Figure 50. Pre-Filtered gyro. 

gyro. in x-axis                     gyro. in y-axis                        in z-axis 

 

Figure 51, Figure 52, and Figure 53 show the pre-filter output values for the 

magnetometer data on all axes while vehicle is rotating in one direction. It can be easily 

seen that the pre-filter output is equal to the current magnetometer output while the 

vehicle is rotating, and the pre-filter applies a low-pass filter while the vehicle is 

stationary. 



41 
 

          

Figure 51. Pre-Filtered         Figure 52. Pre-Filtered          Figure 53. Pre-Filtered magne. 

magne. in x-axis                 magne. in y-axis                  in z-axis 

 

As a result, the pre-filter implementation on offset removed accelerometer, 

gyro- scope, and magnetometer data reduces the noise significantly. Since the noise is 

reduced significantly when the vehicle is stationary, the pre-filter also solves the drift 

problem on the orientation calculation. While the vehicle is rotating in one direction, 

the pre-filter can quickly respond and give an output which is equal to the currently 

measured sensor data. Moreover, the pre-filter output for the accelerometer can be 

equal to the average of the currently measured data and the previous data according to 

the NP and NPS values. 

  

4.2. Complementary Filter 

 

The complementary filter applies a low-pass and a high-pass filter to the given 

data. The roll, pitch, and yaw angles can be calculated using the accelerometer, 

gyroscope, and magnetometer data. The accelerometer and magnetometer data are 

reliable in a long period of time whereas the gyroscope data is accurate in the short 

term. Using the complementary filter, the two data can be combined, and more 

accurate results can be obtained for the roll, pitch, and yaw angles. 

 

To calculate the roll, and pitch angles, the accelerometer and gyroscope data 

can be used. On the accelerometer data, a low pass filter should be applied whereas a 

high-pass filter should be applied on the gyroscope data, since the gyroscope data is 

more reliable on short period of time due to the drift problem and the accelerometer is 

more reliable in the long period of time due to the possible vibration errors in the short 

period of time. Before applying the complementary filter, the roll and pitch angles 



42 
 

should be calculated from accelerometer and gyroscope data. In order to calculate the 

roll and pitch angle from gyroscope data, the gyroscope data should be integrated over 

time to determine the angles from the angular speeds. On the other hand, the roll and 

pitch angles can be calculated using the accelerometer data as shown in equation 19 

and 20 (Treffers and Wietmarschen,2016). In these equations, the variables ax, ay, and 

az, represent the accelerometer data in the x-axis, y-axis, and z-axis respectively. 

 

                                     𝜙𝑎𝑐𝑐 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑎𝑦

√𝑎𝑥2+𝑎𝑧2
)                                        (19) 

 

                                     𝜃𝑎𝑐𝑐 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
−𝑎𝑥

√𝑎𝑦2+𝑎𝑧2
)                                               (20) 

 

Using the calculated ϕacc and θacc and the gyroscope data, the complementary 

filter can be applied to obtain the roll and pitch angles. The complementary filter 

equations are shown in equation 21 and 22. The variables  gx, and gy  are the gyroscope 

data in  the x-axis and y-axis respectively. ∆T is sampling time which is 0.02 seconds 

and α is the complementary filter parameter which can be chosen between zero and 

one. If α is selected closer to zero, then the roll and pitch angles are calculated based 

on the accelerometer data in the long term. If it is taken closer to one, then the roll and 

pitch angles are obtained based on the gyroscope data in the short term. In order to get 

reliable results while taking the advantage of the accelerometer and gyroscope data, 

the α parameter is selected closer to one. In other words, by selecting the α closer to 

one, the accelerometer data is used in a long period of time and the gyroscope data is 

used in a short period of time. 

 

                            𝜙 = 𝛼 ∗ (𝑔𝑥 ∗ 𝛥𝑇 + 𝜙) + (1 − 𝛼) ∗ 𝜙𝑎𝑐𝑐                              (21) 

 

                            𝜃 = 𝛼 ∗ (𝑔𝑦 ∗ 𝛥𝑇 + 𝜃) + (1 − 𝛼) ∗ 𝜃𝑎𝑐𝑐                                (22) 

 



43 
 

The yaw angle can be calculated using the gyroscope and the magnetometer 

data. Similarly, the gyroscope data is accurate in a short period of time whereas the 

magnetometer data is accurate in a long period of time. By using the complementary 

filter, the advantages of both gyroscope and magnetometer can be combined to get an 

accurate yaw angle. In order to calculate yaw angle from the magnetometer data, 

equation23is used. The Mx, and My are the magnetometer data on the x-axis and y-

axis respectively. 

 

                                                      𝜓𝑚𝑎𝑔 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑀𝑦

𝑀𝑥
)                                           (23) 

 

The complementary filter is applied to calculate ψmag, and the gyroscope data 

is used to obtain an accurate yaw angle as shown in equation 24 where gz is the 

gyroscope data on the z-axis and α is the complementary filter parameter. Similarly, α 

is selected closer to one to rely on the magnetometer data in the long term and the 

gyroscope data in the short term. 

 

                           𝜓 = 𝛼 ∗ (𝑔𝑧 ∗ 𝛥𝑇 + 𝜓) + (1 − 𝛼) ∗ 𝜓𝑚𝑎𝑔                             (24) 

 

The algorithm that is developed for complementary filter implementation is 

shown in Appendix G. The Complimentary class is called by the filter node, that is 

developed on ROS platform, in every iteration in order to estimate orientation using 

gyroscope and magnetometer. 

 

4.3. Madgwick Filter 

 

The Madgwick filter, was proposed by Madgwick in 2011 (Madgwick et al., 

2011), proposes a low-cost and accurate orientation estimation using accelerometer, 

gyroscope, and magnetometer data. Compare to the Kalman filter, the Madgwick filter 

provides less computational cost. 



44 
 

In order to calculate roll, pitch, and yaw angles using accelerometer, 

gyroscope, and magnetometer data, firstly, an array, denoted as 𝑆𝑤𝑡
, is created to store 

raw gyroscope data at time t as shown in 25. The gyroscope data on the x-axis, y-axis, 

and z-axis which are on the sensor frame, are defined as gx, gy, and gz respectively. 

Then, the quaternion derivative, �̇�𝑡𝐸
𝑆  at time t is calculated to obtain rate of change in 

orientation from sensor frame to earth frame relative to the sensor frame as shown in 

26 (Madgwick, 2010). The �̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 is the estimation of the orientation at time t-1 and 

the quaternion product with the 𝑆𝑤𝑡
 give us the quaternion derivative. By taking 

numerical integration of the �̇�𝑤,𝑡𝐸
𝑆 , the orientation, 𝑞𝑤,𝑡𝐸

𝑆 , at time t can be calculated 

with respect to earth frame as shown in 27 (Madgwick, 2010). In the equation, the ∆𝑇 

is the sampling time and it is 0.02 seconds. 

 

                                         𝑠𝑤𝑡
= [0 𝑔𝑥 𝑔𝑦 𝑔𝑧]                                                (25) 

 

                                �̇�𝐸
𝑆

𝑤,𝑡 = 0.5 ∗  �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1 ⊗  𝑠𝑤𝑡
                                      (26) 

 

                               𝑞𝐸
𝑆

𝑤,𝑡 = �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1 +  �̇�𝐸
𝑆

𝑤,𝑡  ∆𝑇                                         (27) 

 

Similarly, the accelerometer and magnetometer data, obtained at time t, are 

stored in two different arrays as shown in equation 28, and 29. Then accelerometer, 

and magnetometer data are normalized as shown in equation 30, and 31. 

 

                                      𝑠𝑎𝑡
= [0 𝑎𝑥 𝑎𝑦 𝑎𝑧]                                                   (28) 

 

                                     𝑠𝑚𝑡
= [0 𝑚𝑥 𝑚𝑦 𝑚𝑧]                                                 (29) 

 



45 
 

                        𝑠�̂�𝑡
=  

𝑆𝑎𝑡

√𝑎𝑥
2+ 𝑎𝑦

2+ 𝑎𝑧
2

=  [0.0  �̂�𝑥 �̂�𝑦 �̂�𝑧]                                     (30) 

 

                      𝑠�̂�𝑡
=  

𝑆𝑚𝑡

√𝑚𝑥
2+ 𝑚𝑦

2+ 𝑚𝑧
2

=  [0.0  �̂�𝑥 �̂�𝑦 �̂�𝑧]                                  (31) 

 

The previous orientation estimation matrix which is at time t-1 is defined as 

shown in equation 32. The next step is to determine the Jacobian matrix and objective 

function using the previous orientation estimation and accelerometer data. The 

Jacobian matrix and objective function are calculated as shown in equation 33, and 34 

(Madgwick, 2010). 

 

                                   �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1 = [𝑞1 𝑞2 𝑞3 𝑞4]                                            (32) 

 

                      𝐽𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1) = [

−2𝑞3, 2𝑞4, −2𝑞1, 2𝑞2

2𝑞2, 2𝑞1, 2𝑞4, 2𝑞3

0, −4𝑞2, −4𝑞3, 0
]                               (33) 

 

             𝑓𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1,   𝑠�̂�𝑡
) = [

2(𝑞2𝑞4 − 𝑞1𝑞3) − �̂�𝑥

2(𝑞1𝑞2 − 𝑞3𝑞4) −  �̂�𝑦

2(
1

2
 −  𝑞2

2  −  𝑞3
2) −  �̂�𝑧

]                            (34) 

 

The rotation matrix and measured direction with respect to earth’s magnetic 

field in the earth frame should be calculated for magnetometer data. The rotation 

matrix is defined as shown in equation 35 (Madgwick, 2010). The measured direction 

can be calculated with matrix multiplication of rotation matrix and normalized 

magnetometer data as shown in equation 36. The obtained result is stored in an array 

to calculate Jacobian matrix and objective function. Furthermore, one horizontal axis 

and one vertical axes can represent the earth’s magnetic field. In order to obtain this, 

the ℎ𝑡𝐸
𝑆  can be used as shown in equation 37 (Madgwick, 2010). The jacobian matrix 



46 
 

and objective funtion calculations are shown in equation 38 and 39 (Madgwick, 2010). 

 

      𝑅𝐸
𝑆

 𝑡−1 = [

2𝑞1
2 − 1 + 2𝑞2

2,   2(𝑞2𝑞3 + 𝑞1𝑞4),   2(𝑞2𝑞4 − 𝑞1𝑞3)

2(𝑞2𝑞3 − 𝑞1𝑞4),   2𝑞1
2 − 1 + 2𝑞3

2,   2(𝑞3𝑞4 + 𝑞1𝑞2)

2(𝑞2𝑞4 − 𝑞1𝑞3),   2(𝑞3𝑞4 − 𝑞1𝑞2),   2𝑞1
2 − 1 + 2𝑞4

2

]         (35) 

 

                               ℎ𝑡𝐸
𝑆 =  𝑅𝐸

𝑆
 𝑡−1 ∗ [

�̂�𝑥

�̂�𝑦

�̂�𝑧

] = [ℎ𝑥, ℎ𝑦 , ℎ𝑧]                          (36) 

 

                     𝐸𝑏𝑡
=  [0, √ℎ𝑥

2 +  ℎ𝑦
2, 0, ℎ𝑧]  = [0, 𝑏𝑥, 0, 𝑏𝑧]                     (37) 

 

       𝐽𝑏 = 2 [

−𝑏𝑧𝑞3, 𝑏𝑧𝑞4, −2𝑏𝑥𝑞3 − 𝑏𝑧𝑞1, −2𝑏𝑥𝑞3 − 𝑏𝑧𝑞1

−𝑏𝑥𝑞4 + 𝑏𝑧𝑞2, 𝑏𝑥𝑞3 + 𝑏𝑧𝑞1, 𝑏𝑥𝑞2 + 𝑏𝑧𝑞4, −𝑏𝑥𝑞1 + 𝑏𝑧𝑞3

𝑏𝑥𝑞3,   𝑏𝑥𝑞4 − 2𝑏𝑧𝑞2, 𝑏𝑥𝑞1 − 2𝑏𝑧𝑞3,   𝑏𝑥𝑞2

]      (38)  

 

       𝑓𝑏(𝐸𝑏𝑡
) = [

2𝑏𝑥(0.5 −  𝑞3
2 −  𝑞4

2) + 2𝑏𝑧(𝑞2𝑞4 − 𝑞1𝑞3) − �̂�𝑥

2𝑏𝑥(𝑞2𝑞3 − 𝑞1𝑞4) + 2𝑏𝑧(𝑞1𝑞2 − 𝑞3𝑞4) − �̂�𝑦

2𝑏𝑥(𝑞1𝑞3 + 𝑞2𝑞4) + 2𝑏𝑧(0.5 −  𝑞2
2 −  𝑞3

2) − �̂�𝑧

]           (39) 

 

The Jacobian matrix, 𝐽𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1), that is calculated from accelerometer and 

the Jacobian matrix, 𝐽𝑏, which is calculated from magnetometer are concatenated as 

shown in equation 40. Also, the objective junctions which are 𝑓𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1,   𝑠�̂�𝑡
), and 

𝑓𝑏(𝐸𝑏𝑡
) are concatenated as shown in equation 41. 

 

                            𝐽𝑔,𝑏( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1, 𝐸𝑏𝑡
) = [

𝐽𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1)

𝐽𝑏

]                                (40) 

 



47 
 

          𝑓𝑔,𝑏( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1,   𝐸𝑏𝑡
, 𝑠�̂�𝑡

, 𝑠�̂�𝑡
) = [

𝑓𝑔( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1,   𝑠�̂�𝑡
)

𝑓𝑏(𝐸𝑏𝑡
) 

]                         (41) 

 

Finally, the current orientation, 𝑞𝐸
𝑆

∇,𝑡, can be calculated using the previous 

orientation, �̂�𝑒𝑠𝑡,𝑡−1𝐸
𝑆 , and objective function gradient, ∇𝑓 (Madgwick, 2010). ∇𝑓  is 

calculated as shown in the equation 42, since the accelerometer and magnetometer data 

are used to acquire roll, pitch and yaw angles. Moreover, the filter gain, 𝛽, shows that 

mean measurement errors on gyroscope data and the errors can be sensor noise, 

calibration errors, and quantisation errors (Madgwick, 2010). The calculation of the 

filter gain is shown in the equation 44. The �̇�𝛽 is the mean gyroscope measurement 

error for each axis (Mario, 2019). 

 

            ∇𝑓 = 𝐽𝑔,𝑏
𝑇 ( �̂�𝐸

𝑆
𝑒𝑠𝑡,𝑡−1, 𝐸𝑏𝑡

)𝑓𝑔,𝑏( �̂�𝐸
𝑆

𝑒𝑠𝑡,𝑡−1,   𝐸𝑏𝑡
, 𝑠�̂�𝑡

, 𝑠�̂�𝑡
)                          (42) 

 

                                     𝑞𝐸
𝑆

∇,𝑡 =  �̂�𝑒𝑠𝑡,𝑡−1 −  𝛽
∇𝑓

‖∇𝑓‖𝐸
𝑆                                           (43) 

 

                                                   𝛽 =  √
3

4
 �̇�𝛽                                                 (44) 

 

Using the estimated orientation in quaternion form, the roll, pitch and yaw 

angles can be calculated in Euler form as shown in equation 45, 46, and 47. 

 

                                 𝜙 = arctan (
2𝑞1𝑞2+2𝑞3𝑞4

𝑞1
2+ 𝑞4

2−𝑞2
2−𝑞3

2)                                           (45) 

 

                                  𝜃 = − arcsin(2(𝑞2𝑞4 − 𝑞1𝑞3))                                           (46) 

 



48 
 

                                   𝜓 = arctan(
2𝑞2𝑞3+2𝑞1𝑞4

𝑞1
2+ 𝑞2

2−𝑞3
2−𝑞4

2
)                                              (47) 

 

4.4. Kalman Filter 

 

The Kalman filter estimates the orientation of the autonomous vehicle using 

measurements from accelerometer, gyroscope, magnetometer, and wheel odometry, 

and with knowledge of the noises (Treffers and Wietmarschen, 2016). The noises are 

the measurement noise, which is the noise of the input and process noise that is noise 

of the system itself (Sloth, 2017). 

 

The Kalman filter algorithm is recursive and can be grouped into three steps as 

prediction, measurement, and update. In the prediction state, there are two equations 

which are dynamic model equation, and predictor covariance equation. The dynamic 

model equation consists of state transition matrix A with previous state vector 𝑥𝑘−1, 

control matrix B with current input vector 𝑢𝑘, and process noise vector 𝑤𝑘 as shown 

in equation 48. The second equation, the predictor covariance, consists of state 

transition matrix A, previous predicted covariance matrix 𝑃𝑘−1, and process noise 

uncertainty matrix 𝑄𝑘 as shown in equation 49. The coefficients, matrices, equations, 

and their definitions that are used on prediction step are summarized on Table 2. 

 

The predicted covariance matrix 𝑃𝑘 shows that the current predicted state 

vector estimation is reliable or not reliable. If the small values are obtained, then the 

current predicted state estimation is more reliable (Sloth, 2017). Moreover, the process 

noise vector 𝑤𝑘  is the noise of the system and it is gaussian distributed with a zero 

mean and covariance matrix 𝑄𝑘 at time k. In this thesis, the covariance matrix 𝑄𝑘  

represents the estimation variance of the magnetometer or wheel odometry and 

variance of bias. These variances depend on the cases which are mentioned in Kalman 

filter implementation. The variance of the measurement and bias can be defined 

according to the system response. For example, if the estimated angle tends to drift, 

the variance of the bias should be chosen high. On the other hand, the measurement 



49 
 

variance should be chosen low if the Kalman filter response lasts long. In this thesis, 

variance of measurement and the bias is selected after the observation of the filter 

response. 

 

                                     �̂�𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘                                            (48) 

 

                                         �̂�𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄𝑘                                            (49) 

 

Table 2. Kalman Filter Prediction Step Coefficients, Matrices, and Definitions 

Coefficients, Matrices, and Equations Definitions 

�̂�𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑤𝑘 Dynamic model equation 

�̂�𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄𝑘 Predictor covariance equation 

�̂�𝑘 Predicted state vector matrix or vector 

�̂�𝑘 State vector matrix or vector 

𝑃𝑘 Covariance matrix 

𝑥𝑘−1 Previous state matrix or vector 

𝑃𝑘−1 Previous predictor covariance matrix 

𝑢𝑘 Input vector or variable 

𝑤𝑘 Process noise vector 

𝑄𝑘 Process noise uncertainty matrix 

𝐴 State transition matrix 

𝐵 Control matrix 

 

In the measurement step, there are three equations. The first one is innovation 

or measurement residual equation, the second one is innovation covariance equation 

and the last one Kalman gain equation. The innovation equation consists of 

measurement matrix or vector  𝑧𝑘,  observation  model matrix 𝐻,  and  predicted state 

vector �̂�𝑘 as shown in equation 50. As shown in equation 51, the innovation covariance 

matrix 𝑆𝑘 is calculated using observation model matrix 𝐻, predicted covariance matrix 

�̂�𝑘, and measurement uncertainty vector 𝑅. In addition, the kalman gain 𝐾𝑘  is defined 



50 
 

in equation 52. The coefficients, matrices, equations, and their definitions that are used 

on measurement step are summarized on Table 3. 

 

The innovation covariance matrix predicts that how much the current 

measurement is reliable based on the predicted covariance matrix �̂�𝑘. The 

measurement uncertainty vector 𝑅 is the variance of the measurement. If the 𝑅 is taken 

high, the measurement is not reliable and the effect of measurement in angle 

calculation is not much. In addition, the Kalman gain determines that how much we 

trust innovation matrix 𝑦𝑘. 

 

                                             𝑦𝑘 = 𝑧𝑘 + 𝐻�̂�𝑘                                                  (50) 

 

                                           𝑆𝑘 = 𝐻�̂�𝑘𝐻𝑇 + 𝑅                                                (51) 

 

                                              𝐾𝑘 = �̂�𝑘𝐻𝑇𝑆−1                                                (52) 

 

Table 3. Kalman Filter Measurement Step Coefficients, Matrices, and Definitions 

Coefficients, Matrices, and Equations Definitions 

𝑦𝑘 = 𝑧𝑘 + 𝐻�̂�𝑘 Innovation or measurement residual 

equation 

𝑆𝑘 = 𝐻�̂�𝑘𝐻𝑇 + 𝑅 Innovation covariance equation 

𝐾𝑘 = �̂�𝑘𝐻𝑇𝑆−1 Kalman gain equation 

 𝑦𝑘 Innovation matrix or vector 

𝑆𝑘 Innovation covariance matrix 

𝐾𝑘 Kalman gain 

𝑧𝑘 Measurement matrix or vector 

𝐻 Observation model matrix or vector 

𝑅 Measurement uncertainty vector 



51 
 

In the update step, the state vector 𝑥𝑘, and covariance matrix 𝑃𝑘 are updated 

using calculated predicted state vector, predicted covariance matrix, kalman gain, 

observation matrix, and innovation matrix as shown in equations 53 and 54. The 

updated state vector 𝑥𝑘
+, and updated covariance matrix 𝑃𝑘

+ are used on the next 

iteration of Kalman algorithm as, 𝑥𝑘−1 and 𝑃𝑘−1 respectively. The coefficients, 

matrices, equations and their definitions that are used on the update step are 

summarized on Table 4. 

 

                                           𝑥𝑘
+ = �̂�𝑘 + 𝐾𝑘𝑦𝑘                                                (53) 

 

                                          𝑃𝑘
+ = (1 − 𝐾𝑘𝐻)�̂�𝑘                                                (54) 

 

Table 4. Kalman Filter Update Step Coefficients, Matrices, and Definitions 

Coefficients, Matrices, and Equations Definitions 

𝑥𝑘
+ = �̂�𝑘 + 𝐾𝑘𝑦𝑘 Dynamic model update equation 

𝑃𝑘
+ = (1 − 𝐾𝑘𝐻)�̂�𝑘 Predictor covariance update equation 

𝑥𝑘
+ Updated state vector 

 𝑃𝑘
+ Updated covariance matrix 

 

4.4.1. Implementation 

 

The Kalman filter is implemented on the accelerometer, gyroscope, 

magnetometer, and wheel odometry data in order to calculate orientation of the 

autonomous agricultural vehicle. Three different cases are developed using various 

data in order to estimate orientation with Kalman filter. In the first case, the Kalman 

filter algorithm is used with the gyroscope and magnetometer data. The state vector 𝑥𝑘 

is defined as shown in equation 55. The first element of state vector is yaw angle 𝜙 

and the second element is bias �̇�𝑏.  The yaw angle, that is calculated from 

magnetometer, is used as measurement vector 𝑧𝑘. The state transition matrix 𝐴, and 

control matrix 𝐵 are defined as shown in equations 56 and 57. Furthermore, the input 



52 
 

variable 𝑢𝑘 is the gyroscope data in z-axis in terms of  ° 𝑠⁄ . For all equations, sampling 

time ∆𝑇 is 0.02 seconds. 

 

                                                𝑥𝑘 = [
𝜙

�̇�𝑏
]                                                           (55) 

 

                                          𝐴 = [
1          − ∆𝑇
0                1

]                                                           (56) 

 

                                                𝐵 = [
∆𝑇
0

]                                                           (57) 

 

In the second case, the Kalman filter algorithm is used with the gyroscope and 

wheel odometry data. In this case, the measurement vector 𝑧𝑘  is defined as yaw angle 

that is calculated from wheel odometry as shown in equation 2. The state vector, state 

transition matrix, and control matrix are defined as same with the first case. Also, the 

input variable is the gyroscope data in z-axis in terms of  ° 𝑠⁄ . 

 

In the last case, gyroscope, magnetometer, and wheel odometry data are fused 

with Kalman filter. Similarly, the yaw angle is taken as measurement vector 𝑧𝑘. In this 

case, the state transition matrix is same with the first and second case. The control 

matrix is defined as variable equals to ∆𝑇, and the input vector 𝑢𝑘 is defined as shown 

in equation 59. The 𝑤𝑧
𝑒𝑠𝑡 is the change rate of yaw angle, that is calculated from 

magnetometer. The calculation of 𝑤𝑧
𝑒𝑠𝑡  is mentioned in integrated Kalman filter 

method. 

 

                                                    𝐵 = ∆𝑇                                                           (58) 

 



53 
 

                                          𝑢𝑘 = [
𝑔𝑧

𝑤𝑧
𝑒𝑠𝑡 − 𝑔𝑧

]                                                           (59) 

 

In all three cases, initial values are defined for state vector, covariance matrix, 

process noise uncertainty matrix, and measurement uncertainty vector as shown in 

equations 60, 61, 62, and 63 respectively. 

 

                                                𝑥𝑘 = [
0
0

]                                                           (60) 

 

                                          𝑃𝑘 = [ 
0.1    0
0    0.1

 ]                                                           (61) 

 

                                     𝑄𝑘 = [ 
0.002        0 
0          0.005

 ]                                                           (62) 

 

                                               𝑅 = 0.03                                                           (63) 

 

Developed algorithm for Kalman filter implementation is shown in Appendix 

H. The Kalman filter algorithm is applied to all three cases with different inputs on 

ROS platform using python script. In order to calculate orientation using Kalman filter, 

the Kalman class is called by the filter node in every iteration to update the state vector, 

and the covariance vector for the three cases. 

 

4.5. Integrated Kalman Filter 

 

The integrated Kalman filter, is proposed by El-Diasty (El-Diasty, 2014), 

suggest that more accurate orientation calculation with reducing possible magnetic 

disturbance errors. The Kalman filter, is mentioned in the section 4, is designed to 

reduce measurement and bias errors. However, the magnetometer can be easily 



54 
 

affected by magnetic disturbances, and this can cause an error in orientation 

calculation. In this method, the Kalman filter is used to reduce magnetic disturbance 

error caused by the presence of iron or magnetic material around the magnetometer 

sensor (El-Diasty, 2014). 

 

The orientation is calculated without magnetic disturbance error, taking 

derivative of the roll, pitch and yaw angles that are calculated from magnetometer as 

shown in the equations 64, 65, and 66, since the earth magnetic field changes slowly 

in time (El-Diasty,2014). The 𝑚𝑥
𝑚𝑒𝑠, 𝑚𝑦

𝑚𝑒𝑠, and 𝑚𝑧
𝑚𝑒𝑠are the magnetometer data 

that are acquired from pre-filter output for raw magnetometer data. Taking the 

derivative of the each angle, the rate of change of the roll, pitch, and yaw angles can 

be calculated. 

 

                                   𝑤𝑥
𝑒𝑠𝑡 =  

𝑑𝜙𝑚𝑎𝑔

𝑑𝑡
 =

d(arctan(
𝑚𝑦

𝑚𝑒𝑠

𝑚𝑧
𝑚𝑒𝑠 ))

𝑑𝑡
                                     (64) 

 

                                   𝑤𝑦
𝑒𝑠𝑡 =  

𝑑𝜃𝑚𝑎𝑔

𝑑𝑡
 =

d(arctan(
𝑚𝑥

𝑚𝑒𝑠

𝑚𝑧
𝑚𝑒𝑠))

𝑑𝑡
                                     (65) 

 

                                  𝑤𝑧
𝑒𝑠𝑡 =  

𝑑 𝜓𝑚𝑎𝑔

𝑑𝑡
 =

d(arctan(
𝑚𝑦

𝑚𝑒𝑠

𝑚𝑥
𝑚𝑒𝑠))

𝑑𝑡
                                     (66) 

 

The derivative of the roll, pitch and yaw angles can be simplified as shown in 

the equations 67, 68, and 69.  In the equation, �̇�𝑥
𝑒𝑠𝑡

, �̇�𝑦
𝑒𝑠𝑡

, and �̇�𝑧
𝑒𝑠𝑡

 are the 

estimated derivative of the magnetometer data in time. The estimated derivative of 

magnetometer data is calculated as taking the difference of current magnetometer data 

minus the previous magnetometer data divided by the ∆𝑇. The ∆𝑇 is the sampling time 

and it is 0.02 seconds. 

 



55 
 

                                   𝑤𝑥
𝑒𝑠𝑡 =  

�̇�𝑦
𝑒𝑠𝑡𝑚𝑧

𝑚𝑒𝑠−�̇�𝑧
𝑒𝑠𝑡𝑚𝑦

𝑚𝑒𝑠

(𝑚𝑦
𝑚𝑒𝑠)2 + (𝑚𝑧

𝑚𝑒𝑠)2                                      (67) 

 

                                  𝑤𝑦
𝑒𝑠𝑡 =  

�̇�𝑥
𝑒𝑠𝑡𝑚𝑧

𝑚𝑒𝑠−�̇�𝑧
𝑒𝑠𝑡𝑚𝑥

𝑚𝑒𝑠

(𝑚𝑥
𝑚𝑒𝑠)2 + (𝑚𝑧

𝑚𝑒𝑠)2                                      (68) 

 

                                   𝑤𝑧
𝑒𝑠𝑡 =  

�̇�𝑦
𝑒𝑠𝑡𝑚𝑥

𝑚𝑒𝑠−�̇�𝑥
𝑒𝑠𝑡𝑚𝑦

𝑚𝑒𝑠

(𝑚𝑥
𝑚𝑒𝑠)2 + (𝑚𝑦

𝑚𝑒𝑠)2
                                     (69) 

 

The estimated rate of changes of roll, pitch and yaw angles, which are 𝑤𝑥
𝑒𝑠𝑡, 

𝑤𝑦
𝑒𝑠𝑡, and 𝑤𝑧

𝑒𝑠𝑡, are given to Kalman filter like gyroscope data. On the other hand, 

the roll, pitch and yaw angles, are calculated from gyroscope data with taking the 

integral of gyroscope data in time, are given as measurement to Kalman filter. 

 

4.6. Results 

 

The results are taken for all the filters simultaneously. The filter performances 

are tested for three different operating conditions: while the autonomous vehicle is 

stationary, while it is rotating, and while it is stationary with magnetic disturbance. In 

all conditions, 1000 samples are collected with sampling time of 0.02 seconds. In the 

rotation case, the vehicle is rotated at 20 degrees and at 50 degrees by controlling the 

rotation of the vehicle with the Agv_remote_control node at remote PC. Furthermore, 

in the rotation case, the vehicle stays stationary for a while and after that the vehicle is 

rotated 20 degrees. Then, the vehicle stays stationary at 20 degrees for a while  and 

afterwards the vehicle is rotated at 50 degree. The vehicle completes its rotation 

approximately 0.28 seconds for 20 degrees, and 0.32 seconds for 50 degrees. 

 

The complementary filter results are shown in Figure 54, Figure 55, and Figure 

56. While the autonomous vehicle is stationary, the yaw angles calculated from 

gyroscope, magnetometer and complementary filter are plotted with red, blue and 



56 
 

green lines respectively as shown in Figure 54. As you can see, the yaw angle 

calculated from the gyroscope data does not tend to drift, since the pre-filter reduces 

the noise of the gyroscope data. The yaw angle obtained from the magnetometer does 

not change too much and it is around zero. The yaw angle that is calculated from the 

complementary filter is also zero when the vehicle is stationary. When the autonomous 

vehicle is rotated 20 degrees and 50 degrees, the gyroscope, magnetometer, and 

complementary filter results are similar. On the other hand, the filter follows the 

magnetometer data with an absolute mean error of 7.22 degree, when there is magnetic 

disturbance around the vehicle. 

               

                         

Figure 54. Complementary Figure 55. Complementary Figure 56. Complementary 

Filter Stationary                     Filter Movement                   Filter Magnetic Disturbance 

 

The Madgwick filter results are shown in Figure 57, Figure 58, and Figure 59. 

The Madgwick filter results are similar to the complementary filter results. When the 

vehicle is stationary, the calculated yaw angle is around zero and when the vehicle is 

rotated 20 degrees, the calculated angle is around 20 degrees with an absolute mean 

error of 0.35 degree. On the other hand, the magnetic disturbance error cannot be 

eliminated by the Madgwick filter and the absolute mean error is 7.09 degree when 

there is magnetic disturbance. 

 

              

Figure 57. Madgwick Stati-  Figure 58. Madgwick       Figure 59. Madgwick Mag- 

onary                                       Movement                           netic Disturbance 



57 
 

The Kalman filter results developed using the magnetometer and gyroscope 

data, are shown in Figure 60, Figure 61, and Figure 62. The Kalman filter results are 

similar to the complementary filter and Madgwick filter results when the autonomous 

vehicle is rotating and when it is stationary. The absolute mean error is 0.32 and 5.63 

degrees at a yaw angle of 20 degrees and 50 degrees respectively. Similarly, the 

Kalman filter does not eliminate the errors due to the magnetic disturbances where the 

absolute mean error is 7.99 when there is a magnetic disturbance. 

 

                 

Figure 60. Kalman Station-  Figure 61. Kalman Move-    Figure 62. Kalman Mag- 

onary                                       ment                                        netic Disturbance 

 

The Kalman filter results developed using the wheel odometry and the 

gyroscope data, are shown in Figure 63, Figure 64, and Figure 65. When the yaw angle 

calculated from the odometry is used as the measurement input to the Kalman filter, 

the absolute mean error is smaller than that of the complementary filter, Madgwick 

filter, and Kalman filter which use the gyroscope and magnetometer data, when the 

vehicle is stationary, and when there is magnetic disturbance around the vehicle. 

 

                 

Figure 63. Kalman Odom  Figure 64. Kalman Odom      Figure 65. Kalman Odom    

and Gyro Stationary            and Gyro Movement                 and Gyro Magnetic 

 



58 
 

The Kalman filter results developed using the wheel odometry, gyroscope and 

magnetometer data are shown in Figure 66, Figure 67, and Figure 68. The filter results 

are similar to those of the Kalman filter implementation using the odometry and 

gyroscope data, when the vehicle is stationary, and while the vehicle is rotating. 

However, the absolute mean error, that is calculated when there is magnetic 

disturbance around the vehicle, is higher. 

 

                 

Figure 66. Kalman Odom,  Figure 67. Kalman Odom,    Figure 68. Kalman Odom,  

Magne and Gyro Stationary  Magne, and Gyro Movement   Magne, and Gyro Magnetic 

 

The integrated Kalman filter results are shown in Figure 69, Figure 70, and 

Figure 71. The filter result is similar to the Kalman filter results when the vehicle is 

stationary. When the vehicle is rotated 20 degree, the absolute mean error of the 

integrated Kalman filter is 2.56 degrees. At 50 degrees, the absolute mean error is 2.63. 

When there is magnetic disturbance around the vehicle, the integrated Kalman filter 

produces better results than those of the Kalman filter using the wheel odometry, 

magnetometer, and gyroscope data. The filter is affected by the magnetic disturbance 

in short period of time and the filter output follows the yaw angle that is calculated 

from gyroscope data as shown in Figure 71. The absolute mean error is 0.92 degree 

for integrated Kalman filter, when there is magnetic disturbance. 

 

             

Figure 69. Integrated Kal-  Figure 70. Integrated Kal-    Figure 71. Integrated Kal-   

man Stationary                     man Movement                       man Magnetic 



59 
 

The absolute mean error is calculated for each filter and it is summarized on 

Table 5. For the sake of simplicity, three different Kalman filter implementations are 

defined as follows: 

 

• Kalman IMU uses the gyroscope and magnetometer data 

• Kalman Odom-Gyro uses the wheel odometry and gyroscope data 

• Kalman Odom-Gyro-Magne uses the wheel odometry, gyrocope, and 

magnetometer data 

 

When the vehicle is stationary, the absolute mean error is around zero for all 

filters. When the vehicle is rotated 20 degrees, Kalman Odom-Gyro, Kalman Odom- 

Gyro-Magne, and integrated kalman method have similar absolute mean error which 

is higher than the absolute mean error calculated from the complementary filter, 

Madgwick filter and Kalman IMU. On the other hand, the integrated kalman filter 

method has a smaller absolute mean error of 2.63 degrees than those of the other filter 

implementations when the vehicle is rotated at 50 degree. When there is magnetic 

disturbance around the vehicle, the mean errors are different in the filters. The Kalman 

Odom-Gyro, Kalman Odom-Gyro-Magne, and integrated Kalman filter give better 

solution on the effect of magnetic disturbance. Other filters are directly affected by the 

magnetic disturbance and the absolute mean error for yaw angle that is calculated from 

the complementary filter, Madgwick filter, and Kalman IMU, is around 7 degrees. In 

summary, we can say that all the filters have similar results when the vehicle is 

stationary and while the vehicle is rotating on the other hand magnetic disturbance 

error cannot be eliminated with complementary filter, Madgwick filter and Kalman 

IMU. 

 

Table 5. The Absolute Mean Errors in Filters 

Filter Stationary 20 degrees 50 degrees Magne. Dist. 

Complementary 0.096560 0.345533 5.603426 7.224797 

Madgwick 0.120812 0.327598 5.440069 7.090184 

Kalman 0.106867 0.318881 5.625903 7.991807 



60 
 

IMU 

Kalman 

Odom-Gyro 

 

0.000482 

 

2.662896 

 

4.674352 

 

0.054352 

Kalman 

Odom-Gyro-

Magne 

 

0.051540 

 

2.660897 

 

4.666560 

 

1.091601 

Integrated 

Kalman 

0.145179 2.556146 2.627122 0.921807 

 

The computational costs of the filters are summarized in Table 6. In order to 

evaluate the computational costs of the filters, the filter_cc node, mentioned in Chapter 

2, is executed separately for each of the filters and the computational costs of each 

filter are obtained using the ROS UI in terms of the CPU usage, and the memory usage. 

In Table 6, we can see that, the complementary filter has the lowest CPU and memory 

usage as compared to those of the other filters. On the other hand, the CPU and 

memory usages of the Madgwick, Kalman IMU, Kalman Odom-Gyro, Kalman Odom-

Gyro- Magne, and integrated Kalman are similar. In addition, the Kalman Odom-Gyro 

and Kalman Odom-Gyro-Magne use the wheel odometry information in order to 

estimate the orientation of the autonomous agricultural vehicle. Since the wheel 

odometry information is required in the execution of these filter nodes, the Odom node 

is also executed and the results are presented in Table 6. The computational costs of 

above filters are actually higher than those of the madgwick and the integrated kalman 

filters as shown in Table 6. 

 

Table 6. Computational Costs of the Filters and Nodes 

Filters and Nodes CPU Usage (%) Memory Usage (%) 

Complementary 19.80 2.84 

Madgwick 28.10 3.55 

Kalman IMU 24.30 3.58 

Kalman Odom-Gyro  

27.20 

 

3.59 



61 
 

Kalman Odom-Gyro-

Magne 

 

27.30 

 

3.59 

Integrated Kalman 25.00 3.57 

IMU Node 12.80 5.27 

Odom Node 6.70 4.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

CHAPTER 5: LASER DISTANCE SENSOR 
 

In this chapter, the usage and implementation of the laser distance sensor is 

mentioned. The laser distance sensor measures the distance between target and itself 

through light waves from a laser (Shawn,2020). It can be used in simultaneous 

localization and mapping (SLAM) (Ocando et al.,2017). Using the laser distance, the 

map of the environment can be created in 2D and 3D. 

 

In this thesis, the laser distance sensor is used to move the autonomous vehicle 

in straight road. The autonomous vehicle is tested in a field as shown in Figure 72. In 

the field, there are four trees, and the autonomous vehicle is standing between two 

trees at start. 

 

 

 

Figure 72. The laser sensor tested field 

 

The location of the trees and the initial location of the autonomous are known. 

Firstly, the developed algorithm checks the possible location of the trees using 

threshold distance value and possible angle. For example, the location of tree 1 is at 

270 degrees according to the autonomous car and the possible distance is about 40cm 

between the autonomous car and tree 1. If the distance is above the threshold and angle 

is around 270 degrees, then there is first tree in this location and it is defined as L1. In 

order to determine there is tree on the location, the distance that is measured around 

270 degrees should also repeat itself between ±10degree with the change of distance 

as ±5cm. Similarly, the trees 2, 3 and 4 are detected and the distance between the 

autonomous car and trees are defined as L2, L3, and L4 respectively. 



63 
 

The autonomous vehicle adjusts its speed according to the distance information 

L1, L2, L3, and L4 to move in straight road. The angular speed of the autonomous 

vehicle is determined as shown in equation 70, and 71. When the distance obtained 

from L1 is above the 50cm, the angular speed of the autonomous vehicle is adjusted 

using obtained distances L3 and L4 as shown in equation 71. The parameter K is 0.01. 

 

                                  𝑉𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 𝐾 ∗ (𝐿1 − 𝐿2)                                            (70) 

 

                                   𝑉𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = 𝐾 ∗ (𝐿3 − 𝐿4)                                               (71) 

 

5.1. Implementation 

 

The laser distance sensor data is obtained by subscribing the scan topic on ROS 

platform as mentioned in Chapter 2. The obtained data is an array with size of 360 and 

each element in the array represents the measured distance with corresponding angle 

in terms of meter. For example, the first element of the array is the measured distance 

at angle one in other word the distance measured by in front of the autonomous car. 

 

Since the initial location of the autonomous vehicle and the location of trees 

are known, the developed algorithm, firstly, checks the location of trees at the known 

location. When it detects trees, the angle and distance are stored into different variable 

for each of the trees separately. Then, the vehicle starts to move with the angular speed 

according to the distance L1 and L2 as shown in equation 70. When the autonomous 

vehicle starts to move, the developed algorithm starts to check the location of tree 1 at 

angle smaller than 270 degree and to check the location of tree 2 at angle greater than 

180 degrees. For the tree 1, if the angle is smaller than 270 and the measured distance 

is repeated itself with ±5cm around the previous angle, then new location of tree 1 is 

taken as new distance and angle. Similarly, the distance and angle values for trees 2, 

3, and 4 are updated. When the distance between the autonomous vehicle and tree 1 or 

tree 2, the angular speed of the autonomous vehicle is calculated using the distance 



64 
 

information obtained from L3 and L4. 

 

In order to move autonomous vehicle in straight road, the algorithm is 

implemented on autonomous vehicle and the vehicle is completed its movement on 

daylight successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

CHAPTER 6: CONCLUSION 
 

In this thesis, the navigation problem is examined on an autonomous 

agricultural vehicle using different types of sensors such as the odometry, inertial 

measurement unit (IMU), magnetometer and Laser distance sensor.  The performance 

of the sensors are investigated to determine the orientation of the autonomous 

agricultural vehicle and various filters such as the complementary, Madgwick, Kalman 

and the integrated Kalman are applied to the IMU, magnetometer and the wheel 

odometry data to obtain accurate orientation information. Using the calculated 

orientation from the sensors and filters, the autonomous vehicle moves on a straight 

path and stops when it detects the stop sign at the end of the path, using a camera. 

Furthermore, a laser distance sensor is used to move the autonomous agricultural 

vehicle on the lanes between the trees in an orchard. 

 

The complementary, Madgwick, Kalman, and integrated Kalman filters are 

applied on the IMU, magnetometer and the wheel odometry data to get rid of the noises 

due to the gyroscope drift, and magnetic disturbances. The filters are developed and 

implemented using a python script developed on the ROS platform. Three cases are 

investigated to compare the performance of the filter for the orientation estimation. 

The first case is when the autonomous vehicle is stationary where the performance of 

the filters are compared in terms of the absolute mean error. All filters have a very 

small absolute mean error around 0.1 degree. The second case is when the vehicle is 

rotated 20 degrees and 50 degrees without any magnetic disturbance. The absolute 

mean errors that are calculated for the complementary filter, Madgwick filter, and 

Kalman IMU are similar and they have relatively less absolute mean error than those 

of the other filters. The third case is to measure the performance of the filters, when 

there is a magnetic disturbance around the vehicle. The mean error is the lowest for 

the Kalman Odom-Gyro, Kalman Odom-Gyro-Magne, and integrated kalman filter 

with around 1 degree when there is magnetic disturbance around the vehicle. Other 

filters are directly affected by the magnetic disturbance and the absolute mean error 

for yaw angle that is calculated from the complementary filter, Madgwick filter, and 

Kalman IMU, is around 7 degrees. The results show that all the filters have similar 

results when the vehicle is stationary and while the vehicle is rotating. On the other 



66 
 

hand, magnetic disturbance error cannot be eliminated with the complementary filter, 

Madgwick filter and Kalman IMU. 

 

Moreover, the computational costs of the filters are compared in terms of CPU 

usage and memory usage. The computational cost of the complementary filter is the 

lowest compared to other filters. Other filters are similar computational costs except 

Kalman Odom-Gyro, Kalman Odom-Gyro-Magne. Since these filters are required the 

wheel odometry information, the computational costs of the filters are obtained as 

higher than Kalman Odom-Gyro, Madgwick filter and integrated Kalman filter. 

 

The computational cost of the filters are summarized in Table 6. In order to 

evaluate the computational cost of the filters, the filter_cc, is mentioned in Chapter 2, 

is executed separately for each of the filters and the computational cost of each filter 

is obtained using ROS UI in terms of CPU usage, and memory usage. In the Table 6, 

we can see that, the complementary filter has lowest CPU and memory usage 

compared to the other filter. On the other hand, the CPU and memory usages of the 

Madgwick, Kalman IMU, Kalman Odom-Gyro, Kalman Odom-Gyro-Magne, and 

integrated Kalman are similar. In addition, the Kalman Odom-Gyro and Kalman 

Odom-Gyro-Magne are used the wheel odometry information in order to estimate 

orientation of the autonomous agricultural vehicle. Since the wheel odometry 

information is required for these filters, the Odom node is executed, and the 

computational costs of these filters are actually higher than Madgwick and integrated 

Kalman filter. 

 

Furthermore, a laser distance sensor is used on the autonomous agricultural 

vehicle to obtain the orientation of the vehicle in the field. The field model consists of 

four trees and the laser distance sensor is used to detect the distance between the 

autonomous agricultural vehicle and the trees. Taking the trees as a reference, the 

orientation of the autonomous agricultural vehicle was determined. Using only the 

orientation information calculated from the laser distance sensor, the autonomous 

agricultural vehicle is moved on a straight path between the trees successfully. 



67 
 

However, there is one disadvantage of this method where the data obtained from the 

laser distance sensor is not reliable under bright sunlight which interferes with the laser 

signal and causes errors in the orientation data. A better solution could have been 

obtained by using a radar distance sensor coupled with a laser distance sensor whose 

outputs could be fused with a Kalman filter to obtain an accurate orientation 

information even under bright sunlight conditions. 

 

Finally, an algorithm is developed on the autonomous agricultural vehicle to 

move the autonomous agricultural vehicle on a straight path between the trees in an 

orchard. In this algorithm, the yaw angles calculated from the odometry, gyroscope 

and magnetometer data are applied to various filters such as the complementary filter, 

Madgwick filter, Kalman filter and integrated Kalman filter to estimate the orientation 

of the autonomous agricultural vehicle and the performances of these filters are also 

tested. The autonomous agricultural vehicle has completed its movement successfully 

using the yaw angles calculated from Kalman Odom-Gyro, Kalman Odom-Gyro-

Magne, and integrated Kalman filter when there is magnetic disturbance on the path 

of the autonomous agricultural vehicle. On the other hand, the autonomous agricultural 

vehicle cannot move on the straight road using the yaw angles that are calculated from 

other filters and magnetometer when there is magnetic disturbance on the path. In 

addition, the autonomous agricultural vehicle can complete its movement successfully, 

using yaw angles that are calculated from the odometry, gyroscope, magnetometer data 

which are applied on all the filters when there is no magnetic disturbance on the path. 

 

In summary, different types of filters are implemented to estimate the 

orientation of the autonomous agricultural vehicle. Furthermore, an alternative 

algorithm is developed using the laser distance sensor in order to move the autonomous 

agricultural vehicle on the lanes between the trees in the orchard. However, it is 

observed that the information obtained from the laser distance sensor can be inaccurate 

under bright sunshine. All of the filters, implemented on the autonomous agricultural 

vehicle, can accurately estimate the orientation of the autonomous agricultural vehicle 

while the vehicle is stationary and rotating. However, the orientation estimated by 

some of these filters are not accurate when there is a magnetic disturbance in the 



68 
 

environment. The error due to the magnetic disturbance can be eliminated by using the 

Kalman Odom- Gyro, the Kalman Odom-Gyro-Magne, and the integrated Kalman 

filters. Among all of the filters, the integrated Kalman filter algorithm is the best 

solution for the correct orientation estimation of the autonomous agricultural vehicle, 

since it has low computational cost, and it only requires the IMU information to 

estimate the orientation. Since the orientation of the vehicle is determined by the 

integrated Kalman filter correctly, the vehicle only requires the IMU sensor. Therefore, 

the best sensor is IMU sensor for the correct orientation estimation of the vehicle 

among all the sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

REFERENCES 
 

Aswinth, R. (2019). Distance and angle measurement for mobile robots using Arduino 

and LM393 Speed Sensor [Online]. Available at: 

https://circuitdigest.com/microcontroller-projects/speed-distance-and-angle-

measurement. (Accessed : 14 January 2022). 

Biber, P., Weiss U., Dorna, M., and Albert, A. (2012) Navigation system of the 

autonomous agricultural robot Bonirob, Workshop on Agricultural Robotics: 

Enabling Safe, Efficient, and Affordable Robots for Food Production, pp. 1–7.  

David, P. (2020). Robotis e-Manual [Online]. Available at: 

https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/. 

(Accessed : 12 January 2022). 

El-Diasty, M. (2014) An accurate heading solution using MEMS-based gyroscope and 

magnetometer integrated system (preliminary results), ISPRS annals of the 

photogrammetry, remote sensing and spatial information sciences, Vol. 2, pp. 75-78. 

Fedorov, D.S., Ivoilov, A.Y., Zhmud, V.A., and Trubin, V.G. (2015) Using of 

measuring system MPU6050 for the determination of the angular velocities and linear 

accelerations, Automatics & Software Enginery, Vol. 12, pp. 16–80. 

Gui, P., Tang, L., and Mukhopadhyay, S. (2015) MEMS based IMU for tilting 

measurement: Comparison of complementary and kalman filter based data fusion, 

IEEE 10th conference on Industrial Electronics and Applications, pp. 2004–2009. 

Hague, T., Marchant, J.A., and Tillett, N.D. (2000) Ground based sensing systems for 

autonomous agricultural vehicles, Computers and Electronics in Agriculture, Vol. 25, 

pp. 11-28. 

Han, J.H., Park, C.H., Kwon, J.H., Lee, J., Kim, T.S., and Jang, Y.Y. (2020) 

Performance evaluation of autonomous driving control algorithm for a crawler-type 

agricultural vehicle based on low-cost multi-sensor fusion positioning, Applied 

Sciences, Vol. 10, pp. 4667-4673. 

https://circuitdigest.com/microcontroller-projects/speed-distance-and-angle-measurement
https://circuitdigest.com/microcontroller-projects/speed-distance-and-angle-measurement
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/


70 
 

Khan, T. (2019). Computer vision : detecting objects using haar cascade classifier 

[Online]. Available at: https://towardsdatascience.com/computer-vision-detecting-

objects-using-haar-cascade-classifier-4585472829a9. (Accessed : 12 January 2022). 

Kok, M., and Schön, T.B. (2016) Magnetometer calibration using inertial sensors, 

IEEE Sensors Journal, Vol. 16, pp. 5679-5689. 

Madgwick, S.O.H. (2010) An efficient orientation filter for inertial and inertial/- 

magnetic sensor arrays, Citado, Vol. 5, pp. 9– 19. 

Madgwick, S.O.H, Harrison, A., and Vaidyanathan, A. (2011) Estimation of IMU and 

MARG orientation using a gradient descent algorithm, IEEE international conference 

on rehabilitation robotics, pp. 1-7. 

Mario, G. (2019). Madgwick orientation filter [Online]. Available at: 

https://ahrs.readthedocs.io/en/latest/filters/madgwick.html. (Accessed : 15 January 

2022). 

Ocando, M.G., Certad, N., Alvarado, S., and Terrones, Á. (2017) Autonomous 2D 

SLAM and 3D mapping of an environment using a single 2D LIDAR and ROS, Latin 

American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics 

(SBR), pp. 1–6. 

Pagnutti, M.A., Ryan, R.E., Cazenavette, G.J.V., Gold, M.J., Leggett, R.H.E., and 

Pagnutti, J.F. (2017) Laying the foundation to use Raspberry Pi 3 V2 camera module 

imagery for scientific and engineering purposes, Journal of Electronic Imaging, Vol. 

26, pp. 1-13. 

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and 

Ng, A.Y. (2009) ROS: an open-source Robot Operating System, ICRA workshop on 

open source software, Vol. 3, pp. 1-6. 

Renaudin, V., Afzal, M.H., and Lachapelle, G. (2010) Complete triaxis magnetometer 

calibration in the magnetic domain, Journal of sensors, Vol. 2010, pp. 1-10. 

Shawn, A. (2020). Types of Distance Sensors and How to Select One [Online]. 

Available at: https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-

and-selection-guide/. (Accessed : 15 January 2022). 

 

https://towardsdatascience.com/computer-vision-detecting-objects-using-haar-cascade-classifier-4585472829a9
https://towardsdatascience.com/computer-vision-detecting-objects-using-haar-cascade-classifier-4585472829a9
https://ahrs.readthedocs.io/en/latest/filters/madgwick.html
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/
https://www.seeedstudio.com/blog/2019/12/23/distance-sensors-types-and-selection-guide/


71 
 

Sloth, L. (2017). TKJ Electronics A practical approach to Kalman filter and how to 

implement it [Online]. Available at: http://blog.tkjelectronics.dk/2012/09/a-practical-

approach-to-kalman-filter-and-how-to-implement-it/. (Accessed : 11 January 2022). 

Sowjanya, K.D., Sindhu, R., Parijatham, M., Srikanth, K., and Bharhav, P. (2017) 

Multipurpose autonomous agricultural robot, 2017 International conference of 

Electronics, Communication and Aerospace Technology (ICECA), Vol. 2, pp. 696–

699. 

Treffers, C., and Wietmarschen, L.V. (2016) Position and orientation de- termination 

of a probe with use of the IMU MPU9250 and a ATmega328 microcontroller, Master 

Thesis, Delft University of Technology. 

Welch, G., and Bishop, G. (2001) An Introduction to the Kalman filter, Computer 

Graphics, Annual Conference on Computer Graphics & Interactive Techniques, pp. 

12–17. 

Yoonseok, P., Hancheol C., Leon, J., and Darby, L. (2017). ROS Robot Programming 

(English). Available at: 

http://wiki.ros.org/Books/ROS_Robot_Programming_English. (Accessed 15 January 

2022) 

 

 

 

 

 

 

 

 

 

 

http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/
http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/
http://wiki.ros.org/Books/ROS_Robot_Programming_English


72 
 

APPENDICES 
 

Appendix A – Raspberry Pi and LM393 Connection 

 

 

 

Figure 73. Raspberry Pi and LM393 connection 

 

Appendix B – Raspberry Pi and MPU6050 Connection 

 

 

 

Figure 74. Raspberry Pi and MPU6050 connection 

 

Appendix C – Raspberry Pi and QMC5883L Connection 

 

 

 

Figure 75. Raspberry Pi and QMC5883L connection 

 



73 
 

Appendix D – IMU Messages 

 

 

float32 delta_t  

float32 time_stamp  

float32 axr  

float32 ayr  

float32 azr  

float32 mxr  

float32 myr  

float32 mzr  

float32 gxr  

float32 gyr  

float32 gzr  

float32 ax  

float32 ay  

float32 az  

float32 mx  

float32 my  

float32 mz  

float32 gx  

float32 gy  

float32 gz  

float32 aroll  

float32 apitch  

float32 groll  

float32 gpitch  

float32 gyaw  

float32 myaw 

float32 cmyaw 

 

 



74 
 

Appendix E – Odometry Messages 

 

 

float32 DL 

float32 DR  

float32 VL  

float32 VR  

float32 yaw_odom  

 

 

Appendix F – Filter Messages 

 

 

float32 delta_t 

float32 time_stamp  

float32 yaw_odometry  

float32 yaw_gyroscope  

float32 yaw_magnetometer 

float32 yaw_kalman 

float32 yaw_kalman_odom_gyro 

float32 yaw_kalman_odom_gyro_magne 

float32 yaw_kalman_integration 

float32 yaw_madgwick 

float32 yaw_complementary 

float32 yaw_ekf  

 

 

 

 

 



75 
 

Appendix G – Complementary Filter Class 

 

 

 

 

class Complimentary(): 

 

 def __init__(self, gain = 0.9): 

   

  self.Roll = 0 

  self.Pitch = 0 

  self.Yaw = 0 

  self.Gain = Gain 

 

 def setRoll(self, Roll): 

  self.Roll = Roll 

 

 def setPitch(self, Pitch): 

  self.Pitch = Pitch 

 

 def setYaw(self, Yaw): 

  self.Yaw = Yaw 

 

 def setGain(self, Gain): 

  self.Gain = Gain 

 

 def update_roll_pitch_and_yaw_angles(self, 

Measured_Roll_Acc, Measured_Pitch_Acc, Measured_Yaw_Magne, gx, 

gy, gz, dt): 

  self.Roll = 

self.complementary_filter_update(self.Roll, Measured_Roll_Acc, 

gx, dt) 



76 
 

  self.Pitch = 

self.complementary_filter_update(self.Pitch, 

Measured_Pitch_Acc, gy, dt) 

  self.Yaw = 

self.complementary_filter_update(self.Yaw, Measured_Yaw_Magne, 

gz, dt) 

 

 def complementary_filter_update(self, angle_prev, 

MeasuredData, InputData, dt): 

 

  ComplementaryResponse = (angle_prev + 

InputData*dt)*(self.Gain)  + (1-self.Gain)*(MeasuredData) 

  return ComplementaryResponse

 

 

Appendix H – Kalman Filter Class 

 

 

import numpy as np 

 

class Kalman: 

 

 def __init__(self): 

 

  self.Xk = np.vstack((0.0, 0.0)) # State Matrix 

  self.yaw = 0 # Initial Yaw 

  self.Pk = np.array([0.1, 0.1])*np.identity(2) # Pk 

  self.Q11 = 0.002 # Q11 

  self.Q22 = 0.005 # Q22 

  self.R = 0.03 # R 

 

 def update_yaw_angle(self, input_vector_variable, dt, 

measuredYaw): 

 

  self.yaw, self.Xk, self.Pk = self.update(self.Xk, \ 



77 
 

           

    measuredYaw, self.Pk, \ 

           

    self.Q11, self.Q22, \ 

           

    self.R, input_vector_variable, dt) 

 

 

 def update(self, Xk_prev, measurement, Pk_prev, error, 

driftError, MeasurementUncertainty, input_vector_variable 

,dt): 

 

 

  StateTransitionMatrix = np.array([[1,-dt],[0,1]])#A  

  ControlMatrix = 

np.vstack((input_vector_variable,0.0))#B 

  ProcessNoise = dt*(np.array([error, 

driftError])*np.identity(2))#Q 

  ObservationMatrix = np.array([1.0, 0.0])#H 

 

  # Prediction 

  DynamicModel = np.matmul(StateTransitionMatrix, 

Xk_prev) + dt*ControlMatrix  

  PredictorCovariance = 

np.matmul(np.matmul(StateTransitionMatrix, Pk_prev), 

(StateTransitionMatrix.T)) + ProcessNoise  

 

  # Measurement 

  Innovation = measurement - 

np.matmul(ObservationMatrix, DynamicModel) 

  InnovationCovariance = 

np.matmul(np.matmul(ObservationMatrix, PredictorCovariance), 

ObservationMatrix.T) + MeasurementUncertainty 

  KalmanGain = np.matmul(PredictorCovariance, 

np.vstack((1.0, 0.0))) / InnovationCovariance 

 

  # Update 



78 
 

  StateUpdate = DynamicModel + KalmanGain*Innovation  

  CovarianceUpdate = np.matmul( np.identity(2) - 

np.matmul(KalmanGain, np.array([1.0, 0.0]).reshape((1,2))), 

PredictorCovariance) 

 

  return StateUpdate[0,0], StateUpdate, 

CovarianceUpdate 

 

 @property 

 def yaw(self): 

  return self._yaw 

 

 @yaw.setter 

 def yaw(self, yaw): 

  self._yaw = yaw 

  self.currentYawState[0,0] = yaw

 

 


