

MICROCONTROLLER-BASED REAL-TIME MOTOR

BEARING FAULT DETECTION AND DIAGNOSIS

USING 1D CONVOLUTIONAL NEURAL NETWORKS

SERTAÇ KILIÇKAYA

Master’s Thesis

Graduate School

Izmir University of Economics

Izmir

2022

MICROCONTROLLER-BASED REAL-TIME MOTOR

BEARING FAULT DETECTION AND DIAGNOSIS

USING 1D CONVOLUTIONAL NEURAL NETWORKS

SERTAÇ KILIÇKAYA

A Thesis Submitted to

The Graduate School of Izmir University of Economics

Master Program in Electrical and Electronics Engineering

Izmir

2022

iii

ABSTRACT

MICROCONTROLLER-BASED REAL-TIME MOTOR BEARING

FAULT DETECTION AND DIAGNOSIS USING 1D

CONVOLUTIONAL NEURAL NETWORKS

Kılıçkaya, Sertaç

Master Program in Electrical and Electronics Engineering

Advisor: Prof. Dr. Türker İnce

January, 2022

Continuous machine monitoring provides a real-time intelligence on the status and

health of the machinery; hence it is a very common practice that avoids unexpected

machine failures in the industry. One of the most common causes of rotating machine

failures are bearing faults, and early detection of bearing defects allows replacement

of faulty bearing rather than the motor itself. Therefore, the lifetime and condition of

electric motor bearings are of great interest to end users to sustain continuous plant

operation. Traditional bearing fault detection systems perform classification using

hand-crafted features; hence they require significant computational cost, avoiding real-

time applications. On the other hand, 1D Self-Organized Operational Neural Networks

(1D Self-ONNs) and its special case 1D Convolutional Neural Networks (1D CNNs)

iv

are the promising alternatives that encapsulates feature extraction and classification

phases into a single learning body, thus allowing more efficient systems in terms of

computational complexity. In this study, first, the effectiveness of 1D Self-ONNs and

CNNs for bearing fault diagnosis is shown on two benchmark datasets. In addition,

using an on-board accelerometer, several minutes of 3-axis accelerometer data is

collected from two different single-phase induction motors with four different bearing

health conditions on the motor test setup at Izmir University of Economics. A 1D CNN

model is then trained, quantized, and deployed to Arm Cortex-M4 based

microcontroller to evaluate the bearing fault diagnosis performance in real-world

scenario. The experimental results indicate that it is feasible to detect and classify

bearing faults in real-time on low-power microcontrollers using 1D CNNs.

Keywords: Embedded Machine Learning, Self-Organized Operational Neural

Networks (Self-ONNs), Convolutional Neural Networks (CNNs), Condition-Based

Monitoring (CBM), Rolling Element Bearings (REBs), Bearing Fault Detection and

Diagnosis (BFDD).

v

ÖZET

1B EVRİŞİMSEL SİNİR AĞLARI İLE MİKRODENETLEYİCİ

TABANLI GERÇEK ZAMANLI MOTOR RULMAN ARIZASI

TESPİTİ VE TEŞHİSİ

Kılıçkaya, Sertaç

Elektrik-Elektronik Mühendisliği Tezli Yüksek Lisans Programı

Tez Danışmanı: Prof. Dr. Türker İnce

Ocak, 2022

Sürekli makine durum izlemesi, makinelerin durumu ve sağlığı hakkında gerçek

zamanlı bilgi sağlaması nedeniyle endüstride beklenmedik makine arızalarını önleyen

çok yaygın bir uygulamadır. Dönen makine arızalarının en yaygın nedenlerinden biri

rulman arızalarıdır ve rulman arızalarının erken tespiti, motorun kendisinden ziyade

arızalı rulmanın değiştirilmesini sağlar. Bu nedenle, elektrik motor rulmanlarının ömrü

ve durumu, endüstriyel tesislerin kesintisiz çalışmasını sürdürmek için son kullanıcılar

açısından büyük önem taşımaktadır. Geleneksel rulman arıza tespit sistemleri, manuel

öznitelikler çıkararak sınıflandırma gerçekleştirir ve yüksek işlem gereksinimi

sebebiyle gerçek zamanlı uygulamayı zorlaştırırlar. Öte yandan, 1B Operasyonel Sinir

vi

Ağları (1B OSA) ve bunların özel bir durumu olan 1B Evrişimsel Sinir Ağları (1B

ESA), otomatik öznitelik çıkarma ve sınıflandırma aşamalarını tek bir öğrenme

gövdesinde toplayan daha az işlem gerektiren verimli alternatiflerdir. Bu çalışmada,

ilk olarak, 1B OSA’ların ve ESA'ların rulman arıza teşhisindeki etkinliği iki açık

kaynak veri seti kullanılarak gösterilmiştir. Ayrıca, İzmir Ekonomi Üniversitesi'ndeki

motor test düzeneği kullanılarak iki çeşit tek fazlı asenkron motordan dört farklı

rulman sağlığı koşulu için birkaç dakikalık 3 eksen ivmeölçer verisi toplanmıştır.

Toplanan veri kullanılarak, bir 1B ESA modeli eğitilip, model katsayıları

nicemlendikten sonra Arm Cortex-M4 tabanlı mikrodenetleyiciye yüklenmiştir ve bu

sayede gerçek bir motor düzeneğinde modelin rulman arıza teşhis performansı

gözlemlenmiştir. Deneysel sonuçlar, 1B ESA’lar kullanılarak düşük güçlü

mikrodenetleyiciler ile rulman hatalarının gerçek zamanlı tespit ve teşhisinin mümkün

olduğunu göstermektedir.

Anahtar Kelimeler: Gömülü Makine Öğrenmesi, Operasyonel Sinir Ağları (OSA),

Evrişimsel Sinir Ağları (ESA), Durum Bazlı Bakım, Bilyalı Rulmanlar, Rulman

Arızası Tespit ve Teşhisi.

vii

To my family…

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor

Prof. Türker İnce for introducing me to the field of embedded machine learning, for

inspiring me to select that field as the subject of my master’s thesis, and for guiding

me throughout this study.

I would also like to thank Prof. Levent Eren and Prof. Murat Aşkar for their

tremendous assistance and valuable suggestions throughout my graduate studies.

My deepest appreciation goes to the Scientific and Technological Council of

Turkey (TUBITAK) for the award-winning support “2210-A National Scholarship

Program for MSc Students”.

 Finally, I would like to thank my parents and brother for their love, support,

and patience.

ix

TABLE OF CONTENTS

ABSTRACT .. iii

ÖZET.. v

ACKNOWLEDGEMENTS .. viii

TABLE OF CONTENTS .. ix

LIST OF TABLES .. xi

LIST OF FIGURES .. xiii

LIST OF EQUATIONS ... xv

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: ROLLING ELEMENT BEARING FAILURE..................................... 5

2.1 Failure Stages ... 5

2.2. Bearing Fault Frequencies .. 8

2.3. Sensor Selection .. 10

CHAPTER 3: DEEP LEARNING BASED APPROACHES FOR BEARING

FAULT DIAGNOSIS .. 12

3.1. Autoencoders ... 12

3.2. Generative Adversarial Networks ... 15

3.3. Recurrent Neural Networks ... 18

3.4. Convolutional Neural Networks .. 21

3.4.1. 2D Convolutional Neural Networks ... 22

3.4.2. Adaptive 1D Convolutional Neural Networks .. 24

3.5. Self-Organized Operational Neural Networks .. 31

CHAPTER 4: 1D CNN AND SELF-ONN PERFORMANCE RESULTS ON

BENCHMARK DATASETS ... 37

4.1. Datasets ... 37

4.1.1. CWRU Dataset ... 37

4.1.2. University of Ottawa's Variable Speed Bearing Dataset 40

4.2. CWRU Dataset 1D CNN and Self-ONN Results ... 42

4.3. University of Ottawa's Bearing Dataset 1D CNN and Self-ONN Results 57

CHAPTER 5: DEPLOYMENT ON MICROCONTROLLERS 64

5.1. Quantization of Neural Networks .. 64

5.1.1. Quantization Fundamentals ... 65

5.1.1.1. Uniform Affine Quantization ... 67

5.1.1.2. Symmetric Uniform Quantization .. 69

5.1.1.3. Quantization Range ... 72

x

5.1.2. Post-Training Quantization .. 73

5.1.3. Quantization-Aware Training .. 74

5.2. Embedded AI Frameworks .. 75

5.2.1. STM32Cube.AI ... 75

5.2.2. TensorFlow Lite for Microcontrollers ... 76

CHAPTER 6: EXPERIMENTAL SETUP AND ON-DEVICE PERFORMANCE

RESULTS .. 78

6.1. Platform Description ... 78

6.2. Development Board - STM32L4 Discovery Kit IoT Node 80

6.3. On-Device Performance Results ... 81

CHAPTER 7: CONCLUSION ... 92

REFERENCES ... 94

xi

LIST OF TABLES

Table 1. CWRU dataset fan-end and drive-end bearing information. 39

Table 2. CWRU dataset fan-end and drive-end bearing fault frequencies. 39

Table 3. 10 different classes in CWRU dataset.. 42

Table 4. CWRU sub-datasets according to loading conditions (Number of training /

validation / test samples). ... 43

Table 5. 1D CNN results for each sub-dataset (A, B, C, D) of CWRU bearing data. 51

Table 6. 1D CNN results for dataset E of CWRU bearing data. 52

Table 7. Comparison of different methods in terms of classification accuracy on

CWRU bearing datasets. .. 52

Table 8. 1D CNN and Self-ONN classification accuracies across different load

domains. ... 56

Table 9. Comparison of different methods (Jang and Cho, 2021) in terms of

classification accuracy across different load domains. .. 57

Table 10. 6 cases for training, validation and test splits of University of Ottawa

bearing data, and the test accuracy of the proposed 1D CNN model. 59

Table 11. Comparison of different methods in terms of classification accuracy on

University of Ottawa bearing data. (Training data: increasing speed, Test data:

decreasing speed). .. 61

Table 12. Confusion matrix of 1D CNN model on University of Ottawa bearing data.

(Training data: increasing speed, Test data: decreasing speed). 62

Table 13. 1D CNN (q=1) and Self-ONN (q=3,5,7) results for University of Ottawa’s

bearing dataset. (Training data: increasing speed, Test data: decreasing speed). 63

Table 14. MMD bearing fault dataset .. 82

Table 15. The comparison of float and quantized model size and test accuracy for

strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes. 88

Table 16. The comparison of float and quantized model size and test accuracy for

max-pooling (pool size=4) following convolutional layers using TFLM and

STM32Cube.AI runtimes. .. 88

Table 17. The comparison of float and quantized model test accuracy and inference

speed for max-pooling (pool size=4) following convolutional layers using TFLM and

STM32Cube.AI runtimes. .. 89

xii

Table 18. The comparison of float and quantized model test accuracy, and inference

speed for strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes.

 .. 89

xiii

LIST OF FIGURES

Figure 1. Rolling element bearing components. .. 5

Figure 2. Bearing fault stages (Source: Eren, 2017). ... 7

Figure 3. The geometry of a ball bearing (Source: Eren, 2017). 8

Figure 4. REB P-F curve indicating the earliest fault detection point for different

sensors. ... 11

Figure 5. Autoencoder architecture. ... 12

Figure 6. Architecture of GANs. .. 16

Figure 7. Architecture of a typical RNN. ... 19

Figure 8. Internal structure of an LSTM cell. .. 20

Figure 9. An example of 2D CNN configuration. .. 23

Figure 10. The illustration of a sample 1D CNN configuration (Source: Kiranyaz et

al., 2021). ... 25

Figure 11. Three successive convolutional layers of a 1D CNN (Source: Kiranyaz,

Ince and Gabbouj, 2016). ... 26

Figure 12. 1D nodal operations of the ith neuron of CNN (left), ONN (middle) and

Self-ONN (right) (Source: Ince et al., 2021).. 33

Figure 13. CWRU dataset motor bearing test platform. .. 38

Figure 14. Experimental setup for University of Ottawa's Bearing Dataset. 41

Figure 15. University of Ottawa's bearing dataset numbering. 41

Figure 16. 3-fold cross validation and holdout (test) data. .. 43

Figure 17. Sample vibration waveforms for healthy and ball fault conditions in time

domain. ... 45

Figure 18. Amplitude spectrum of vibration signals for healthy and ball fault

conditions. .. 45

Figure 19. Sample vibration waveforms for healthy and inner-race fault conditions in

time domain. ... 46

Figure 20. Amplitude spectrum of vibration signals for healthy and inner-race fault

conditions. .. 46

Figure 21. Sample vibration waveforms for healthy and outer-race fault conditions in

time domain. ... 47

Figure 22. Amplitude spectrum of vibration signals for healthy and outer-race fault

conditions. .. 47

xiv

Figure 23. 1D CNN classifier with three Conv1D (number of neurons, kernel size)

and two dense layers (number of neurons). ... 48

Figure 24. 1D Self-ONN classifier with three SelfONN1D layers (number of

neurons, kernel size, the degree of the Taylor approximation) and two dense layers

(number of neurons). .. 55

Figure 25. Sub-datasets of University of Ottawa’s bearing data. (Green: dataset X,

yellow: dataset Y, cyan: dataset Z). ... 59

Figure 26. 1D Self-ONN Classifier (for University of Ottawa bearing data) with 1D

Self-ONN (number of neurons, kernel size, degree of the Taylor approximation) and

dense layers (number of neurons). ... 60

Figure 27. Training, validation, and test accuracies of the proposed 1D CNN model

over each training epochs. .. 63

Figure 28. An example of weight distribution for a convolutional layer kernel

(conv1d/kernel_0). ... 67

Figure 29. An illustration of symmetric and asymmetric uniform quantization for a

bit-width of 8. The floating-point grid is in black, and the integer quantized grid is

shown in blue (Source: Nagel et al., 2021). ... 71

Figure 30. An illustration of MAC operation for quantized inference (Source: Nagel

et al., 2021). .. 72

Figure 31. Training with simulated quantization (Quantization-aware Training). 74

Figure 32. TFLM PTQ decision tree (Source: TensorFlow Lite, 2021). 77

Figure 33. Sample healthy and fault introduced ball bearings. 78

Figure 34. Machine monitoring and diagnostics (MMD) test stand. 79

Figure 35. Aluminum mounting bracket. ... 79

Figure 36. STM32L4 Discovery Kit IoT Node. ... 80

Figure 37. Microcontroller based motor fault detection and diagnosis system. 82

Figure 38. 1500 samples healthy and faulty motor 3-axis raw acceleration

waveforms. (X axis: blue, Y axis: orange, Z axis: green) .. 83

Figure 39. 500 samples healthy and faulty motor 3-axis raw acceleration waveforms.

(X axis: blue, Y axis: orange, Z axis: green).. 84

Figure 40. The amplitude spectrum of z-axis acceleration. 86

Figure 41. 2D CNN model with 3 conv2D and 2 dense layers. 86

Figure 42. The designed Phyphox experiment that shows bearing health condition

and the 3-axis motor vibration on a mobile. .. 91

xv

LIST OF EQUATIONS

Equation 1. Ball Pass Frequency Outer (BPFO). ... 9

Equation 2. Ball Pass Frequency Inner (BPFI). ... 9

Equation 3. Ball Spin Frequency (BSF). .. 9

Equation 4. Fundamental Train Frequency (FTF). .. 9

Equation 5. Autoencoder encoding function. ... 13

Equation 6. Autoencoder decoding function. ... 13

Equation 7. Autoencoder encoder mapping. .. 13

Equation 8. Autoencoder decoder mapping. .. 13

Equation 9. Minimax value function for GANs. .. 15

Equation 10. The activation for an RNN. .. 18

Equation 11. The output for an RNN. .. 18

Equation 12. The general gate equation in an LSTM. ... 19

Equation 13. Cell update equation in an LSTM. .. 20

Equation 14. Cell state equation in an LSTM. ... 20

Equation 15. Output equation in an LSTM. ... 20

Equation 16. 1D convolution in a CNN layer. ... 27

Equation 17. Output of the activation function and subsampling in a CNN layer..... 27

Equation 18. Mean-squared error at the output layer of a 1D CNN 28

Equation 19. Weight and bias sensitivities in the MLP layers of a 1D CNN. 28

Equation 20. BP from the first MLP layer to the last CNN layer in a 1D CNN. 28

Equation 21. The input delta, 𝛥𝑘𝑙, of the CNN layer l in a 1D CNN. 29

Equation 22. The inter-BP (among CNN layers) of the delta error in a 1D CNN. 29

Equation 23. The weight and bias sensitivities of hidden convolutional layers in a 1D

CNN. .. 29

Equation 24. Weight and bias update equations in a 1D CNN. 30

Equation 25. The output of kth neuron of the layer l in a 1D CNN. 32

Equation 26. 1D convolution operation in CNN layers of a 1D CNN. 32

Equation 27. The output of generalized operational neuron. 32

Equation 28. Taylor series function approximation. .. 34

Equation 29. Qth order Taylor series approximation. .. 34

Equation 30. The general form of nodal transformations in a generative neuron...... 34

Equation 31. The input map of generative neuron 𝑥𝑖𝑘𝑙. .. 35

xvi

Equation 32. Min-max normalization for the target range [−1, 1]. 44

Equation 33. Precision, recall, F1-score and accuracy. ... 49

Equation 34. Asymmetric quantization. ... 68

Equation 35. Clamp function. .. 68

Equation 36. Dequantization step of asymmetric quantization. 68

Equation 37. General quantization function... 68

Equation 38. Quantization limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥. ... 69

Equation 39. Signed symmetric quantization. ... 69

Equation 40. Unsigned symmetric quantization. ... 70

Equation 41. Dequantization step of symmetric quantization. 70

Equation 42. Multiplication of asymmetric activations with asymmetric weights. ... 70

Equation 43. Min-max calibration. .. 73

Equation 44. Mean normalization. ... 84

1

CHAPTER 1: INTRODUCTION

Electrical machines are found in various industrial and commercial settings.

The global electric motor market size was USD 106.45 billion in 2020. The market is

estimated to grow from USD 113.14 billion in 2021 to USD 181.89 billion by 2028 at

a compound annual growth rate (CAGR) of 7.0% during 2021-2028 (Industry Report,

2021). The increase in worldwide power consumption and the increasing use of

electrical machinery are the important aspects driving growth in the global electric

motor market. The market size has also been increasing with the development of

renewables sector and green transportation.

Induction motors are the most common and frequently encountered machines

in industrial, commercial, and residential settings. They are the essential components

of industry due to their broad use in wide range of applications such as cooling,

heating, and pumping. They are advantageous thanks to their low cost, simple and

sturdy design, easy maintenance, and high power-to-weight ratio. Thanks to these

factors, ac induction machines are dominant in industry, representing more than 90

percent of installed motor capacity (Ferreira and De Almeida, 2012).

Electric motor predictive maintenance aims to predict and correct motor faults

before they become expensive and affect productivity. Rolling element bearings

(REBs) are machine elements that are usually found in rotating equipment, and they

are designed to support a load while minimizing friction. If they break suddenly, a

catastrophic failure may occur resulting in associated high repair and replacement

costs.

REBs are mostly encountered in rotating machinery, but the bearings are not

free from failure. Records indicate that faulty bearings contribute to around forty

percent of induction motor failures (Ergin, Uzuntas and Gulmezoglu, 2012). They are

the most significant reasons for machine breakdowns; thus, the lifetime and condition

of a rolling element bearing are of interest to customers to sustain continuous

operation. Early diagnosis of bearing defects allows bearing replacement rather than

2

complete electric motor replacement and it enhances safety, efficiency, reliability, and

availability, resulting in reduced unexpected costs. However, although the replacement

of faulty bearings is the most cost-effective solution, it is the most difficult one to

detect. Accelerometers, thermocouples, microphones, piezo-velocity sensors, current

sensors and many more devices could be used to detect bearing faults and researchers

have been using these sensors for vibration monitoring, temperature monitoring, and

acoustic emission monitoring of the rotating machines (Correa and Guzman, 2020).

Using these condition monitoring techniques, many studies are also ongoing to build

intelligent bearing fault detection and diagnosis (BFDD) systems.

Signal-based, model-based, and knowledge-based approaches could be

implemented for BFDD systems. Model-based methods require expert knowledge on

the system dynamics, and it mainly uses predictions generated using mathematical

models describing the healthy response of a system. A fault diagnosis algorithm then

makes a decision on the status of the system using the model’s predicted output and

the measured output. Fault diagnosis using model-based approach is straightforward

if the model has no complex mapping with physical parameters, but the accuracy

mostly increases with complexity of model representation. The vast majority of motor

fault detection and diagnosis systems typically process raw motor vibration or current

data. Moreover, in signal-based approaches, no explicit motor model is used in any of

the signal processing stages. Various time, time-frequency and frequency domain

signal processing techniques have been employed in signal-based fault diagnosis

systems. These systems are prone to unknown or unbalanced conditions. In signal-

based systems, fault detection accuracy is usually increased with advanced signal

processing tools, but they often result in increased computational complexity. Unlike

model-based methods, which rely on expert knowledge, the knowledge-based

approach is data-oriented and makes no assumptions about the physical model of the

system.

The knowledge-based approaches are investigated in two main groups:

quantitative approaches based on machine learning and qualitative methods based on

symbolic intelligence. Quantitative approaches could further be grouped into two main

categories: unsupervised learning systems such as principal component analysis (PCA)

3

and K-means, and supervised learning systems such as support vector machines

(SVMs), artificial neural networks (ANNs) and convolutional neural networks

(CNNs). The diagnosis accuracy of knowledge-based approaches is strongly

influenced by the quality of training data.

Bearing failures often occur at specific fault frequencies in frequency spectrum

and signal-based BFDD systems employ these frequencies to estimate the likelihood

of a bearing problem. Furthermore, conventional machine learning models include a

feature extraction mechanism to get a meaningful representation of the data, and it is

followed by a classification stage that determines the condition of bearings from the

extracted features. Even though satisfactory results of fault diagnosis accuracies were

stated in the prior studies, various features and classifiers were used for this purpose.

However, selecting the right feature is often quite troublesome, and manually selected

or handcrafted features often result in information loss. Furthermore, as feature

extraction often brings computational complexity to the system, its use in real-time

condition monitoring applications may not be appropriate. Consequently, to avoid

these limitations and achieve better performance at noisy environments, researchers

have implemented several deep learning (DL) based methods that uses raw motor

current or vibration data for early diagnosis of bearing defects.

Ince et al. (2016) first proposed a unique method that utilizes 1D CNNs for

BFDD. This work demonstrated CNNs’ ability to learn to extract discriminative

features from the training data using a set of 1D filter kernels. In this model, following

convolutional layers, a multilayer perceptron (MLP) was utilized to perform the

classification task. The proposed method only performs hundreds of 1D convolutions

to construct the output decision vector, making it suitable for real-time BFDD systems.

As an extension of this work, 1D Self-organized Operational Neural Networks with

generative neurons (1D Self-ONNs) was again proposed by (Ince et al., 2021). With

this study, the superiority of 1D Self-ONNs over 1D CNNs was shown for the bearing

fault severity level classification problem. The details of these studies along with the

other deep learning-based BFDD approaches are given in Chapter 3.

4

In this thesis, a newly emerging paradigm, tiny machine learning (TinyML), is

utilized for BFDD problem. TinyML aims to shrink and run deep neural networks on

ultra-low power microcontrollers. First, shallow 1D CNN and Self-ONN models were

trained and tested on Case Western Reserve University (CWRU) and University of

Ottawa motor vibration data. Then, from two different single-phase induction motors,

real motor vibration data was collected for healthy, outer-race, inner-race, and ball

bearing fault conditions. Using this newly collected dataset, a shallow 1D CNN model

was trained, quantized, and deployed to Arm Cortex-M4 based ultra-low-power

STM32L4 series microcontroller. For this purpose, the two most popular embedded

AI frameworks STM32Cube.AI and TensorFlow Lite for Microcontroller (TFLM)

were used, and they were evaluated regarding test accuracy, average inference duration

and memory footprint for this application. Finally, a large number of experiments were

performed by inputting 3-axis real motor acceleration data to the deployed 1D CNN

model to show that it is computationally feasible to detect motor bearing faults in real-

time using low-power microcontrollers.

The rest of this thesis is organized as follows. Chapter 2 offers an introduction

to rolling element bearing failure, fault stages and corresponding fault frequencies.

State-of-the-art deep learning methods for bearing fault diagnosis are discussed in

Chapter 3. Chapter 4 describes the CWRU and University of Ottawa bearing datasets

used to train the 1D CNN and Self-ONN models and provides training and test results.

Quantization and deployment of neural networks on microcontrollers are further

studied in Chapter 5. Chapter 6 proceeds with experimental setup and on-device

performance results. Finally, a conclusion of this study with a short summary and

possible future work is given in Chapter 7.

5

CHAPTER 2: ROLLING ELEMENT BEARING FAILURE

2.1 Failure Stages

Rolling element bearings (REBs) are mechanical components present in almost

all rotating machinery and they are undoubtedly one of the most abundant elements in

industry. REBs can be found in everything from electric motors to conveyor systems

and gearboxes. If a shaft needs to rotate, it is most likely supported by a REB. Their

primary goal is to reduce rotational friction while also supporting radial or axial loads.

REBs are composed of an inner ring and race, an outer ring and race, a set of rolling

elements and the cage, as shown in Figure 1. In many applications, the outer ring is

stationary, and the inner ring carries the rotating shaft. However, in some cases, while

the outer ring rotates, the inner ring stays stationary. The cage is used to keep the

rolling elements apart and evenly spaced. The shape of the rollers between the two

rings determines the load a certain bearing can withstand, and this shape also affects

the lubrication requirements. The most widely used type is the ball bearing and it is

used for moderate loads.

Figure 1. Rolling element bearing components.

6

In general, even if the installation and maintenance of REBs are performed

properly, metal fatigue failure is still inevitable. At the same time, since bearings often

work under harsh conditions, other sources of failures such as loss of lubrication,

corrosion, contamination, and overheating may also exist (Bloch and Geitner, 1999).

Based on the vibration frequencies generated by rolling elements hitting the

defects in the outer and/or inner races, bearing faults can be grouped into four main

failure stages. These four stages were defined by Technical Associates of Charlotte,

P.C. (Harris, 2001) and each stage is discussed below.

At the first stage of bearing failure, small pits start to appear in the inner and/or

outer bearing race and impacts of rolling elements to these defects result in vibration

activity at ultrasonic frequency range from around 20 kHz to 350 kHz. In stage 1,

bearings should still be operating normally, and they do not need to be replaced. Even

though there is no need for bearing replacement, stage 1 often gives the indication of

lack of lubrication between the rolling elements and races, and if the bearing defects

progresses in time, the amplitude peaks begin to appear at lower frequencies in the

spectrum.

In stage 2, when the bearing defects become larger, they start to ring at the

natural frequency of the bearing components. At this stage, vibration activity can be

observed in the frequency range from 500 Hz to 2 kHz. These resonance frequencies

may occur due to bearing support structures or due to the components of the bearings

themselves such as rolling elements and races. Progressive bearing wear usually

generates sideband frequencies above and below the component or casing natural

frequencies.

In stage 3, if the bearing is removed, the defects and wear patterns can be

clearly observed in the raceways. Bearings reaching this stage should be replaced in a

short time for both critical and non-critical machinery. At this stage, characteristic

frequencies may now be observed from the frequency spectrum. As wear progresses

in this stage, well-formed sidebands accompany the fault frequencies and harmonics

7

(Harris, 2001). Furthermore, sidebands around the bearing component natural

frequencies and the high frequency content evident in stages 1 and 2 continue to grow

and become more evident at stage 3.

Stage 4 takes place at the end of a bearing’s lifetime. In this stage, as the

bearing defects progresses, rotor vibration increases, and rotor-related frequencies

become dominant in the spectrum. A substantial decrease in the amplitude of the

bearing component natural frequencies is also observed. At the same time, random

high frequency vibration occurs, causing an increased noise floor (Harris, 2001).

Bearings reaching this stage should be replaced immediately, otherwise with damage

to other machine components, a catastrophic failure might happen.

Figure 2. Bearing fault stages (Source: Eren, 2017).

8

In Figure 2, the frequency spectrum for all stages is shown. BPFI, BPFO and

BSF represent ball pass frequency inner race, ball pass frequency outer race and ball

spin frequency, respectively.

2.2. Bearing Fault Frequencies

The bearing fault characteristic frequencies are calculated using the bearing

geometry and shaft speed. Figure 3 depicts the geometry of a commonly used ball

bearing.

Figure 3. The geometry of a ball bearing (Source: Eren, 2017).

When one of the bearing components has a defect, a peak appears at a specific

characteristic frequency. These vibration frequencies representing various fault

locations are called Ball Pass Frequency Outer (BPFO) or outer-race fault frequency,

Ball Pass Frequency Inner (BPFI) or inner-race fault frequency, Ball Spin Frequency

(BSF) or ball fault frequency, and Fundamental Train Frequency (FTF) or cage fault

frequency. The number of balls that pass through a specific location of the outer race

during a full rotation of the shaft corresponds to BPF0, which is given by the equation:

9

𝐵𝑃𝐹𝑂 =
𝑁𝐵. f𝑟

2
 (1 −

𝐵𝐷

𝑃𝐷
cos 𝜑)

Equation 1. Ball Pass Frequency Outer (BPFO).

In this equation, 𝑓𝑟 represents rotor speed in revolutions per second, 𝑁𝐵 is the number

of rolling elements (i.e., balls), and 𝜑 is the contact angle of the load from the radial

plane (zero for ball bearings). On the other hand, Ball Pass Frequency Inner (BPFI)

corresponds to the number of balls that pass through a given point of the inner race

each time the shaft makes a complete turn, and BPFI can be calculated as:

𝐵𝑃𝐹𝐼 =
𝑁𝐵. f𝑟

2
 (1 +

𝐵𝐷

𝑃𝐷
cos 𝜑)

Equation 2. Ball Pass Frequency Inner (BPFI).

Ball Spin Frequency (BSF) is the number of turns that a bearing ball makes during a

full rotation of the shaft, and it is expressed as:

𝐵𝑆𝐹 =
PD

2BD
 𝑓𝑟 (1 − (

𝐵𝐷

𝑃𝐷
cos 𝜑)

2

)

Equation 3. Ball Spin Frequency (BSF).

Finally, Fundamental Train Frequency (FTF) is the number of turns a bearing cage

makes during a full rotation of the shaft, and it is given by the following equation:

𝐹𝑇𝐹 =
1

2
𝑓𝑟 (1 −

𝐵𝐷

𝑃𝐷
cos 𝜑)

Equation 4. Fundamental Train Frequency (FTF).

10

2.3. Sensor Selection

Accelerometer sensors are perhaps the only sensors that can monitor the

condition of a REB for all fault stages. They are usually recommended as they have

the following advantages. First, by integration of acceleration signal, velocity

information can be obtained for the evaluation of fault stages 3 and 4. For the earliest

indication of a bearing fault, it is recommended to use an accelerometer sensor that has

a high frequency range. A lubrication problem in the early stages, i.e., stage 1 and 2,

often results in a bearing failure in the long run, and a wideband accelerometer may

provide early signs of this problem avoiding further deterioration and maintenance

costs. Velocity information can also be used to detect and correct problems such as

misalignment and unbalance that may cause a bearing failure. Although the installation

of accelerometers is relatively easy, their performance (e.g., frequency response) may

degrade depending on the mounting location and installation techniques.

Current sensors may also be utilized to diagnose bearing faults. However, they

are often useful for stage 3 and 4 bearing defects, because the rotor and stator

relationship is highly affected by the progressive bearing failure in these stages. Hence,

current sensors are less sensitive than accelerometers for early stages of bearing

failures.

When a bearing protection is needed, temperature measurement might be

considered. Resistive Temperature Devices (RTDs) and thermocouples are often used

for bearing temperature monitoring. Temperature increase on the bearing could be

detected when the bearing fault has reached to stage 4. However, different aspects such

as the ambient temperature and air flow can affect the temperature readings, thus they

should be considered when assessing the condition of the bearings. Temperature

sensors are usually cheaper and physically smaller than vibration transducers, and they

require much less power. Rolling element bearing P-F curve indicating the earliest

fault detection point for different sensors is illustrated in Figure 4.

11

Figure 4. REB P-F curve indicating the earliest fault detection point for different

sensors.

12

CHAPTER 3: DEEP LEARNING BASED APPROACHES FOR

BEARING FAULT DIAGNOSIS

3.1. Autoencoders

As a specific type of feedforward neural networks, an autoencoder is

commonly utilized as unsupervised learning mechanism that aims to transform its

inputs to outputs with minimum distortion. Autoencoders can be encountered in

numerous applications such as dimensionality reduction, feature extraction, image

compression, denoising and generation. They were first proposed by Hinton and the

PDP group (Rumelhart, Hinton and Williams, 2013), and employed to solve the

problem of backpropagation without ground truth labels by using the input data as

labels. In recent years, researchers have been using auto-encoders as an unsupervised

feature extraction method and as a greedy layer-wise neural network pre-training

method to avoid vanishing gradients in layers close to the input and allow very deep

neural networks achieve improved performance.

Figure 5. Autoencoder architecture.

13

As illustrated in Figure 5, the autoencoder topology contains two main parts:

encoder and decoder. They are both fully-connected feedforward neural networks. The

encoder network can be represented by an encoding function 𝑝𝜃. From the training

dataset {𝒙𝑚}𝑚=1
𝑀 , each signal 𝒙𝑚 is encoded to get a code representation as:

𝒉𝑚 = 𝑝𝜃(𝒙𝑚)

Equation 5. Autoencoder encoding function.

where 𝒉𝑚 is the encoded vector in the hidden layer obtained using 𝒙𝑚.

Then, the decoding function 𝑞𝜃′ maps the code 𝒉𝑚 from lower dimensional space back

into higher dimensional space to produce reconstructed output vector �̃�𝑚 as given in

Equation 6.

�̃�𝑚 = 𝑞𝜃′(𝒉𝑚)

Equation 6. Autoencoder decoding function.

The parameters are learned to reconstruct the input as original output with a minimum

loss 𝐿(𝒙, �̃�) (usually mean-squared-error) for the 𝑀 training examples. Affine

mappings are often used for both the encoder and decoder parts, and they are followed

by nonlinear activation functions as given in equations 7 and 8.

𝑝𝜃(𝒙) = 𝑓(𝑾𝒙 + 𝒃)

Equation 7. Autoencoder encoder mapping.

𝑞𝜃′(𝒙) = 𝑔(𝑾𝑻𝒙 + 𝒄)

Equation 8. Autoencoder decoder mapping.

14

where 𝑓 and 𝑔 are the encoder and decoder activation functions, respectively.

Therefore, weight matrices 𝑾 and 𝑾𝑻, and the bias vectors 𝒃 and 𝒄 are the learned

parameters for an autoencoder architecture.

In Figure 5, an autoencoder with one hidden layer is given. This hidden layer

defines a code representing the corresponding input, and this code is further fed into

the decoder. The size of the hidden layer, i.e., code size, is a hyperparameter which we

can decide before training the autoencoder. For the training, the network usually takes

the mean-squared-error of the output and the original input to generate an output

similar to the input. Once the network is trained, the encoder is kept but the decoder

part is removed. Therefore, the encoder's output contains a sparse (feature)

representation of the input which may be used in subsequent classifiers.

Many studies utilizing autoencoders for bearing diagnosis have been published

in the literature. One of the first studies was stacked autoencoders by Jia et al. (2016).

In this work, the input to the stacked autoencoder model was the frequency spectra of

the raw vibration signal. This stacked autoencoder based DNN was pre-trained layer

by layer sequentially in an unsupervised way, and the output layer of the network was

used for classification. In this study, the sub-datasets A (1 hp), B (2 hp), C (3 hp) and

D (1-3 hp) of CWRU bearing data was used to assess the performance of this model,

and the number of classes is 10, which includes the severity and location of the bearing

fault. This method achieved a high testing accuracy above 99% in all sub-datasets.

 Lu et al. (2015) also used a DNN architecture formed by stacked autoencoders.

First, they trained an autoencoder with the input set, and obtained the corresponding

feature vector. Then, the output layer of the first autoencoder was removed and the

feature vector was used as input set for the next autoencoder. By iteratively executing

these steps, a DNN structure could be formed. This work used the CWRU bearing data

with 3 bearing fault locations (IR, OR and BF) and 2 fault sizes (0.007 and 0.014

inches) under no load condition (0 hp), thus the number of classes was 6. The input

vibration data was preprocessed in this work. First, the data was segmented into 600

time-domain samples with an overlap of 80%. Then, by taking the Fast Fourier

15

Transform (FFT) of the input signal, its amplitude of spectrum was obtained. Since the

amplitude of frequency was too small, they multiplied the coefficients by 10. Once the

feature vectors of the DNN was obtained, PCA method was implemented to reduce

the dimension of the data for visualization.

Some other studies that utilize autoencoders for bearing fault diagnosis on

CWRU dataset were conducted by Lu et al. (2017), (Guo, Chen and Shen, 2016), and

(Zhang et al., 2019), and the researches by (Shao et al., 2017) and (Wang et al., 2018)

are some examples that uses autoencoders on different datasets.

3.2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first introduced by

(Goodfellow et al., 2014), and they have gained tremendous interest in deep learning.

In an adversarial learning process, a generative model G captures the data distribution,

whereas a discriminative model D is used to estimate the probability that a sample

came from the training data rather than G. GANs are composed of two neural

networks, i.e., discriminator D and generator G, as shown in Figure 6. With the value

function given in Equation 9, this topology is equivalent to a two-player minimax

game.

𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]

Equation 9. Minimax value function for GANs.

In this equation, 𝐷(𝑥) is the discriminator's probability estimation of real data instance

x being real, 𝐺(𝑧) is the generator's output when noise z is given as input, 𝐷(𝐺(𝑧)) is

the discriminator's estimate of the probability that a fake instance is real, and 𝐸 means

the expected value. The equation comes from the cross-entropy between the generated

and real distributions. The generator does not have a direct effect on the log 𝐷(𝑥) term

in the value function, thus minimizing the loss is the same as minimizing

log(1 − 𝐷(𝐺(𝑧))) for the generator.

16

In a GAN architecture, the generator takes in random noise and gradually

learns to output fake data by leveraging feedback from the discriminator throughout

this two-player minimax game. Generator’s aim is to make the discriminator classify

its output as real. The discriminator, on the other hand, is a simple classifier that aims

to discriminate real data from the data created by the generator. Depending on the type

of data its classifying, any network architecture can be used in the discriminator part.

The discriminator's training data is made up of real data instances and fake data

instances created by the generator as shown in Figure 6. The discriminator uses real

data instances as positive examples, and fake data instances as negative examples

during training. Consequently, in a GAN training process, the generator tries to reach

real data distribution, and the training eventually reaches Nash equilibrium, where the

discriminator has a 50% accuracy.

Figure 6. Architecture of GANs.

Many studies in the literature have used GANs to diagnose bearing faults. They

are especially useful when we want to train a model on a source dataset and then test

it on a target data which has different distribution. Domain adaptation is required to

reduce dataset bias and improve generalization capability of a deep learning model.

17

 (Cheng et al., 2020) proposed a Wasserstein Distance-based Deep Transfer

Learning (WD-DTL) network. With an adversarial training process, WD-DTL seeks

domain-invariant features by a CNN and minimize the distribution between source and

target domain. They implemented Wasserstein-1 distance between two different

feature distributions through adversarial training by employing a domain alignment

critic. In this study, the authors used 4 different kinds of bearing health condition

(healthy, outer-race, inner-race, and ball fault) from CWRU dataset. As a pre-

processing step, power spectrum of input signal was computed, and the left side was

clipped. Three different scenarios were considered. In the first case, the authors tried

to transfer knowledge between different motor loading conditions and obtained

95.75% average accuracy across all load domains. In the second scenario, they

attempted unsupervised domain adaptation between two sensor locations (fan-end and

drive-end) and achieved 64.20% average accuracy. In the last scenario, the same

setting was used as in the previous one, but 0.5% of labeled data from target domain

was introduced to the source data to enhance the performance (average accuracy of

64.92%).

 (Zhou et al., 2020) utilized DNN's feature extraction capabilities and GAN's

data generating capabilities to address dataset imbalances. The bearing fault diagnosis

approach in this study is built upon global optimization GAN. The generator was

designed such that it generates features for unbalanced class samples using some

labeled fault samples by an autoencoder. The training process of the generator was

guided by fault feature and fault diagnosis error, and the discriminator was designed

to filter unqualified generated samples from the qualified ones for more accurate fault

diagnosis. For data imbalance ratio of 10:1, the diagnosis accuracy was 94.58%,

96.85%, and 93.28% for inner-race, ball and outer-race fault, respectively.

Some other studies utilizing GANs for bearing fault diagnosis on CWRU

dataset were conducted by (Jiang et al., 2019), (Zhao, Liu and Meng, 2019), and (Mao

et al., 2019), and the studies by (Li et al., 2019) and (Gao et al., 2019) are some

examples that use GANs on different dataset.

18

3.3. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a kind of ANN that allows previous

outputs to be processed as inputs while having hidden states. RNNs contain a built-in

feedback loop, which allows them to remember current and past information when

arriving at a decision. RNNs are often preferred when data is sequential, and the next

data depends on the previous data point. Therefore, they are often used in text, speech

recognition and natural language processing applications. Typical RNN architecture is

shown in Figure 7. For each timestep 𝑡, the activation 𝑎〈𝑡〉 and the output 𝑦〈𝑡〉 are

expressed as given in Equation 10 and Equation 11.

𝑎〈𝑡〉 = 𝑔1(𝑊𝑎𝑎𝑎〈𝑡−1〉 + 𝑊𝑎𝑥𝑥〈𝑡〉 + 𝑏𝑎)

Equation 10. The activation for an RNN.

𝑦〈𝑡〉 = 𝑔2(𝑊𝑦𝑎𝑎〈𝑡〉 + 𝑏𝑦)

Equation 11. The output for an RNN.

where 𝑔1, 𝑔2 represent the activation functions and 𝑊𝑎𝑎, 𝑊𝑎𝑥 , 𝑊𝑦𝑎, 𝑏𝑎, 𝑏𝑦 are

coefficients shared temporally.

19

Figure 7. Architecture of a typical RNN.

In an RNN, the exploding or vanishing gradients problem is often encountered.

Due to the multiplicative gradient, which might be exponentially increasing or

decreasing with the number of layers, it is difficult to capture long-term dependencies.

For that reason, even though they were first introduced in 1980s, they had limited

applications. In order to cope with the exploding gradient problem, gradient clipping

is often performed by limiting the maximum value of the gradient. On the other hand,

to solve the vanishing gradient problem encountered by traditional RNNs, Gated

Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM) were introduced.

As a generalization of GRU, LSTM architecture is extended by adding specific gates

especially forget gate. An LSTM can then forget and remember patterns selectively

for a long duration of time. In Figure 8, the internal structure of an LSTM cell is shown.

In this figure, Γu, Γr , Γf , and Γo are used for the update gate, relevance gate, forget

gate and output gate, respectively. Each gate could be described by the Equation 12.

Γ = σ(𝑊𝑥〈𝑡〉 + 𝑈𝑎〈𝑡−1〉 + 𝑏)

Equation 12. The general gate equation in an LSTM.

20

In the Equation 12, σ is the sigmoid function, and 𝑊, 𝑈 and 𝑏 are the coefficients

specific to the gate. Then, the characterizing equations of an LSTM architecture are

summarized in the following equations as:

�̃�〈𝑡〉 = tanh(𝑊𝑐[𝛤𝑟 ∗ 𝑎〈𝑡−1〉, 𝑥〈𝑡〉] + 𝑏𝑐)

Equation 13. Cell update equation in an LSTM.

𝑐〈𝑡〉 = 𝛤𝑢 ∗ �̃�〈𝑡〉 + 𝛤𝑓 ∗ 𝑐〈𝑡−1〉

Equation 14. Cell state equation in an LSTM.

𝑎〈𝑡〉 = 𝛤𝑜 ∗ 𝑐〈𝑡〉

Equation 15. Output equation in an LSTM.

In these equations, the element-wise multiplication between two vectors is denoted by

∗ sign.

Figure 8. Internal structure of an LSTM cell.

21

Pan et al. (2018) proposed a BFDD method based on the combination of 1D

CNN and LSTM architectures. The input to the model was the raw data. The

architecture was formed by a 1D convolutional, and a pooling layer followed by an

LSTM layer, and a SoftMax at the output of this classifier. The model was evaluated

for a single loading condition, and the average accuracy rate was over 99%.

 Liu et al. (2018) proposed an RNN in the form of an autoencoder for BFDD.

Using a Gated Recurrent Unit (GRU)-based denoising autoencoder, this approach

attempts to predict multiple vibration values of the bearings for the upcoming period

from the previous one. This GRU-based denoising autoencoders were trained for each

fault class. Then, for an input, the reconstruction error between the output data from

the network and the next period data were utilized to spot an anomaly and classify

bearing defects. The diagnosis accuracy of this method was higher than 96% even for

1 dB SNR. (Jiang et al., 2018) and (Zhuang et al., 2019) also use RNN and LSTM for

BFDD problem on CWRU dataset.

3.4. Convolutional Neural Networks

Inspired by the mammalian visual system, a Convolutional Neural Network

(CNN) that can be trained using backpropagation was first proposed by (LeCun et al.,

1989) as a space invariant artificial neural network built upon the shared-weight

architecture of the convolution kernels. CNNs gained immense popularity when they

exhibited superior performance compared to other models at ILSVRC (ImageNet

Large Scale Visual Recognition Challenge). They are feedforward neural networks

and have the following four layers: input, convolutional, pooling and fully-connected

layers. An example input may be an image for a 2D CNN or raw vibration data for a

1D CNN. Convolutional layers of a CNN are used to extract discriminative features

using a collection of convolution kernels. Two properties “weight sharing” and

“limited connectivity” of convolutional layers separate CNNs from the conventional

MLPs. After sliding the input features through the convolutional kernels, pooling

layers could then be employed to decrease the size of feature maps, resulting in reduced

number of parameters and computation in the network. Final layers of CNNs are fully-

22

connected MLPs, and they are used for the purpose of classifying extracted features.

In the following section, the most popular 2D CNNs and the recent compact and

adaptive 1D CNN architecture will be discussed in detail. However, this section will

mainly focus on adaptive 1D CNNs since they provide various advantages and

superiorities over 2D CNNs, especially for 1D data.

3.4.1. 2D Convolutional Neural Networks

In contrast to traditional MLPs which have scalar weights, input, and output,

in 2D CNNs, each neuron has 2D planes for weights called kernels, as well as 2D input

and output called feature maps. A sample 2D CNN configuration is illustrated in

Figure 9. A 28 × 28-pixel single channel image is inputted to this network and the

image is classified into two categories at the output. The network is composed of 2

convolutional and pooling layers with 4 and 8 neurons, respectively. In this sample 2D

CNN configuration, the first convolutional layer has 4 filters with the kernel size of

(Kx=8, Ky=8), while 8 filters having a kernel size of (Kx=4, Ky=4) are used in the

second convolution layer. In the convolutional layers, with convolution stride size of

1 and no padding, the width and height of the input feature map will be reduced by

(Kx-1, Ky-1) pixels, respectively. The feature map size will further be reduced by the

amount of subsampling factors which are chosen as (Sx=3, Sy=3) for the first pooling

layer and (Sx=4, Sy=4) for the second pooling layer. A dense layer with four neurons

follows the last pooling layer. The output layer generates classification output, and the

number of neurons is equal to the number of classes.

 Forward propagation through this sample 2D CNN occurs in the following

order. Firstly, A 28 × 28-pixel single channel image is inputted to this network. The

input feature map of each neuron of the first convolutional layer is then produced by

performing a linear convolution operation between this image and the associated filter.

23

Figure 9. An example of 2D CNN configuration.

Once the convolution operation is performed, the input feature map of each

convolutional neuron is passed through the activation function to produce the output

feature map. This output feature map is now decimated by 3 × 3 kernel creating 7 × 7

feature maps as a result of the first pooling layer. The same steps are repeated for the

second convolution and pooling layers as the first one, and the second pooling layer's

scalar outputs are finally inputted and forward propagated through the fully-connected

and output layers to generate the final output that shows the classification result of the

input image.

The backpropagation (BP) algorithm is generally used in a CNN training

process. The gradient magnitude of each network parameter (e.g., the weights of the

convolutional and dense layers) is computed in each iteration of BP. Then, again in

each iteration, these gradient magnitudes are used to update network parameters.

Various gradient-descent optimization algorithms such as Adam (Kingma, 2015),

Stochastic Gradient Descent (SGD) and SGD with momentum (Qian, 1999) are

implemented in BP. (Kiranyaz, Ince and Gabbouj, 2016) provides a full explanation

of BP algorithm for 2D CNNs.

 (Guo, Chen and Shen, 2016) developed a novel hierarchical learning rate

adaptive deep CNN (ADCNN) to diagnose bearing faults and predict their severity. In

this paper, an adaptive learning rate and a momentum component was added to CNN

24

architecture to avoid training failure. The first layer of this ADCNN model was based

on the classical LeNet5 model. The number of classes is four and includes the bearing

health conditions healthy, outer-race, inner-race, and ball fault from CWRU dataset.

The mean validation accuracy was 97.9% for 10-fold cross validation. The fault size

was evaluated in the second layer of ADCNN. In each fault class, the bearing fault

severity classification accuracy was above 99%.

Xia et al. (2018) suggested a CNN-based bearing fault diagnosis approach that

incorporates sensor fusion. 1D raw data from multiple sensors were layered row by

row to construct a 2D matrix at the input of the proposed 2D CNN. The model was

evaluated on CWRU bearing data. The 2D matrix at the input of this model was formed

using the vibration signals from fand-end, drive-end, and base of the motor. These

waveforms are stacked to form a 2D matrix. The average accuracy of 99.41% was

achieved with multiple sensors, but the accuracy dropped to 98.35% when a single

accelerometer was used.

There are many studies utilizing CNNs for BFDD on the CWRU bearing

dataset, and some of them are (Zhang et al., 2020), (Hoang and Kang, 2019), and

(Zhang, Peng and Li, 2017).

3.4.2. Adaptive 1D Convolutional Neural Networks

2D CNNs are very useful for two-dimensional data, but a modified form of 2D

CNNs called 1D Convolutional Neural Networks (1D CNNs) can rather be used for

one-dimensional data. In the literature, 1D CNNs have been shown to outperform 2D

CNNs in some applications that have limited labeled data with high variations

(Kiranyaz et al., 2021). Training and inference duration can be significantly reduced

using 1D CNNs with shallow architectures due to their low computational

requirement. Therefore, they are ideal for real-time and low-cost applications.

25

Figure 10. The illustration of a sample 1D CNN configuration (Source: Kiranyaz et

al., 2021).

As demonstrated in Figure 10, 1D CNNs are made up of two unique layer

types: 1D convolutional layers and dense layers. 1D convolutions, activation function

and sub-sampling (pooling) operations take place in the CNN layers. The dense layers

are also known as MLP layers since they are the same as the layers of a simple Multi-

layer Perceptron (MLP). Moreover, the input layer is just a passive layer that accepts

raw one-dimensional data, and the output layer has the same number of neurons as the

number of classes.

The convolutional layers of a 1D CNN learn to extract discriminative features

by processing raw 1D input, and these features are then used in the dense layers for

classification. As a result, both feature extraction and classification tasks are combined

in a 1D CNN to optimize classification performance. Some hyperparameters to tune

are the number of hidden CNN and MLP layers and neurons, filter (kernel) size and

subsampling factor in each convolutional layer, and the choice of pooling and

activation functions. For the sample 1D CNN configuration given in Figure 10, there

are three hidden convolutional and two hidden dense layers, subsampling factor is 4,

and the filter size is 41 in all hidden convolutional layers.

26

Figure 11. Three successive convolutional layers of a 1D CNN (Source: Kiranyaz, Ince

and Gabbouj, 2016).

In place of the 2D matrices used in 2D CNNs for kernels and feature maps, 1D

arrays are formed at each neuron’s input and output in the successive CNN layers as a

consequence of 1D convolution and subsampling. Hence, 2D matrix operations such

as 2D convolution (conv2D) and lateral rotation (rot180) are now replaced by their 1D

counterparts, conv1D and reverse, in the forward and back-propagation phases of 1D

CNN architecture (Kiranyaz et al., 2021). Therefore, the only operation with a

significant computational cost is a sequence of 1D convolutions, i.e., linear weighted

sums of two 1D arrays, and these operations during the forward and back-propagation

could effectively be executed in parallel (Kiranyaz et al., 2021). Figure 11 depicts three

successive convolutional layers of a 1D CNN. A sequence of 1D convolutions with

1D filter kernels of size 3 are first performed at the kth neuron in the hidden CNN layer

l. Then, the sum is passed through the activation function f, whose output is

subsampled by the subsampling factor 2. The subsampling factor of the output

convolutional layer could be adjusted to adapt the changes in the input layer

dimension, resulting in an adaptive implementation.

27

In a 1D CNN topology, following the step-by-step explanations in the reference

article (Kiranyaz, Ince and Gabbouj, 2016), we may first write the 1D forward

propagation from the previous convolution layer l−1 to the input of kth neuron in the

current layer l as,

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

Equation 16. 1D convolution in a CNN layer.

where 𝑥𝑘
𝑙 represents the input, 𝑏𝑘

𝑙 is a scalar bias of the kth neuron at layer l, and 𝑠𝑖
𝑙−1

is the output of the ith neuron at layer l−1. 𝑤𝑖𝑘
𝑙−1 is the kernel from the the ith neuron

at layer l−1 to the kth neuron at layer l. Then, the intermediate output of the

neuron, 𝑦𝑘
𝑙 , can be written as follows:

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙) 𝑎𝑛𝑑 𝑠𝑘
𝑙 = 𝑦𝑘

𝑙 ↓ 𝑠𝑠

Equation 17. Output of the activation function and subsampling in a CNN layer.

where 𝑠𝑘
𝑙 and “↓ss” represent the output of the kth neuron of the layer l, and the

subsampling operation with the factor ss respectively. In this equation, 𝑓 is the

activation function.

 The backpropagation (BP) steps could be briefly summarized as follows. We

start backpropagating the error from the output MLP layer. If l=1 for the input layer,

l=L for the output layer, and 𝑁𝐿 for the number of classes in the dataset are used, then

the mean-squared error (MSE), 𝐸𝑃, in the output layer for the input vector p, its

corresponding target 𝒕𝑝, and output vector [𝑦1
𝐿,….𝑦𝑁𝐿

𝐿] can be expressed as follows:

28

𝐸𝑃 = 𝑀𝑆𝐸 (𝒕𝑝, [𝑦1
𝐿 , … . 𝑦𝑁𝐿

𝐿]
′
) = ∑(𝑦𝑖

𝐿 − 𝑡𝑖
𝑝)2

𝑁𝐿

𝑖=1

Equation 18. Mean-squared error at the output layer of a 1D CNN

To apply the gradient descent method, this error should be minimized using the

derivatives of the error with respect to each weight (𝑊𝑖𝑘
𝑙−1) and bias (𝑏𝑘

𝑙) connected to

the corresponding neuron (i.e., kth neuron). We now need to compute the derivative

of the error. All the delta errors can be calculated by backpropagating the error through

the MLP layers and once we have them, we can update the weights and bias of each

neuron by gradient descent method using the Equation 19. Therefore, the delta error

of the kth neuron at layer l (Δ𝑘
𝑙 =

𝜕𝐸

𝜕𝑥𝑘
𝑙) is used to update the bias of that neuron and all

the weights of the neurons in the preceding layer connected to that neuron using the

chain rule as,

𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙−1 = Δ𝑘

𝑙 𝑦𝑖
𝑙−1 𝑎𝑛𝑑

𝜕𝐸

𝜕𝑏𝑘
𝑙 = Δ𝑘

𝑙

Equation 19. Weight and bias sensitivities in the MLP layers of a 1D CNN.

Then, the regular (scalar) BP can be performed from the first MLP layer to the last

CNN layer as,

𝜕𝐸

𝜕𝑠𝑘
𝑙 = Δs𝑘

𝑙 = ∑
𝜕𝐸

𝜕𝑥𝑖
𝑙+1

𝑁𝑙+1

𝑖=1

𝜕𝑥𝑖
𝑙+1

𝜕𝑠𝑘
𝑙 = ∑ Δ𝑖

𝑙+1

𝑁𝑙+1

𝑖=1

𝑤𝑘𝑖
𝑙

Equation 20. BP from the first MLP layer to the last CNN layer in a 1D CNN.

29

When the first BP is initiated from the next layer l+1, to the current layer l, we can

carry on the BP to the input delta, Δ𝑘
𝑙 , of the CNN layer l. If the zero order up-sampled

map is given as, us𝑘
𝑙 = up(s𝑘

𝑙), then we can compute the delta error as,

Δ𝑘
𝑙 =

𝜕𝐸

𝜕𝑦𝑘
𝑙

𝜕𝑦𝑘
𝑙

𝜕𝑥𝑘
𝑙 =

𝜕𝐸

𝜕𝑢𝑠𝑘
𝑙

𝜕𝑢𝑠𝑘
𝑙

𝜕𝑦𝑘
𝑙 𝑓′(𝑥𝑘

𝑙) = 𝑢𝑝(Δs𝑘
𝑙)𝛽𝑓(𝑥𝑘

𝑙)

Equation 21. The input delta, 𝛥𝑘
𝑙 , of the CNN layer l in a 1D CNN.

where 𝛽 = (𝑠𝑠)−1, as each element of 𝑠𝑘
𝑙 was obtained by averaging l number of

elements of the intermediate output, y𝑘
𝑙 . The inter-BP (among CNN layers) of the delta

error can now be written as,

Δs𝑘
𝑙 = ∑ 𝑐𝑜𝑛𝑣1𝐷𝑧(Δ𝑖

𝑙+1, 𝑟𝑒𝑣(𝑤𝑘𝑖
𝑙))

𝑁𝑙+1

𝑖=1

Equation 22. The inter-BP (among CNN layers) of the delta error in a 1D CNN.

where rev(.) reverses the array and conv1Dz(.,.) is used to perform full 1D convolution

with K–1 zero padding.

The weight and bias gradient magnitudes are then computed from the following

equation as,

𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙 = 𝑐𝑜𝑛𝑣1𝐷(𝑠𝑘

𝑙 , Δ𝑖
𝑙+1) 𝑎𝑛𝑑

𝜕𝐸

𝜕𝑏𝑘
𝑙 = ∑ Δ𝑘

𝑙 (𝑛)

𝑛

Equation 23. The weight and bias sensitivities of hidden convolutional layers in a 1D

CNN.

30

Finally, after the weight and bias gradient magnitudes are calculated, they will be used

to update weights and biases using the learning factor, 𝜀 as,

𝑤𝑖𝑘
𝑙−1(𝑡 + 1) = 𝑤𝑖𝑘

𝑙−1(𝑡) − ε
𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙−1 𝑎𝑛𝑑 𝑏𝑘

𝑙 (𝑡 + 1) = 𝑏𝑘
𝑙 (𝑡) − ε

𝜕𝐸

𝜕𝑏𝑘
𝑙

Equation 24. Weight and bias update equations in a 1D CNN.

To get an in-depth knowledge of how BP algorithm works in a 1D CNN, one can refer

to the paper by (Kiranyaz, Ince and Gabbouj, 2016). The iterative nature of BP used

to train the 1D CNN classifier can be summarized as follows (Kiranyaz et al., 2021):

1) Initialize the weights and biases of the network randomly.

2) For each BP iteration DO:

a. For each training sample in the dataset, DO:

i. FP: Feed the training sample to the input layer and forward propagate

towards the output layer to find outputs of each neuron at each layer,

𝑠𝑖
𝑙, ∀𝑖 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿].

ii. BP: Compute the delta error at the output layer and carry on back-

propagating it to first hidden layer to compute the input delta errors, Δ𝑘
𝑙 ,

∀𝑘 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿].

iii. PP: Post-process to compute the weight and bias sensitivities using

the Equation 23.

iv. Update: Update both the weights and biases of the network

incrementally by the Gradient Descent update rule using the Equation

24.

 (Eren, Ince and Kiranyaz, 2019) proposed a generic BFDD method based on

adaptive 1D CNNs. The adaptive 1D CNN classifiers were evaluated on two

benchmark datasets: Case Western Reserve University (CWRU) and Intelligent

Maintenance System (IMS) bearing data. The raw vibration data were preprocessed to

31

use more compact model. Preprocessing involves down sampling and normalization

stages. A 1D CNN model with 3 convolutional and 2 dense layers were used. The

number of classes was five, and they are inner-race fault, ball fault, and three kinds of

outer-race faults (located at 3 o’clock, 6 o’clock which is orthogonal to the load zone

and 12 o’clock). In this paper, 10-fold cross-validation was implemented and the

overall diagnosis accuracy of 93.2% was obtained on CWRU data with these settings.

3.5. Self-Organized Operational Neural Networks

 Conventional CNN architecture is built upon the classical linear neuron model

like MLPs, but it also introduces two additional constraints: weight sharing and kernel-

wise limited connections. Therefore, these constraints introduced the convolution

equation (Equation 16) utilized in CNNs. Several studies have recently showed that

CNNs that are based on the first-order linear neuron model may not achieve a sufficient

degree of learning if a sufficient network depth is not ensured (Kiranyaz et al., 2021).

To achieve a high heterogeneity level, Self-Organized Operational Neural Networks

(Self-ONNs) have been proposed by (Kiranyaz et al., 2021). Self-ONNs with minimal

network complexity have been proven to maximize the learning performance when the

training data is scarce, and some examples of the superior regression capability of Self-

ONNs over image denoising, restoration and segmentation can be found in the

following study (Kiranyaz et al., 2021). In this thesis, 1D Self-ONNs with generative

neurons are also used for bearing fault severity classification on the mentioned

benchmark datasets. The rest of this section briefly discusses 1D Self-ONNs and

compare it to the 1D ONNs and CNNs. One can generalize the concepts for 2D Self-

ONNs easily, and the further details can be found in the paper published by (Kiranyaz

et al., 2021).

 Firstly, we can again think of 1D ‘same’ convolution operation with unit stride

and the required amount of zero padding. In a 1D CNN, the output of kth neuron in the

layer l can then be written as follows:

32

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 + ∑ 𝑥𝑖𝑘
𝑙

𝑁𝑙−1

𝑖=0

Equation 25. The output of kth neuron of the layer l in a 1D CNN.

where 𝑏𝑘
𝑙 is the bias of the corresponding neuron, and 𝑥𝑖𝑘

𝑙 is given as,

𝑥𝑖𝑘
𝑙 = 𝐶𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘, 𝑦𝑖

𝑙−1) 𝑎𝑛𝑑 𝑥𝑖𝑘
𝑙 (𝑚) = ∑ 𝑤𝑖𝑘

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)

𝐾−1

𝑟=0

Equation 26. 1D convolution operation in CNN layers of a 1D CNN.

In Equation 26, 𝑤𝑖𝑘 ∈ ℝ𝐾 is the kernel connecting the ith neuron of (l-1)th layer to

kth neuron of lth layer, while 𝑥𝑖𝑘
𝑙 ∈ ℝ𝑀 is the input map, and 𝑦𝑖

𝑙−1 ∈ ℝ𝑀 is the (l-

1)th layer’s ith neuron’s output.

The equation above can be generalized for an operational neuron as follows:

𝑥𝑖𝑘
𝑙̅̅ ̅̅ (𝑚) = 𝑃𝑘

𝑙 (𝜓𝑘
𝑙 (𝑤𝑖𝑘

𝑙 (𝑟), 𝑦𝑖
𝑙−1(𝑚 + 𝑟)))

𝑟=0

𝐾−1

Equation 27. The output of generalized operational neuron.

where 𝜓𝑙
𝑘(∙): ℝ𝑀×𝐾 → ℝ𝑀×𝐾 and 𝑃𝑘

𝑙 (∙): ℝ𝐾 → ℝ1 are called nodal and pool

operators, respectively, assigned to the kth neuron of lth layer.

 An optimal set of nodal 𝜓 and pool 𝑃 operators in a heterogenous ONN

configuration could be searched iteratively from a potential set of operators using the

Greedy Iterative Search (GIS) algorithm. Then, these operators are assigned

to all neurons of the corresponding hidden layer to configure the final ONN. However,

there are several drawbacks of conventional ONN architecture proposed in the

33

literature (Kiranyaz et al., 2020). The first issue is caused by the use of a single operator

set for all neurons in a hidden layer, which limits heterogeneity. Secondly, hand-

crafting a collection of possible operators and looking for the best one for each neuron

result in a significant overhead. Finally, for the given learning problem, the right

operator may not be expressed with well-defined functions, so it may not adapt or

customize the operators.

To overcome these drawbacks, Self-ONNs with generative neurons were

proposed. Self-ONNs have the capacity to self-organize network operators during

training without the use of any operator set or a prior search process for optimal

operators. Also, the use of a single nodal operator for all neurons in a hidden layer of

an ONN is eliminated using the generative neuron concept in Self-ONN architecture.

The core idea behind generative neurons is that each neuron may generate any

combination of nodal operators, hence they do not have to be well-known functions

such as linear, exponential and sinusoids. In Figure 12, 1D kernels of CNN, ONN and

Self-ONN with generative neurons are shown. As seen in the figure, while the

convolutional and operational neurons of the CNN and ONN architecture have fixed

(static) nodal operators, Self-ONNs with generative neurons may produce any nodal

operator Ψ for each kernel element during training.

Figure 12. 1D nodal operations of the ith neuron of CNN (left), ONN (middle) and

Self-ONN (right) (Source: Ince et al., 2021).

34

Nodal transformation in Self-ONNs can be formulated using the Taylor series

function approximation. For an infinitely differentiable function 𝑓(𝑥), i.e., derivatives

of all orders exist, Taylor series can be written about the point 𝑎 as,

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛

Equation 28. Taylor series function approximation.

Then, we can take the Qth order approximation of the Equation 28, and write the

Taylor polynomial as:

𝑓(𝑥)(𝑄,𝑎) = ∑
𝑓(𝑛)(𝑎)

𝑛!

𝑄

𝑛=0

𝑥𝑛

Equation 29. Qth order Taylor series approximation.

This equation helps us to approximate any function 𝑓(𝑥) around the point a. During

the BP training, the coefficients
𝑓(𝑛)

𝑛!
 are optimized at each iteration, which is also

equivalent to customizing the nodal operator of each kernel element. As an example,

if the neuron outputs are bounded by tanh activation function ([‐1,1]), we can generate

any transformation (perhaps nonlinear) near a point (midpoint 0) with the Qth order

Maclaurin series. This is the underlying foundation of generative neurons in Self-

ONNs. Nodal transformation of a generative neuron can be more specifically written

in the following general form as,

𝜓𝑘
�̃� (𝑤𝑖𝑘

𝑙(𝑄)(𝑟), 𝑦𝑖
𝑙−1(𝑚 + 𝑟)) = ∑ 𝑤𝑖𝑘

𝑙(𝑄)
(𝑟, 𝑞) (𝑦𝑖

𝑙−1(𝑚 + 𝑟))
𝑞

𝑄

𝑞=1

Equation 30. The general form of nodal transformations in a generative neuron.

35

where Q is the degree of Taylor polynomial and 𝑤𝑖𝑘
𝑙(𝑄)

 is a learnable kernel of the

network. The 𝐾 × 1 kernel vector 𝑤𝑖𝑘
𝑙 in 1D CNN topology has now been replaced by

a 𝐾 × 𝑄 matrix 𝑤𝑖𝑘
𝑙(𝑄)

∈ ℝ𝐾×𝑄 in Self-ONNs, and this matrix is basically formed by

replacing each element 𝑤𝑖𝑘
𝑙 (𝑟) with a Q-dimensional vector 𝑤𝑖𝑘

𝑙(𝑄)
(𝑟) =

[𝑤𝑖𝑘
𝑙(𝑄)

(𝑟, 0), 𝑤𝑖𝑘
𝑙(𝑄)

(𝑟, 1), … , 𝑤𝑖𝑘
𝑙(𝑄)

(𝑄 − 1)] (Ince et al., 2021). Furthermore, it can be

seen from this equation that 𝜓𝑘
�̃� is not a fixed operator for each individual output 𝑦𝑖

𝑙−1,

and it enforces Q times more parameters than the CNN model. Then, the input map of

the generative neuron �̃�𝑖𝑘
𝑙 could be further written as:

𝑥𝑖𝑘
�̃� (𝑚) = 𝑃𝑘

𝑙 (∑ 𝑤𝑖𝑘
𝑙(𝑄)(𝑟, 𝑞) (𝑦𝑖

𝑙−1(𝑚 + 𝑟))
𝑞

𝑄

𝑞=1

)

𝑟=0

𝐾−1

Equation 31. The input map of generative neuron �̃�𝑖𝑘
𝑙 .

 Consequently, Self-ONNs has the following advantages compared to their

counterparts CNNs and ONNs. First of all, there is no need for the search of optimal

operator in each neuron connection from a set of well-defined functions since Self-

ONNs are able to self-organize the network operators with the generative neurons

during training. Secondly, the heterogeneity is not restricted to a single nodal operator

for all kernel connections as in the case of ONNs, thus each neuron will rather be

addressed by the generative neurons. Lastly, along with these advantages, unlike

ONNs, a Self-ONN layer can be parallelized more efficiently (Kiranyaz et al., 2021).

The forward and back-propagation formulation in a Self-ONN neuron can be studied

in detail from (Kiranyaz et al., 2021).

 (Ince et al., 2021) first proposed 1D Self-ONNs for bearing fault severity

classification. The 1D Self-ONN model having three operational and two dense layers

was evaluated on NASA/IMS bearing data. Both x and y-axis acceleration waveforms

were inputted to the model for inner-race and ball fault severity classification. For

inner-race fault severity classification, Self-ONNs had around 3-8% F1 gains over the

36

1D CNN with the same configuration in all metrics. On the other hand, for ball faults,

Self-ONNs had slightly lower F1 performance gains (2-4%) over the CNN.

37

CHAPTER 4: 1D CNN AND SELF-ONN PERFORMANCE

RESULTS ON BENCHMARK DATASETS

4.1. Datasets

The performance of machine learning models largely relies on the quality and

quantity of data used to train the model; thus, a good collection of data is required. For

BFDD problem, data can be collected from electric motors with artificially induced

bearing faults or run-to-failure tests can be performed to simulate the natural

degradation of bearings. Different parameters such as stator current and motor

vibration may also be used for BFDD, but in this thesis, the focus is on motor vibration

since the early signs appear in the vibration data. There are several public bearing fault

datasets such as CWRU, NASA/IMS, Paderborn University, FEMTO, MFPT and

University of Ottawa's bearing variable speed data, and they allow us to evaluate

machine learning algorithms for the BFDD problem. In this thesis, CWRU and

University of Ottawa's bearing variable speed dataset (both utilizing motor vibration),

are used to evaluate 1D CNN and Self-ONNs models with raw vibration data.

4.1.1. CWRU Dataset

Case Western Reserve University (CWRU) bearing data is an open-source

dataset that can be easily accessed from the web page of CWRU bearing data center

(CWRU, 2004). The website presents accelerometer data collected from a 2-hp electric

motor for healthy and faulty ball bearings. Figure 13 depicts the CWRU motor test

bench with a 2-hp electric motor (left), a torque transducer/encoder (center), and a

dynamometer (right). Torque is delivered to the rotating shaft by a dynamometer.

Electro-discharge machining (EDM) was used to induce defects into the

bearings. To simulate different bearing fault severity levels, faults are generated at the

outer raceway, ball and inner raceway in different diameters ranging from 0.007 inches

to 0.040 inches. Accelerometer data was gathered using three accelerometers mounted

38

onto the fan-end, drive-end, and the base of motor housing under varied motor loading

conditions (0 to 3 hp) for healthy bearings, and the bearings with single-point fan-end

and drive-end defects. As a result of variable loading, motor speed changed slightly

from 1797 rpm to 1720 rpm.

Figure 13. CWRU dataset motor bearing test platform.

All the data files, i.e. 161 records, were stored in .mat format, and the dataset

was divided into four groups as 12k drive-end bearing fault, 12k fan-end bearing fault,

48k normal-baseline and 48k drive-end bearing fault data. 12k and 48k specifies the

sampling frequency used to record the vibration data. In each group, the data can

further be divided into subclasses according to motor load, fault diameter and the

location of the bearing fault. Furthermore, since outer-race bearing faults are

stationary, the location of the fault relative to the load zone of the bearing has an impact

on the vibration response. To take this effect into account, data was collected for outer

race faults located at 3 o’clock (directly in the load zone), at 6 o’clock (orthogonal to

the load zone), and at 12 o’clock. The data files were named as follows. The first two

letters represent the fault position, the next three numbers give the fault diameter in

inches in the format 0.XXX", and the last digit represents the bearing load. For

example, the data file IR007_0 was collected from a 0.007 inches inner race bearing

39

fault induced motor under no load (0 hp) condition. For outer race faults, @ symbol is

also used to indicate the fault location relative to the load zone.

Table 1 gives an information about the bearings used in drive-end and fan-end

of the electric motor. Using the bearing geometry, the corresponding bearing fault

frequencies were calculated using Equation 1 through 4, and they were shown in Table

2. Number of balls is 9, and 8 for 6205 and 6203 SKF ball bearings, respectively.

Table 1. CWRU dataset fan-end and drive-end bearing information.

Bearing

Type

Inside

Diameter

(mm)

Outside

Diameter

(mm)

Thickness

(mm)

Ball

Diameter

(mm)

Pitch

Diameter

(mm)

6205-2RS

JEM SKF

(Drive-end)

25 52 15 7.94 39.04

6203-2RS

JEM SKF

(Fan-end)

17 40 12 6.75 28.50

Table 2. CWRU dataset fan-end and drive-end bearing fault frequencies.

Bearing

Type

Bearing fault frequencies in Hz

(Multiple of running speed)

BPFI BPFO BSF FTF

6205-2RS

JEM SKF

(Drive-end)

5.42 3.58 4.71 0.40

6203-2RS

JEM SKF

(Fan-end)

4.95 3.05 3.99 0.38

40

4.1.2. University of Ottawa's Variable Speed Bearing Dataset

Since bearings usually operate under variable motor speed conditions, it is

crucial to test the performance of algorithms under time-varying speed conditions.

University of Ottawa's Variable Speed Bearing Dataset made available in Mendeley

data (Huang and Baddour, 2019) and it includes accelerometer data recorded from

motor bearings with various health conditions under variable motor speed. The health

conditions of the bearings are healthy, outer-race defect, inner-race defect, ball defect,

and faulty with combined defects. Therefore, there are five different classes to be

classified in this dataset. Vibration signals are collected for decreasing operating

speed, increasing speed, decreasing then increasing speed and increasing then

decreasing speed conditions.

The experimental setup is shown in Figure 14. The rotational speed of the

motor shaft was adjusted by an AC drive. Two ball bearings were used to support the

shaft. In Figure 14, the bearing on the right is the experimental bearing and the one on

the left is healthy. The experimental bearing was replaced by the bearing with the

mentioned health conditions, and the accelerometer data along with motor shaft speed

were recorded.

There are 60 data files in this dataset. 3 samples were collected for one

experimental setting. Each data file (.mat file) consists of two channels. Channel 1

includes the vibration signal measured using the accelerometer and Channel 2 stores

the rotational speed data measured using the encoder. In each file, the sampling

frequency for both channels is 200 kHz and the sampling duration is 10 seconds.

Figure 15 shows how the dataset is numbered.

The details of the data files numbered in Figure 15 can be found in (Huang and

Baddour, 2019). For example, the data file I-A-2 includes the accelerometer data

gathered from a bearing with an inner-race fault and the operating rotational speed is

increased from 13.0 Hz to 25.7 Hz.

41

Figure 14. Experimental setup for University of Ottawa's Bearing Dataset.

Figure 15. University of Ottawa's bearing dataset numbering.

42

4.2. CWRU Dataset 1D CNN and Self-ONN Results

 12k drive-end bearing fault and normal baseline datasets were used to classify

drive-end bearing fault severity levels. Among the drive-end, fan-end, and base

accelerometer data, for this scenario, drive-end accelerometer data was used. Sample

faulty and healthy motor vibration signals and their amplitude spectrum are shown in

Figure 17 through Figure 22. The 12k drive-end bearing dataset includes four different

bearing health conditions in terms of the location of the fault: normal, outer-race fault,

inner-race fault, and ball fault. Each fault type can be further divided into groups

according to the fault diameters as 0.007 inches, 0.014 inches and 0.021 inches. Thus,

we get a total of 10 classes to be classified as shown in Table 3.

Table 3. 10 different classes in CWRU dataset.

Class

label

0 1 2 3 4 5 6 7 8 9

Fault location

and fault size

(mils)

Normal

0

IR

7

IR

14

IR

21

OR

7

OR

14

OR

21

BF

7

BF

14

BF

21

Since the raw vibration data was collected under different loading conditions,

we can test the performance of our ML models for two different cases. In the first case,

we can both train and test a model under a single loading condition, and as a second

scenario, we can test the performance of a model across different load domains. For

example, one can train a model under no load condition, and test its performance under

the load condition of 1 hp. For this purpose, the whole dataset was grouped into sub-

datasets according to the loading condition of the motor with each dataset having 10

different classes as given in Table 4.

43

Table 4. CWRU sub-datasets according to loading conditions (Number of training /

validation / test samples).

Fault location and

fault size (mils)

Dataset A

(0 hp)

Dataset B

(1 hp)

Dataset C

(2 hp)

Dataset D

(3hp)

Dataset E

(0/1/2/3 hp)

Training

(Number of samples)

3186

3304 3304 3304 13098

Validation

(Number of samples)

1593 1652 1652 1652 6549

Test

(Number of samples)

810 840 840 840 3330

In each dataset, to compare the performance of 1D CNN and Self-ONN

architectures, each data file was divided into 4 equal pieces without any shuffling. The

last piece was used as holdout data for testing purposes. The non-holdout data was

then split into three equal pieces. Two of them were used for training in each fold and

one for validation to apply 3-fold cross-validation as shown in Figure 16.

Figure 16. 3-fold cross validation and holdout (test) data.

44

For each model, the input window size was chosen as 500 time-domain

samples so that the raw vibration includes at least one revolution of the motor shaft.

The training and validation samples were augmented by slicing the raw vibration data

with 50% overlap (250 time-domain samples), and no overlap was used for the testing

samples. After the segmentation and data augmentation process, min-max

normalization was applied on the input data using the Equation 32. Min-max

normalization rescales the data to fall within the range [−1, 1].

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 2 × (
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
) − 1

Equation 32. Min-max normalization for the target range [−1, 1].

As a result, datasets A has now 3,186 training, 1,593 validation and 810 testing

samples, while datasets B, C and D each contains 3,304 training, 1,532 validation and

840 testing samples for ten different bearing health conditions. On the other hand,

dataset E contains all four loads (0/1/2/3 hp) with 13,098 training, 6,549 validation and

3,330 test samples.

3 different BP runs were performed for each fold, and the maximum number

of epochs were chosen as 40. For the corresponding fold, among all BP runs and

epochs, the model with the minimum validation loss was chosen as the best-

performing model, then this model was used for testing. The performance result of this

model on the test dataset was then reported for the corresponding fold. By this way,

the average of 3 folds can be taken to indicate the average fault classification result.

45

Figure 17. Sample vibration waveforms for healthy and ball fault conditions in time

domain.

Figure 18. Amplitude spectrum of vibration signals for healthy and ball fault

conditions.

46

Figure 19. Sample vibration waveforms for healthy and inner-race fault conditions in

time domain.

Figure 20. Amplitude spectrum of vibration signals for healthy and inner-race fault

conditions.

47

Figure 21. Sample vibration waveforms for healthy and outer-race fault conditions in

time domain.

Figure 22. Amplitude spectrum of vibration signals for healthy and outer-race fault

conditions.

48

Figure 23. 1D CNN classifier with three Conv1D (number of neurons, kernel size) and

two dense layers (number of neurons).

The datasets A to E were first used to assess the performance of the proposed

1D CNN model for a single working load condition. For example, all the training,

validation and test samples were from dataset A, when the performance of the model

was evaluated under no load condition (0 hp). For a single operating condition, Self-

ONNs was not used, since this classification task is an easy problem which can be

handled by 1D CNNs. The result will also show the effectiveness of 1D CNNs for a

single operating condition.

The 1D CNN model given in Figure 23 was used for each dataset. It has 3

convolutional and 2 dense layers. Normalized raw vibration data with size 500 (time-

domain samples) was inputted to the model. The 1D convolutional layers has 32, 24,

and 16 neurons with kernel sizes 21, 13 and 5, respectively. There are 32 neurons in

the hidden MLP layer, and the output dense layer size is 10 which is equal to the

number of classes. At the output MLP layer, cross-entropy loss with SoftMax function

49

was utilized. The hyperbolic tangent activation function tanh was used through all

convolutional and MLP layers. The subsampling factors (max-pooling) for

convolutional layers were selected as 8, 4 and 8 respectively. The Adam optimizer

with a learning rate of 0.001 was used. The batch size was chosen as 32 for each model.

To evaluate the performance of each model, the most widely used performance

metrics accuracy, recall, precision, and F1-score were used. Recall is defined as the

ratio of correctly predicted positive observations to all observations in actual class. On

the other hand, precision is the ratio of correctly predicted positive observations to the

total predicted positive observations. In many cases, we would like to summarize the

performance with a single number called F1-score, which can be defined as the

harmonic mean of precision and recall. Also, accuracy is defined as the ratio of the

number of correct predictions to the total number of predictions. One can formulate

these performance metrics using false negatives (FN), false positives (FP), true

negatives (TN) and true positives (TP) as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Equation 33. Precision, recall, F1-score and accuracy.

The drive-end bearing fault location and severity level classification

performance results of the proposed 1D CNN model for datasets A (0 hp), B (1 hp), C

(2 hp) and D (3 hp) are given in Table 5, and the result for dataset E is shown in Table

6. In terms of classification accuracy, the 1D CNN model with raw vibration data is

compared with several machine learning models in Table 7. The results show that the

proposed 1D CNN achieves comparable and even better results for some datasets,

50

although it uses a few thousand parameters. (Du et al., 2014) used wavelet leaders

multifractal features to train an SVM under no load condition (dataset A), and the

reported classification accuracy was 89.1%. The proposed 1D CNN model achieves

99.88% accuracy on the same dataset. (Jin et al., 2014) implemented trace ratio linear

discriminant analysis (TR-LDA) for dimension reduction and fault diagnosis under 3

hp loading (dataset D), and the diagnosis accuracy was 92.5%. (Ding and He, 2017)

proposed energy-fluctuated multiscale feature mining approach based on wavelet

packet energy (WPE) image and deep convolutional networks and this method

achieved classification accuracies of 98.8, 98.8, 99.4 and 99.4% for dataset A, B, C

and D, respectively. However, this architecture is more complex than the proposed 1D

CNN and requires WPE images for the input. (Wang et al., 2020) used a signal to

image spatial transform method to generate 2D gray images from raw vibration data,

and then implemented multi-head attention-based CNN to diagnose bearing faults. 5

different CNN models were designed, and the proposed CNN-E architecture had better

generalization ability with an accuracy over 99% for each sub-dataset. However, this

approach also requires a complex model with 455,210 trainable parameters, while the

proposed 1D CNN has only 13,522 trainable parameters. Furthermore, the signal to

image conversion required at the input of the model is a time-consuming task. (Chen,

Zhang and Gao, 2021) used the raw vibration data as input and using two CNNs with

different kernel sizes, different frequency signal characteristics were extracted. After

that, long short-term memory (LSTM) was used to identify the fault type using the

extracted features. The MCNN-LSTM method obtained 98.46% accuracy under 3 hp

loading condition.

51

Table 5. 1D CNN results for each sub-dataset (A, B, C, D) of CWRU bearing data.

Drive-end Bearing 1D CNN 3-Fold Cross Validation Average Performance Results

Dataset A B

Scores Precision Recall F1 Score Precision Recall F1 Score

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IR_014 0.9890 1.0000 0.9945 1.0000 1.0000 1.0000

IR_021 1.0000 1.0000 1.0000 0.9890 1.0000 0.9945

OR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OR_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OR_021 1.0000 0.9963 0.9981 1.0000 1.0000 1.0000

BF_007 1.0000 1.0000 1.0000 1.0000 0.9778 0.9888

BF_014 0.9945 1.0000 0.9972 1.0000 1.0000 1.0000

BF_021 1.0000 0.9944 0.9972 0.9890 1.0000 0.9945

Accuracy 0.9988 0.9984

Dataset C D

Scores Precision Recall F1 Score Precision Recall F1 Score

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

IR_014 1.0000 0.9944 0.9972 1.0000 1.0000 1.0000

IR_021 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OR_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

OR_021 0.9982 1.0000 0.9991 1.0000 1.0000 1.0000

BF_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

BF_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

BF_021 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Accuracy 0.9996 1.0000

52

Table 6. 1D CNN results for dataset E of CWRU bearing data.

(Zhang et al., 2020) proposed a CNN with two dropout and two fully-connected

layers (DFCNN). The raw vibration waveform was first converted into an image by

filling the pixels of the image using the time-domain signals. Then, these images were

fed into DFCNN model. The DFCNN model utilizes wide kernels in the first

convolutional layer, and the kernel size was reduced in the following layers. To

improve the generalization capability, two dropout layers were used. The average

accuracy of DFCNN model is also given in Table 7.

Table 7. Comparison of different methods in terms of classification accuracy on

CWRU bearing datasets.

Methods Dataset A Dataset B Dataset C Dataset D Dataset E

Multifractal+SVM 89.1 - - - -

TR-LDA - - - 92.5 -

WPE+CNN 98.8 98.8 99.4 99.4 -

CNN-E 99.4 99.4 99.8 100 -

MCNN-LSTM - - - 98.46 -

DFCNN 100 100 100 100 99.8

1D CNN 99.88 99.84 99.96 100 99.97

Dataset E

Scores Precision Recall F1 Score

Normal 1.0000 1.0000 1.0000

IR_007 1.0000 1.0000 1.0000

IR_014 0.9986 0.9986 0.9986

IR_021 1.0000 1.0000 1.0000

OR_007 0.9995 1.0000 0.9998

OR_014 1.0000 1.0000 1.0000

OR_021 0.9995 0.9995 0.9995

BF_007 1.0000 0.9986 0.9993

BF_014 1.0000 1.0000 1.0000

BF_021 1.0000 1.0000 1.0000

Accuracy 0.9997

53

The performance of 1D CNNs (q=1) and Self-ONNs (q=3, 5 and 7) across

different load domains were also investigated using CWRU bearing data. The 1D Self-

ONN model shown in Figure 24 was used for this scenario. Number of epochs was

reduced to 20 to avoid overfitting. 3 runs were performed for each case and the Adam

optimizer with a learning rate of 0.001 was used. The batch size was again 32. For

each source and target pair, one was used for training and validation, and the other for

testing. For example, for A→B source and target pair, dataset A was used for training

and validation. It was split into 3 equal pieces and 3-fold cross validation was

performed on this data. Then, at each fold, the model with the minimum validation

loss was used to evaluate the performance on the test dataset (dataset B). The average

performance for 3 folds is presented in Table 8. In this table, 1D CNN (*2) shows the

classification accuracy when the neurons in convolutional layers of 1D CNN are

doubled from 32 to 64, and 24 to 48, 16 to 32, respectively. As we can see, 1D Self-

ONN model with q=7 has the highest average classification accuracy with 91.90%. On

the other hand, 1D CNN model has the average accuracy of 89% across all load

domains. When we double the number of convolutional neurons for 1D CNN

architecture, the average accuracy increases to 91.24%, but it is still less than the

accuracy reached by the 1D Self-ONN model with q=7. This demonstrates the

superiority of the 1D Self-ONNs over the CNNs for this problem. Furthermore, we

can interpret from the results that when the speed difference of source and target load

domains is small, we can obtain a better classification accuracy.

The classification accuracy of the proposed 1D Self-ONN model was also

compared to some advanced architectures such as the Deep Convolutional Transfer

Learning Network (DCTLN) (Guo et al., 2019), Deep Convolutional Neural Networks

with Wide First-layer Kernels (WDCNN) (Zhang et al., 2017), Domain-Adversarial

Training of Neural Networks (DANN) (Ganin et al., 2016), Discriminative Adversarial

Domain Adaptation (DADA) (Tang and Jia, 2019) and an autoencoder with attention

mechanism and 1D CNN LSTM classifier (Jang and Cho, 2021) in Table 9. The

superiority of the proposed 1D Self-ONN model is again obvious from these results.

DCTLN includes two main parts which are condition recognition and domain

adaptation. The condition recognition module is constructed using a 1D CNN to

automatically learn features. The domain adaptation module allows the 1D CNN to

54

learn domain-invariant features by maximizing domain recognition errors and

minimizing the probability distribution distance. On the other hand, WDCNN takes

raw vibration data as input and utilizes wide kernels in the first convolutional layer for

extracting features and suppressing high frequency noise and small convolutional

kernels in the preceding layers. Adaptive Batch Normalization (AdaBN) proposed by

(Li et al., 2018) was used to enhance the domain adaptation ability of WDCNN model.

Furthermore, in DANN, gradient reversal layer is added to the conventional

feed-forward neural network architecture. As the training progresses, the model

extracts discriminative features for the main learning task on the source domain and

indiscriminate with respect to the shift between source and target domains.

Discriminative Adversarial Domain Adaptation (DADA) includes a feature extractor

and an integrated category and domain classifier. This model encourages a mutually

inhibitory relation between its domain prediction and category prediction for any input

instance. Finally, the last method is composed of an attentional autoencoder for latent

vector representation and a 1D CNN LSTM-based classifier to classify bearing failures

from latent vectors. For domain adaptation, a feature space transformation was added

to the model. The performance results of all these methods on CWRU data were

obtained from the study conducted by (Jang and Cho, 2021). The detailed parameters

for each model can be found in their study as well.

55

Figure 24. 1D Self-ONN classifier with three SelfONN1D layers (number of neurons,

kernel size, the degree of the Taylor approximation) and two dense layers (number of

neurons).

56

Table 8. 1D CNN and Self-ONN classification accuracies across different load

domains.

Datasets

Source→Target

1D CNN 1D

SelfONN

(Q=3)

1D

SelfONN

(Q=5)

1D

SelfONN

(Q=7)

1D CNN

(*2)

A→B 91.71 94.42 93.05 93.44 96.46

A→C 88.12 91.31 92.53 91.40 90.10

A→D 75.56 79.66 83.71 80.57 78.30

B→A 95.17 95.62 93.34 96.29 93.79

B→C 98.28 98.81 98.88 98.33 99.11

B→D 83.94 90.19 95.41 91.55 92.66

C→A 93.10 95.33 94.50 94.24 95.21

C→B 94.12 96.53 94.57 96.16 96.69

C→D 93.57 97.76 95.14 96.66 97.08

D→A 83.10 85.35 84.43 85.82 83.17

D→B 83.06 84.56 83.72 86.21 83.80

D→C 88.32 90.07 89.40 92.13 88.49

AVG 89.00 91.63 91.56 91.90 91.24

Number of

trainable

parameters

13,522 38,674 63,826 88,978 50,490

57

Table 9. Comparison of different methods (Jang and Cho, 2021) in terms of

classification accuracy across different load domains.

Task

Source→Target

1D

SelfONN

(Q=7)

Attentional

Autoencoder

+

1D CNN

LSTM

DANN DADA DCTLN WDCNN

A→B 93.44 84.43 67.76 63.27 56.23 71.47

A→C 91.40 86.43 68.96 62.86 57.78 72.87

A→D 80.57 85.67 69.81 66.97 54.11 71.90

B→A 96.29 84.67 66.73 67.82 52.56 69.91

B→C 98.33 85.35 64.96 70.95 56.67 67.48

B→D 91.55 82.43 69.65 68.93 58.12 67.58

C→A 94.24 83.34 59.70 62.99 59.12 68.88

C→B 96.16 82.45 64.40 59.55 54.32 70.15

C→D 96.66 82.21 69.82 59.62 52.13 65.83

D→A 85.82 81.24 58.62 57.89 57.45 68.14

D→B 86.21 80.67 57.41 62.53 58.23 65.17

D→C 92.13 80.67 58.98 59.90 46.12 69.90

AVG 91.90 83.63 66.15 63.61 55.24 69.11

4.3. University of Ottawa's Bearing Dataset 1D CNN and Self-ONN Results

This dataset differs from the CWRU bearing data in that each sample was

gathered for time-varying rotational speed conditions. The whole data was split into 3

sub-datasets: dataset X, dataset Y and dataset Z as shown in Figure 25. Each sub-

dataset includes all the bearing health and speed varying conditions. The main goal

was to diagnose bearing faults under time-varying rotational speed, so the number of

classes are 5 and these are healthy, ball fault, inner-race fault, outer-race fault, and

combined faults. Each sub-dataset can be used for training, validation or testing

purposes, thus there are 6 cases in total as shown in Table 10.

58

The sampling frequency for this dataset is 200 kHz, thus it requires a very

complex model if the raw vibration is inputted directly. To avoid this issue, the raw

vibration signal was first downsampled by 10 (fs=20 kHz) to decrease the input size

of each model. The input window size was chosen as 2000 time-domain samples, so

that the input to a model includes the motor vibration for at least one revolution of the

motor shaft for any shaft speed in this dataset. Also, the samples were augmented by

slicing the raw vibration data with 50% overlap (1000 time-domain samples). After

this augmentation process, min-max normalization was applied on the input data using

the Equation 32.

The 1D Self-ONN model used for bearing fault diagnosis on this dataset has 3

operational and 2 dense layers as shown in Figure 26. The 1D Self-ONN layers has

32, 24, and 16 neurons with kernel sizes 49, 27 and 5 respectively. There are 20

neurons in the hidden MLP layer and the output dense layer size is 5 which is equal to

the number of classes. At the output MLP layer, cross-entropy loss with softmax

function was used. The hyperbolic tangent activation function tanh was utilized

through all 1D Self-ONN and MLP layers. The subsampling factors were selected as

16, 8 and 8 respectively through 1D Self-ONN layers. The best test accuracy for each

case was encountered for q=1 meaning 1D CNN. For all cases in Table 10, 3 different

BP runs were performed. Among each BP runs and epochs, the model with the

minimum validation loss was selected as the best performing model. This model was

then tested on the test dataset. The same Adam optimizer (lr = 0.001) discussed earlier

in the text, was used for this dataset as well and the batch size was 32.

59

Figure 25. Sub-datasets of University of Ottawa’s bearing data. (Green: dataset X,

yellow: dataset Y, cyan: dataset Z).

Table 10. 6 cases for training, validation and test splits of University of Ottawa bearing

data, and the test accuracy of the proposed 1D CNN model.

Case Dataset X

(3800 samples)

Dataset Y

(3800 samples)

Dataset Z

(3800 samples)

1D CNN

Test Accuracy

(%)

1 Training Validation Test 99.7

2 Training Test Validation 99.9

3 Validation Training Test 94.7

4 Validation Test Training 95.1

5 Test Training Validation 99.9

6 Test Validation Training 99.1

Average Test Accuracy 98.1

60

Figure 26. 1D Self-ONN Classifier (for University of Ottawa bearing data) with 1D

Self-ONN (number of neurons, kernel size, degree of the Taylor approximation) and

dense layers (number of neurons).

The maximum number of epochs was chosen as 20. The test accuracy of the

proposed 1D CNN model is given in Table 10. As we can see, when the 1D CNN

model sees all the speed varying conditions, its diagnosis accuracy becomes quite

satisfactory with the average test accuracy of 98.1%. This model has 24,741 trainable

parameters and takes raw vibration data at the input, thus allows real-time

implementation.

 To compare the performance of the proposed model with the existing deep

learning-based methods, another scenario was considered. For this case, the model was

trained using the data files in the increasing speed column and tested using the data on

61

the decreasing speed column of Figure 25. The number of classes is 5, and the same

1D Self-ONN model in Figure 26 (q=1, 3, 5, and 7) was used for this case.

Table 11. Comparison of different methods in terms of classification accuracy on

University of Ottawa bearing data. (Training data: increasing speed, Test data:

decreasing speed).

Model Classification

Accuracy

(%)

Trainable Parameters

1D CNN 97.5 24,741

1D Self-ONN (Q=3) 90.6 73,189

1D Self-ONN (Q=5) 81.3 121,637

1D Self-ONN (Q=7) 85.4 170,085

(Bera, Dutta and Dhara,

2021)

95.9 419,621

VGG16 97.3 165,738,309

ResNet50V2 96.2 23,575,045

InceptionV3 95.5 21,778,597

30% of increasing speed data was used for validation, and the remaining 70%

was used for training. For this case, 1D CNN model with 24,741 trainable parameters

has the highest diagnosis accuracy with 97.5% as shown in Table 11. Training,

validation, and test accuracies of the proposed 1D CNN model over each training

epochs is given in Figure 27. In Table 12, confusion matrix for the proposed 1D CNN

architecture is given.

62

Table 12. Confusion matrix of 1D CNN model on University of Ottawa bearing data.

(Training data: increasing speed, Test data: decreasing speed).

 Predicted Label

True

Label

 Healthy IR OR BF Combined

Healthy 569 0 0 1 0

IR 0 570 0 0 0

OR 0 0 570 0 0

BF 69 1 0 500 0

Combined 0 0 0 0 570

 (Bera, Dutta and Dhara, 2021) trained a deep 2D CNN model with 6

convolutional layers by inputting the spectrograms images of increasing speed

vibration data, and then evaluated their model on the test set consisting of spectrograms

of bearings subjected to decreasing speed. They also trained pre-existing DL models

such as VGG16, Residual Network (ResNet50V2) and Inception Network

(InceptionV3) using the same increasing speed training data and evaluated each model

on the decreasing speed test data. Table 11 summarizes diagnosis accuracies of the 1D

CNN, Self-ONN, and existing DL-based methods. 1D CNN (q=1) and Self-ONN

(q=3,5,7) performance results on University of Ottawa’s bearing data (training data:

increasing speed, test data: decreasing speed) is also presented in Table 13. The

shallow and robust 1D CNN architecture proposed for this dataset demonstrated a

superior performance compared to the pre-existing networks.

63

Figure 27. Training, validation, and test accuracies of the proposed 1D CNN model

over each training epochs.

Table 13. 1D CNN (q=1) and Self-ONN (q=3,5,7) results for University of Ottawa’s

bearing dataset. (Training data: increasing speed, Test data: decreasing speed).

Train/Val/Test Training = 1994, Validation = 859, Test = 2850 Samples

Q q=1 q=3

Scores Precision Recall F1 Score Precision Recall F1 Score

Healthy 0.892 0.998 0.942 0.763 0.944 0.844

IR 0.998 1.000 0.999 0.910 0.996 0.951

OR 1.000 1.000 1.000 0.986 0.998 0.992

BF 0.998 0.877 0.934 0.992 0.649 0.785

Combined 1.000 1.000 1.000 0.942 0.944 0.943

Accuracy 0.975 0.906

Q q=5 q=7

Scores Precision Recall F1 Score Precision Recall F1 Score

Healthy 0.631 0.977 0.767 0.641 0.951 0.766

IR 0.743 0.989 0.849 0.866 0.979 0.919

OR 1.000 0.719 0.837 1.000 0.996 0.998

BF 0.996 0.405 0.576 0.984 0.432 0.600

Combined 0.981 0.974 0.977 0.959 0.912 0.935

Accuracy 0.813 0.854

64

CHAPTER 5: DEPLOYMENT ON MICROCONTROLLERS

5.1. Quantization of Neural Networks

In an intelligent IoT device that relies on neural networks for decision making,

data is generally collected and stored on the cloud with wireless communication

technologies such as WiFi and BLE. Then, using the collected data, a neural network

is trained on the cloud. When the new data arrive from the device to the cloud, the

inference is made on this unseen data and the output prediction is again sent back to

the device to make a decision. This is the lifecycle of a cloud computing system, and

it comes with several drawbacks. Since the data is transferred wirelessly to a server for

further processing, privacy is the first concern especially for the security critical

applications in a cloud computing system. Secondly, permanent connectivity should

be ensured, otherwise non-deterministic latencies may occur, which results in

interruption of the whole system. Furthermore, if the data throughput rate is very high,

the device may consume lots of power each time it sends the data to the cloud either

for training of the neural network or for the inference. Another alternative to the cloud

computing is the edge computing and it resolves some of the problems mentioned

above. Edge computing tries to minimize the circulation of the data. By doing so, data

is not transmitted to the cloud for inference, thus the inference is made on the device

itself. However, neural networks are usually not trained on the IoT devices in these

systems, instead the network is often trained offline on a local server placed closer to

data. There are also some approaches to both train and run the inference on the device,

but in this thesis, these approaches are not discussed. The proposed machine

monitoring and diagnostics system works as follows. First, the data is collected

wirelessly from the device for a couple of minutes, and then using the collected data,

a neural network is trained offline on a workstation. After that, the neural network is

quantized and deployed on the IoT device to run inference periodically. At this stage,

the device can run standalone, and it will only transfer predictions made on the device

to lower power consumption. On the other hand, running neural networks on a

resource-constrained device like microcontrollers is a challenging task (Novac et al.,

2021). Firstly, NN algorithms run slower on microcontrollers than on GPUs or CPUs,

since the clock frequency is much lower (8 MHz to 80 MHz compared to 1GHz to

65

2GHz), and parallelism techniques such as thread-level parallelism or advanced

vectorization are not usually implemented (Novac et al., 2021). Microcontrollers

typically include a general-purpose processing core, and require less power compared

to their counterparts, thus allowing battery powered devices. However, in a scenario

where the device is not accessible after installation, it requires long battery life, so

power consumption could be a major problem. Finally, the most major issue may be

memory constraint of microcontrollers. These devices usually have very small amount

of memory, i.e., often less than 1MB.

A technique to shrink the size of a neural network to be deployed on the

microcontrollers is called quantization. Quantizing a neural network means reducing

the number of bits used to encode each weight and/or activation of a model, while

keeping desired accuracy. Using quantization, total memory usage of a network can

be reduced by a considerable amount.

5.1.1. Quantization Fundamentals

Modern computing systems use floating-point to represent real numbers, and

32-bit single-precision floating point is the common format used in deep learning

frameworks. Although neural network models are usually trained using the 32-bit

single-precision format, alternative formats such as IEEE fp16 and bfloat16 have also

been implemented recently to reduce training duration and memory usage without

significant loss in performance (Burgess et al., 2019). Once the neural network is ready

to be deployed on a device after training, it can be quantized using even lower precision

formats such as fixed-point and integer. By using lower precision formats during

inference, we may accelerate math-intensive operations like convolution and matrix

multiplication. Furthermore, memory bandwidth and memory size requirements can

be alleviated using lower precision formats, so latency can be reduced with less

memory access and simpler computations. As a result, we can observe reduced power

consumption for both computations and memory access.

66

Quantization can be divided into two main categories: non-uniform and

uniform. While non-uniform quantization uses non-linear transformations, in uniform

quantization, step sizes are equal. An example of weight distribution of a convolutional

layer kernel, i.e., conv1d/kernel_0 of the 1DCNN model trained using our dataset, is

shown in Figure 28. It can be observed from this figure that when the input is

normalized, convolutional layer weight distribution is like a Gaussian distribution with

the mean near 0. Therefore, they could be better represented with a non-uniform

quantization, and floating-point representation ensures a better precision around 0. In

non-uniform quantization, a non-linear function needs to be computed beforehand

offline or online to generate a lookup table to get a non-constant quantization step.

This brings an additional overhead and can still cause slight quantization error. On the

other hand, since our aim is to perform fast computations, uniform quantization with

constant quantization step is often preferable.

Quantization to lower precision format could be automated by some integrated

software tools such as Tensorflow Lite Micro (TFLM) and STM32Cube.AI. Since

these tools usually implement uniform integer quantization (integer weights and

activations) for neural network inference, the rest of this section will explain the

fundamentals of this approach.

Uniform quantization can be performed in two steps. Firstly, quantization

range, i.e., the range of real numbers to be quantized, should be selected, and the values

outside of this range are clamped. Then, the real values are mapped to integers

according to the number of bits used for the quantized representation. That means each

mapped real value is rounded to the closest integer value. The two essential operations

named “Quantize” and “Dequantize” are needed to allow integer manipulations in a

pre-trained floating-point neural network. We can convert a floating-point (e.g., fp32)

number to a quantized integer (e.g., int8) using “Quantize” operation. The dual

“Dequantize” operation can then convert a quantized integer (e.g., int32) back into a

real number (e.g., fp16). Floating-point formats like fp16 and fp32 are here considered

as real numbers for the purpose of discussion.

67

Figure 28. An example of weight distribution for a convolutional layer kernel

(conv1d/kernel_0).

We can now define the operations “Quantize” and “Dequantize”. Let’s define

the quantization range, i.e., the range of real numbers to be quantized, as [𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥]

and the bit-width of the signed or unsigned integer as n. A real value x in the range

[𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥] can now be represented as a signed or unsigned integer in the range

[−2𝑛−1, 2𝑛−1 − 1] and [0, 2𝑛 − 1] respectively. The inputs outside this range are

simply clipped. As we are only focusing on the uniform transformation, there are two

options. The first one is uniform affine quantization (also known as asymmetric

quantization), and the second one, which is a special case of the first, is the symmetric

uniform quantization (also called scale quantization).

5.1.1.1. Uniform Affine Quantization

Uniform affine quantization (also called asymmetric quantization) is controlled

by the following parameters: the scale factor s, the bit-width n and the zero-point z.

The scale factor s is a floating-point number which controls the step size. On the other

hand, the zero point is an integer, and it must be chosen such that real zero is quantized

68

without error. When these parameters are defined, we can formulate the quantization

operation. A real valued x can be mapped into the unsigned integer grid as:

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) + 𝑧 ; 0, 2𝑛 − 1)

Equation 34. Asymmetric quantization.

where round is round-to-nearest operator, and clamp is defined as:

clamp(𝑓; 𝑎, 𝑏) = {
𝑎, 𝑥 < 𝑎
𝑥, 𝑎 ≤ 𝑥 ≤ 𝑏
𝑏, 𝑥 > 𝑏

Equation 35. Clamp function.

Then, we can approximate the real valued x from its integer representation as:

x ≌ �̂� = 𝑠(𝑥𝑖𝑛𝑡 − 𝑧)

Equation 36. Dequantization step of asymmetric quantization.

If we plug x𝑖𝑛𝑡 in the Equation 34 into Equation 36, we can get the general quantization

function q as:

�̂� = q(𝑥; 𝑠, 𝑧, 𝑛) = s [𝑐𝑙𝑎𝑚𝑝 (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) + 𝑧 ; 0, 2𝑛 − 1) − 𝑧]

Equation 37. General quantization function.

69

From the quantization step in Equation 34, one can determine the quantization range

[𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥] as:

q𝑚𝑖𝑛 = −s𝑧

q𝑚𝑎𝑥 = s(2𝑛 − 1 − 𝑧)

Equation 38. Quantization limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥.

If there are any values outside of this quantization range, they will be clipped to

quantization limits introducing a clipping error. To reduce this clipping error, one can

expand the quantization range by increasing the scale factor, but this, in turn, brings

about increased rounding error (Nagel et al., 2021).

5.1.1.2. Symmetric Uniform Quantization

Symmetric uniform quantization is a subset of uniform affine quantization,

where the zero point is located at 0. Real numbers can be quantized either to signed or

unsigned integers using symmetric quantization. Unsigned symmetric quantization is

often preferred when one-tailed distributions (e.g., ReLU activations) are encountered,

while the signed symmetric quantization is mostly used for distributions which are

roughly symmetric about zero (e.g., the weight distribution of a convolutional layer

kernel).

To map a real valued x into a signed integer using symmetric quantization, we

can perform the following operation:

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) ; −2𝑛−1, 2𝑛−1 − 1)

Equation 39. Signed symmetric quantization.

70

On the other hand, to perform unsigned symmetric quantization, one can use the

Equation 40.

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) ; 0, 2𝑛 − 1)

Equation 40. Unsigned symmetric quantization.

Finally, we can approximate the real valued x from its integer representation as:

�̂� = 𝑠𝑥𝑖𝑛𝑡

Equation 41. Dequantization step of symmetric quantization.

Although both symmetric and asymmetric quantization allow us to use integer

arithmetic, asymmetric quantization results in more computationally expensive

inference due to its extra offset parameter. To show this fact, let us consider the

multiplication of asymmetric activations with asymmetric weights as given in

Equation 42.

�̂��̂� = 𝑠𝑤(𝑾𝑖𝑛𝑡 − 𝑧𝑤)𝑠𝑥(𝒙𝑖𝑛𝑡 − 𝑧𝑥)

= 𝑠𝑤𝑠𝑥𝑾𝑖𝑛𝑡𝒙𝑖𝑛𝑡 − 𝑠𝑤𝑠𝑥𝑧𝑥𝑾𝑖𝑛𝑡 − 𝑠𝑤𝑠𝑥𝑧𝑤𝒙𝑖𝑛𝑡 + 𝑠𝑤𝑠𝑥𝑧𝑤𝑧𝑥

Equation 42. Multiplication of asymmetric activations with asymmetric weights.

If both the weights and activations were quantized with symmetric

quantization, then we would only get the first term in Equation 42. The second and

fourth terms can be pre-computed, since they depend only on the zero-point, scale and

weight values which are known in advance. On the other hand, the third term includes

the input data x, and it requires an additional computation during inference. Hence,

this additional computation results in increased latency and power consumption. For

this reason, symmetric weight quantization, which avoids the additional input-

dependent term, is widely used in most of the integrated software tools like Tensorflow

71

Lite Micro. For a bit-width of 8, three different examples of uniform quantization are

illustrated in Figure 29.

Figure 29. An illustration of symmetric and asymmetric uniform quantization for a bit-

width of 8. The floating-point grid is in black, and the integer quantized grid is shown

in blue (Source: Nagel et al., 2021).

Quantization parameters can be shared among tensor elements and the way

they are shared specifies the quantization granularity. Per-tensor quantization is the

most widely used granularity since it allows easy hardware implementation. In per-

tensor quantization, all the accumulators in Equation 42 will use the same scale factor,

𝑠𝑤𝑠𝑥. On the other hand, we can achieve a finer granularity with per-channel

quantization. If a different quantizer is used per-channel for a 3D tensor (e.g., per-

kernel or equivalently per-output-channel), accuracy might improve especially when

the distribution varies significantly from channel to channel.

Figure 30 illustrates an overview of how a quantized matrix-vector

multiplication is performed in a neural network hardware. The fundamental

computation performed during the inference is Multiply–Accumulate operation

(MAC). Accumulators are first loaded with the bias value. Then, the weight and input

values are loaded into separate arrays, and their product are calculated in the

72

corresponding processing elements. Finally, their results are added in the

accumulators. In this example, int8 arithmetic is used, but any bit-width can be selected

for the quantization. To avoid overflow, a higher bit-width accumulators are generally

used (e.g., int32). 32-bit accumulators, in the given example, store the activations, and

to reduce the data transfer and allow next layer’s operations without complexity, these

activations are quantized back into int8.

Figure 30. An illustration of MAC operation for quantized inference (Source: Nagel et

al., 2021).

5.1.1.3. Quantization Range

To quantize a floating-point tensor, we first need to decide the quantization

limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 for model weights and activations. Weights can be simply

quantized without using any calibration data, but variable tensors such as model input,

output and activations cannot be calibrated unless a few inference cycles are run. Some

calibration methods are min-max, entropy, and percentile.

Min-max calibration method uses the whole dynamic range of the tensor, and

the quantization limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 can be found as follows:

73

𝑞𝑚𝑖𝑛 = min 𝑾

𝑞𝑚𝑎𝑥 = max 𝑾

Equation 43. Min-max calibration.

where 𝑾 is the tensor to be quantized.

This method does not introduce clipping error, but it is sensitive to outlier which may

cause rounding error. In entropy calibration method, Kullback-Leibler divergence is

used to minimize the information loss between the original floating-point values and

the quantized format. Finally, in percentile method, the range is set to a percentile of

the distribution of absolute values seen during calibration. For example, 99%

calibration clips 1% of the largest magnitude values.

5.1.2. Post-Training Quantization

Post training quantization is a training-free quantization, and it is the most

preferred option by user. In post-training quantization, we first train the neural network

model in a floating-point format (e.g., fp32). When the training is done, the model is

frozen, and its parameters are quantized. The quantized model is finally deployed on

the target to run inference. Quantization of the weights and inputs usually results in a

quantization error, which, in turn, introduces a quantization error on the activations.

Depending on the bit-width used, this quantization error may accumulate through each

layer and end up in a wrong prediction at the output. If the bit-width of parameters

decreases, the quantization error usually increases, causing an accuracy drop compared

to the original floating-point model. However, in some cases, although the quantization

error increases slightly, the neural network can generalize better on the unseen test

data.

74

5.1.3. Quantization-Aware Training

 The post-training quantization (PTQ) is very easy and fast to implement since

we do not need to retrain the neural network with labeled data. However, when we

quantize a real number to a lower precision format like 4-bit integer, we usually

encounter a significant accuracy drop (Nagel et al., 2021). This accuracy drop can be

minimized using the quantization-aware training. In quantization-aware training,

backpropagation steps remain the same, and weights and biases are still stored in

floating point format so that they can be updated by small amounts. On the other hand,

the low precision behavior is simulated in forward propagation pass to adjust the

parameters and minimize the loss introduced by the quantization. Training with

simulated quantization is illustrated in Figure 31. First, a training graph of the floating-

point model is created. Then, fake quantization nodes are inserted to the locations

where tensors are represented by fewer bits during inference. We finally train the

model in simulated quantized mode until it converges. Now, the optimized inference

graph is ready to be deployed on a target device.

Figure 31. Training with simulated quantization (Quantization-aware Training).

75

5.2. Embedded AI Frameworks

Embedded artificial intelligence (AI) enables inexpensive and low-power

AIoT solutions and several embedded AI frameworks such as STM32Cube.AI and

TensorFlow Lite for Microcontrollers (TFLM), accelerates the path to successful real-

world deployment of ML models. In this section, the most popular AI frameworks

STM32Cube.AI and TFLM, will be discussed in detail.

5.2.1. STM32Cube.AI

STM32Cube.AI from STMicroelectronics is an integrated software tool that

enables the generation of STM32-optimized library from a pre-trained neural network.

It accelerates the deployment of some neural network models like MLPs and CNNs

into STM32 microcontrollers. STM32Cube.AI supports numerous machine learning

frameworks including TensorFlow Lite and Keras, and the models in ONNX format

can also be implemented.

STM32Cube.AI can run inference using both floating-point (if the target has

FPU) and fixed-point (8-bit integers) formats. TensorFlow Lite quantized models and

8-bit quantization of Keras networks are both supported.

STM32Cube.AI ecosystem is fully integrated with the other

STMicroelectronics development tools; thus, it allows easy and fast implementation.

The tool itself has several ways to validate ML models both on the computer and

STM32, and the performance on STM32 devices can be measured without user

handmade ad hoc C code (STMicroelectronics, 2021).

To optimize the inference performance, STM32Cube.AI utilizes Common

Microcontroller Software Interface Standard Neural Network (CMSIS-NN) library.

CMSIS-NN is a collection of efficient neural network kernels developed to maximize

the performance and minimize the memory footprint of neural networks on Cortex-M

processors (Arm, 2021). The library has separate functions to operate on different

76

weight and activation data types including 8-bit and 16-bit integers. The inference

engine uses a proprietary library, so it is not allowed to manipulate it.

5.2.2. TensorFlow Lite for Microcontrollers

TensorFlow Lite for Microcontrollers (TFLM) is an open-source embedded

ML framework originally derived from TensorFlow Lite. It is primarily designed to

run ML models on microcontrollers with a few kilobytes of memory. TFLM is written

in C++ 11 and requires a 32-bit platform. Hence, the inference code is portable. It may

also generate the inference code for development environments like Mbed. Various

neural network architectures such as MLPs, CNNs and RNNs can be deployed on the

target 32-bit microcontroller using TFLM.

To deploy and run TensorFlow models on a 32-bit microcontroller, one should

perform the following steps. Firstly, a TensorFlow model with supported operations is

trained. Then, this model is converted to a Tensorflow Lite model using TensorFlow

Lite converter Python API. This will convert the model into a FlatBuffer, reducing the

model size, and modify it to use TensorFlow Lite operations (TensorFlow Lite, 2021).

At this stage, we could consider using post-training quantization so that we can obtain

a smaller model size. Finally, the model is converted to a C byte array (C source file

that contains the TensorFlow Lite model as a char array) using standard tools to be

included in the program. Using this source file and TFLM C++ library, we can compile

the program and run inference on the target device.

TFLM can also run inference using both floating-point (if the target has FPU)

and fixed-point (8-bit integers) formats. Both PTQ and QAT methods are supported in

TFLM. While 8-bit symmetric quantization is used for weights, activations are

quantized using asymmetric quantization in TFLM. 32-bit integers are used for biases

to avoid high accuracy drop. Convolution operation can be implement using per-filter

scale factor and offset, but other operations usually use per-tensor (i.e., per-layer) scale

factor and offset. The 8-bit integer inference performance can again be optimized using

CMSIS-NN library kernels. These kernels utilize Single Instruction Multiple Data

77

(SIMD) instructions. The SIMD instructions enable simultaneous calculations for two

16-bit operations or four 8-bit operations, so they greatly enhance the inference

performance on ARM microcontrollers.

TFLM provides several post-training quantization options such as dynamic

range quantization, full-integer quantization, and float-16 quantization. The decision

tree given in Figure 32 can help us decide which PTQ method is best for the use case.

Figure 32. TFLM PTQ decision tree (Source: TensorFlow Lite, 2021).

78

CHAPTER 6: EXPERIMENTAL SETUP AND ON-DEVICE

PERFORMANCE RESULTS

6.1. Platform Description

 An experimental motor test platform was set up in electrical machines

laboratory at Izmir University of Economics. As shown in Figure 34, the test stand

includes a single-phase induction motor (right), a variac (not shown) to adjust the

voltage, and the B-L475E-IOT01A2 Discovery kit (inside 3D printed case) for data

acquisition and ML inference on the edge. 5 single-phase induction motors were used.

Three of them were VM 90S-2 220V, 1.5 kW and 2880 rpm single-phase induction

motors, and the condition of the bearings for these electric motors were healthy, outer-

race and inner-race fault. The remaining two were VM 90S-4 220V, 1.1 kW and 1400

rpm single-phase induction motors and the health condition of bearings for these

motors were healthy and ball fault. All the motors were from Volt Electric Motors

company. Single-point faults were introduced to the drive-end bearings with a fault

diameter of 1.5 mm. Ball bearings with fan-end bearing type 6203 ZZ and drive-end

bearing type 6205 ZZ were employed in all electric motors used in this setup. Sample

fault introduced and healthy bearings are shown in Figure 33. The B-L475E-IOT01A2

Discovery kit was securely fastened to the electric motor cooling fin edges using an

aluminum mounting bracket as shown in Figure 35.

Figure 33. Sample healthy and fault introduced ball bearings.

79

Figure 34. Machine monitoring and diagnostics (MMD) test stand.

Figure 35. Aluminum mounting bracket.

80

6.2. Development Board - STM32L4 Discovery Kit IoT Node

The B-L475E-IOT01A Discovery kit was used for motor acceleration data

collection, and on-device ML inference. The Discovery kit includes ultra-low-power

STM32L4 Series MCU based on Arm Cortex-M4 core with 1 Mbyte of Flash memory

and 128 Kbytes of SRAM. Several STMicroelectronics sensors are available on this

board such as 3D accelerometer and 3D gyroscope (LSM6DSL), 3-axis magnetometer

(LIS3MDL), capacitive digital sensor for relative humidity and temperature

(HTS221), and 2 on-board omnidirectional digital microphones (MP34DT01). The

board also includes a wide range of on-board communication modules such as

Bluetooth (V4.1), Wi-Fi, sub-GHz RF module, and a dynamic NFC tag. The layout of

this board is shown in Figure 36.

Figure 36. STM32L4 Discovery Kit IoT Node.

The main reason behind using this board was its low-power 3D accelerometer

and 3D gyroscope (LSM6DSL). 3-axis (XYZ) raw acceleration data from this on-

board accelerometer was used to diagnose bearing faults of single-phase induction

motors. The full-scale acceleration range of LSM6DSL is user-specified, and the

available values are ±2/±4/±8/±16 g. It offers output data rates (ODRs) from 12.5 Hz

up to 6.66 kHz in high-performance mode.

81

This board is Arm Mbed enabled, thus it allows rapid prototyping using its

open-source IoT operating system. It offers a well-defined API to write C++

applications with free tools, libraries, and drivers for common components. Mbed OS

was also used in this thesis for the embedded machine learning application

development.

6.3. On-Device Performance Results

 The overall system block diagram is shown in Figure 37. The proposed

intelligent machine monitoring and diagnostics system works as follows. First, the data

can be collected from the device for a couple of minutes over the USB serial port or

wirelessly using the on-board Wi-Fi or BLE module. Then, using the collected data, a

neural network model can be trained offline on a workstation or on a cloud platform.

After that, the neural network is trained and quantized, and the corresponding ML files

are exported. At this stage, the new binary can be compiled and deployed on the IoT

device to run inference periodically. From then on, the device can run standalone, and

it may only transfer predictions made on the device to lower power consumption.

 To demonstrate the working of this intelligent system, 3-axis raw acceleration

data was collected from the mentioned single-phase induction motors on the motor test

stand. The output data rate (ODR) of the on-board accelerometer was set to its

maximum value 6.66 kHz, and the full-scale acceleration range was selected as ±4 g.

This choice of full-scale range was made by observation of the raw acceleration

waveform to avoid saturation. A simple Mbed program that reads 3-axis raw

acceleration with these settings was compiled and run on the board. This program

periodically reads 1 second long (6660 time-domain samples) 3-axis raw acceleration

and send these samples over the serial port. These samples can then be printed on a

serial monitor using a serial monitor application like Tera Term. By this way, for each

healthy state and fault condition, several minutes of 3-axis raw acceleration data was

collected under no load condition. The length of collected data for each case is given

in Table 14.

82

Figure 37. Microcontroller based motor fault detection and diagnosis system.

Table 14. MMD bearing fault dataset

Motor (Bearing)

Health Condition

Motor Load (hp) Motor Type Length of Dataset

(minutes)

Idle - - 4

Healthy 0 VM 90S-4

(1400 rpm)

9

Healthy 0 VM 90S-2

(2880 rpm)

9

Inner Race Fault 0 VM 90S-2

(2880 rpm)

9

Outer Race Fault 0 VM 90S-2

(2880 rpm)

9

Ball Fault 0 VM 90S-4

(1400 rpm)

9

Sample faulty and healthy motor raw acceleration waveforms and the amplitude

spectrum of the z-axis acceleration are shown in Figure 38 through Figure 40.

83

Figure 38. 1500 samples healthy and faulty motor 3-axis raw acceleration waveforms.

(X axis: blue, Y axis: orange, Z axis: green)

After the data collection process, a 2D CNN model was trained using the

collected data. The input to this model was 3-axis raw acceleration. The input window

size was chosen as 333 time-domain samples so that the raw acceleration includes at

least one revolution of the motor shaft. The whole data was divided into 4 equal pieces,

and each of them has the examples from all classes. Two of them (50%) was used for

training, one (25%) for validation and one (25%) for testing. Therefore, there are

29,400 training, 14,700 validation and 14,700 test samples in total. After the

segmentation process, mean normalization was also applied on the input data to

subtract the mean from each channel using the Equation 44.

84

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

Equation 44. Mean normalization.

Figure 39. 500 samples healthy and faulty motor 3-axis raw acceleration waveforms.

(X axis: blue, Y axis: orange, Z axis: green).

Since both Tensorflow Lite Micro (TFLM) and X-CUBE-AI expansion

package support 1D convolution by adding a singleton dimension to 2D convolution,

a 2D CNN was used for deployment. The 2D CNN model used for this dataset is shown

in Figure 41. It has 3 convolutional and 2 dense layers. Normalized 3-axis raw

acceleration data with size 333 (time-domain samples) was inputted to the model. The

2D convolutional layers has 16, 8, and 8 neurons with kernel sizes 11, 7 and 3

85

respectively. There are 10 neurons in the hidden MLP layer, and the output dense layer

size is 5 which is equal to the number of classes. These 5 classes are idle, healthy,

outer-race fault, inner-race fault, and ball fault. Idle state is used to indicate that the

electric motor is not running. At the output MLP layer, cross-entropy loss with

SoftMax function was used. The rectified linear activation function “ReLU” was

utilized through all convolutional and MLP layers except the output. ReLU activation

is simpler to implement on a microcontroller, since it outputs the input directly if it is

positive, otherwise, it will output zero. The Adam optimizer with a learning rate of

0.001 was used. The default batch size of 32 was used. The number of epochs was 20.

Early stopping was utilized by monitoring validation loss with patience 5 epochs. The

training was carried out on a TensorFlow version 2.4.1 installed PC with 2.00GHz

Intel Core i7-4510U CPU and NVIDIA GeForce 840M graphic card.

To reduce the feature map size through the convolutional layers, convolution

with stride 4 was used instead of max-pooling for the following reasons. Stride is an

argument that controls the step size as a convolution filter is slid across the input. Many

neural network frameworks use the stride size 1 as the default value. However, if we

set the stride to 2, each window will be offset by two samples from its neighbor, and

this results in an output array that is half the width and height of the input. As a result,

the output of each convolution layer occupies much less memory, resulting in reduced

RAM usage, and the computation is also reduced with increased stride size that allows

fast inference. Larger stride values may cause some accuracy loss that can be verified

during training. However, as it reduces the MCU resource usage dramatically, one can

increase the other parameters like the number of neurons and gain some accuracy back.

86

Figure 40. The amplitude spectrum of z-axis acceleration.

Figure 41. 2D CNN model with 3 conv2D and 2 dense layers.

87

After training the model, we need to follow some steps to deploy and run a

TensorFlow model on a microcontroller using the TFLM run-time. First, the

TensorFlow model should be converted to a TensorFlow Lite model using the

TensorFlow Lite converter Python API. This step converts the model into a FlatBuffer

format, reducing the model size, and modify it to use TensorFlow Lite operations. At

this stage, to get a smaller model size, one can use post-training quantization (PTQ) or

the model can be trained using quantization-aware training (QAT). The TensorFlow

Lite model is then converted to a C byte array using standard tools to store it in read-

only program memory on the microcontroller. Using this C byte array and the TFLM

C++ library, we can run inference on the microcontroller. One can also use

STM32Cube.AI ecosystem to deploy a TensorFlow Lite model on microcontrollers.

As a part of the STM32Cube.AI ecosystem, X-CUBE-AI is an expansion package that

enables automatic conversion and integration of pre-trained neural networks. An

optimized library is generated automatically and included in the user's project.

For comparison, several 2D CNN models were deployed on the STM32L4

Discovery Kit IoT Node using both TFLM and STM32Cube.AI runtime. In terms of

model size, the advantages of strided convolution in CNNs compared to max-pooling

can be observed by comparing the same models in the Table 15 and Table 16. For the

same number of neurons and filter size in convolutional layers, using stride of 4 instead

of max-pooling with pool size of 4, RAM usage can be significantly reduced with no

significant reduction in test accuracy. The other benefit is the fast inference which can

be seen from Table 17 and 18. In these tables, the average duration for 10 inferences

is reported. The inference duration can be reduced to a few milliseconds using strided

convolution which enables real-time implementation. The other important decision to

make is the quantization type. In PTQ, as the number of parameters in the model is

reduced, the test accuracy of the quantized model drops considerably for smaller

networks. To avoid such accuracy loss, we can utilize quantization-aware training.

88

Table 15. The comparison of float and quantized model size and test accuracy for

strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes.

Table 16. The comparison of float and quantized model size and test accuracy for max-

pooling (pool size=4) following convolutional layers using TFLM and

STM32Cube.AI runtimes.

Model

3 Conv.

+

2 FC

{Neurons}

(Kernel

Size)

Number

of

parameters

Quantization

Type

Model Test

Accuracy

Model Size (Bytes)

Float Quantized Float

Quantized

Flash RAM Flash RAM

{16}(11),

{8}(7),

 {8}(3),

{10},

{5}

2,033 PTQ

Full-Integer

(Int 8)

1.0 1.0 12004 28208 8152 8928

{8}(11),

{4}(7),

{4}(3),

{10},

{5}

777 PTQ

Full-Integer

(Int 8)

1.0 0.99931

6988 16624 6336 5952

{8}(11),

{4}(7),

{4}(3),

{10},

{5}

777 QAT

(Int 8)

1.0 0.99971

6988 16624 6888 7536

Model

3 Conv.

+

2 FC

{Neurons}

(Kernel Size)

[Stride]

Number

of

Trainable

Parameters

Quantization

Type

Model Test

Accuracy

Model Size (Bytes)

Float Quantized Float

Quantized

Flash RAM Flash RAM

{16}(11)[4],

{8}(7)[4],

{8}(3)[4],

{10},

{5}

2,113 PTQ

Full-Integer

(Int 8)

0.99919

0.99907

11728 11104 7448 4288

{8}(11)[4],

{4}(7)[4],

{4}(3)[4],

{10},

{5}

817 PTQ

Full-Integer

(Int 8)

0.99890

0.88662

6544 8384 5592 3520

{8}(11)[4],

{4}(7)[4],

{4}(3)[4],

{10},

{5}

817 QAT

(Int 8)

0.99890

0.99919

6544 8384 6280 7024

89

Table 17. The comparison of float and quantized model test accuracy and inference

speed for max-pooling (pool size=4) following convolutional layers using TFLM and

STM32Cube.AI runtimes.

Model

3 Conv.

+

2 FC

{Neurons}

(Kernel

Size)

Number

of

parameters

Quantization

Type

Model Test

Accuracy

TFLM

Run-time

Inference Duration

(msec)

STM32Cube.AI

Run-time

Inference Duration

(msec)

Float Quantized Float

Quantized

Float Quantized

{16}(11),

{8}(7),

 {8}(3),

{10},

{5}

2,033 PTQ

Full-Integer

(Int 8)

1.0 1.0 123.441

25.318 64.495 38.605

{8}(11),

{4}(7),

{4}(3),

{10},

{5}

777 PTQ

Full-Integer

(Int 8)

1.0 0.99931

58.366 16.197 31.278 24.660

{8}(11),

{4}(7),

{4}(3),

{10},

{5}

777 QAT

(Int 8)

1.0 0.99971

58.366 16.916 31.278 25.448

Table 18. The comparison of float and quantized model test accuracy, and inference

speed for strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes.

Model

3 Conv

+

2 FC

{Neurons}

(Kernel

Size)

[Stride]

Number

of

Trainable

Parameters

Quantization

Type

Model Test Accuracy TFLM

Run-time

Inference Duration

(msec)

STM32Cube.AI

Run-time

Inference Duration

(msec)

Float Quantized Float

Quantized

Float Quantized

{16}(11)[4],

{8}(7)[4],

{8}(3)[4],

{10},

{5}

2,113 PTQ

Full-Integer

(Int 8)

0.99919

0.99907

30.079

6.340 15.617 3.873

{8}(11)[4],

{4}(7)[4],

{4}(3)[4],

{10},

{5}

817 PTQ

Full-Integer

(Int 8)

0.99890

0.88662

14.202 4.059 7.543 2.647

{8}(11)[4],

{4}(7)[4],

{4}(3)[4],

{10},

{5}

817 QAT

(Int 8)

0.99890

0.99919

14.202 4.758 7.543 3.354

90

All the quantized models given on the previous tables can fit on the target

MCU, since it has 128 Kbytes of SRAM and 1 Mbyte of Flash memory. The first

model in Table 18 was used for deployment. To visualize the 3-axis raw acceleration

and the prediction of the proposed CNN on a phone, Phyphox BLE Mbed library was

used. In contrast to classic Bluetooth, BLE is designed for significantly lower power

consumption, thus the BLE devices can run for weeks or months on a coin cell battery.

This encourages us to communicate with the development board using the on-board

Bluetooth V4.1 module (SPBTLE-RF). The board was powered up by a 3.7V Li-Po

battery with an external boost converter to step up the voltage to 9V. Phyphox

application was used on mobile. A custom BLE service with two characteristics were

created. The first characteristic was used to send 3-axis acceleration data, and the

second one was used to send the predictions made by the ML model. The compiled

source code first reads 3-axis acceleration from the on-board accelerometer sensor and

applies mean normalization to each axis. Then, the normalized data is inputted to the

ML model and TensorFlow’s interpreter-based inference engine runs the inference.

The 3-axis acceleration data and the prediction made by the model can be sent to a

GATT client by notifications. Notifications are unacknowledged; thus, they are faster.

This process can be called periodically to reduce power consumption. The experiment

created in the Phyphox application for bearing fault diagnosis is given in Figure 42.

Finally, a video demonstration of this system can be watched from the following link

(https://ieucloud.izmirekonomi.edu.tr/index.php/s/fEDAXNzDsFnkfJO).

https://ieucloud.izmirekonomi.edu.tr/index.php/s/fEDAXNzDsFnkfJO

91

Figure 42. The designed Phyphox experiment that shows bearing health condition and

the 3-axis motor vibration on a mobile.

92

CHAPTER 7: CONCLUSION

Continuous machine monitoring is of great importance and obviously a crucial

challenge in the industry. Unexpected machine failures and breakdowns result in costly

replacement of machine components and unplanned production downtime. REBs are

commonly used in rotating machinery, and they are one of the most major causes of

induction machine faults. For this reason, rolling element bearing fault diagnosis

techniques has been studied extensively for decades.

The earlier signs of rolling element bearing failure can most easily be detected

using an accelerometer, and it can be used as an effective predictive maintenance tool

to estimate when the maintenance should be performed. In a highly digitized and

connected production facility, with the increasing number of sensors used in the field,

access to high volume of data has now become possible. Therefore, the use of deep

learning techniques for BFDD has increased day by day.

Deep learning-based bearing fault diagnosis methods have been discussed in

detail throughout this thesis. Two open-source benchmark datasets, i.e., Case Western

Reserve University (CWRU) and University of Ottawa bearing vibration data, were

used for this purpose. In domain and cross domain (under different loading conditions)

performances of 1D CNNs and Self-ONNs for bearing fault diagnosis were evaluated

using the CWRU bearing data. In addition, the performance of 1D CNN and Self-

ONNs was evaluated under time-varying rotational speed conditions using University

of Ottawa bearing data. This work was the first in terms of cross domain evaluation of

1D CNNs and Self-ONNs for bearing fault diagnosis, and they were also tested under

time-varying rotational speed conditions. From the results, the superior performance

of 1D Self-ONNs over 1D CNNs are obvious for cross domain tests, demonstrating

better generalization capability at more difficult tasks. However, when the data is not

so varied and the number of samples are sufficient for each class, the performance of

1D CNNs is quite satisfactory.

93

To further evaluate the performance of 1D CNNs, from two different single-

phase induction motors with four different bearing health conditions (healthy, outer-

race, inner-race, and ball fault), real motor acceleration data was collected using the

on-board 3-axis accelerometer of STM32L4 Discovery kit IoT node. A 1D CNN

model was then trained, quantized, and deployed to the microcontroller using the

collected data, and the embedded AI tools TensorFlow Lite for Microcontrollers

(TFLM) and STM32Cube.AI. These tools were compared in terms of average

inference time and memory footprint for this application. Post training quantization

(PTQ) and quantization-aware training (QAT) were also discussed and the effect of

quantization in the test accuracy was observed. The experimental results show that 1D

CNNs can easily be deployed on microcontrollers and used for real-time bearing fault

diagnosis. A system with BLE connectivity was employed for continuous monitoring

of bearing health condition of single-phase induction motors. As a future work, the

main target is to deploy 1D Self-ONNs onto the microcontrollers to utilize their

generalization capability across different load domains. Furthermore, the data

collection process will be accelerated through cloud connectivity rather than just using

the BLE connection.

94

REFERENCES

Arm. (2021). Common Microcontroller Software Interface Standard (CMSIS)

[Online]. Available at: https://developer.arm.com/tools-and-

software/embedded/cmsis. (Accessed: 15 December 2021).

Bera, A., Dutta, A. and Dhara, A. K. (2021) Deep learning based fault classification

algorithm for roller bearings using time-frequency localized features, Proceedings -

IEEE 2021 International Conference on Computing, Communication, and Intelligent

Systems, ICCCIS 2021, pp. 419–424.

Bloch, H. P., and Geitner, F. K. (1999) Machinery Component Failure Analysis,

Practical Machinery Management for Process Plants, Vol. 2, pp. 79–256.

Burgess, N., Milanovic, J., Stephens, N., Monachopoulos, K., and Mansell, D. (2019)

Bfloat16 Processing for Neural Networks, IEEE 26th Symposium on Computer

Arithmetic, pp. 88–91.

Case Western Reserve University (CWRU). (2004) Bearing Data Center [Online].

Available at: https://engineering.case.edu/bearingdatacenter (Accessed: 17 July 2021).

Chen, X., Zhang, B., and Gao, D. (2021) Bearing fault diagnosis base on multi-scale

CNN and LSTM model, Journal of Intelligent Manufacturing, Vol. 32, pp. 971–987.

Cheng, C., Zhou, B., Ma, G., Wu, D., and Yuan, Y. (2020) Wasserstein distance based

deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or

insufficient labeled data, Neurocomputing, Vol. 409, pp. 35–45.

Ding, X. and He, Q. (2017) Energy-Fluctuated Multiscale Feature Learning With

Deep ConvNet for Intelligent Spindle Bearing Fault Diagnosis, IEEE Transactions on

Instrumentation and Measurement, Vol. 66, pp. 1926–1935.

Du, W., Tao, J., Li, Y., and Liu, C. (2014) Wavelet leaders multifractal features based

fault diagnosis of rotating mechanism, Mechanical Systems and Signal Processing,

Vol. 43, pp. 57–75.

Eren, L. (2017) Bearing fault detection by one-dimensional convolutional neural

networks, Mathematical Problems in Engineering, Vol. 2017, pp. 1-9.

95

Eren, L., Ince, T. and Kiranyaz, S. (2019) A Generic Intelligent Bearing Fault

Diagnosis System Using Compact Adaptive 1D CNN Classifier, Journal of Signal

Processing Systems, Vol. 91, pp. 179–189.

Ergin, S., Uzuntas, A. and Gulmezoglu, M. B. (2012) Detection of stator, bearing and

rotor faults in induction motors, Procedia Engineering, Vol. 30, pp. 1103–1109.

Ferreira, F. J. T. E. and De Almeida, A. T. (2012) Induction motor downsizing as a

low-cost strategy to save energy, Journal of Cleaner Production, Vol. 24, pp. 117–131.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,

Marchand, M., and Lempitsky, V. (2016) Domain-Adversarial Training of Neural

Networks, Journal of Machine Learning Research, vol. 17, pp. 1–35.

Gao, S., Wang, X., Miao, X., Su, C., and Li, Y. (2019) ASM1D-GAN: An Intelligent

Fault Diagnosis Method Based on Assembled 1D Convolutional Neural Network and

Generative Adversarial Networks, Journal of Signal Processing Systems, Vol. 10, pp.

1237–1247.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014) Generative Adversarial Networks,

Communications of the ACM, Vol. 63, pp. 139–144.

Guo, L., Lei, Y., Xing, S., Yan, T., and Li, N. (2019) Deep Convolutional Transfer

Learning Network: A New Method for Intelligent Fault Diagnosis of Machines with

Unlabeled Data, IEEE Transactions on Industrial Electronics, Vol. 66, pp. 7316–7325.

Guo, X., Chen, L. and Shen, C. (2016) Hierarchical adaptive deep convolution neural

network and its application to bearing fault diagnosis, Measurement, Vol. 93, pp. 490–

502.

Harris, T. A. (2001) Rolling bearing analysis. 4th Edition. New York: John Wiley &

Sons.

Hoang, D. T. and Kang, H. J. (2019) Rolling element bearing fault diagnosis using

convolutional neural network and vibration image, Cognitive Systems Research, Vol.

53, pp. 42–50.

Huang, H. and Baddour, N. (2019) Bearing Vibration Data under Time-varying

Rotational Speed Conditions, Data in Brief, Vol. 21, pp. 1745-1749.

96

Industry Report. (2021). Electric Motor Market Size, Share and Growth [Online]

Available at: https://www.fortunebusinessinsights.com/industry-reports/electric-

motor-market-100752 (Accessed: 10 January 2021).

Ince, T, Kiranyaz, S., Eren, L., Askar, M., and Gabbouj, M. (2016) Real-Time Motor

Fault Detection by 1-D Convolutional Neural Networks, IEEE Transactions on

Industrial Electronics, Vol. 63, pp. 7067–7075.

Ince, T., Malik, J., Devecioglu, O. C., Kiranyaz, S., Avci, O., Eren, L., and Gabbouj

M. (2021) Early Bearing Fault Diagnosis of Rotating Machinery by 1D Self-

Organized Operational Neural Networks, IEEE Access, Vol. 9, pp. 139260–139270.

Jang, G. B. and Cho, S. B. (2021) Feature Space Transformation for Fault Diagnosis

of Rotating Machinery under Different Working Conditions, Sensors, Vol. 21, pp.

1417.

Jauregui Correa, J. C. A. and Lozano Guzman, A. A. (2020) Mechanical Vibrations

and Condition Monitoring. 1st Edition. Academic Press.

Jia, F., Lei, Y., Lin, J., Zhou, X., and Lu, N. (2016) Deep neural networks: A promising

tool for fault characteristic mining and intelligent diagnosis of rotating machinery

with massive data, Mechanical Systems and Signal Processing, Vol. 72-73, pp. 303–

315.

Jiang, H., Li, X. Shao, H., and Zhao, K. (2018) Intelligent fault diagnosis of rolling

bearings using an improved deep recurrent neural network, Measurement Science and

Technology, Vol. 29, pp. 065107.

Jiang, W., Hong, Y., Zhou, B., He, X., and Cheng, C. (2019) A GAN-Based Anomaly

Detection Approach for Imbalanced Industrial Time Series, IEEE Access, Vol. 7, pp.

143608-143619

Jin, X., Zhao, M., Chow, T. W. S. and Pecht, M. (2014) Motor bearing fault diagnosis

using trace ratio linear discriminant analysis, IEEE Transactions on Industrial

Electronics, Vol. 61, pp. 2441–2451.

Kingma, D. P. and Ba, J. L. (2015) Adam: A method for stochastic optimization, 3rd

International Conference on Learning Representations, pp. 1–15.

97

Kiranyaz, S., Ince, T., Iosifidis, A., and Gabbouj, M. (2020) Operational neural

networks, Neural Computing and Applications, Vol. 32, pp. 6645–6668.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., and Inman D. J. (2021)

1D convolutional neural networks and applications: A survey, Mechanical Systems

and Signal Processing, Vol. 151, p. 107398.

Kiranyaz, S., Malik, J., Abdallah, H. B., Ince, T., Iosifidis, A., and Gabbouj, M. (2021)

Self-organized Operational Neural Networks with Generative Neurons, Neural

Networks, Vol. 140, pp. 294–308.

Kiranyaz, S., Ince, T. and Gabbouj, M. (2016) Real-Time Patient-Specific ECG

Classification by 1-D Convolutional Neural Networks, IEEE Transactions on

Biomedical Engineering, Vol. 63, pp. 664–675.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and

Jackel, L. D. (1989) Backpropagation applied to handwritten zip code recognition,

Neural Computation, Vol. 1, pp. 541–551.

Li, Q., Chen, L., Shen, C., Yang, B., and Zhu, Z. (2019) Enhanced generative

adversarial networks for fault diagnosis of rotating machinery with imbalanced data,

Measurement Science and Technology, Vol. 30, pp. 115005.

Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. (2018) Adaptive Batch Normalization

for practical domain adaptation, Pattern Recognition, Vol. 80, pp. 109–117.

Liu, H., Zhou, J., Zheng, Y., Jiang, W., and Zhang, Y. (2018) Fault diagnosis of rolling

bearings with recurrent neural network-based autoencoders, ISA transactions, Vol.

77, pp. 167–178.

Lu, C., Wang, Z., Qin, W., and Ma, J. (2017) Fault diagnosis of rotary machinery

components using a stacked denoising autoencoder-based health state identification,

Signal Processing, Vol. 130, pp. 377–388.

Lu, W., Wang, X., Yang, C., and Zhang, T. (2015) A novel feature extraction method

using deep neural network for rolling bearing fault diagnosis, Proceedings of the 2015

27th Chinese Control and Decision Conference, pp. 2427–2431.

98

Mao, W., Liu, Y., Ding, L., and Li, Y. (2019) Imbalanced fault diagnosis of rolling

bearing based on generative adversarial network: A comparative study, IEEE Access,

Vol. 7, pp. 9515–9530.

Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., Baalen, M., and

Blankevoort, T. (2021) A White Paper on Neural Network Quantization, arXiv

preprint

Novac, P. E., Boukli Hacene, G., Pegatoquet, A., Miramond, B., and Gripon, V. (2021)

Quantization and deployment of deep neural networks on microcontrollers, Sensors,

Vol. 21, pp. 2984

Pan, H., He, X., Tang, S., and Meng, F. (2018) An improved bearing fault diagnosis

method using one-dimensional CNN and LSTM, Journal of Mechanical Engineering,

vol. 64, pp. 443–452.

Qian, N. (1999) On the momentum term in gradient descent learning algorithms,

Neural Networks, Vol. 12, pp. 145–151.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (2013) Learning Internal

Representations by Error Propagation, Readings in Cognitive Science: A Perspective

from Psychology and Artificial Intelligence, Vol. 1., pp. 399–421.

Shao, H., Jiang, H., Zhao, H., and Wang, F. (2017) A novel deep autoencoder feature

learning method for rotating machinery fault diagnosis, Mechanical Systems and

Signal Processing, Vol. 95, pp. 187–204.

STMicroelectronics. (2021). X-CUBE-AI - AI expansion pack for STM32CubeMX

[Online]. Available at: https://www.st.com/en/embedded-software/x-cube-ai.html.

(Accessed: 10 October 2021).

Tang, H. and Jia, K. (2019) Discriminative Adversarial Domain Adaptation, AAAI

2020 - 34th AAAI Conference on Artificial Intelligence, pp. 5940–5947.

TensorFlow Lite. (2021). Build and convert models [Online]. Available at:

https://www.tensorflow.org/lite/microcontrollers/build_convert?hl=en. (Accessed: 15

September 2021).

99

TensorFlow Lite. (2021). Post-training quantization [Online]. Available at:

https://www.tensorflow.org/lite/performance/post_training_quantization?hl=en.

(Accessed: 11 September 2021).

Wang, F., Dun, B., Deng, G., Li, H., and Han, Q. (2018) A deep neural network based

on kernel function and auto-encoder for bearing fault diagnosis, I2MTC 2018 - 2018

IEEE International Instrumentation and Measurement Technology Conference:

Discovering New Horizons in Instrumentation and Measurement Proceedings, pp. 1–

6.

Wang, H., Xu, J., Yan, R., Sun, C., and Chen, X. (2020) Intelligent Bearing Fault

Diagnosis Using Multi-Head Attention-Based CNN, Procedia Manufacturing, Vol. 49,

pp. 112–118.

Xia, M., Li, T., Xu, L., Liu, L., and de Silva, C. W. (2018) Fault Diagnosis for Rotating

Machinery Using Multiple Sensors and Convolutional Neural Networks, IEEE/ASME

Transactions on Mechatronics, Vol. 23, pp. 101–110.

ZHANG, J., Sun, Y., Guo, L., Gao, H., Hong, X., and Song, H. (2020) A new bearing

fault diagnosis method based on modified convolutional neural networks, Chinese

Journal of Aeronautics, Vol. 33, pp. 439–447.

Zhang, W., Peng, G., Li, C., Chen, Y., and Zhang, Z. (2017) A New Deep Learning

Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on

Raw Vibration Signals, Sensors, Vol. 17, pp. 425.

Zhang, W., Peng, G. and Li, C. (2017) Bearings Fault Diagnosis Based on

Convolutional Neural Networks with 2-D Representation of Vibration Signals as

Input, MATEC Web of Conferences, Vol. 95, pp. 13001.

Zhao, D., Liu, F. and Meng, H. (2019) Bearing Fault Diagnosis Based on the

Switchable Normalization SSGAN with 1-D Representation of Vibration Signals as

Input, Sensors, Vol. 19, pp. 2000.

Zhou, F., Yang, S., Fujita H., Chen, D., and Wen, C. (2020) Deep learning fault

diagnosis method based on global optimization GAN for unbalanced data,

Knowledge-Based Systems, Vol. 187, pp. 104837.

100

Zhuang, Z., Lv, H., Xu, J., Huang, Z., and Qin, W. (2019) A Deep Learning Method

for Bearing Fault Diagnosis through Stacked Residual Dilated Convolutions, Applied

Sciences, Vol. 9, pp. 1823.

