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Continuous machine monitoring provides a real-time intelligence on the status and 

health of the machinery; hence it is a very common practice that avoids unexpected 

machine failures in the industry. One of the most common causes of rotating machine 

failures are bearing faults, and early detection of bearing defects allows replacement 

of faulty bearing rather than the motor itself. Therefore, the lifetime and condition of 

electric motor bearings are of great interest to end users to sustain continuous plant 

operation. Traditional bearing fault detection systems perform classification using 

hand-crafted features; hence they require significant computational cost, avoiding real-

time applications. On the other hand, 1D Self-Organized Operational Neural Networks 

(1D Self-ONNs) and its special case 1D Convolutional Neural Networks (1D CNNs) 
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are the promising alternatives that encapsulates feature extraction and classification 

phases into a single learning body, thus allowing more efficient systems in terms of 

computational complexity. In this study, first, the effectiveness of 1D Self-ONNs and 

CNNs for bearing fault diagnosis is shown on two benchmark datasets. In addition, 

using an on-board accelerometer, several minutes of 3-axis accelerometer data is 

collected from two different single-phase induction motors with four different bearing 

health conditions on the motor test setup at Izmir University of Economics. A 1D CNN 

model is then trained, quantized, and deployed to Arm Cortex-M4 based 

microcontroller to evaluate the bearing fault diagnosis performance in real-world 

scenario. The experimental results indicate that it is feasible to detect and classify 

bearing faults in real-time on low-power microcontrollers using 1D CNNs. 

 

Keywords: Embedded Machine Learning, Self-Organized Operational Neural 

Networks (Self-ONNs), Convolutional Neural Networks (CNNs), Condition-Based 

Monitoring (CBM), Rolling Element Bearings (REBs), Bearing Fault Detection and 

Diagnosis (BFDD). 
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ÖZET 

 

 

 

1B EVRİŞİMSEL SİNİR AĞLARI İLE MİKRODENETLEYİCİ 

TABANLI GERÇEK ZAMANLI MOTOR RULMAN ARIZASI 

TESPİTİ VE TEŞHİSİ 
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Sürekli makine durum izlemesi, makinelerin durumu ve sağlığı hakkında gerçek 

zamanlı bilgi sağlaması nedeniyle endüstride beklenmedik makine arızalarını önleyen 

çok yaygın bir uygulamadır. Dönen makine arızalarının en yaygın nedenlerinden biri 

rulman arızalarıdır ve rulman arızalarının erken tespiti, motorun kendisinden ziyade 

arızalı rulmanın değiştirilmesini sağlar. Bu nedenle, elektrik motor rulmanlarının ömrü 

ve durumu, endüstriyel tesislerin kesintisiz çalışmasını sürdürmek için son kullanıcılar 

açısından büyük önem taşımaktadır. Geleneksel rulman arıza tespit sistemleri, manuel 

öznitelikler çıkararak sınıflandırma gerçekleştirir ve yüksek işlem gereksinimi 

sebebiyle gerçek zamanlı uygulamayı zorlaştırırlar. Öte yandan, 1B Operasyonel Sinir 
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Ağları (1B OSA) ve bunların özel bir durumu olan 1B Evrişimsel Sinir Ağları (1B 

ESA), otomatik öznitelik çıkarma ve sınıflandırma aşamalarını tek bir öğrenme 

gövdesinde toplayan daha az işlem gerektiren verimli alternatiflerdir. Bu çalışmada, 

ilk olarak, 1B OSA’ların ve ESA'ların rulman arıza teşhisindeki etkinliği iki açık 

kaynak veri seti kullanılarak gösterilmiştir. Ayrıca, İzmir Ekonomi Üniversitesi'ndeki 

motor test düzeneği kullanılarak iki çeşit tek fazlı asenkron motordan dört farklı 

rulman sağlığı koşulu için birkaç dakikalık 3 eksen ivmeölçer verisi toplanmıştır. 

Toplanan veri kullanılarak, bir 1B ESA modeli eğitilip, model katsayıları 

nicemlendikten sonra Arm Cortex-M4 tabanlı mikrodenetleyiciye yüklenmiştir ve bu 

sayede gerçek bir motor düzeneğinde modelin rulman arıza teşhis performansı 

gözlemlenmiştir. Deneysel sonuçlar, 1B ESA’lar kullanılarak düşük güçlü 

mikrodenetleyiciler ile rulman hatalarının gerçek zamanlı tespit ve teşhisinin mümkün 

olduğunu göstermektedir. 

Anahtar Kelimeler: Gömülü Makine Öğrenmesi, Operasyonel Sinir Ağları (OSA), 

Evrişimsel Sinir Ağları (ESA), Durum Bazlı Bakım, Bilyalı Rulmanlar, Rulman 

Arızası Tespit ve Teşhisi. 
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CHAPTER 1: INTRODUCTION  

 

Electrical machines are found in various industrial and commercial settings. 

The global electric motor market size was USD 106.45 billion in 2020. The market is 

estimated to grow from USD 113.14 billion in 2021 to USD 181.89 billion by 2028 at 

a compound annual growth rate (CAGR) of 7.0% during 2021-2028 (Industry Report, 

2021). The increase in worldwide power consumption and the increasing use of 

electrical machinery are the important aspects driving growth in the global electric 

motor market. The market size has also been increasing with the development of 

renewables sector and green transportation.  

 

Induction motors are the most common and frequently encountered machines 

in industrial, commercial, and residential settings. They are the essential components 

of industry due to their broad use in wide range of applications such as cooling, 

heating, and pumping. They are advantageous thanks to their low cost, simple and 

sturdy design, easy maintenance, and high power-to-weight ratio. Thanks to these 

factors, ac induction machines are dominant in industry, representing more than 90 

percent of installed motor capacity (Ferreira and De Almeida, 2012).  

 

Electric motor predictive maintenance aims to predict and correct motor faults 

before they become expensive and affect productivity. Rolling element bearings 

(REBs) are machine elements that are usually found in rotating equipment, and they 

are designed to support a load while minimizing friction. If they break suddenly, a 

catastrophic failure may occur resulting in associated high repair and replacement 

costs. 

 

REBs are mostly encountered in rotating machinery, but the bearings are not 

free from failure. Records indicate that faulty bearings contribute to around forty 

percent of induction motor failures (Ergin, Uzuntas and Gulmezoglu, 2012). They are 

the most significant reasons for machine breakdowns; thus, the lifetime and condition 

of a rolling element bearing are of interest to customers to sustain continuous 

operation. Early diagnosis of bearing defects allows bearing replacement rather than 
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complete electric motor replacement and it enhances safety, efficiency, reliability, and 

availability, resulting in reduced unexpected costs. However, although the replacement 

of faulty bearings is the most cost-effective solution, it is the most difficult one to 

detect. Accelerometers, thermocouples, microphones, piezo-velocity sensors, current 

sensors and many more devices could be used to detect bearing faults and researchers 

have been using these sensors for vibration monitoring, temperature monitoring, and 

acoustic emission monitoring of the rotating machines (Correa and Guzman, 2020). 

Using these condition monitoring techniques, many studies are also ongoing to build 

intelligent bearing fault detection and diagnosis (BFDD) systems.  

 

Signal-based, model-based, and knowledge-based approaches could be 

implemented for BFDD systems. Model-based methods require expert knowledge on 

the system dynamics, and it mainly uses predictions generated using mathematical 

models describing the healthy response of a system. A fault diagnosis algorithm then 

makes a decision on the status of the system using the model’s predicted output and 

the measured output. Fault diagnosis using model-based approach is straightforward 

if the model has no complex mapping with physical parameters, but the accuracy 

mostly increases with complexity of model representation. The vast majority of motor 

fault detection and diagnosis systems typically process raw motor vibration or current 

data. Moreover, in signal-based approaches, no explicit motor model is used in any of 

the signal processing stages. Various time, time-frequency and frequency domain 

signal processing techniques have been employed in signal-based fault diagnosis 

systems. These systems are prone to unknown or unbalanced conditions. In signal-

based systems, fault detection accuracy is usually increased with advanced signal 

processing tools, but they often result in increased computational complexity. Unlike 

model-based methods, which rely on expert knowledge, the knowledge-based 

approach is data-oriented and makes no assumptions about the physical model of the 

system. 

 

The knowledge-based approaches are investigated in two main groups: 

quantitative approaches based on machine learning and qualitative methods based on 

symbolic intelligence. Quantitative approaches could further be grouped into two main 

categories: unsupervised learning systems such as principal component analysis (PCA) 
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and K-means, and supervised learning systems such as support vector machines 

(SVMs), artificial neural networks (ANNs) and convolutional neural networks 

(CNNs). The diagnosis accuracy of knowledge-based approaches is strongly 

influenced by the quality of training data. 

 

Bearing failures often occur at specific fault frequencies in frequency spectrum 

and signal-based BFDD systems employ these frequencies to estimate the likelihood 

of a bearing problem. Furthermore, conventional machine learning models include a 

feature extraction mechanism to get a meaningful representation of the data, and it is 

followed by a classification stage that determines the condition of bearings from the 

extracted features. Even though satisfactory results of fault diagnosis accuracies were 

stated in the prior studies, various features and classifiers were used for this purpose. 

However, selecting the right feature is often quite troublesome, and manually selected 

or handcrafted features often result in information loss. Furthermore, as feature 

extraction often brings computational complexity to the system, its use in real-time 

condition monitoring applications may not be appropriate. Consequently, to avoid 

these limitations and achieve better performance at noisy environments, researchers 

have implemented several deep learning (DL) based methods that uses raw motor 

current or vibration data for early diagnosis of bearing defects.  

 

Ince et al. (2016) first proposed a unique method that utilizes 1D CNNs for 

BFDD. This work demonstrated CNNs’ ability to learn to extract discriminative 

features from the training data using a set of 1D filter kernels. In this model, following 

convolutional layers, a multilayer perceptron (MLP) was utilized to perform the 

classification task. The proposed method only performs hundreds of 1D convolutions 

to construct the output decision vector, making it suitable for real-time BFDD systems. 

As an extension of this work, 1D Self-organized Operational Neural Networks with 

generative neurons (1D Self-ONNs) was again proposed by (Ince et al., 2021). With 

this study, the superiority of 1D Self-ONNs over 1D CNNs was shown for the bearing 

fault severity level classification problem. The details of these studies along with the 

other deep learning-based BFDD approaches are given in Chapter 3. 
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In this thesis, a newly emerging paradigm, tiny machine learning (TinyML), is 

utilized for BFDD problem. TinyML aims to shrink and run deep neural networks on 

ultra-low power microcontrollers. First, shallow 1D CNN and Self-ONN models were 

trained and tested on Case Western Reserve University (CWRU) and University of 

Ottawa motor vibration data. Then, from two different single-phase induction motors, 

real motor vibration data was collected for healthy, outer-race, inner-race, and ball 

bearing fault conditions. Using this newly collected dataset, a shallow 1D CNN model 

was trained, quantized, and deployed to Arm Cortex-M4 based ultra-low-power 

STM32L4 series microcontroller. For this purpose, the two most popular embedded 

AI frameworks STM32Cube.AI and TensorFlow Lite for Microcontroller (TFLM) 

were used, and they were evaluated regarding test accuracy, average inference duration 

and memory footprint for this application. Finally, a large number of experiments were 

performed by inputting 3-axis real motor acceleration data to the deployed 1D CNN 

model to show that it is computationally feasible to detect motor bearing faults in real-

time using low-power microcontrollers. 

 

The rest of this thesis is organized as follows. Chapter 2 offers an introduction 

to rolling element bearing failure, fault stages and corresponding fault frequencies. 

State-of-the-art deep learning methods for bearing fault diagnosis are discussed in 

Chapter 3. Chapter 4 describes the CWRU and University of Ottawa bearing datasets 

used to train the 1D CNN and Self-ONN models and provides training and test results. 

Quantization and deployment of neural networks on microcontrollers are further 

studied in Chapter 5. Chapter 6 proceeds with experimental setup and on-device 

performance results. Finally, a conclusion of this study with a short summary and 

possible future work is given in Chapter 7. 
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CHAPTER 2: ROLLING ELEMENT BEARING FAILURE 

 

2.1 Failure Stages  

 

Rolling element bearings (REBs) are mechanical components present in almost 

all rotating machinery and they are undoubtedly one of the most abundant elements in 

industry. REBs can be found in everything from electric motors to conveyor systems 

and gearboxes. If a shaft needs to rotate, it is most likely supported by a REB. Their 

primary goal is to reduce rotational friction while also supporting radial or axial loads. 

REBs are composed of an inner ring and race, an outer ring and race, a set of rolling 

elements and the cage, as shown in Figure 1. In many applications, the outer ring is 

stationary, and the inner ring carries the rotating shaft. However, in some cases, while 

the outer ring rotates, the inner ring stays stationary. The cage is used to keep the 

rolling elements apart and evenly spaced. The shape of the rollers between the two 

rings determines the load a certain bearing can withstand, and this shape also affects 

the lubrication requirements. The most widely used type is the ball bearing and it is 

used for moderate loads.  

 

 

 

Figure 1. Rolling element bearing components. 
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In general, even if the installation and maintenance of REBs are performed 

properly, metal fatigue failure is still inevitable. At the same time, since bearings often 

work under harsh conditions, other sources of failures such as loss of lubrication, 

corrosion, contamination, and overheating may also exist (Bloch and Geitner, 1999). 

 

Based on the vibration frequencies generated by rolling elements hitting the 

defects in the outer and/or inner races, bearing faults can be grouped into four main 

failure stages. These four stages were defined by Technical Associates of Charlotte, 

P.C. (Harris, 2001) and each stage is discussed below. 

 

At the first stage of bearing failure, small pits start to appear in the inner and/or 

outer bearing race and impacts of rolling elements to these defects result in vibration 

activity at ultrasonic frequency range from around 20 kHz to 350 kHz. In stage 1, 

bearings should still be operating normally, and they do not need to be replaced. Even 

though there is no need for bearing replacement, stage 1 often gives the indication of 

lack of lubrication between the rolling elements and races, and if the bearing defects 

progresses in time, the amplitude peaks begin to appear at lower frequencies in the 

spectrum. 

 

In stage 2, when the bearing defects become larger, they start to ring at the 

natural frequency of the bearing components. At this stage, vibration activity can be 

observed in the frequency range from 500 Hz to 2 kHz. These resonance frequencies 

may occur due to bearing support structures or due to the components of the bearings 

themselves such as rolling elements and races. Progressive bearing wear usually 

generates sideband frequencies above and below the component or casing natural 

frequencies.  

 

In stage 3, if the bearing is removed, the defects and wear patterns can be 

clearly observed in the raceways. Bearings reaching this stage should be replaced in a 

short time for both critical and non-critical machinery. At this stage, characteristic 

frequencies may now be observed from the frequency spectrum. As wear progresses 

in this stage, well-formed sidebands accompany the fault frequencies and harmonics 



7 
 

(Harris, 2001). Furthermore, sidebands around the bearing component natural 

frequencies and the high frequency content evident in stages 1 and 2 continue to grow 

and become more evident at stage 3. 

 

Stage 4 takes place at the end of a bearing’s lifetime. In this stage, as the 

bearing defects progresses, rotor vibration increases, and rotor-related frequencies 

become dominant in the spectrum. A substantial decrease in the amplitude of the 

bearing component natural frequencies is also observed. At the same time, random 

high frequency vibration occurs, causing an increased noise floor (Harris, 2001). 

Bearings reaching this stage should be replaced immediately, otherwise with damage 

to other machine components, a catastrophic failure might happen.  

 

 

 

Figure 2. Bearing fault stages (Source: Eren, 2017). 
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In Figure 2, the frequency spectrum for all stages is shown. BPFI, BPFO and 

BSF represent ball pass frequency inner race, ball pass frequency outer race and ball 

spin frequency, respectively. 

 

2.2. Bearing Fault Frequencies 

 

The bearing fault characteristic frequencies are calculated using the bearing 

geometry and shaft speed. Figure 3 depicts the geometry of a commonly used ball 

bearing. 

 

 

 

Figure 3. The geometry of a ball bearing (Source: Eren, 2017). 

 

When one of the bearing components has a defect, a peak appears at a specific 

characteristic frequency. These vibration frequencies representing various fault 

locations are called Ball Pass Frequency Outer (BPFO) or outer-race fault frequency, 

Ball Pass Frequency Inner (BPFI) or inner-race fault frequency, Ball Spin Frequency 

(BSF) or ball fault frequency, and Fundamental Train Frequency (FTF) or cage fault 

frequency. The number of balls that pass through a specific location of the outer race 

during a full rotation of the shaft corresponds to BPF0, which is given by the equation: 
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𝐵𝑃𝐹𝑂 =
𝑁𝐵. f𝑟

2
 (1 −

𝐵𝐷

𝑃𝐷
cos 𝜑) 

 

Equation 1. Ball Pass Frequency Outer (BPFO). 

 

In this equation, 𝑓𝑟 represents rotor speed in revolutions per second, 𝑁𝐵 is the number 

of rolling elements (i.e., balls), and 𝜑 is the contact angle of the load from the radial 

plane (zero for ball bearings). On the other hand, Ball Pass Frequency Inner (BPFI) 

corresponds to the number of balls that pass through a given point of the inner race 

each time the shaft makes a complete turn, and BPFI can be calculated as: 

 

𝐵𝑃𝐹𝐼 =
𝑁𝐵. f𝑟

2
 (1 +

𝐵𝐷

𝑃𝐷
cos 𝜑) 

 

Equation 2. Ball Pass Frequency Inner (BPFI). 

 

Ball Spin Frequency (BSF) is the number of turns that a bearing ball makes during a 

full rotation of the shaft, and it is expressed as: 

 

𝐵𝑆𝐹 =
PD

2BD
 𝑓𝑟 (1 − (

𝐵𝐷

𝑃𝐷
cos 𝜑)

2

) 

 

Equation 3. Ball Spin Frequency (BSF). 

 

Finally, Fundamental Train Frequency (FTF) is the number of turns a bearing cage 

makes during a full rotation of the shaft, and it is given by the following equation: 

 

𝐹𝑇𝐹 =
1

2
𝑓𝑟 (1 −

𝐵𝐷

𝑃𝐷
cos 𝜑) 

 

Equation 4. Fundamental Train Frequency (FTF). 
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2.3. Sensor Selection 

 

Accelerometer sensors are perhaps the only sensors that can monitor the 

condition of a REB for all fault stages. They are usually recommended as they have 

the following advantages. First, by integration of acceleration signal, velocity 

information can be obtained for the evaluation of fault stages 3 and 4. For the earliest 

indication of a bearing fault, it is recommended to use an accelerometer sensor that has 

a high frequency range. A lubrication problem in the early stages, i.e., stage 1 and 2, 

often results in a bearing failure in the long run, and a wideband accelerometer may 

provide early signs of this problem avoiding further deterioration and maintenance 

costs. Velocity information can also be used to detect and correct problems such as 

misalignment and unbalance that may cause a bearing failure. Although the installation 

of accelerometers is relatively easy, their performance (e.g., frequency response) may 

degrade depending on the mounting location and installation techniques.  

 

Current sensors may also be utilized to diagnose bearing faults. However, they 

are often useful for stage 3 and 4 bearing defects, because the rotor and stator 

relationship is highly affected by the progressive bearing failure in these stages. Hence, 

current sensors are less sensitive than accelerometers for early stages of bearing 

failures. 

 

When a bearing protection is needed, temperature measurement might be 

considered. Resistive Temperature Devices (RTDs) and thermocouples are often used 

for bearing temperature monitoring. Temperature increase on the bearing could be 

detected when the bearing fault has reached to stage 4. However, different aspects such 

as the ambient temperature and air flow can affect the temperature readings, thus they 

should be considered when assessing the condition of the bearings. Temperature 

sensors are usually cheaper and physically smaller than vibration transducers, and they 

require much less power. Rolling element bearing P-F curve indicating the earliest 

fault detection point for different sensors is illustrated in Figure 4. 
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Figure 4. REB P-F curve indicating the earliest fault detection point for different 

sensors. 
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CHAPTER 3: DEEP LEARNING BASED APPROACHES FOR 

BEARING FAULT DIAGNOSIS  

 

3.1. Autoencoders 

 

As a specific type of feedforward neural networks, an autoencoder is 

commonly utilized as unsupervised learning mechanism that aims to transform its 

inputs to outputs with minimum distortion. Autoencoders can be encountered in 

numerous applications such as dimensionality reduction, feature extraction, image 

compression, denoising and generation. They were first proposed by Hinton and the 

PDP group (Rumelhart, Hinton and Williams, 2013), and employed to solve the 

problem of backpropagation without ground truth labels by using the input data as 

labels. In recent years, researchers have been using auto-encoders as an unsupervised 

feature extraction method and as a greedy layer-wise neural network pre-training 

method to avoid vanishing gradients in layers close to the input and allow very deep 

neural networks achieve improved performance. 

 

 

 

Figure 5. Autoencoder architecture. 
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As illustrated in Figure 5, the autoencoder topology contains two main parts: 

encoder and decoder. They are both fully-connected feedforward neural networks. The 

encoder network can be represented by an encoding function 𝑝𝜃. From the training 

dataset {𝒙𝑚}𝑚=1
𝑀 , each signal 𝒙𝑚 is encoded to get a code representation as: 

 

𝒉𝑚 = 𝑝𝜃(𝒙𝑚) 

 

Equation 5. Autoencoder encoding function. 

 

where 𝒉𝑚 is the encoded vector in the hidden layer obtained using 𝒙𝑚. 

 

Then, the decoding function 𝑞𝜃′ maps the code 𝒉𝑚 from lower dimensional space back 

into higher dimensional space to produce reconstructed output vector �̃�𝑚 as given in 

Equation 6. 

 

�̃�𝑚 = 𝑞𝜃′(𝒉𝑚) 

 

Equation 6. Autoencoder decoding function. 

 

The parameters are learned to reconstruct the input as original output with a minimum 

loss 𝐿(𝒙, �̃�) (usually mean-squared-error) for the 𝑀 training examples. Affine 

mappings are often used for both the encoder and decoder parts, and they are followed 

by nonlinear activation functions as given in equations 7 and 8. 

 

𝑝𝜃(𝒙) = 𝑓(𝑾𝒙 + 𝒃) 

 

Equation 7. Autoencoder encoder mapping. 

 

𝑞𝜃′(𝒙) = 𝑔(𝑾𝑻𝒙 + 𝒄) 

 

Equation 8. Autoencoder decoder mapping. 
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where 𝑓 and 𝑔 are the encoder and decoder activation functions, respectively. 

Therefore, weight matrices 𝑾 and 𝑾𝑻, and the bias vectors 𝒃 and 𝒄 are the learned 

parameters for an autoencoder architecture. 

 

In Figure 5, an autoencoder with one hidden layer is given. This hidden layer 

defines a code representing the corresponding input, and this code is further fed into 

the decoder. The size of the hidden layer, i.e., code size, is a hyperparameter which we 

can decide before training the autoencoder. For the training, the network usually takes 

the mean-squared-error of the output and the original input to generate an output 

similar to the input. Once the network is trained, the encoder is kept but the decoder 

part is removed. Therefore, the encoder's output contains a sparse (feature) 

representation of the input which may be used in subsequent classifiers. 

 

Many studies utilizing autoencoders for bearing diagnosis have been published 

in the literature. One of the first studies was stacked autoencoders by Jia et al. (2016). 

In this work, the input to the stacked autoencoder model was the frequency spectra of 

the raw vibration signal. This stacked autoencoder based DNN was pre-trained layer 

by layer sequentially in an unsupervised way, and the output layer of the network was 

used for classification. In this study, the sub-datasets A (1 hp), B (2 hp), C (3 hp) and 

D (1-3 hp) of CWRU bearing data was used to assess the performance of this model, 

and the number of classes is 10, which includes the severity and location of the bearing 

fault. This method achieved a high testing accuracy above 99% in all sub-datasets. 

 

 Lu et al. (2015) also used a DNN architecture formed by stacked autoencoders. 

First, they trained an autoencoder with the input set, and obtained the corresponding 

feature vector. Then, the output layer of the first autoencoder was removed and the 

feature vector was used as input set for the next autoencoder. By iteratively executing 

these steps, a DNN structure could be formed. This work used the CWRU bearing data 

with 3 bearing fault locations (IR, OR and BF) and 2 fault sizes (0.007 and 0.014 

inches) under no load condition (0 hp), thus the number of classes was 6. The input 

vibration data was preprocessed in this work. First, the data was segmented into 600 

time-domain samples with an overlap of 80%. Then, by taking the Fast Fourier 
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Transform (FFT) of the input signal, its amplitude of spectrum was obtained. Since the 

amplitude of frequency was too small, they multiplied the coefficients by 10. Once the 

feature vectors of the DNN was obtained, PCA method was implemented to reduce 

the dimension of the data for visualization. 

 

Some other studies that utilize autoencoders for bearing fault diagnosis on 

CWRU dataset were conducted by Lu et al. (2017), (Guo, Chen and Shen, 2016), and 

(Zhang et al., 2019), and the researches by (Shao et al., 2017) and (Wang et al., 2018) 

are some examples that uses autoencoders on different datasets. 

 

3.2. Generative Adversarial Networks 

 

Generative Adversarial Networks (GANs) were first introduced by 

(Goodfellow et al., 2014), and they have gained tremendous interest in deep learning. 

In an adversarial learning process, a generative model G captures the data distribution, 

whereas a discriminative model D is used to estimate the probability that a sample 

came from the training data rather than G. GANs are composed of two neural 

networks, i.e., discriminator D and generator G, as shown in Figure 6. With the value 

function given in Equation 9, this topology is equivalent to a two-player minimax 

game.  

 

𝑀𝑖𝑛𝐺𝑀𝑎𝑥𝐷𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))] 

 

Equation 9. Minimax value function for GANs. 

 

In this equation, 𝐷(𝑥) is the discriminator's probability estimation of real data instance 

x being real, 𝐺(𝑧) is the generator's output when noise z is given as input, 𝐷(𝐺(𝑧)) is 

the discriminator's estimate of the probability that a fake instance is real, and 𝐸 means 

the expected value. The equation comes from the cross-entropy between the generated 

and real distributions. The generator does not have a direct effect on the log 𝐷(𝑥) term 

in the value function, thus minimizing the loss is the same as minimizing 

log(1 − 𝐷(𝐺(𝑧))) for the generator. 
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In a GAN architecture, the generator takes in random noise and gradually 

learns to output fake data by leveraging feedback from the discriminator throughout 

this two-player minimax game. Generator’s aim is to make the discriminator classify 

its output as real. The discriminator, on the other hand, is a simple classifier that aims 

to discriminate real data from the data created by the generator. Depending on the type 

of data its classifying, any network architecture can be used in the discriminator part.  

 

The discriminator's training data is made up of real data instances and fake data 

instances created by the generator as shown in Figure 6. The discriminator uses real 

data instances as positive examples, and fake data instances as negative examples 

during training. Consequently, in a GAN training process, the generator tries to reach 

real data distribution, and the training eventually reaches Nash equilibrium, where the 

discriminator has a 50% accuracy. 

 

  

 

Figure 6. Architecture of GANs. 

 

Many studies in the literature have used GANs to diagnose bearing faults. They 

are especially useful when we want to train a model on a source dataset and then test 

it on a target data which has different distribution. Domain adaptation is required to 

reduce dataset bias and improve generalization capability of a deep learning model.  
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 (Cheng et al., 2020) proposed a Wasserstein Distance-based Deep Transfer 

Learning (WD-DTL) network. With an adversarial training process, WD-DTL seeks 

domain-invariant features by a CNN and minimize the distribution between source and 

target domain. They implemented Wasserstein-1 distance between two different 

feature distributions through adversarial training by employing a domain alignment 

critic. In this study, the authors used 4 different kinds of bearing health condition 

(healthy, outer-race, inner-race, and ball fault) from CWRU dataset. As a pre-

processing step, power spectrum of input signal was computed, and the left side was 

clipped.  Three different scenarios were considered. In the first case, the authors tried 

to transfer knowledge between different motor loading conditions and obtained 

95.75% average accuracy across all load domains. In the second scenario, they 

attempted unsupervised domain adaptation between two sensor locations (fan-end and 

drive-end) and achieved 64.20% average accuracy. In the last scenario, the same 

setting was used as in the previous one, but 0.5% of labeled data from target domain 

was introduced to the source data to enhance the performance (average accuracy of 

64.92%). 

 

 (Zhou et al., 2020) utilized DNN's feature extraction capabilities and GAN's 

data generating capabilities to address dataset imbalances. The bearing fault diagnosis 

approach in this study is built upon global optimization GAN. The generator was 

designed such that it generates features for unbalanced class samples using some 

labeled fault samples by an autoencoder. The training process of the generator was 

guided by fault feature and fault diagnosis error, and the discriminator was designed 

to filter unqualified generated samples from the qualified ones for more accurate fault 

diagnosis. For data imbalance ratio of 10:1, the diagnosis accuracy was 94.58%, 

96.85%, and 93.28% for inner-race, ball and outer-race fault, respectively.  

 

Some other studies utilizing GANs for bearing fault diagnosis on CWRU 

dataset were conducted by (Jiang et al., 2019), (Zhao, Liu and Meng, 2019), and (Mao 

et al., 2019), and the studies by (Li et al., 2019) and (Gao et al., 2019) are some 

examples that use GANs on different dataset. 
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3.3. Recurrent Neural Networks  

 

A Recurrent Neural Network (RNN) is a kind of ANN that allows previous 

outputs to be processed as inputs while having hidden states. RNNs contain a built-in 

feedback loop, which allows them to remember current and past information when 

arriving at a decision. RNNs are often preferred when data is sequential, and the next 

data depends on the previous data point. Therefore, they are often used in text, speech 

recognition and natural language processing applications. Typical RNN architecture is 

shown in Figure 7. For each timestep 𝑡, the activation 𝑎〈𝑡〉 and the output 𝑦〈𝑡〉 are 

expressed as given in Equation 10 and Equation 11. 

 

𝑎〈𝑡〉 = 𝑔1(𝑊𝑎𝑎𝑎〈𝑡−1〉 + 𝑊𝑎𝑥𝑥〈𝑡〉 + 𝑏𝑎) 

 

Equation 10. The activation for an RNN. 

 

𝑦〈𝑡〉 = 𝑔2(𝑊𝑦𝑎𝑎〈𝑡〉 + 𝑏𝑦) 

 

Equation 11. The output for an RNN. 

 

where 𝑔1, 𝑔2 represent the activation functions and 𝑊𝑎𝑎, 𝑊𝑎𝑥 , 𝑊𝑦𝑎, 𝑏𝑎, 𝑏𝑦 are 

coefficients shared temporally. 
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Figure 7. Architecture of a typical RNN. 

 

In an RNN, the exploding or vanishing gradients problem is often encountered. 

Due to the multiplicative gradient, which might be exponentially increasing or 

decreasing with the number of layers, it is difficult to capture long-term dependencies. 

For that reason, even though they were first introduced in 1980s, they had limited 

applications. In order to cope with the exploding gradient problem, gradient clipping 

is often performed by limiting the maximum value of the gradient. On the other hand, 

to solve the vanishing gradient problem encountered by traditional RNNs, Gated 

Recurrent Unit (GRU) and Long Short-Term Memory units (LSTM) were introduced. 

As a generalization of GRU, LSTM architecture is extended by adding specific gates 

especially forget gate. An LSTM can then forget and remember patterns selectively 

for a long duration of time. In Figure 8, the internal structure of an LSTM cell is shown. 

In this figure, Γu, Γr , Γf , and Γo  are used for the update gate, relevance gate, forget 

gate and output gate, respectively. Each gate could be described by the Equation 12.  

 

Γ = σ(𝑊𝑥〈𝑡〉 + 𝑈𝑎〈𝑡−1〉 + 𝑏) 

 

Equation 12. The general gate equation in an LSTM. 
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In the Equation 12, σ is the sigmoid function, and 𝑊, 𝑈 and 𝑏 are the coefficients 

specific to the gate. Then, the characterizing equations of an LSTM architecture are 

summarized in the following equations as: 

 

�̃�〈𝑡〉 = tanh(𝑊𝑐[𝛤𝑟 ∗ 𝑎〈𝑡−1〉, 𝑥〈𝑡〉 ] + 𝑏𝑐) 

 

Equation 13. Cell update equation in an LSTM. 

 

𝑐〈𝑡〉 = 𝛤𝑢 ∗ �̃�〈𝑡〉 + 𝛤𝑓 ∗ 𝑐〈𝑡−1〉 

 

Equation 14. Cell state equation in an LSTM. 

 

𝑎〈𝑡〉 = 𝛤𝑜 ∗ 𝑐〈𝑡〉 

 

Equation 15. Output equation in an LSTM. 

 

In these equations, the element-wise multiplication between two vectors is denoted by 

∗ sign. 

 

 

 

Figure 8. Internal structure of an LSTM cell.   



21 
 

Pan et al. (2018) proposed a BFDD method based on the combination of 1D 

CNN and LSTM architectures. The input to the model was the raw data. The 

architecture was formed by a 1D convolutional, and a pooling layer followed by an 

LSTM layer, and a SoftMax at the output of this classifier. The model was evaluated 

for a single loading condition, and the average accuracy rate was over 99%. 

 

 Liu et al. (2018) proposed an RNN in the form of an autoencoder for BFDD. 

Using a Gated Recurrent Unit (GRU)-based denoising autoencoder, this approach 

attempts to predict multiple vibration values of the bearings for the upcoming period 

from the previous one. This GRU-based denoising autoencoders were trained for each 

fault class. Then, for an input, the reconstruction error between the output data from 

the network and the next period data were utilized to spot an anomaly and classify 

bearing defects. The diagnosis accuracy of this method was higher than 96% even for 

1 dB SNR. (Jiang et al., 2018) and (Zhuang et al., 2019) also use RNN and LSTM for 

BFDD problem on CWRU dataset. 

 

3.4. Convolutional Neural Networks 

 

Inspired by the mammalian visual system, a Convolutional Neural Network 

(CNN) that can be trained using backpropagation was first proposed by (LeCun et al., 

1989) as a space invariant artificial neural network built upon the shared-weight 

architecture of the convolution kernels. CNNs gained immense popularity when they 

exhibited superior performance compared to other models at ILSVRC (ImageNet 

Large Scale Visual Recognition Challenge). They are feedforward neural networks 

and have the following four layers: input, convolutional, pooling and fully-connected 

layers. An example input may be an image for a 2D CNN or raw vibration data for a 

1D CNN. Convolutional layers of a CNN are used to extract discriminative features 

using a collection of convolution kernels. Two properties “weight sharing” and 

“limited connectivity” of convolutional layers separate CNNs from the conventional 

MLPs. After sliding the input features through the convolutional kernels, pooling 

layers could then be employed to decrease the size of feature maps, resulting in reduced 

number of parameters and computation in the network. Final layers of CNNs are fully-
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connected MLPs, and they are used for the purpose of classifying extracted features. 

In the following section, the most popular 2D CNNs and the recent compact and 

adaptive 1D CNN architecture will be discussed in detail. However, this section will 

mainly focus on adaptive 1D CNNs since they provide various advantages and 

superiorities over 2D CNNs, especially for 1D data. 

 

3.4.1. 2D Convolutional Neural Networks 

 

In contrast to traditional MLPs which have scalar weights, input, and output, 

in 2D CNNs, each neuron has 2D planes for weights called kernels, as well as 2D input 

and output called feature maps. A sample 2D CNN configuration is illustrated in 

Figure 9. A 28 × 28-pixel single channel image is inputted to this network and the 

image is classified into two categories at the output. The network is composed of 2 

convolutional and pooling layers with 4 and 8 neurons, respectively. In this sample 2D 

CNN configuration, the first convolutional layer has 4 filters with the kernel size of 

(Kx=8, Ky=8), while 8 filters having a kernel size of (Kx=4, Ky=4) are used in the 

second convolution layer. In the convolutional layers, with convolution stride size of 

1 and no padding, the width and height of the input feature map will be reduced by 

(Kx-1, Ky-1) pixels, respectively. The feature map size will further be reduced by the 

amount of subsampling factors which are chosen as (Sx=3, Sy=3) for the first pooling 

layer and (Sx=4, Sy=4) for the second pooling layer. A dense layer with four neurons 

follows the last pooling layer. The output layer generates classification output, and the 

number of neurons is equal to the number of classes. 

 

 Forward propagation through this sample 2D CNN occurs in the following 

order. Firstly, A 28 × 28-pixel single channel image is inputted to this network. The 

input feature map of each neuron of the first convolutional layer is then produced by 

performing a linear convolution operation between this image and the associated filter. 
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Figure 9. An example of 2D CNN configuration. 

 

Once the convolution operation is performed, the input feature map of each 

convolutional neuron is passed through the activation function to produce the output 

feature map. This output feature map is now decimated by 3 × 3 kernel creating 7 × 7 

feature maps as a result of the first pooling layer. The same steps are repeated for the 

second convolution and pooling layers as the first one, and the second pooling layer's 

scalar outputs are finally inputted and forward propagated through the fully-connected 

and output layers to generate the final output that shows the classification result of the 

input image. 

 

The backpropagation (BP) algorithm is generally used in a CNN training 

process. The gradient magnitude of each network parameter (e.g., the weights of the 

convolutional and dense layers) is computed in each iteration of BP. Then, again in 

each iteration, these gradient magnitudes are used to update network parameters. 

Various gradient-descent optimization algorithms such as Adam (Kingma, 2015), 

Stochastic Gradient Descent (SGD) and SGD with momentum (Qian, 1999) are 

implemented in BP. (Kiranyaz, Ince and Gabbouj, 2016) provides a full explanation 

of BP algorithm for 2D CNNs. 

 

 (Guo, Chen and Shen, 2016) developed a novel hierarchical learning rate 

adaptive deep CNN (ADCNN) to diagnose bearing faults and predict their severity. In 

this paper, an adaptive learning rate and a momentum component was added to CNN 
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architecture to avoid training failure. The first layer of this ADCNN model was based 

on the classical LeNet5 model. The number of classes is four and includes the bearing 

health conditions healthy, outer-race, inner-race, and ball fault from CWRU dataset. 

The mean validation accuracy was 97.9% for 10-fold cross validation. The fault size 

was evaluated in the second layer of ADCNN. In each fault class, the bearing fault 

severity classification accuracy was above 99%. 

 

Xia et al. (2018) suggested a CNN-based bearing fault diagnosis approach that 

incorporates sensor fusion. 1D raw data from multiple sensors were layered row by 

row to construct a 2D matrix at the input of the proposed 2D CNN. The model was 

evaluated on CWRU bearing data. The 2D matrix at the input of this model was formed 

using the vibration signals from fand-end, drive-end, and base of the motor. These 

waveforms are stacked to form a 2D matrix. The average accuracy of 99.41% was 

achieved with multiple sensors, but the accuracy dropped to 98.35% when a single 

accelerometer was used. 

 

There are many studies utilizing CNNs for BFDD on the CWRU bearing 

dataset, and some of them are (Zhang et al., 2020), (Hoang and Kang, 2019), and 

(Zhang, Peng and Li, 2017). 

 

3.4.2. Adaptive 1D Convolutional Neural Networks 

 

2D CNNs are very useful for two-dimensional data, but a modified form of 2D 

CNNs called 1D Convolutional Neural Networks (1D CNNs) can rather be used for 

one-dimensional data. In the literature, 1D CNNs have been shown to outperform 2D 

CNNs in some applications that have limited labeled data with high variations 

(Kiranyaz et al., 2021). Training and inference duration can be significantly reduced 

using 1D CNNs with shallow architectures due to their low computational 

requirement. Therefore, they are ideal for real-time and low-cost applications. 
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Figure 10. The illustration of a sample 1D CNN configuration (Source: Kiranyaz et 

al., 2021). 

 

As demonstrated in Figure 10, 1D CNNs are made up of two unique layer 

types: 1D convolutional layers and dense layers. 1D convolutions, activation function 

and sub-sampling (pooling) operations take place in the CNN layers. The dense layers 

are also known as MLP layers since they are the same as the layers of a simple Multi-

layer Perceptron (MLP). Moreover, the input layer is just a passive layer that accepts 

raw one-dimensional data, and the output layer has the same number of neurons as the 

number of classes. 

 

The convolutional layers of a 1D CNN learn to extract discriminative features 

by processing raw 1D input, and these features are then used in the dense layers for 

classification. As a result, both feature extraction and classification tasks are combined 

in a 1D CNN to optimize classification performance. Some hyperparameters to tune 

are the number of hidden CNN and MLP layers and neurons, filter (kernel) size and 

subsampling factor in each convolutional layer, and the choice of pooling and 

activation functions. For the sample 1D CNN configuration given in Figure 10, there 

are three hidden convolutional and two hidden dense layers, subsampling factor is 4, 

and the filter size is 41 in all hidden convolutional layers.  
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Figure 11. Three successive convolutional layers of a 1D CNN (Source: Kiranyaz, Ince 

and Gabbouj, 2016). 

 

In place of the 2D matrices used in 2D CNNs for kernels and feature maps, 1D 

arrays are formed at each neuron’s input and output in the successive CNN layers as a 

consequence of 1D convolution and subsampling. Hence, 2D matrix operations such 

as 2D convolution (conv2D) and lateral rotation (rot180) are now replaced by their 1D 

counterparts, conv1D and reverse, in the forward and back-propagation phases of 1D 

CNN architecture (Kiranyaz et al., 2021). Therefore, the only operation with a 

significant computational cost is a sequence of 1D convolutions, i.e., linear weighted 

sums of two 1D arrays, and these operations during the forward and back-propagation 

could effectively be executed in parallel (Kiranyaz et al., 2021). Figure 11 depicts three 

successive convolutional layers of a 1D CNN. A sequence of 1D convolutions with 

1D filter kernels of size 3 are first performed at the kth neuron in the hidden CNN layer 

l. Then, the sum is passed through the activation function f, whose output is 

subsampled by the subsampling factor 2. The subsampling factor of the output 

convolutional layer could be adjusted to adapt the changes in the input layer 

dimension, resulting in an adaptive implementation. 
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In a 1D CNN topology, following the step-by-step explanations in the reference 

article (Kiranyaz, Ince and Gabbouj, 2016), we may first write the 1D forward 

propagation from the previous convolution layer l−1 to the input of kth neuron in the 

current layer l as, 

 

𝑥𝑘
𝑙 = 𝑏𝑘

𝑙 +  ∑ 𝑐𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘
𝑙−1, 𝑠𝑖

𝑙−1)

𝑁𝑙−1

𝑖=1

 

 

Equation 16. 1D convolution in a CNN layer. 

 

where 𝑥𝑘
𝑙  represents the input, 𝑏𝑘

𝑙  is a scalar bias of the kth neuron at layer l, and 𝑠𝑖
𝑙−1 

is the output of the ith neuron at layer l−1. 𝑤𝑖𝑘
𝑙−1 is the kernel from the the ith neuron 

at layer l−1 to the kth neuron at layer l. Then, the intermediate output of the 

neuron, 𝑦𝑘
𝑙 , can be written as follows: 

 

𝑦𝑘
𝑙 = 𝑓(𝑥𝑘

𝑙 ) 𝑎𝑛𝑑 𝑠𝑘
𝑙 = 𝑦𝑘

𝑙  ↓ 𝑠𝑠 

 

Equation 17. Output of the activation function and subsampling in a CNN layer. 

 

where 𝑠𝑘
𝑙   and “↓ss” represent the output of the kth neuron of the layer l, and the 

subsampling operation with the factor ss respectively. In this equation, 𝑓 is the 

activation function. 

 

 The backpropagation (BP) steps could be briefly summarized as follows. We 

start backpropagating the error from the output MLP layer. If l=1 for the input layer, 

l=L for the output layer, and 𝑁𝐿 for the number of classes in the dataset are used, then 

the mean-squared error (MSE), 𝐸𝑃, in the output layer for the input vector p, its 

corresponding target 𝒕𝑝, and output vector [𝑦1
𝐿,….𝑦𝑁𝐿

𝐿 ] can be expressed as follows: 
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𝐸𝑃 = 𝑀𝑆𝐸 (𝒕𝑝, [𝑦1
𝐿 , … . 𝑦𝑁𝐿

𝐿 ]
′
) = ∑(𝑦𝑖

𝐿 − 𝑡𝑖
𝑝)2

𝑁𝐿

𝑖=1

 

 

Equation 18. Mean-squared error at the output layer of a 1D CNN 

 

To apply the gradient descent method, this error should be minimized using the 

derivatives of the error with respect to each weight (𝑊𝑖𝑘
𝑙−1) and bias (𝑏𝑘

𝑙 ) connected to 

the corresponding neuron (i.e., kth neuron).  We now need to compute the derivative 

of the error. All the delta errors can be calculated by backpropagating the error through 

the MLP layers and once we have them, we can update the weights and bias of each 

neuron by gradient descent method using the Equation 19. Therefore, the delta error 

of the kth neuron at layer l (Δ𝑘
𝑙 =  

𝜕𝐸

𝜕𝑥𝑘
𝑙 ) is used to update the bias of that neuron and all 

the weights of the neurons in the preceding layer connected to that neuron using the 

chain rule as,  

 

𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙−1 = Δ𝑘

𝑙 𝑦𝑖
𝑙−1  𝑎𝑛𝑑  

𝜕𝐸

𝜕𝑏𝑘
𝑙 = Δ𝑘

𝑙  

 

Equation 19. Weight and bias sensitivities in the MLP layers of a 1D CNN. 

 

Then, the regular (scalar) BP can be performed from the first MLP layer to the last 

CNN layer as, 

 

𝜕𝐸

𝜕𝑠𝑘
𝑙 = Δs𝑘

𝑙 = ∑
𝜕𝐸

𝜕𝑥𝑖
𝑙+1

𝑁𝑙+1

𝑖=1

𝜕𝑥𝑖
𝑙+1

𝜕𝑠𝑘
𝑙 = ∑ Δ𝑖

𝑙+1

𝑁𝑙+1

𝑖=1

𝑤𝑘𝑖
𝑙  

 

Equation 20. BP from the first MLP layer to the last CNN layer in a 1D CNN. 
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When the first BP is initiated from the next layer l+1, to the current layer l, we can 

carry on the BP to the input delta, Δ𝑘
𝑙 , of the CNN layer l. If the zero order up-sampled 

map is given as, us𝑘
𝑙 = up(s𝑘

𝑙 ), then we can compute the delta error as, 

 

Δ𝑘
𝑙 =

𝜕𝐸

𝜕𝑦𝑘
𝑙

𝜕𝑦𝑘
𝑙

𝜕𝑥𝑘
𝑙 =

𝜕𝐸

𝜕𝑢𝑠𝑘
𝑙

𝜕𝑢𝑠𝑘
𝑙

𝜕𝑦𝑘
𝑙 𝑓′(𝑥𝑘

𝑙 ) = 𝑢𝑝(Δs𝑘
𝑙 )𝛽𝑓(𝑥𝑘

𝑙 ) 

 

Equation 21. The input delta, 𝛥𝑘
𝑙 , of the CNN layer l in a 1D CNN. 

 

where 𝛽 = (𝑠𝑠)−1, as each element of 𝑠𝑘
𝑙  was obtained by averaging l number of 

elements of the intermediate output, y𝑘
𝑙 . The inter-BP (among CNN layers) of the delta 

error can now be written as, 

 

Δs𝑘
𝑙 = ∑ 𝑐𝑜𝑛𝑣1𝐷𝑧(Δ𝑖

𝑙+1, 𝑟𝑒𝑣(𝑤𝑘𝑖
𝑙 ))

𝑁𝑙+1

𝑖=1

 

 
Equation 22. The inter-BP (among CNN layers) of the delta error in a 1D CNN. 

 

where rev(.) reverses the array and conv1Dz(.,.) is used to perform full 1D convolution 

with K–1 zero padding. 

 

The weight and bias gradient magnitudes are then computed from the following 

equation as, 

 

𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙 = 𝑐𝑜𝑛𝑣1𝐷(𝑠𝑘

𝑙 , Δ𝑖
𝑙+1)  𝑎𝑛𝑑  

𝜕𝐸

𝜕𝑏𝑘
𝑙 = ∑ Δ𝑘

𝑙 (𝑛)

𝑛

 

 

Equation 23. The weight and bias sensitivities of hidden convolutional layers in a 1D 

CNN. 
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Finally, after the weight and bias gradient magnitudes are calculated, they will be used 

to update weights and biases using the learning factor, 𝜀 as, 

 

𝑤𝑖𝑘
𝑙−1(𝑡 + 1) = 𝑤𝑖𝑘

𝑙−1(𝑡) − ε
𝜕𝐸

𝜕𝑤𝑖𝑘
𝑙−1   𝑎𝑛𝑑  𝑏𝑘

𝑙 (𝑡 + 1) = 𝑏𝑘
𝑙 (𝑡) − ε

𝜕𝐸

𝜕𝑏𝑘
𝑙  

 

Equation 24. Weight and bias update equations in a 1D CNN. 

 

To get an in-depth knowledge of how BP algorithm works in a 1D CNN, one can refer 

to the paper by (Kiranyaz, Ince and Gabbouj, 2016). The iterative nature of BP used 

to train the 1D CNN classifier can be summarized as follows (Kiranyaz et al., 2021): 

1) Initialize the weights and biases of the network randomly. 

2) For each BP iteration DO:  

a. For each training sample in the dataset, DO:  

i. FP: Feed the training sample to the input layer and forward propagate 

towards the output layer to find outputs of each neuron at each layer, 

𝑠𝑖
𝑙, ∀𝑖 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿].  

ii. BP: Compute the delta error at the output layer and carry on back-

propagating it to first hidden layer to compute the input delta errors, Δ𝑘
𝑙 , 

∀𝑘 ∈ [1, 𝑁𝑙], and ∀𝑙 ∈ [1, 𝐿].  

iii. PP: Post-process to compute the weight and bias sensitivities using 

the Equation 23.  

iv. Update: Update both the weights and biases of the network 

incrementally by the Gradient Descent update rule using the Equation 

24. 

  

 (Eren, Ince and Kiranyaz, 2019) proposed a generic BFDD method based on 

adaptive 1D CNNs. The adaptive 1D CNN classifiers were evaluated on two 

benchmark datasets: Case Western Reserve University (CWRU) and Intelligent 

Maintenance System (IMS) bearing data. The raw vibration data were preprocessed to 
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use more compact model. Preprocessing involves down sampling and normalization 

stages. A 1D CNN model with 3 convolutional and 2 dense layers were used. The 

number of classes was five, and they are inner-race fault, ball fault, and three kinds of 

outer-race faults (located at 3 o’clock, 6 o’clock which is orthogonal to the load zone 

and 12 o’clock). In this paper, 10-fold cross-validation was implemented and the 

overall diagnosis accuracy of 93.2% was obtained on CWRU data with these settings.  

 

3.5. Self-Organized Operational Neural Networks  

 

 Conventional CNN architecture is built upon the classical linear neuron model 

like MLPs, but it also introduces two additional constraints: weight sharing and kernel-

wise limited connections. Therefore, these constraints introduced the convolution 

equation (Equation 16) utilized in CNNs. Several studies have recently showed that 

CNNs that are based on the first-order linear neuron model may not achieve a sufficient 

degree of learning if a sufficient network depth is not ensured (Kiranyaz et al., 2021). 

To achieve a high heterogeneity level, Self-Organized Operational Neural Networks 

(Self-ONNs) have been proposed by (Kiranyaz et al., 2021). Self-ONNs with minimal 

network complexity have been proven to maximize the learning performance when the 

training data is scarce, and some examples of the superior regression capability of Self-

ONNs over image denoising, restoration and segmentation can be found in the 

following study (Kiranyaz et al., 2021). In this thesis, 1D Self-ONNs with generative 

neurons are also used for bearing fault severity classification on the mentioned 

benchmark datasets. The rest of this section briefly discusses 1D Self-ONNs and 

compare it to the 1D ONNs and CNNs. One can generalize the concepts for 2D Self-

ONNs easily, and the further details can be found in the paper published by (Kiranyaz 

et al., 2021). 

 

 Firstly, we can again think of 1D ‘same’ convolution operation with unit stride 

and the required amount of zero padding. In a 1D CNN, the output of kth neuron in the 

layer l can then be written as follows: 
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𝑥𝑘
𝑙 =  𝑏𝑘

𝑙 + ∑ 𝑥𝑖𝑘
𝑙

𝑁𝑙−1

𝑖=0

 

 

 

Equation 25. The output of kth neuron of the layer l in a 1D CNN. 

 

where 𝑏𝑘
𝑙  is the bias of the corresponding neuron, and 𝑥𝑖𝑘

𝑙  is given as, 

 

𝑥𝑖𝑘
𝑙 = 𝐶𝑜𝑛𝑣1𝐷(𝑤𝑖𝑘, 𝑦𝑖

𝑙−1)  𝑎𝑛𝑑  𝑥𝑖𝑘
𝑙 (𝑚) =  ∑ 𝑤𝑖𝑘

𝑙 (𝑟)𝑦𝑖
𝑙−1(𝑚 + 𝑟)

𝐾−1

𝑟=0

 

 

Equation 26. 1D convolution operation in CNN layers of a 1D CNN. 

 

In Equation 26, 𝑤𝑖𝑘 ∈  ℝ𝐾 is the kernel connecting the ith neuron of (l-1)th layer to 

kth neuron of lth layer, while 𝑥𝑖𝑘
𝑙 ∈  ℝ𝑀 is the input map, and 𝑦𝑖

𝑙−1  ∈  ℝ𝑀 is the (l-

1)th layer’s ith neuron’s output. 

 

The equation above can be generalized for an operational neuron as follows: 

 

𝑥𝑖𝑘
𝑙̅̅ ̅̅ (𝑚) =  𝑃𝑘

𝑙 (𝜓𝑘
𝑙 (𝑤𝑖𝑘

𝑙 (𝑟), 𝑦𝑖
𝑙−1(𝑚 + 𝑟)))

𝑟=0

𝐾−1

 

 

Equation 27. The output of generalized operational neuron. 

 

where 𝜓𝑙
𝑘(∙): ℝ𝑀×𝐾 →  ℝ𝑀×𝐾  and 𝑃𝑘

𝑙 (∙): ℝ𝐾 →  ℝ1  are called nodal and pool 

operators, respectively, assigned to the kth neuron of lth layer.  

 

 An optimal set of nodal 𝜓 and pool 𝑃 operators in a heterogenous ONN 

configuration could be searched iteratively from a potential set of operators using the 

Greedy Iterative Search (GIS) algorithm. Then, these operators are assigned 

to all neurons of the corresponding hidden layer to configure the final ONN. However, 

there are several drawbacks of conventional ONN architecture proposed in the 
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literature (Kiranyaz et al., 2020). The first issue is caused by the use of a single operator 

set for all neurons in a hidden layer, which limits heterogeneity. Secondly, hand-

crafting a collection of possible operators and looking for the best one for each neuron 

result in a significant overhead. Finally, for the given learning problem, the right 

operator may not be expressed with well-defined functions, so it may not adapt or 

customize the operators. 

 

To overcome these drawbacks, Self-ONNs with generative neurons were 

proposed. Self-ONNs have the capacity to self-organize network operators during 

training without the use of any operator set or a prior search process for optimal 

operators. Also, the use of a single nodal operator for all neurons in a hidden layer of 

an ONN is eliminated using the generative neuron concept in Self-ONN architecture. 

The core idea behind generative neurons is that each neuron may generate any 

combination of nodal operators, hence they do not have to be well-known functions 

such as linear, exponential and sinusoids. In Figure 12, 1D kernels of CNN, ONN and 

Self-ONN with generative neurons are shown. As seen in the figure, while the 

convolutional and operational neurons of the CNN and ONN architecture have fixed 

(static) nodal operators, Self-ONNs with generative neurons may produce any nodal 

operator Ψ for each kernel element during training. 

 

 

 

Figure 12. 1D nodal operations of the ith neuron of CNN (left), ONN (middle) and 

Self-ONN (right) (Source: Ince et al., 2021). 
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Nodal transformation in Self-ONNs can be formulated using the Taylor series 

function approximation. For an infinitely differentiable function 𝑓(𝑥), i.e., derivatives 

of all orders exist, Taylor series can be written about the point 𝑎 as, 

 
 

𝑓(𝑥) =  ∑
𝑓(𝑛)(𝑎)

𝑛!

∞

𝑛=0

(𝑥 − 𝑎)𝑛 

 

Equation 28. Taylor series function approximation. 

 

Then, we can take the Qth order approximation of the Equation 28, and write the 

Taylor polynomial as: 

 

𝑓(𝑥)(𝑄,𝑎) =  ∑
𝑓(𝑛)(𝑎)

𝑛!

𝑄

𝑛=0

𝑥𝑛 

 

Equation 29. Qth order Taylor series approximation. 

 

This equation helps us to approximate any function 𝑓(𝑥) around the point a. During 

the BP training, the coefficients 
𝑓(𝑛)

𝑛!
 are optimized at each iteration, which is also 

equivalent to customizing the nodal operator of each kernel element. As an example, 

if the neuron outputs are bounded by tanh activation function ([‐1,1]), we can generate 

any transformation (perhaps nonlinear) near a point (midpoint 0) with the Qth order 

Maclaurin series. This is the underlying foundation of generative neurons in Self-

ONNs. Nodal transformation of a generative neuron can be more specifically written 

in the following general form as,  

 

𝜓𝑘
�̃� (𝑤𝑖𝑘

𝑙(𝑄)(𝑟), 𝑦𝑖
𝑙−1(𝑚 + 𝑟)) = ∑ 𝑤𝑖𝑘

𝑙(𝑄)
(𝑟, 𝑞) (𝑦𝑖

𝑙−1(𝑚 + 𝑟))
𝑞

𝑄

𝑞=1

 

 

Equation 30. The general form of nodal transformations in a generative neuron. 
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where Q is the degree of Taylor polynomial and 𝑤𝑖𝑘
𝑙(𝑄)

 is a learnable kernel of the 

network. The 𝐾 × 1 kernel vector 𝑤𝑖𝑘
𝑙  in 1D CNN topology has now been replaced by 

a 𝐾 × 𝑄 matrix 𝑤𝑖𝑘
𝑙(𝑄)

∈  ℝ𝐾×𝑄 in Self-ONNs, and this matrix is basically formed by 

replacing each element 𝑤𝑖𝑘
𝑙 (𝑟) with a Q-dimensional vector 𝑤𝑖𝑘

𝑙(𝑄)
(𝑟) =

[𝑤𝑖𝑘
𝑙(𝑄)

(𝑟, 0), 𝑤𝑖𝑘
𝑙(𝑄)

(𝑟, 1), … , 𝑤𝑖𝑘
𝑙(𝑄)

(𝑄 − 1)] (Ince et al., 2021). Furthermore, it can be 

seen from this equation that 𝜓𝑘
�̃�  is not a fixed operator for each individual output 𝑦𝑖

𝑙−1, 

and it enforces Q times more parameters than the CNN model. Then, the input map of 

the generative neuron �̃�𝑖𝑘
𝑙  could be further written as: 

 

𝑥𝑖𝑘
�̃� (𝑚) =  𝑃𝑘

𝑙 (∑ 𝑤𝑖𝑘
𝑙(𝑄)(𝑟, 𝑞) (𝑦𝑖

𝑙−1(𝑚 + 𝑟))
𝑞

𝑄

𝑞=1

)

𝑟=0

𝐾−1

 

 

Equation 31. The input map of generative neuron �̃�𝑖𝑘
𝑙 . 

 

 Consequently, Self-ONNs has the following advantages compared to their 

counterparts CNNs and ONNs. First of all, there is no need for the search of optimal 

operator in each neuron connection from a set of well-defined functions since Self-

ONNs are able to self-organize the network operators with the generative neurons 

during training. Secondly, the heterogeneity is not restricted to a single nodal operator 

for all kernel connections as in the case of ONNs, thus each neuron will rather be 

addressed by the generative neurons. Lastly, along with these advantages, unlike 

ONNs, a Self-ONN layer can be parallelized more efficiently (Kiranyaz et al., 2021). 

The forward and back-propagation formulation in a Self-ONN neuron can be studied 

in detail from (Kiranyaz et al., 2021). 

 

 (Ince et al., 2021) first proposed 1D Self-ONNs for bearing fault severity 

classification. The 1D Self-ONN model having three operational and two dense layers 

was evaluated on NASA/IMS bearing data. Both x and y-axis acceleration waveforms 

were inputted to the model for inner-race and ball fault severity classification. For 

inner-race fault severity classification, Self-ONNs had around 3-8% F1 gains over the 



36 
 

1D CNN with the same configuration in all metrics. On the other hand, for ball faults, 

Self-ONNs had slightly lower F1 performance gains (2-4%) over the CNN. 
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CHAPTER 4: 1D CNN AND SELF-ONN PERFORMANCE 

RESULTS ON BENCHMARK DATASETS  

 

4.1. Datasets 

 

The performance of machine learning models largely relies on the quality and 

quantity of data used to train the model; thus, a good collection of data is required. For 

BFDD problem, data can be collected from electric motors with artificially induced 

bearing faults or run-to-failure tests can be performed to simulate the natural 

degradation of bearings. Different parameters such as stator current and motor 

vibration may also be used for BFDD, but in this thesis, the focus is on motor vibration 

since the early signs appear in the vibration data. There are several public bearing fault 

datasets such as CWRU, NASA/IMS, Paderborn University, FEMTO, MFPT and 

University of Ottawa's bearing variable speed data, and they allow us to evaluate 

machine learning algorithms for the BFDD problem. In this thesis, CWRU and 

University of Ottawa's bearing variable speed dataset (both utilizing motor vibration), 

are used to evaluate 1D CNN and Self-ONNs models with raw vibration data. 

 

4.1.1. CWRU Dataset 

 

Case Western Reserve University (CWRU) bearing data is an open-source 

dataset that can be easily accessed from the web page of CWRU bearing data center 

(CWRU, 2004). The website presents accelerometer data collected from a 2-hp electric 

motor for healthy and faulty ball bearings. Figure 13 depicts the CWRU motor test 

bench with a 2-hp electric motor (left), a torque transducer/encoder (center), and a 

dynamometer (right). Torque is delivered to the rotating shaft by a dynamometer. 

 

Electro-discharge machining (EDM) was used to induce defects into the 

bearings. To simulate different bearing fault severity levels, faults are generated at the 

outer raceway, ball and inner raceway in different diameters ranging from 0.007 inches 

to 0.040 inches. Accelerometer data was gathered using three accelerometers mounted 
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onto the fan-end, drive-end, and the base of motor housing under varied motor loading 

conditions (0 to 3 hp) for healthy bearings, and the bearings with single-point fan-end 

and drive-end defects. As a result of variable loading, motor speed changed slightly 

from 1797 rpm to 1720 rpm.  

 

 

 

Figure 13. CWRU dataset motor bearing test platform. 

 

All the data files, i.e. 161 records, were stored in .mat format, and the dataset 

was divided into four groups as 12k drive-end bearing fault, 12k fan-end bearing fault, 

48k normal-baseline and 48k drive-end bearing fault data. 12k and 48k specifies the 

sampling frequency used to record the vibration data. In each group, the data can 

further be divided into subclasses according to motor load, fault diameter and the 

location of the bearing fault. Furthermore, since outer-race bearing faults are 

stationary, the location of the fault relative to the load zone of the bearing has an impact 

on the vibration response. To take this effect into account, data was collected for outer 

race faults located at 3 o’clock (directly in the load zone), at 6 o’clock (orthogonal to 

the load zone), and at 12 o’clock. The data files were named as follows. The first two 

letters represent the fault position, the next three numbers give the fault diameter in 

inches in the format 0.XXX", and the last digit represents the bearing load. For 

example, the data file IR007_0 was collected from a 0.007 inches inner race bearing 
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fault induced motor under no load (0 hp) condition. For outer race faults, @ symbol is 

also used to indicate the fault location relative to the load zone.  

 

Table 1 gives an information about the bearings used in drive-end and fan-end 

of the electric motor. Using the bearing geometry, the corresponding bearing fault 

frequencies were calculated using Equation 1 through 4, and they were shown in Table 

2. Number of balls is 9, and 8 for 6205 and 6203 SKF ball bearings, respectively. 

 

Table 1. CWRU dataset fan-end and drive-end bearing information. 

 

Bearing 

Type 

Inside 

Diameter 

(mm) 

Outside 

Diameter 

(mm) 

Thickness 

(mm) 

Ball 

Diameter 

(mm) 

Pitch 

Diameter 

(mm) 

6205-2RS 

JEM SKF 

(Drive-end) 

25 52 15 7.94 39.04 

6203-2RS 

JEM SKF 

(Fan-end) 

17 40 12 6.75 28.50 

 

Table 2. CWRU dataset fan-end and drive-end bearing fault frequencies. 

 

Bearing 

Type 

Bearing fault frequencies in Hz 

(Multiple of running speed) 

BPFI BPFO BSF FTF 

6205-2RS 

JEM SKF 

(Drive-end) 

5.42 3.58 4.71 0.40 

6203-2RS 

JEM SKF 

(Fan-end) 

4.95 3.05 3.99 0.38 
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4.1.2. University of Ottawa's Variable Speed Bearing Dataset 

 

Since bearings usually operate under variable motor speed conditions, it is 

crucial to test the performance of algorithms under time-varying speed conditions. 

University of Ottawa's Variable Speed Bearing Dataset made available in Mendeley 

data (Huang and Baddour, 2019) and it includes accelerometer data recorded from 

motor bearings with various health conditions under variable motor speed. The health 

conditions of the bearings are healthy, outer-race defect, inner-race defect, ball defect, 

and faulty with combined defects. Therefore, there are five different classes to be 

classified in this dataset. Vibration signals are collected for decreasing operating 

speed, increasing speed, decreasing then increasing speed and increasing then 

decreasing speed conditions.  

 

The experimental setup is shown in Figure 14. The rotational speed of the 

motor shaft was adjusted by an AC drive. Two ball bearings were used to support the 

shaft. In Figure 14, the bearing on the right is the experimental bearing and the one on 

the left is healthy. The experimental bearing was replaced by the bearing with the 

mentioned health conditions, and the accelerometer data along with motor shaft speed 

were recorded. 

 

There are 60 data files in this dataset. 3 samples were collected for one 

experimental setting. Each data file (.mat file) consists of two channels. Channel 1 

includes the vibration signal measured using the accelerometer and Channel 2 stores 

the rotational speed data measured using the encoder. In each file, the sampling 

frequency for both channels is 200 kHz and the sampling duration is 10 seconds. 

Figure 15 shows how the dataset is numbered. 

 

The details of the data files numbered in Figure 15 can be found in (Huang and 

Baddour, 2019). For example, the data file I-A-2 includes the accelerometer data 

gathered from a bearing with an inner-race fault and the operating rotational speed is 

increased from 13.0 Hz to 25.7 Hz. 
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Figure 14. Experimental setup for University of Ottawa's Bearing Dataset. 

 

 

 

Figure 15. University of Ottawa's bearing dataset numbering. 
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4.2. CWRU Dataset 1D CNN and Self-ONN Results 

 

 12k drive-end bearing fault and normal baseline datasets were used to classify 

drive-end bearing fault severity levels. Among the drive-end, fan-end, and base 

accelerometer data, for this scenario, drive-end accelerometer data was used. Sample 

faulty and healthy motor vibration signals and their amplitude spectrum are shown in 

Figure 17 through Figure 22. The 12k drive-end bearing dataset includes four different 

bearing health conditions in terms of the location of the fault: normal, outer-race fault, 

inner-race fault, and ball fault. Each fault type can be further divided into groups 

according to the fault diameters as 0.007 inches, 0.014 inches and 0.021 inches. Thus, 

we get a total of 10 classes to be classified as shown in Table 3. 

 

Table 3. 10 different classes in CWRU dataset. 

 

Class 

label 

0 1 2 3 4 5 6 7 8 9 

Fault location 

and fault size 

(mils) 

Normal 

0 

IR 

7 

IR 

14 

IR 

21 

 

OR 

7 

OR 

14 

OR 

21 

BF 

7 

BF 

14 

BF 

21 

 

Since the raw vibration data was collected under different loading conditions, 

we can test the performance of our ML models for two different cases. In the first case, 

we can both train and test a model under a single loading condition, and as a second 

scenario, we can test the performance of a model across different load domains. For 

example, one can train a model under no load condition, and test its performance under 

the load condition of 1 hp. For this purpose, the whole dataset was grouped into sub-

datasets according to the loading condition of the motor with each dataset having 10 

different classes as given in Table 4.  
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Table 4. CWRU sub-datasets according to loading conditions (Number of training / 

validation / test samples). 

 
Fault location and 

fault size (mils) 

Dataset A 

(0 hp) 

Dataset B 

(1 hp) 

Dataset C 

(2 hp) 

Dataset D 

(3hp) 

Dataset E 

(0/1/2/3 hp) 

Training 

(Number of samples) 

3186 

 

3304 3304 3304 13098 

Validation 

(Number of samples) 

1593 1652 1652 1652 6549 

Test 

(Number of samples) 

 

810 840 840 840 3330 

 

In each dataset, to compare the performance of 1D CNN and Self-ONN 

architectures, each data file was divided into 4 equal pieces without any shuffling. The 

last piece was used as holdout data for testing purposes. The non-holdout data was 

then split into three equal pieces. Two of them were used for training in each fold and 

one for validation to apply 3-fold cross-validation as shown in Figure 16.  

 

 

Figure 16. 3-fold cross validation and holdout (test) data. 
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For each model, the input window size was chosen as 500 time-domain 

samples so that the raw vibration includes at least one revolution of the motor shaft. 

The training and validation samples were augmented by slicing the raw vibration data 

with 50% overlap (250 time-domain samples), and no overlap was used for the testing 

samples. After the segmentation and data augmentation process, min-max 

normalization was applied on the input data using the Equation 32. Min-max 

normalization rescales the data to fall within the range [−1, 1].  

 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =  2 × (
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
) − 1 

 

Equation 32. Min-max normalization for the target range [−1, 1]. 

 

As a result, datasets A has now 3,186 training, 1,593 validation and 810 testing 

samples, while datasets B, C and D each contains 3,304 training, 1,532 validation and 

840 testing samples for ten different bearing health conditions. On the other hand, 

dataset E contains all four loads (0/1/2/3 hp) with 13,098 training, 6,549 validation and 

3,330 test samples.  

 

3 different BP runs were performed for each fold, and the maximum number 

of epochs were chosen as 40. For the corresponding fold, among all BP runs and 

epochs, the model with the minimum validation loss was chosen as the best-

performing model, then this model was used for testing. The performance result of this 

model on the test dataset was then reported for the corresponding fold. By this way, 

the average of 3 folds can be taken to indicate the average fault classification result. 
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Figure 17. Sample vibration waveforms for healthy and ball fault conditions in time 

domain.  

 

 

Figure 18. Amplitude spectrum of vibration signals for healthy and ball fault 

conditions. 
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Figure 19. Sample vibration waveforms for healthy and inner-race fault conditions in 

time domain.  

 

 

Figure 20. Amplitude spectrum of vibration signals for healthy and inner-race fault 

conditions. 
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Figure 21. Sample vibration waveforms for healthy and outer-race fault conditions in 

time domain. 

 

 

Figure 22. Amplitude spectrum of vibration signals for healthy and outer-race fault 

conditions.  
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Figure 23. 1D CNN classifier with three Conv1D (number of neurons, kernel size) and 

two dense layers (number of neurons). 

 

The datasets A to E were first used to assess the performance of the proposed 

1D CNN model for a single working load condition. For example, all the training, 

validation and test samples were from dataset A, when the performance of the model 

was evaluated under no load condition (0 hp). For a single operating condition, Self-

ONNs was not used, since this classification task is an easy problem which can be 

handled by 1D CNNs. The result will also show the effectiveness of 1D CNNs for a 

single operating condition. 

 

The 1D CNN model given in Figure 23 was used for each dataset. It has 3 

convolutional and 2 dense layers. Normalized raw vibration data with size 500 (time-

domain samples) was inputted to the model. The 1D convolutional layers has 32, 24, 

and 16 neurons with kernel sizes 21, 13 and 5, respectively. There are 32 neurons in 

the hidden MLP layer, and the output dense layer size is 10 which is equal to the 

number of classes. At the output MLP layer, cross-entropy loss with SoftMax function 
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was utilized. The hyperbolic tangent activation function tanh was used through all 

convolutional and MLP layers. The subsampling factors (max-pooling) for 

convolutional layers were selected as 8, 4 and 8 respectively. The Adam optimizer 

with a learning rate of 0.001 was used. The batch size was chosen as 32 for each model. 

 

To evaluate the performance of each model, the most widely used performance 

metrics accuracy, recall, precision, and F1-score were used. Recall is defined as the 

ratio of correctly predicted positive observations to all observations in actual class. On 

the other hand, precision is the ratio of correctly predicted positive observations to the 

total predicted positive observations. In many cases, we would like to summarize the 

performance with a single number called F1-score, which can be defined as the 

harmonic mean of precision and recall. Also, accuracy is defined as the ratio of the 

number of correct predictions to the total number of predictions. One can formulate 

these performance metrics using false negatives (FN), false positives (FP), true 

negatives (TN) and true positives (TP) as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

Equation 33. Precision, recall, F1-score and accuracy. 

 

The drive-end bearing fault location and severity level classification 

performance results of the proposed 1D CNN model for datasets A (0 hp), B (1 hp), C 

(2 hp) and D (3 hp) are given in Table 5, and the result for dataset E is shown in Table 

6. In terms of classification accuracy, the 1D CNN model with raw vibration data is 

compared with several machine learning models in Table 7. The results show that the 

proposed 1D CNN achieves comparable and even better results for some datasets, 
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although it uses a few thousand parameters. (Du et al., 2014) used wavelet leaders 

multifractal features to train an SVM under no load condition (dataset A), and the 

reported classification accuracy was 89.1%. The proposed 1D CNN model achieves 

99.88% accuracy on the same dataset. (Jin et al., 2014) implemented trace ratio linear 

discriminant analysis (TR-LDA) for dimension reduction and fault diagnosis under 3 

hp loading (dataset D), and the diagnosis accuracy was 92.5%. (Ding and He, 2017) 

proposed energy-fluctuated multiscale feature mining approach based on wavelet 

packet energy (WPE) image and deep convolutional networks and this method 

achieved classification accuracies of 98.8, 98.8, 99.4 and 99.4% for dataset A, B, C 

and D, respectively. However, this architecture is more complex than the proposed 1D 

CNN and requires WPE images for the input. (Wang et al., 2020) used a signal to 

image spatial transform method to generate 2D gray images from raw vibration data, 

and then implemented multi-head attention-based CNN to diagnose bearing faults. 5 

different CNN models were designed, and the proposed CNN-E architecture had better 

generalization ability with an accuracy over 99% for each sub-dataset. However, this 

approach also requires a complex model with 455,210 trainable parameters, while the 

proposed 1D CNN has only 13,522 trainable parameters. Furthermore, the signal to 

image conversion required at the input of the model is a time-consuming task. (Chen, 

Zhang and Gao, 2021) used the raw vibration data as input and using two CNNs with 

different kernel sizes, different frequency signal characteristics were extracted. After 

that, long short-term memory (LSTM) was used to identify the fault type using the 

extracted features.  The MCNN-LSTM method obtained 98.46% accuracy under 3 hp 

loading condition. 
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Table 5. 1D CNN results for each sub-dataset (A, B, C, D) of CWRU bearing data. 

 
Drive-end Bearing 1D CNN 3-Fold Cross Validation Average Performance Results 

Dataset A B 

Scores Precision Recall F1 Score Precision Recall F1 Score 

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IR_014 0.9890 1.0000 0.9945 1.0000 1.0000 1.0000 

IR_021 1.0000 1.0000 1.0000 0.9890 1.0000 0.9945 

OR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

OR_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

OR_021 1.0000 0.9963 0.9981 1.0000 1.0000 1.0000 

BF_007 1.0000 1.0000 1.0000 1.0000 0.9778 0.9888 

BF_014 0.9945 1.0000 0.9972 1.0000 1.0000 1.0000 

BF_021 1.0000 0.9944 0.9972 0.9890 1.0000 0.9945 

Accuracy   0.9988   0.9984 

Dataset C D 

Scores Precision Recall F1 Score Precision Recall F1 Score 

Normal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

IR_014 1.0000 0.9944 0.9972 1.0000 1.0000 1.0000 

IR_021 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

OR_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

OR_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

OR_021 0.9982 1.0000 0.9991 1.0000 1.0000 1.0000 

BF_007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BF_014 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

BF_021 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Accuracy   0.9996   1.0000 
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Table 6. 1D CNN results for dataset E of CWRU bearing data. 

 

 

 

(Zhang et al., 2020) proposed a CNN with two dropout and two fully-connected 

layers (DFCNN). The raw vibration waveform was first converted into an image by 

filling the pixels of the image using the time-domain signals. Then, these images were 

fed into DFCNN model. The DFCNN model utilizes wide kernels in the first 

convolutional layer, and the kernel size was reduced in the following layers. To 

improve the generalization capability, two dropout layers were used. The average 

accuracy of DFCNN model is also given in Table 7. 

 

Table 7. Comparison of different methods in terms of classification accuracy on 

CWRU bearing datasets. 

 
Methods Dataset A Dataset B Dataset C Dataset D Dataset E 

Multifractal+SVM 89.1 - - - - 

TR-LDA  - - - 92.5 - 

WPE+CNN  98.8 98.8 99.4 99.4 - 

CNN-E  99.4 99.4 99.8 100 - 

MCNN-LSTM - - - 98.46 - 

DFCNN 100 100 100 100 99.8 

1D CNN 99.88 99.84 99.96 100 99.97 

 

Dataset E 

Scores Precision Recall F1 Score 

Normal 1.0000 1.0000 1.0000 

IR_007 1.0000 1.0000 1.0000 

IR_014 0.9986 0.9986 0.9986 

IR_021 1.0000 1.0000 1.0000 

OR_007 0.9995 1.0000 0.9998 

OR_014 1.0000 1.0000 1.0000 

OR_021 0.9995 0.9995 0.9995 

BF_007 1.0000 0.9986 0.9993 

BF_014 1.0000 1.0000 1.0000 

BF_021 1.0000 1.0000 1.0000 

Accuracy   0.9997 
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The performance of 1D CNNs (q=1) and Self-ONNs (q=3, 5 and 7) across 

different load domains were also investigated using CWRU bearing data. The 1D Self-

ONN model shown in Figure 24 was used for this scenario. Number of epochs was 

reduced to 20 to avoid overfitting. 3 runs were performed for each case and the Adam 

optimizer with a learning rate of 0.001 was used. The batch size was again 32. For 

each source and target pair, one was used for training and validation, and the other for 

testing. For example, for A→B source and target pair, dataset A was used for training 

and validation. It was split into 3 equal pieces and 3-fold cross validation was 

performed on this data. Then, at each fold, the model with the minimum validation 

loss was used to evaluate the performance on the test dataset (dataset B). The average 

performance for 3 folds is presented in Table 8. In this table, 1D CNN (*2) shows the 

classification accuracy when the neurons in convolutional layers of 1D CNN are 

doubled from 32 to 64, and 24 to 48, 16 to 32, respectively. As we can see, 1D Self-

ONN model with q=7 has the highest average classification accuracy with 91.90%. On 

the other hand, 1D CNN model has the average accuracy of 89% across all load 

domains. When we double the number of convolutional neurons for 1D CNN 

architecture, the average accuracy increases to 91.24%, but it is still less than the 

accuracy reached by the 1D Self-ONN model with q=7. This demonstrates the 

superiority of the 1D Self-ONNs over the CNNs for this problem. Furthermore, we 

can interpret from the results that when the speed difference of source and target load 

domains is small, we can obtain a better classification accuracy. 

 

The classification accuracy of the proposed 1D Self-ONN model was also 

compared to some advanced architectures such as the Deep Convolutional Transfer 

Learning Network (DCTLN) (Guo et al., 2019), Deep Convolutional Neural Networks 

with Wide First-layer Kernels (WDCNN) (Zhang et al., 2017), Domain-Adversarial 

Training of Neural Networks (DANN) (Ganin et al., 2016), Discriminative Adversarial 

Domain Adaptation (DADA) (Tang and Jia, 2019) and an autoencoder with attention 

mechanism and 1D CNN LSTM classifier (Jang and Cho, 2021) in Table 9. The 

superiority of the proposed 1D Self-ONN model is again obvious from these results. 

DCTLN includes two main parts which are condition recognition and domain 

adaptation. The condition recognition module is constructed using a 1D CNN to 

automatically learn features. The domain adaptation module allows the 1D CNN to 
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learn domain-invariant features by maximizing domain recognition errors and 

minimizing the probability distribution distance. On the other hand, WDCNN takes 

raw vibration data as input and utilizes wide kernels in the first convolutional layer for 

extracting features and suppressing high frequency noise and small convolutional 

kernels in the preceding layers. Adaptive Batch Normalization (AdaBN) proposed by 

(Li et al., 2018) was used to enhance the domain adaptation ability of WDCNN model. 

 

Furthermore, in DANN, gradient reversal layer is added to the conventional 

feed-forward neural network architecture. As the training progresses, the model 

extracts discriminative features for the main learning task on the source domain and 

indiscriminate with respect to the shift between source and target domains. 

Discriminative Adversarial Domain Adaptation (DADA) includes a feature extractor 

and an integrated category and domain classifier. This model encourages a mutually 

inhibitory relation between its domain prediction and category prediction for any input 

instance. Finally, the last method is composed of an attentional autoencoder for latent 

vector representation and a 1D CNN LSTM-based classifier to classify bearing failures 

from latent vectors. For domain adaptation, a feature space transformation was added 

to the model. The performance results of all these methods on CWRU data were 

obtained from the study conducted by (Jang and Cho, 2021). The detailed parameters 

for each model can be found in their study as well. 
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Figure 24. 1D Self-ONN classifier with three SelfONN1D layers (number of neurons, 

kernel size, the degree of the Taylor approximation) and two dense layers (number of 

neurons). 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

Table 8. 1D CNN and Self-ONN classification accuracies across different load 

domains. 

 

Datasets 

Source→Target 

1D CNN 1D 

SelfONN 

(Q=3) 

1D 

SelfONN 

(Q=5) 

1D 

SelfONN 

(Q=7) 

1D CNN 

(*2) 

A→B 91.71 94.42 93.05 93.44 96.46 

A→C 88.12 91.31 92.53 91.40 90.10 

A→D 75.56 79.66 83.71 80.57 78.30 

B→A 95.17 95.62 93.34 96.29 93.79 

B→C 98.28 98.81 98.88 98.33 99.11 

B→D 83.94 90.19 95.41 91.55 92.66 

C→A 93.10 95.33 94.50 94.24 95.21 

C→B 94.12 96.53 94.57 96.16 96.69 

C→D 93.57 97.76 95.14 96.66 97.08 

D→A 83.10 85.35 84.43 85.82 83.17 

D→B 83.06 84.56 83.72 86.21 83.80 

D→C 88.32 90.07 89.40 92.13 88.49 

AVG 89.00 91.63 91.56 91.90 91.24 

Number of 

trainable 

parameters 

13,522 38,674 63,826 88,978 50,490 
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Table 9. Comparison of different methods (Jang and Cho, 2021) in terms of 

classification accuracy across different load domains.  

 
Task 

Source→Target 

1D 

SelfONN 

(Q=7) 

Attentional 

Autoencoder 

+ 

1D CNN 

LSTM  

DANN DADA DCTLN WDCNN 

A→B 93.44 84.43 67.76 63.27 56.23 71.47 

A→C 91.40 86.43 68.96 62.86 57.78 72.87 

A→D 80.57 85.67 69.81 66.97 54.11 71.90 

B→A 96.29 84.67 66.73 67.82 52.56 69.91 

B→C 98.33 85.35 64.96 70.95 56.67 67.48 

B→D 91.55 82.43 69.65 68.93 58.12 67.58 

C→A 94.24 83.34 59.70 62.99 59.12 68.88 

C→B 96.16 82.45 64.40 59.55 54.32 70.15 

C→D 96.66 82.21 69.82 59.62 52.13 65.83 

D→A 85.82 81.24 58.62 57.89 57.45 68.14 

D→B 86.21 80.67 57.41 62.53 58.23 65.17 

D→C 92.13 80.67 58.98 59.90 46.12 69.90 

AVG 91.90 83.63 66.15 63.61 55.24 69.11 

 

 

4.3. University of Ottawa's Bearing Dataset 1D CNN and Self-ONN Results 

 

This dataset differs from the CWRU bearing data in that each sample was 

gathered for time-varying rotational speed conditions. The whole data was split into 3 

sub-datasets: dataset X, dataset Y and dataset Z as shown in Figure 25. Each sub-

dataset includes all the bearing health and speed varying conditions. The main goal 

was to diagnose bearing faults under time-varying rotational speed, so the number of 

classes are 5 and these are healthy, ball fault, inner-race fault, outer-race fault, and 

combined faults. Each sub-dataset can be used for training, validation or testing 

purposes, thus there are 6 cases in total as shown in Table 10.  
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The sampling frequency for this dataset is 200 kHz, thus it requires a very 

complex model if the raw vibration is inputted directly. To avoid this issue, the raw 

vibration signal was first downsampled by 10 (fs=20 kHz) to decrease the input size 

of each model. The input window size was chosen as 2000 time-domain samples, so 

that the input to a model includes the motor vibration for at least one revolution of the 

motor shaft for any shaft speed in this dataset. Also, the samples were augmented by 

slicing the raw vibration data with 50% overlap (1000 time-domain samples). After 

this augmentation process, min-max normalization was applied on the input data using 

the Equation 32.  

 

The 1D Self-ONN model used for bearing fault diagnosis on this dataset has 3 

operational and 2 dense layers as shown in Figure 26. The 1D Self-ONN layers has 

32, 24, and 16 neurons with kernel sizes 49, 27 and 5 respectively. There are 20 

neurons in the hidden MLP layer and the output dense layer size is 5 which is equal to 

the number of classes. At the output MLP layer, cross-entropy loss with softmax 

function was used. The hyperbolic tangent activation function tanh was utilized 

through all 1D Self-ONN and MLP layers. The subsampling factors were selected as 

16, 8 and 8 respectively through 1D Self-ONN layers. The best test accuracy for each 

case was encountered for q=1 meaning 1D CNN. For all cases in Table 10, 3 different 

BP runs were performed. Among each BP runs and epochs, the model with the 

minimum validation loss was selected as the best performing model. This model was 

then tested on the test dataset. The same Adam optimizer (lr = 0.001) discussed earlier 

in the text, was used for this dataset as well and the batch size was 32.  
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Figure 25. Sub-datasets of University of Ottawa’s bearing data. (Green: dataset X, 

yellow: dataset Y, cyan: dataset Z). 

 

Table 10. 6 cases for training, validation and test splits of University of Ottawa bearing 

data, and the test accuracy of the proposed 1D CNN model.  

 
Case Dataset X 

(3800 samples) 

Dataset Y 

(3800 samples) 

Dataset Z 

(3800 samples) 

1D CNN  

Test Accuracy 

(%) 

1 Training Validation Test 99.7 

2 Training Test Validation 99.9 

3 Validation Training Test 94.7 

4 Validation Test Training 95.1 

5 Test Training Validation 99.9 

6 Test Validation Training 99.1 

Average Test Accuracy 98.1 
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Figure 26. 1D Self-ONN Classifier (for University of Ottawa bearing data) with 1D 

Self-ONN (number of neurons, kernel size, degree of the Taylor approximation) and 

dense layers (number of neurons). 

 

The maximum number of epochs was chosen as 20. The test accuracy of the 

proposed 1D CNN model is given in Table 10. As we can see, when the 1D CNN 

model sees all the speed varying conditions, its diagnosis accuracy becomes quite 

satisfactory with the average test accuracy of 98.1%. This model has 24,741 trainable 

parameters and takes raw vibration data at the input, thus allows real-time 

implementation. 

 

 To compare the performance of the proposed model with the existing deep 

learning-based methods, another scenario was considered. For this case, the model was 

trained using the data files in the increasing speed column and tested using the data on 



61 
 

the decreasing speed column of Figure 25. The number of classes is 5, and the same 

1D Self-ONN model in Figure 26 (q=1, 3, 5, and 7) was used for this case.  

 

Table 11. Comparison of different methods in terms of classification accuracy on 

University of Ottawa bearing data. (Training data: increasing speed, Test data: 

decreasing speed). 

 

Model Classification 

Accuracy 

(%) 

Trainable Parameters 

1D CNN 97.5 24,741 

1D Self-ONN (Q=3) 90.6 73,189 

1D Self-ONN (Q=5) 81.3 121,637 

1D Self-ONN (Q=7) 85.4 170,085 

(Bera, Dutta and Dhara, 

2021) 

95.9 419,621 

VGG16 97.3 165,738,309 

ResNet50V2 96.2 23,575,045 

InceptionV3 95.5 21,778,597 

 

30% of increasing speed data was used for validation, and the remaining 70% 

was used for training. For this case, 1D CNN model with 24,741 trainable parameters 

has the highest diagnosis accuracy with 97.5% as shown in Table 11. Training, 

validation, and test accuracies of the proposed 1D CNN model over each training 

epochs is given in Figure 27. In Table 12, confusion matrix for the proposed 1D CNN 

architecture is given.  
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Table 12. Confusion matrix of 1D CNN model on University of Ottawa bearing data. 

(Training data: increasing speed, Test data: decreasing speed). 

 

 Predicted Label 

 

 

True 

Label 

 Healthy IR OR BF Combined 

Healthy 569 0 0 1 0 

IR 0 570 0 0 0 

OR 0 0 570 0 0 

BF 69 1 0 500 0 

Combined 0 0 0 0 570 

 

 

 (Bera, Dutta and Dhara, 2021) trained a deep 2D CNN model with 6 

convolutional layers by inputting the spectrograms images of increasing speed 

vibration data, and then evaluated their model on the test set consisting of spectrograms 

of bearings subjected to decreasing speed. They also trained pre-existing DL models 

such as VGG16, Residual Network (ResNet50V2) and Inception Network 

(InceptionV3) using the same increasing speed training data and evaluated each model 

on the decreasing speed test data. Table 11 summarizes diagnosis accuracies of the 1D 

CNN, Self-ONN, and existing DL-based methods. 1D CNN (q=1) and Self-ONN 

(q=3,5,7) performance results on University of Ottawa’s bearing data (training data: 

increasing speed, test data: decreasing speed) is also presented in Table 13. The 

shallow and robust 1D CNN architecture proposed for this dataset demonstrated a 

superior performance compared to the pre-existing networks.  
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Figure 27.  Training, validation, and test accuracies of the proposed 1D CNN model 

over each training epochs. 

 

Table 13. 1D CNN (q=1) and Self-ONN (q=3,5,7) results for University of Ottawa’s 

bearing dataset. (Training data: increasing speed, Test data: decreasing speed). 

 

Train/Val/Test Training = 1994, Validation = 859, Test = 2850 Samples 

Q q=1 q=3 

Scores Precision Recall F1 Score Precision Recall F1 Score 

Healthy 0.892 0.998 0.942 0.763 0.944 0.844 

IR 0.998 1.000 0.999 0.910 0.996 0.951 

OR 1.000 1.000 1.000 0.986 0.998 0.992 

BF 0.998 0.877 0.934 0.992 0.649 0.785 

Combined 1.000 1.000 1.000 0.942 0.944 0.943 

Accuracy   0.975   0.906 

Q q=5 q=7 

Scores Precision Recall F1 Score Precision Recall F1 Score 

Healthy 0.631 0.977 0.767 0.641 0.951 0.766 

IR 0.743 0.989 0.849 0.866 0.979 0.919 

OR 1.000 0.719 0.837 1.000 0.996 0.998 

BF 0.996 0.405 0.576 0.984 0.432 0.600 

Combined 0.981 0.974 0.977 0.959 0.912 0.935 

Accuracy   0.813   0.854 
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CHAPTER 5: DEPLOYMENT ON MICROCONTROLLERS 

 

5.1. Quantization of Neural Networks 

 

In an intelligent IoT device that relies on neural networks for decision making, 

data is generally collected and stored on the cloud with wireless communication 

technologies such as WiFi and BLE. Then, using the collected data, a neural network 

is trained on the cloud. When the new data arrive from the device to the cloud, the 

inference is made on this unseen data and the output prediction is again sent back to 

the device to make a decision. This is the lifecycle of a cloud computing system, and 

it comes with several drawbacks. Since the data is transferred wirelessly to a server for 

further processing, privacy is the first concern especially for the security critical 

applications in a cloud computing system.  Secondly, permanent connectivity should 

be ensured, otherwise non-deterministic latencies may occur, which results in 

interruption of the whole system. Furthermore, if the data throughput rate is very high, 

the device may consume lots of power each time it sends the data to the cloud either 

for training of the neural network or for the inference. Another alternative to the cloud 

computing is the edge computing and it resolves some of the problems mentioned 

above. Edge computing tries to minimize the circulation of the data. By doing so, data 

is not transmitted to the cloud for inference, thus the inference is made on the device 

itself. However, neural networks are usually not trained on the IoT devices in these 

systems, instead the network is often trained offline on a local server placed closer to 

data. There are also some approaches to both train and run the inference on the device, 

but in this thesis, these approaches are not discussed. The proposed machine 

monitoring and diagnostics system works as follows. First, the data is collected 

wirelessly from the device for a couple of minutes, and then using the collected data, 

a neural network is trained offline on a workstation. After that, the neural network is 

quantized and deployed on the IoT device to run inference periodically. At this stage, 

the device can run standalone, and it will only transfer predictions made on the device 

to lower power consumption. On the other hand, running neural networks on a 

resource-constrained device like microcontrollers is a challenging task (Novac et al., 

2021). Firstly, NN algorithms run slower on microcontrollers than on GPUs or CPUs, 

since the clock frequency is much lower (8 MHz to 80 MHz compared to 1GHz to 
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2GHz), and parallelism techniques such as thread-level parallelism or advanced 

vectorization are not usually implemented (Novac et al., 2021). Microcontrollers 

typically include a general-purpose processing core, and require less power compared 

to their counterparts, thus allowing battery powered devices. However, in a scenario 

where the device is not accessible after installation, it requires long battery life, so 

power consumption could be a major problem. Finally, the most major issue may be 

memory constraint of microcontrollers. These devices usually have very small amount 

of memory, i.e., often less than 1MB. 

 

A technique to shrink the size of a neural network to be deployed on the 

microcontrollers is called quantization. Quantizing a neural network means reducing 

the number of bits used to encode each weight and/or activation of a model, while 

keeping desired accuracy. Using quantization, total memory usage of a network can 

be reduced by a considerable amount.  

 

5.1.1. Quantization Fundamentals 

 

Modern computing systems use floating-point to represent real numbers, and 

32-bit single-precision floating point is the common format used in deep learning 

frameworks. Although neural network models are usually trained using the 32-bit 

single-precision format, alternative formats such as IEEE fp16 and bfloat16 have also 

been implemented recently to reduce training duration and memory usage without 

significant loss in performance (Burgess et al., 2019). Once the neural network is ready 

to be deployed on a device after training, it can be quantized using even lower precision 

formats such as fixed-point and integer. By using lower precision formats during 

inference, we may accelerate math-intensive operations like convolution and matrix 

multiplication. Furthermore, memory bandwidth and memory size requirements can 

be alleviated using lower precision formats, so latency can be reduced with less 

memory access and simpler computations. As a result, we can observe reduced power 

consumption for both computations and memory access.   
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Quantization can be divided into two main categories: non-uniform and 

uniform. While non-uniform quantization uses non-linear transformations, in uniform 

quantization, step sizes are equal. An example of weight distribution of a convolutional 

layer kernel, i.e., conv1d/kernel_0 of the 1DCNN model trained using our dataset, is 

shown in Figure 28. It can be observed from this figure that when the input is 

normalized, convolutional layer weight distribution is like a Gaussian distribution with 

the mean near 0. Therefore, they could be better represented with a non-uniform 

quantization, and floating-point representation ensures a better precision around 0. In 

non-uniform quantization, a non-linear function needs to be computed beforehand 

offline or online to generate a lookup table to get a non-constant quantization step. 

This brings an additional overhead and can still cause slight quantization error. On the 

other hand, since our aim is to perform fast computations, uniform quantization with 

constant quantization step is often preferable.   

 

Quantization to lower precision format could be automated by some integrated 

software tools such as Tensorflow Lite Micro (TFLM) and STM32Cube.AI. Since 

these tools usually implement uniform integer quantization (integer weights and 

activations) for neural network inference, the rest of this section will explain the 

fundamentals of this approach.  

 

Uniform quantization can be performed in two steps. Firstly, quantization 

range, i.e., the range of real numbers to be quantized, should be selected, and the values 

outside of this range are clamped. Then, the real values are mapped to integers 

according to the number of bits used for the quantized representation. That means each 

mapped real value is rounded to the closest integer value. The two essential operations 

named “Quantize” and “Dequantize” are needed to allow integer manipulations in a 

pre-trained floating-point neural network. We can convert a floating-point (e.g., fp32) 

number to a quantized integer (e.g., int8) using “Quantize” operation. The dual 

“Dequantize” operation can then convert a quantized integer (e.g., int32) back into a 

real number (e.g., fp16). Floating-point formats like fp16 and fp32 are here considered 

as real numbers for the purpose of discussion. 
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Figure 28. An example of weight distribution for a convolutional layer kernel 

(conv1d/kernel_0). 

 

We can now define the operations “Quantize” and “Dequantize”. Let’s define 

the quantization range, i.e., the range of real numbers to be quantized, as [𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥] 

and the bit-width of the signed or unsigned integer as n. A real value x in the range 

[𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥] can now be represented as a signed or unsigned integer in the range 

[−2𝑛−1, 2𝑛−1 − 1] and [0, 2𝑛 − 1] respectively. The inputs outside this range are 

simply clipped. As we are only focusing on the uniform transformation, there are two 

options. The first one is uniform affine quantization (also known as asymmetric 

quantization), and the second one, which is a special case of the first, is the symmetric 

uniform quantization (also called scale quantization). 

 

5.1.1.1. Uniform Affine Quantization 

 

Uniform affine quantization (also called asymmetric quantization) is controlled 

by the following parameters: the scale factor s, the bit-width n and the zero-point z. 

The scale factor s is a floating-point number which controls the step size. On the other 

hand, the zero point is an integer, and it must be chosen such that real zero is quantized 
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without error. When these parameters are defined, we can formulate the quantization 

operation. A real valued x can be mapped into the unsigned integer grid as: 

 

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) + 𝑧 ;  0, 2𝑛 − 1) 

 

Equation 34. Asymmetric quantization. 

 

where round is round-to-nearest operator, and clamp is defined as: 

 

clamp(𝑓; 𝑎, 𝑏) =  {
𝑎,                  𝑥 < 𝑎 
𝑥, 𝑎 ≤ 𝑥 ≤ 𝑏
𝑏,                  𝑥 > 𝑏 

 

 

Equation 35. Clamp function. 

 

Then, we can approximate the real valued x from its integer representation as:  

 
x ≌  �̂� = 𝑠(𝑥𝑖𝑛𝑡 − 𝑧)  

 

Equation 36. Dequantization step of asymmetric quantization. 

 

If we plug x𝑖𝑛𝑡 in the Equation 34 into Equation 36, we can get the general quantization 

function q as: 

 

�̂� = q(𝑥; 𝑠, 𝑧, 𝑛) = s [𝑐𝑙𝑎𝑚𝑝 (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) + 𝑧 ;  0, 2𝑛 − 1) − 𝑧] 

 

Equation 37. General quantization function. 

 

 

 

 



69 
 

From the quantization step in Equation 34, one can determine the quantization range 

[𝑞𝑚𝑖𝑛, 𝑞𝑚𝑎𝑥] as: 

 

q𝑚𝑖𝑛 = −s𝑧 

q𝑚𝑎𝑥 = s(2𝑛 − 1 − 𝑧) 

 

Equation 38. Quantization limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥. 

 

If there are any values outside of this quantization range, they will be clipped to 

quantization limits introducing a clipping error. To reduce this clipping error, one can 

expand the quantization range by increasing the scale factor, but this, in turn, brings 

about increased rounding error (Nagel et al., 2021). 

 

5.1.1.2. Symmetric Uniform Quantization 

 

Symmetric uniform quantization is a subset of uniform affine quantization, 

where the zero point is located at 0. Real numbers can be quantized either to signed or 

unsigned integers using symmetric quantization. Unsigned symmetric quantization is 

often preferred when one-tailed distributions (e.g., ReLU activations) are encountered, 

while the signed symmetric quantization is mostly used for distributions which are 

roughly symmetric about zero (e.g., the weight distribution of a convolutional layer 

kernel).  

 

To map a real valued x into a signed integer using symmetric quantization, we 

can perform the following operation: 

 

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) ; −2𝑛−1, 2𝑛−1 − 1) 

 

Equation 39. Signed symmetric quantization. 
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On the other hand, to perform unsigned symmetric quantization, one can use the 

Equation 40. 

 

x𝑖𝑛𝑡 = clamp (𝑟𝑜𝑢𝑛𝑑 (
𝑥

𝑠
) ;  0, 2𝑛 − 1) 

 
Equation 40. Unsigned symmetric quantization.  

 

Finally, we can approximate the real valued x from its integer representation as:  

 

�̂� = 𝑠𝑥𝑖𝑛𝑡 

 

Equation 41. Dequantization step of symmetric quantization. 

 

Although both symmetric and asymmetric quantization allow us to use integer 

arithmetic, asymmetric quantization results in more computationally expensive 

inference due to its extra offset parameter. To show this fact, let us consider the 

multiplication of asymmetric activations with asymmetric weights as given in 

Equation 42.  

 

�̂��̂� = 𝑠𝑤(𝑾𝑖𝑛𝑡 − 𝑧𝑤)𝑠𝑥(𝒙𝑖𝑛𝑡 − 𝑧𝑥)

= 𝑠𝑤𝑠𝑥𝑾𝑖𝑛𝑡𝒙𝑖𝑛𝑡 − 𝑠𝑤𝑠𝑥𝑧𝑥𝑾𝑖𝑛𝑡 − 𝑠𝑤𝑠𝑥𝑧𝑤𝒙𝑖𝑛𝑡 + 𝑠𝑤𝑠𝑥𝑧𝑤𝑧𝑥 

 

Equation 42. Multiplication of asymmetric activations with asymmetric weights. 

 

If both the weights and activations were quantized with symmetric 

quantization, then we would only get the first term in Equation 42. The second and 

fourth terms can be pre-computed, since they depend only on the zero-point, scale and 

weight values which are known in advance. On the other hand, the third term includes 

the input data x, and it requires an additional computation during inference. Hence, 

this additional computation results in increased latency and power consumption. For 

this reason, symmetric weight quantization, which avoids the additional input-

dependent term, is widely used in most of the integrated software tools like Tensorflow 
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Lite Micro. For a bit-width of 8, three different examples of uniform quantization are 

illustrated in Figure 29.  

 

 

 

Figure 29. An illustration of symmetric and asymmetric uniform quantization for a bit-

width of 8. The floating-point grid is in black, and the integer quantized grid is shown 

in blue (Source: Nagel et al., 2021). 

 

Quantization parameters can be shared among tensor elements and the way 

they are shared specifies the quantization granularity. Per-tensor quantization is the 

most widely used granularity since it allows easy hardware implementation. In per-

tensor quantization, all the accumulators in Equation 42 will use the same scale factor, 

𝑠𝑤𝑠𝑥. On the other hand, we can achieve a finer granularity with per-channel 

quantization. If a different quantizer is used per-channel for a 3D tensor (e.g., per-

kernel or equivalently per-output-channel), accuracy might improve especially when 

the distribution varies significantly from channel to channel. 

 

Figure 30 illustrates an overview of how a quantized matrix-vector 

multiplication is performed in a neural network hardware. The fundamental 

computation performed during the inference is Multiply–Accumulate operation 

(MAC). Accumulators are first loaded with the bias value. Then, the weight and input 

values are loaded into separate arrays, and their product are calculated in the 



72 
 

corresponding processing elements. Finally, their results are added in the 

accumulators. In this example, int8 arithmetic is used, but any bit-width can be selected 

for the quantization. To avoid overflow, a higher bit-width accumulators are generally 

used (e.g., int32). 32-bit accumulators, in the given example, store the activations, and 

to reduce the data transfer and allow next layer’s operations without complexity, these 

activations are quantized back into int8. 

 

 

 

Figure 30. An illustration of MAC operation for quantized inference (Source: Nagel et 

al., 2021). 

 

5.1.1.3. Quantization Range 

 

To quantize a floating-point tensor, we first need to decide the quantization 

limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 for model weights and activations. Weights can be simply 

quantized without using any calibration data, but variable tensors such as model input, 

output and activations cannot be calibrated unless a few inference cycles are run. Some 

calibration methods are min-max, entropy, and percentile. 

 

Min-max calibration method uses the whole dynamic range of the tensor, and 

the quantization limits 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥 can be found as follows: 
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𝑞𝑚𝑖𝑛 = min 𝑾 

𝑞𝑚𝑎𝑥 = max 𝑾 

 

Equation 43. Min-max calibration. 

 

where 𝑾 is the tensor to be quantized.  

 

This method does not introduce clipping error, but it is sensitive to outlier which may 

cause rounding error. In entropy calibration method, Kullback-Leibler divergence is 

used to minimize the information loss between the original floating-point values and 

the quantized format. Finally, in percentile method, the range is set to a percentile of 

the distribution of absolute values seen during calibration. For example, 99% 

calibration clips 1% of the largest magnitude values. 

 

5.1.2. Post-Training Quantization 
 

Post training quantization is a training-free quantization, and it is the most 

preferred option by user. In post-training quantization, we first train the neural network 

model in a floating-point format (e.g., fp32). When the training is done, the model is 

frozen, and its parameters are quantized. The quantized model is finally deployed on 

the target to run inference. Quantization of the weights and inputs usually results in a 

quantization error, which, in turn, introduces a quantization error on the activations. 

Depending on the bit-width used, this quantization error may accumulate through each 

layer and end up in a wrong prediction at the output. If the bit-width of parameters 

decreases, the quantization error usually increases, causing an accuracy drop compared 

to the original floating-point model. However, in some cases, although the quantization 

error increases slightly, the neural network can generalize better on the unseen test 

data. 
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5.1.3. Quantization-Aware Training 

 

 The post-training quantization (PTQ) is very easy and fast to implement since 

we do not need to retrain the neural network with labeled data. However, when we 

quantize a real number to a lower precision format like 4-bit integer, we usually 

encounter a significant accuracy drop (Nagel et al., 2021). This accuracy drop can be 

minimized using the quantization-aware training. In quantization-aware training, 

backpropagation steps remain the same, and weights and biases are still stored in 

floating point format so that they can be updated by small amounts. On the other hand, 

the low precision behavior is simulated in forward propagation pass to adjust the 

parameters and minimize the loss introduced by the quantization. Training with 

simulated quantization is illustrated in Figure 31. First, a training graph of the floating-

point model is created. Then, fake quantization nodes are inserted to the locations 

where tensors are represented by fewer bits during inference. We finally train the 

model in simulated quantized mode until it converges. Now, the optimized inference 

graph is ready to be deployed on a target device. 

 

 

 

Figure 31. Training with simulated quantization (Quantization-aware Training). 

 

 



75 
 

5.2. Embedded AI Frameworks 

 

Embedded artificial intelligence (AI) enables inexpensive and low-power 

AIoT solutions and several embedded AI frameworks such as STM32Cube.AI and 

TensorFlow Lite for Microcontrollers (TFLM), accelerates the path to successful real-

world deployment of ML models. In this section, the most popular AI frameworks 

STM32Cube.AI and TFLM, will be discussed in detail. 

 

5.2.1. STM32Cube.AI 

 

STM32Cube.AI from STMicroelectronics is an integrated software tool that 

enables the generation of STM32-optimized library from a pre-trained neural network. 

It accelerates the deployment of some neural network models like MLPs and CNNs 

into STM32 microcontrollers. STM32Cube.AI supports numerous machine learning 

frameworks including TensorFlow Lite and Keras, and the models in ONNX format 

can also be implemented. 

 

STM32Cube.AI can run inference using both floating-point (if the target has 

FPU) and fixed-point (8-bit integers) formats. TensorFlow Lite quantized models and 

8-bit quantization of Keras networks are both supported. 

 

STM32Cube.AI ecosystem is fully integrated with the other 

STMicroelectronics development tools; thus, it allows easy and fast implementation. 

The tool itself has several ways to validate ML models both on the computer and 

STM32, and the performance on STM32 devices can be measured without user 

handmade ad hoc C code (STMicroelectronics, 2021). 

 

To optimize the inference performance, STM32Cube.AI utilizes Common 

Microcontroller Software Interface Standard Neural Network (CMSIS-NN) library. 

CMSIS-NN is a collection of efficient neural network kernels developed to maximize 

the performance and minimize the memory footprint of neural networks on Cortex-M 

processors (Arm, 2021). The library has separate functions to operate on different 
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weight and activation data types including 8-bit and 16-bit integers. The inference 

engine uses a proprietary library, so it is not allowed to manipulate it. 

 

5.2.2. TensorFlow Lite for Microcontrollers 

 

TensorFlow Lite for Microcontrollers (TFLM) is an open-source embedded 

ML framework originally derived from TensorFlow Lite. It is primarily designed to 

run ML models on microcontrollers with a few kilobytes of memory. TFLM is written 

in C++ 11 and requires a 32-bit platform. Hence, the inference code is portable. It may 

also generate the inference code for development environments like Mbed. Various 

neural network architectures such as MLPs, CNNs and RNNs can be deployed on the 

target 32-bit microcontroller using TFLM.  

 

To deploy and run TensorFlow models on a 32-bit microcontroller, one should 

perform the following steps. Firstly, a TensorFlow model with supported operations is 

trained. Then, this model is converted to a Tensorflow Lite model using TensorFlow 

Lite converter Python API. This will convert the model into a FlatBuffer, reducing the 

model size, and modify it to use TensorFlow Lite operations (TensorFlow Lite, 2021). 

At this stage, we could consider using post-training quantization so that we can obtain 

a smaller model size. Finally, the model is converted to a C byte array (C source file 

that contains the TensorFlow Lite model as a char array) using standard tools to be 

included in the program. Using this source file and TFLM C++ library, we can compile 

the program and run inference on the target device.  

 

TFLM can also run inference using both floating-point (if the target has FPU) 

and fixed-point (8-bit integers) formats. Both PTQ and QAT methods are supported in 

TFLM. While 8-bit symmetric quantization is used for weights, activations are 

quantized using asymmetric quantization in TFLM. 32-bit integers are used for biases 

to avoid high accuracy drop. Convolution operation can be implement using per-filter 

scale factor and offset, but other operations usually use per-tensor (i.e., per-layer) scale 

factor and offset. The 8-bit integer inference performance can again be optimized using 

CMSIS-NN library kernels. These kernels utilize Single Instruction Multiple Data 
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(SIMD) instructions. The SIMD instructions enable simultaneous calculations for two 

16-bit operations or four 8-bit operations, so they greatly enhance the inference 

performance on ARM microcontrollers.  

 

TFLM provides several post-training quantization options such as dynamic 

range quantization, full-integer quantization, and float-16 quantization. The decision 

tree given in Figure 32 can help us decide which PTQ method is best for the use case. 

 

 

 

Figure 32. TFLM PTQ decision tree (Source: TensorFlow Lite, 2021). 
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CHAPTER 6: EXPERIMENTAL SETUP AND ON-DEVICE 

PERFORMANCE RESULTS 
 

6.1. Platform Description 

 

 An experimental motor test platform was set up in electrical machines 

laboratory at Izmir University of Economics. As shown in Figure 34, the test stand 

includes a single-phase induction motor (right), a variac (not shown) to adjust the 

voltage, and the B-L475E-IOT01A2 Discovery kit (inside 3D printed case) for data 

acquisition and ML inference on the edge. 5 single-phase induction motors were used. 

Three of them were VM 90S-2 220V, 1.5 kW and 2880 rpm single-phase induction 

motors, and the condition of the bearings for these electric motors were healthy, outer-

race and inner-race fault. The remaining two were VM 90S-4 220V, 1.1 kW and 1400 

rpm single-phase induction motors and the health condition of bearings for these 

motors were healthy and ball fault. All the motors were from Volt Electric Motors 

company. Single-point faults were introduced to the drive-end bearings with a fault 

diameter of 1.5 mm. Ball bearings with fan-end bearing type 6203 ZZ and drive-end 

bearing type 6205 ZZ were employed in all electric motors used in this setup. Sample 

fault introduced and healthy bearings are shown in Figure 33. The B-L475E-IOT01A2 

Discovery kit was securely fastened to the electric motor cooling fin edges using an 

aluminum mounting bracket as shown in Figure 35. 

 

 

 

Figure 33. Sample healthy and fault introduced ball bearings. 
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Figure 34. Machine monitoring and diagnostics (MMD) test stand. 

 

 

 

Figure 35. Aluminum mounting bracket. 
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6.2. Development Board - STM32L4 Discovery Kit IoT Node  

 

The B-L475E-IOT01A Discovery kit was used for motor acceleration data 

collection, and on-device ML inference. The Discovery kit includes ultra-low-power 

STM32L4 Series MCU based on Arm Cortex-M4 core with 1 Mbyte of Flash memory 

and 128 Kbytes of SRAM. Several STMicroelectronics sensors are available on this 

board such as 3D accelerometer and 3D gyroscope (LSM6DSL), 3-axis magnetometer 

(LIS3MDL), capacitive digital sensor for relative humidity and temperature 

(HTS221), and 2 on-board omnidirectional digital microphones (MP34DT01). The 

board also includes a wide range of on-board communication modules such as 

Bluetooth (V4.1), Wi-Fi, sub-GHz RF module, and a dynamic NFC tag. The layout of 

this board is shown in Figure 36. 

 

 

 

Figure 36. STM32L4 Discovery Kit IoT Node. 

 

The main reason behind using this board was its low-power 3D accelerometer 

and 3D gyroscope (LSM6DSL). 3-axis (XYZ) raw acceleration data from this on-

board accelerometer was used to diagnose bearing faults of single-phase induction 

motors. The full-scale acceleration range of LSM6DSL is user-specified, and the 

available values are ±2/±4/±8/±16 g. It offers output data rates (ODRs) from 12.5 Hz 

up to 6.66 kHz in high-performance mode.  
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This board is Arm Mbed enabled, thus it allows rapid prototyping using its 

open-source IoT operating system. It offers a well-defined API to write C++ 

applications with free tools, libraries, and drivers for common components. Mbed OS 

was also used in this thesis for the embedded machine learning application 

development.  

 

6.3. On-Device Performance Results 

 

 The overall system block diagram is shown in Figure 37. The proposed 

intelligent machine monitoring and diagnostics system works as follows. First, the data 

can be collected from the device for a couple of minutes over the USB serial port or 

wirelessly using the on-board Wi-Fi or BLE module. Then, using the collected data, a 

neural network model can be trained offline on a workstation or on a cloud platform. 

After that, the neural network is trained and quantized, and the corresponding ML files 

are exported. At this stage, the new binary can be compiled and deployed on the IoT 

device to run inference periodically. From then on, the device can run standalone, and 

it may only transfer predictions made on the device to lower power consumption. 

 

 To demonstrate the working of this intelligent system, 3-axis raw acceleration 

data was collected from the mentioned single-phase induction motors on the motor test 

stand. The output data rate (ODR) of the on-board accelerometer was set to its 

maximum value 6.66 kHz, and the full-scale acceleration range was selected as ±4 g. 

This choice of full-scale range was made by observation of the raw acceleration 

waveform to avoid saturation. A simple Mbed program that reads 3-axis raw 

acceleration with these settings was compiled and run on the board. This program 

periodically reads 1 second long (6660 time-domain samples) 3-axis raw acceleration 

and send these samples over the serial port. These samples can then be printed on a 

serial monitor using a serial monitor application like Tera Term. By this way, for each 

healthy state and fault condition, several minutes of 3-axis raw acceleration data was 

collected under no load condition. The length of collected data for each case is given 

in Table 14.  
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Figure 37. Microcontroller based motor fault detection and diagnosis system. 

 

Table 14. MMD bearing fault dataset 

 

Motor (Bearing) 

Health Condition 

Motor Load (hp) Motor Type Length of Dataset 

(minutes) 

Idle - - 4 

Healthy 0 VM 90S-4 

(1400 rpm) 

9 

Healthy 0 VM 90S-2 

(2880 rpm) 

9 

Inner Race Fault 0 VM 90S-2  

(2880 rpm) 

9 

Outer Race Fault 0 VM 90S-2 

(2880 rpm) 

9 

Ball Fault 0 VM 90S-4 

(1400 rpm) 

9 

 

Sample faulty and healthy motor raw acceleration waveforms and the amplitude 

spectrum of the z-axis acceleration are shown in Figure 38 through Figure 40. 
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Figure 38. 1500 samples healthy and faulty motor 3-axis raw acceleration waveforms. 

(X axis: blue, Y axis: orange, Z axis: green) 

 

After the data collection process, a 2D CNN model was trained using the 

collected data. The input to this model was 3-axis raw acceleration. The input window 

size was chosen as 333 time-domain samples so that the raw acceleration includes at 

least one revolution of the motor shaft. The whole data was divided into 4 equal pieces, 

and each of them has the examples from all classes. Two of them (50%) was used for 

training, one (25%) for validation and one (25%) for testing. Therefore, there are 

29,400 training, 14,700 validation and 14,700 test samples in total. After the 

segmentation process, mean normalization was also applied on the input data to 

subtract the mean from each channel using the Equation 44. 
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

 

Equation 44. Mean normalization. 

 

 

 

Figure 39. 500 samples healthy and faulty motor 3-axis raw acceleration waveforms. 

(X axis: blue, Y axis: orange, Z axis: green). 

 

Since both Tensorflow Lite Micro (TFLM) and X-CUBE-AI expansion 

package support 1D convolution by adding a singleton dimension to 2D convolution, 

a 2D CNN was used for deployment. The 2D CNN model used for this dataset is shown 

in Figure 41. It has 3 convolutional and 2 dense layers. Normalized 3-axis raw 

acceleration data with size 333 (time-domain samples) was inputted to the model. The 

2D convolutional layers has 16, 8, and 8 neurons with kernel sizes 11, 7 and 3 
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respectively. There are 10 neurons in the hidden MLP layer, and the output dense layer 

size is 5 which is equal to the number of classes. These 5 classes are idle, healthy, 

outer-race fault, inner-race fault, and ball fault. Idle state is used to indicate that the 

electric motor is not running. At the output MLP layer, cross-entropy loss with 

SoftMax function was used. The rectified linear activation function “ReLU” was 

utilized through all convolutional and MLP layers except the output. ReLU activation 

is simpler to implement on a microcontroller, since it outputs the input directly if it is 

positive, otherwise, it will output zero. The Adam optimizer with a learning rate of 

0.001 was used. The default batch size of 32 was used. The number of epochs was 20. 

Early stopping was utilized by monitoring validation loss with patience 5 epochs. The 

training was carried out on a TensorFlow version 2.4.1 installed PC with 2.00GHz 

Intel Core i7-4510U CPU and NVIDIA GeForce 840M graphic card. 

 

To reduce the feature map size through the convolutional layers, convolution 

with stride 4 was used instead of max-pooling for the following reasons. Stride is an 

argument that controls the step size as a convolution filter is slid across the input. Many 

neural network frameworks use the stride size 1 as the default value. However, if we 

set the stride to 2, each window will be offset by two samples from its neighbor, and 

this results in an output array that is half the width and height of the input. As a result, 

the output of each convolution layer occupies much less memory, resulting in reduced 

RAM usage, and the computation is also reduced with increased stride size that allows 

fast inference.  Larger stride values may cause some accuracy loss that can be verified 

during training. However, as it reduces the MCU resource usage dramatically, one can 

increase the other parameters like the number of neurons and gain some accuracy back.  
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Figure 40. The amplitude spectrum of z-axis acceleration. 

 

 

Figure 41. 2D CNN model with 3 conv2D and 2 dense layers. 
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After training the model, we need to follow some steps to deploy and run a 

TensorFlow model on a microcontroller using the TFLM run-time. First, the 

TensorFlow model should be converted to a TensorFlow Lite model using the 

TensorFlow Lite converter Python API. This step converts the model into a FlatBuffer 

format, reducing the model size, and modify it to use TensorFlow Lite operations. At 

this stage, to get a smaller model size, one can use post-training quantization (PTQ) or 

the model can be trained using quantization-aware training (QAT). The TensorFlow 

Lite model is then converted to a C byte array using standard tools to store it in read-

only program memory on the microcontroller. Using this C byte array and the TFLM 

C++ library, we can run inference on the microcontroller. One can also use 

STM32Cube.AI ecosystem to deploy a TensorFlow Lite model on microcontrollers. 

As a part of the STM32Cube.AI ecosystem, X-CUBE-AI is an expansion package that 

enables automatic conversion and integration of pre-trained neural networks. An 

optimized library is generated automatically and included in the user's project. 

 

For comparison, several 2D CNN models were deployed on the STM32L4 

Discovery Kit IoT Node using both TFLM and STM32Cube.AI runtime. In terms of 

model size, the advantages of strided convolution in CNNs compared to max-pooling 

can be observed by comparing the same models in the Table 15 and Table 16. For the 

same number of neurons and filter size in convolutional layers, using stride of 4 instead 

of max-pooling with pool size of 4, RAM usage can be significantly reduced with no 

significant reduction in test accuracy. The other benefit is the fast inference which can 

be seen from Table 17 and 18. In these tables, the average duration for 10 inferences 

is reported. The inference duration can be reduced to a few milliseconds using strided 

convolution which enables real-time implementation. The other important decision to 

make is the quantization type. In PTQ, as the number of parameters in the model is 

reduced, the test accuracy of the quantized model drops considerably for smaller 

networks. To avoid such accuracy loss, we can utilize quantization-aware training.  
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Table 15. The comparison of float and quantized model size and test accuracy for 

strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes. 

 

 

 

Table 16. The comparison of float and quantized model size and test accuracy for max-

pooling (pool size=4) following convolutional layers using TFLM and 

STM32Cube.AI runtimes. 

 

 

Model 

3 Conv. 

+ 

2 FC 

{Neurons} 

(Kernel 

Size) 

 

Number  

of 

parameters 

Quantization 

Type 

Model Test 

Accuracy 

Model Size (Bytes) 

Float Quantized Float 

 

Quantized 

Flash RAM Flash RAM 

{16}(11), 

{8}(7), 

 {8}(3),  

{10},  

{5} 

2,033 PTQ 

Full-Integer 

(Int 8) 

1.0 1.0 12004 28208 8152 8928 

{8}(11), 

{4}(7),  

{4}(3),  

{10},  

{5} 

777 PTQ 

Full-Integer 

(Int 8) 

1.0 0.99931 

 

6988 16624 6336 5952 

{8}(11), 

{4}(7),  

{4}(3),  

{10},  

{5} 

777 QAT 

(Int 8) 

1.0 0.99971 

 

6988 16624 6888 7536 

Model 

3 Conv. 

+ 

2 FC 

{Neurons} 

(Kernel Size) 

[Stride] 

Number  

of  

Trainable 

Parameters 

Quantization 

Type 

Model Test 

Accuracy 

Model Size (Bytes) 

Float Quantized Float 

 

Quantized 

Flash RAM Flash RAM 

{16}(11)[4], 

{8}(7)[4],  

{8}(3)[4],  

{10},  

{5} 

2,113 PTQ 

Full-Integer 

(Int 8) 

0.99919 

 

0.99907 

 

11728 11104 7448 4288 

{8}(11)[4],  

{4}(7)[4],  

{4}(3)[4],  

{10},  

{5} 

817 PTQ 

Full-Integer 

(Int 8) 

0.99890 

 

0.88662 

 

6544 8384 5592 3520 

{8}(11)[4],  

{4}(7)[4],  

{4}(3)[4],  

{10},  

{5} 

817 QAT 

(Int 8) 

0.99890 

 

0.99919 

 

6544 8384 6280 7024 
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Table 17. The comparison of float and quantized model test accuracy and inference 

speed for max-pooling (pool size=4) following convolutional layers using TFLM and 

STM32Cube.AI runtimes. 

 
Model 

3 Conv. 

+ 

2 FC 

{Neurons} 

(Kernel 

Size) 
 

Number  

of 

parameters 

Quantization 

Type 

Model Test 

Accuracy 

TFLM  

Run-time 

Inference Duration  

(msec) 

 

STM32Cube.AI 

Run-time 

Inference Duration  

(msec) 

Float Quantized Float 

 

Quantized 

 

Float Quantized 

{16}(11), 

{8}(7), 

 {8}(3),  

{10},  

{5} 

2,033 PTQ 

Full-Integer 

(Int 8) 

1.0 1.0 123.441 

 

25.318 64.495 38.605 

{8}(11), 

{4}(7),  

{4}(3),  

{10},  

{5} 

777 PTQ 

Full-Integer 

(Int 8) 

1.0 0.99931 

 

58.366 16.197 31.278 24.660 

{8}(11), 

{4}(7),  

{4}(3),  

{10},  

{5} 

777 QAT 

(Int 8) 

1.0 0.99971 

 

58.366 16.916 31.278 25.448 

 

 

Table 18. The comparison of float and quantized model test accuracy, and inference 

speed for strided convolution (strides=4) using TFLM and STM32Cube.AI runtimes. 

 
Model 

3 Conv 

+ 

2 FC 

{Neurons} 

(Kernel 

Size) 

[Stride] 

Number  

of  

Trainable 

Parameters 

Quantization 

Type 

Model Test Accuracy TFLM  

Run-time 

Inference Duration  

(msec) 

 

STM32Cube.AI 

Run-time 

Inference Duration  

(msec) 

Float Quantized Float 

 

Quantized 

 

Float Quantized 

{16}(11)[4], 

{8}(7)[4],  

{8}(3)[4],  

{10},  

{5} 

2,113 PTQ 

Full-Integer 

(Int 8) 

0.99919 

 

0.99907 

 

30.079 

 

6.340 15.617 3.873 

{8}(11)[4], 

{4}(7)[4],  

{4}(3)[4],  

{10},  

{5} 

817 PTQ 

Full-Integer 

(Int 8) 

0.99890 

 

0.88662 

 

14.202 4.059 7.543 2.647 

{8}(11)[4], 

{4}(7)[4],  

{4}(3)[4],  

{10},  

{5} 

817 QAT 

(Int 8) 

0.99890 

 

0.99919 

 

14.202 4.758 7.543 3.354 
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All the quantized models given on the previous tables can fit on the target 

MCU, since it has 128 Kbytes of SRAM and 1 Mbyte of Flash memory. The first 

model in Table 18 was used for deployment. To visualize the 3-axis raw acceleration 

and the prediction of the proposed CNN on a phone, Phyphox BLE Mbed library was 

used. In contrast to classic Bluetooth, BLE is designed for significantly lower power 

consumption, thus the BLE devices can run for weeks or months on a coin cell battery. 

This encourages us to communicate with the development board using the on-board 

Bluetooth V4.1 module (SPBTLE-RF). The board was powered up by a 3.7V Li-Po 

battery with an external boost converter to step up the voltage to 9V. Phyphox 

application was used on mobile. A custom BLE service with two characteristics were 

created. The first characteristic was used to send 3-axis acceleration data, and the 

second one was used to send the predictions made by the ML model. The compiled 

source code first reads 3-axis acceleration from the on-board accelerometer sensor and 

applies mean normalization to each axis. Then, the normalized data is inputted to the 

ML model and TensorFlow’s interpreter-based inference engine runs the inference. 

The 3-axis acceleration data and the prediction made by the model can be sent to a 

GATT client by notifications. Notifications are unacknowledged; thus, they are faster. 

This process can be called periodically to reduce power consumption. The experiment 

created in the Phyphox application for bearing fault diagnosis is given in Figure 42. 

Finally, a video demonstration of this system can be watched from the following link 

(https://ieucloud.izmirekonomi.edu.tr/index.php/s/fEDAXNzDsFnkfJO). 

 

https://ieucloud.izmirekonomi.edu.tr/index.php/s/fEDAXNzDsFnkfJO
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Figure 42. The designed Phyphox experiment that shows bearing health condition and 

the 3-axis motor vibration on a mobile. 

 

 

 

 

 



92 
 

CHAPTER 7: CONCLUSION 
 

Continuous machine monitoring is of great importance and obviously a crucial 

challenge in the industry. Unexpected machine failures and breakdowns result in costly 

replacement of machine components and unplanned production downtime. REBs are 

commonly used in rotating machinery, and they are one of the most major causes of 

induction machine faults. For this reason, rolling element bearing fault diagnosis 

techniques has been studied extensively for decades. 

 

The earlier signs of rolling element bearing failure can most easily be detected 

using an accelerometer, and it can be used as an effective predictive maintenance tool 

to estimate when the maintenance should be performed. In a highly digitized and 

connected production facility, with the increasing number of sensors used in the field, 

access to high volume of data has now become possible. Therefore, the use of deep 

learning techniques for BFDD has increased day by day. 

 

Deep learning-based bearing fault diagnosis methods have been discussed in 

detail throughout this thesis. Two open-source benchmark datasets, i.e., Case Western 

Reserve University (CWRU) and University of Ottawa bearing vibration data, were 

used for this purpose. In domain and cross domain (under different loading conditions) 

performances of 1D CNNs and Self-ONNs for bearing fault diagnosis were evaluated 

using the CWRU bearing data. In addition, the performance of 1D CNN and Self-

ONNs was evaluated under time-varying rotational speed conditions using University 

of Ottawa bearing data. This work was the first in terms of cross domain evaluation of 

1D CNNs and Self-ONNs for bearing fault diagnosis, and they were also tested under 

time-varying rotational speed conditions. From the results, the superior performance 

of 1D Self-ONNs over 1D CNNs are obvious for cross domain tests, demonstrating 

better generalization capability at more difficult tasks. However, when the data is not 

so varied and the number of samples are sufficient for each class, the performance of 

1D CNNs is quite satisfactory. 

 



93 
 

To further evaluate the performance of 1D CNNs, from two different single-

phase induction motors with four different bearing health conditions (healthy, outer-

race, inner-race, and ball fault), real motor acceleration data was collected using the 

on-board 3-axis accelerometer of STM32L4 Discovery kit IoT node. A 1D CNN 

model was then trained, quantized, and deployed to the microcontroller using the 

collected data, and the embedded AI tools TensorFlow Lite for Microcontrollers 

(TFLM) and STM32Cube.AI. These tools were compared in terms of average 

inference time and memory footprint for this application. Post training quantization 

(PTQ) and quantization-aware training (QAT) were also discussed and the effect of 

quantization in the test accuracy was observed.  The experimental results show that 1D 

CNNs can easily be deployed on microcontrollers and used for real-time bearing fault 

diagnosis. A system with BLE connectivity was employed for continuous monitoring 

of bearing health condition of single-phase induction motors. As a future work, the 

main target is to deploy 1D Self-ONNs onto the microcontrollers to utilize their 

generalization capability across different load domains. Furthermore, the data 

collection process will be accelerated through cloud connectivity rather than just using 

the BLE connection.  
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