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ABSTRACT

MULTI-OBJECTIVE SHIPMENT CONSOLIDATION AND DISPATCHING

PROBLEM

Büyükdeveci, Özge

Master Program in Industrial Engineering

Advisor: Prof. Dr. Selin Özpeynirci

Co-Advisor: Assoc. Prof. Dr. Özgür Özpeynirci

June, 2022

In recent years, with the increase in global production and demand, transportation

problems have become a widely studied area to provide high-quality service at the

lowest cost. In this thesis, a bi-objective shipment consolidation and dispatching

problem is considered where one of the objectives is to minimize the total cost and

the other is to minimize the total distance. In order to create a non-dominated solution

set, a multi-objective mixed integer linear programming model is developed and the

augmented-ε constraint method is used to generate the efficient frontier. However,

since this approach is not capable of finding the non-dominated solution set in a

reasonable time even for small-sized instances, we propose a multi-objective variable

neighborhood search heuristic. To measure the performance of the proposed approach,

a computational experiment is conducted on randomly generated instances available

in the literature. The experimental results indicate that the multi-objective variable

neighborhood search heuristic performs efficiently in reasonable time.

Keywords: Shipment Consolidation, Multi-objective Decision Making, Augmented

ε-Constraint Method, Variable Neighborhood Search.
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ÖZET

ÇOK AMAÇLI YÜK BİRLEŞTİRME VE SEVKİYAT PROBLEMİ

Büyükdeveci, Özge

Endüstri Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Prof. Dr. Selin Özpeynirci

İkinci Tez Danışmanı: Doç. Dr. Özgür Özpeynirci

Haziran, 2022

Son yıllarda, küresel üretim ve talebin artmasıyla birlikte, ulaşım sorunları, yüksek

kaliteli hizmeti en düşük maliyetle sunmak için yaygın olarak çalışılan bir alan

haline gelmiştir. Bu tezde, amaçlarından birinin toplam maliyeti en aza indirmek ve

diğerinin toplam mesafeyi en aza indirmek olduğu iki amaçlı bir yük birleştirme ve

sevkiyat problemi ele alınmıştır. Domine edilemeyen sonuçlar kümesi oluşturmak

için, çok amaçlı karma tamsayılı doğrusal programlama modeli önerilmiş ve etkin

sınırı oluşturmak için modifiye edilmiş ε-kısıt yöntemi kullanılmıştır. Ancak bu

yaklaşım, küçük boyutlu örnekler için bile makul bir sürede bir domine edilemeyen

sonuçlar kümesi bulamadığı için, çok amaçlı değişken komşuluk arama sezgisel

yöntemi önerilmiştir. Önerilen yaklaşımın performansını ölçmek için literatürde yer

alan rassal olarak üretilmiş örnekler ile bir hesaplamalı deney gerçekleştirilmiştir.

Deneysel sonuçlar, çok amaçlı değişken komşuluk arama sezgisel yönteminin verimli

bir şekilde çalıştığını ve hesaplama süresinin makul olduğunu göstermektedir.

Anahtar Kelimeler: Yük Birleştirme, Çok Amaçlı Karar Verme, Modifiye Edilmiş ε-

kısıtı yöntemi, Değişken Komşuluk Arama.
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Argüz, Dünya Kulavuz, Barış Dal, and Mehmet Faruk Cengiz, who have given me their

friendship, put up with my odd hours, and their never-ending support.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2: LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . 4

2.1 Shipment Consolidation and Dispatching Problems . . . . . . . . . . . 4

2.2 Multi-Objective Decision-Making . . . . . . . . . . . . . . . . . . . . . 6

2.3 Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Multi-Objective Variable Neighborhood Search . . . . . . . . . . . . . 9

CHAPTER 3: METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Mathematical Model Formulation . . . . . . . . . . . . . . . . . . . . . 14

3.3 Generating the Efficient Frontier . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 ε-Constraint Method . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Augmented ε-Constraint Method (AUGMECON) . . . . . . . . . . 20

3.4 Variable Neighborhood Search . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Basics of Variable Neighborhood Search Heuristic . . . . . . . . . 22

3.4.2 Multi-Objective Variable Neighborhood Search for Shipment Con-

solidation and Dispatching Problem . . . . . . . . . . . . . . . . . . . . 24

CHAPTER 4: COMPUTATIONAL EXPERIMENTS . . . . . . . . . . . . . . 36

4.1 Exact Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Heuristic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 5: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 48

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



LIST OF TABLES

Table 1. Time-windows for deliveries . . . . . . . . . . . . . . . . . . . . 14

Table 2. The using levels of parameters for instance generation . . . . . . . 37

Table 3. Non-dominated solutions generated by augmented ε-constraint

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4. Comparison of two extreme points in a non-dominated solution set 40

Table 5. Experimental results of augmented ε-constraint method for in-

stances with I = 10 . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 6. Average number of iterations with the latest change in the efficient

frontier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 7. Results of Variable Neighborhood Search . . . . . . . . . . . . . 46

vii



LIST OF FIGURES

Figure 1. Delivery System . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 2. 24

Figure 3. Flowchart of the Proposed Multi-objective Variable Neighbor-

hood Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4. Non-dominated solutions obtained by augmented ε-constraint

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5. Non-dominated solutions obtained by augmented ε-constraint

method and multi-objective VNS algorithm . . . . . . . . . . . . 44

Figure 6. Non-dominated solutions obtained via augmented ε-constraint

approach and the union non-dominated solution set of multi-

objective VNS algorithm with different random seeds . . . . . . 45

viii

Basic VNS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .



CHAPTER 1 : INTRODUCTION

Due to the increase in global production and demand in recent years, long-haul freight

transportation operations have intensified. Consequently, international transportation

has an increasing need for improvements in consolidation systems and transportation

operations. Considering the high logistics costs, the fact that the carriers aim to achieve

the highest quality service with the minimum cost has made transportation a subject

that has been extensively studied by researchers.

The daily operation plans of the freight forwarders aim to deliver different types of

demands of their customers within certain time-windows while minimizing the total

cost. Moreover, they can often use transshipment terminals to save time and money. In

real life, carriers often make their daily operation plans manually. This can cause them

to implement dispatching plans that are not the optimal solution. Also, the planning

process might take several hours. By using analytical solution approaches, we aim

to find the most efficient solutions for freight forwarders. With this objective, we

examine a problem faced by carriers in real life, namely the Shipment Consolidation

and Dispatching Problem (SCDP) under some presumptions. The order information

such as volume, weight, length, destination point, release date, and deadline is known

to be deterministic. Secondly, the cost is computed according to the farthest delivery

point from the depot. This is a common practice in real life that eases the planning

process, also Koca and Yıldırım (2012) described routes characterized by their location

with the greatest distance and the fixed cost associated with that location. There is a

fixed number of stops allowed to be charged as a fixed cost and a maximum number

of extra stops. An additional cost is charged to the vehicle’s overall cost for each extra

stop. Thus, the cost for each vehicle is calculated. Finally, two options for the delivery

structure are examined. The orders could be transferred directly to their delivery point

or through a transshipment terminal. Instead of being delivered to their final address,

the orders are delivered at the transshipment terminal at a certain cost. Figure 1 depicts

an illustrative example of a hybrid system with direct delivery and delivery from a

transshipment terminal. As seen in Figure 1, the routes are open, i.e., return of the

vehicles to the depot is not included in the problem.

Both SCDP and network design problems deal with freight processes of consolidation

(Crainic, 2000). However, there are some distinctions between the two problems, such
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Figure 1. Delivery System

as cost structures. For network design problems, the total cost is computed from node

to hub or hub to node, but for SCDP, the cost is calculated for each route. Also,

network problems use the direct delivery and transshipment terminals rarely. Instead,

a network is designed using many intermediate facilities (Guastaroba et al., 2016).

Another transportation planning problem, the Vehicle Routing Problem (VRP), has

similarities with the SCDP. Both SCDP and VRP extensions can optimize vehicle

routes while taking capacity into account, as well as provide solutions with time-

windows and different delivery options. On the other hand, the cost structures of

VRP and SCDP are different. While the cost scheme of VRP is varied according

to the distance between the locations visited, SCDP uses a fixed cost for each route

according to the farthest stop from the depot and an additional charge for extra stops.

In this regard, the problem is not modeled as a VRP extension.

The aim of this thesis is to provide efficient solutions to the introduced SCDP with

two separate goals; the overall cost and the overall distance minimization. The cost

structure of the problem is generated according to the real-life business environment.

Vehicle returns to the depot are not considered for freight forwarders because they

only rent vehicles for one-way trips. Additionally, long-haul transportation trips are

typically much longer than short-haul transportation, thus the cost structure of a route

does not need to be as accurate as it would be in short-haul vehicle routing. Moreover,

the dynamic real-life cases require fast decision-making, so freight forwarders prefer

to use simple procedures to support easy cost calculations with minimum data
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requirements. This means that the main route of a vehicle is defined by its farthest stop,

and additional stops along the same route can be allowed. Even if there is an additional

stop in the route, it adds to travel time and might cause delivery to be delayed. As

a result, fewer stops are preferable, and only a limited number of extra stops are

permitted. An additional cost must be paid for each stop that exceeds that number.

Consequently, the total cost for each route is calculated by summing the fixed cost

calculated depending on the farthest stop from the depot, the additional cost for each

extra stop, and the transshipment terminal usage cost. Considering this particular cost

structure, it is understood that the total cost to be calculated is not directly related to

the total distance. In this manner, the two objective functions, which are total cost and

total cost, conflict. For example, while the total cost of the route created by delivering

the orders whose delivery point is close to the depot directly to their own destinations

is a minimum, it can be predicted that the total distance will be smaller if the same

orders are delivered from the same transshipment terminal.

An exact solution approach is developed to create a Pareto optimal set for the instances

that need less amount of order to be delivered. Since this exact solution method is not

capable of generating the Pareto set in an acceptable time for large-sized problems, a

heuristic approach is proposed. The multi-objective Variable Neighborhood Search

(VNS) heuristic is developed to attain approximate points to the optimal in short

computational times. We conduct computational test to asses the performance of the

proposed approaches and discuss the experimental results.

The thesis is organized as follows: In Chapter 2, we review the related studies in

the literature in four sections; (i) SCDP and its variations, (ii) multi-objective decision

making, (iii) VNS algorithms and (iv) multi-objective VNS. Additionally, we highlight

our contribution to the literature. In Chapter 3, we present the problem definition,

mathematical model formulation, the methods for generating the efficient frontier, and

the VNS algorithm. In Chapter 4, we report the results of the multi-objective mixed

integer linear programming model (MOMILP) and the multi-objective VNS algorithm.

Finally, in Chapter 5 we present a general review and discussion of the study, as well

as some potential future research areas.
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CHAPTER 2 : LITERATURE REVIEW

In this chapter, we examine the related literature to our problem and the relevant

solution methods. We present the literature in four sections. In the first section, we

examine the SCDP and its different versions. In the second section, we discuss the

studies on multi-objective decision making. Next, we give a review of corresponding

studies on VNS. In the last section, we examine the multi-objective VNS in the

literature. Finally, we discuss our contribution to the literature.

2.1 Shipment Consolidation and Dispatching Problems

Transportation problems are divided into three classes: strategic, tactical, and opera-

tional planning problems (Crainic and Laporte, 1997; Schmidt and Wilhelm, 2000).

Long-term decisions or decisions that need big investments, such as facility location

issues, are related to strategic decision problems. Tactical decision problems consider

medium-term decisions such as network design problems. Operational planning

problems concern short-term decisions. SCDP is an operational planning problem,

since it considers short-term decisions.

Shipment consolidation is a crucial logistics application that merges many small-

sized orders into a single big load, lowering the shipper’s total transportation costs

(Higginson and Bookbinder, 1994). Because the consolidation problem is so diverse

and complicated, it is critical to choose the correct consolidation technique (Min,

1996). Brennan (1982) classified the consolidation strategies into three groups: spatial,

temporal, and product consolidation strategies. We discuss only spatial and temporal

consolidation since the literature on product consolidation is very limited.

The spatial consolidation strategy is related to geographical decisions. The strategy

consolidates the orders according to their geographic features. Thus, it creates routes

for the consolidated orders. We can say that the main objective of spatial consolidation

is similar to that of the shortest-path problem (Min and Cooper, 1990). So the

studies that use this spatial consolidation strategy focus on the cost-effectiveness of the

consolidation. Furthermore, they discuss the advantages of consolidation compared

with direct deliveries. Generally, early studies only consider the spatial strategy

(Daganzo, 1988; Campbell, 1990; Min, 1996). More recent studies consider the

problem with both temporal and spatial strategies.
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On the other hand, the main focus of the temporal consolidation strategy is time. While

considering the release and due date of the orders, the aim is to determine the best

departure time for the consolidated orders. When determining this appropriate time,

two main questions are important; i) when the vehicle must leave the depot to meet all

orders on time, and ii) how large should the shipment quantity be (Cetinkaya and Lee,

2000). To apply the temporal strategy, some studies use simulation models (Masters,

1980; Higginson and Bookbinder, 1994). Others prefered to use analytical models,

such as dynamic programming and Markov decision model (Powell, 1985; Gupta and

Bagchi, 1987; Minkoff, 1993).

In recent years, studies have considered both spatial and temporal strategies. The

approaches were applied not only to SCDP, but also to network design problems and

vehicle routing problems as operational planning problems. Attanasio et al. (2007)

study a SCDP, which aims to determine on a regular basis the optimal route to deliver

a group of orders across a multi-day planning horizon. In their study, they create an

algorithm which is a cutting plane framework that solves a simplified Integer Linear

Program (ILP). Computational findings reveal that their method allows them to save

the cost. Ülkü (2012) examine SCDP with the goal of reducing carbon and energy

waste. They develop an optimization model to maximize savings for the environment.

Another related research is Yücel et al. (2022), where they study a vehicle loading and

dispatching problem. They provide a Mixed Integer Linear Program (MILP), and for

large-sized instances, they develop a heuristic method which is an extension of Large

Neighborhood Search. The results found using real-world data are presented to show

the proposed algorithm’s efficiency.

Tokcaer (2018) propose two variations of SCDP based on different assumptions. In the

first problem, the cost of each route is determined by annual contracts. For the second

one, each route has a fixed cost, and the total cost is determined by adding the charge

for the extra stops. They first propose a mathematical model and then different heuristic

methods to find a solution for the problems, with the minimization of the total cost as an

objective function. Then, they analyze their methods by testing them with real-world

data. The computational results are demonstrated to show the provided savings. Our

study considers a similar case with the second problem of Tokcaer (2018). The main

difference is that in our study, solution methods are developed for two objectives, not

5



for a single objective. One of these objectives is to minimize the total cost and the other

one is to minimize the total distance. Additionally, we do not use fixed routes for the

objective of minimizing the total distance. Instead, our solution methods generate the

possible feasible routes themselves. Since we handle the multi-objective optimization

problem, the solution strategies utilized in the literature are explored in the following

section.

2.2 Multi-Objective Decision-Making

Multi-objective optimization involves optimizing many competing objective functions

at the same time. We cannot find a single optimal solution to these problems since

the objective functions conflict with each other. In other words, improving one of

the objective functions may worsen the other ones. So, the decision maker seeks the

most preferred solution or the most efficient solution instead of the optimal solution.

As a result, the idea of optimality is altered by Pareto optimality (Steuer, 1986).

Recently, multi-objective decision making has become one of the popular study fields

in operation research. It combines different study areas such as mathematics, software

engineering, and decision support systems (Köksalan and Wallenius, 2012).

Transportation problems have also been frequently addressed as multi-objective in the

literature. Conflicting objectives make the problems more complex. Nevertheless,

there are some commonly used exact solution techniques to generate the Pareto optimal

solutions to solve problems with multi-objective. Hwang and Masud (2012) introduced

these solution methods by dividing them into three classes: the priori methods, the

interactive methods, and the posteriori (generation) methods. The definition of the

preference of the decision maker is the first step in the priori procedures. It is

mostly defined by the weights of the objective functions. Then, according to these

weighting combinations, the objective functions are optimized. The disadvantage of

this strategy is that determining the weights according to the preferences is not an

easy task. On the other hand, for interactive methods, the decision maker is active

throughout the entire decision making procedure. After finding each new solution, the

decision maker is asked to make his/her choice. However, in this technique, only some

of the non-dominated points can be found. The best solution is selected among the

solutions that have been obtained so far. The decision maker may not even be aware

of most of the non-dominated solutions. Finally, the generation methods start with
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obtaining the Pareto optimal set. After that, the decision maker selects a solution in

the obtained Pareto solution set. The biggest disadvantage of this method is that it

requires significant computing effort. On the other hand, the decision maker has much

higher confidence as they have all the efficient solutions. One of the most widely used

posteriori methods is ε-constraint algorithm. With Mavrotas (2009) introducing the

augmented ε-constraint algorithm, it has become a highly preferred solution method,

which is an advanced version of the ε-constraint approach. Since it avoids getting weak

Pareto-optimal solutions, this approach is utilised for many different optimization

problems, such as location-routing problems (Yu and Solvang, 2016), staff scheduling

problems (Sadjadi et al., 2014), supply chain network problems (Resat and Unsal,

2019) and traveling salesperson problems (Bouziaren and Aghezzaf, 2018). Azadnia

et al. (2015) applied both the weighted sum algorithm and the augmented ε-constraint

algorithm to solve a multi-objective lot sizing problem. In their study, they emphasized

that their results show that the augmented ε-constraint algorithm performs better. Zhu

and Zhu (2020) investigate the service network problem with four objectives. To

generate the non-dominated solutions, they use the augmented ε-constraint method.

Tamby and Vanderpooten (2021) use an extended version of the ε-constraint approach

for problems with two or more objectives. Their algorithms perform much better than

the previous algorithms for the discrete optimization problem instances. Zhu (2022)

also prefer to obtain the non-dominated solutions for multi-objective route planning

problems using the augmented ε-constraint approach.

Another important point is the decision-maker’s choice of which solution to choose

after obtaining the Pareto-optimal set. There are various multi-criteria decision support

methods. We do not investigate this subject in the scope of our study. Our objective

is to use posteriori methods to obtain a Pareto optimal solution. The decision maker’s

selection can be examined in future studies.

As we mentioned earlier, considering multiple objectives has made our NP-hard

problem even more difficult to solve. Therefore, a heuristic method is used for large-

sized instances. In the next section, studies on this specific method are reviewed.
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2.3 Variable Neighborhood Search

For most large-scale real-life problems, the mathematical model cannot produce a

solution of the desired quality in an acceptable time. For this reason, heuristic

methods have been developed which could find good solutions in a shorter time,

although they do not promise to find an optimal solution. In our study, we apply

variable neighborhood search, a popular heuristic, to solve the problem. The variable

neighborhood search heuristic was first presented by Hansen and Mladenović (1997),

and its application areas and methods have been rapidly developed since then. In

this heuristic method, a local minimum is found by systematically changing the used

neighborhoods, and the local optimum is avoided by the perturbation step (Hansen and

Mladenović, 1997). The effectiveness of the variable neighborhood search algorithm

for different optimization problems, such as knapsack and packing problem (Puchinger

and Raidl, 2008), job shop scheduling (Zobolas et al., 2009), pharmacy duty scheduling

(Kocatürk and Özpeynirci, 2014) and travelling salesperson problem (Hu and Raidl,

2008) has been demonstrated. Furthermore, for some problems, basic VNS may give

insufficient results. For these cases, advanced versions of VNS have been introduced

in the literature. For example, to solve very large-sized instances, reduced variable

neighborhood search is introduced. The main difference from basic VNS is that local

search is not implemented. Considering that the local search is the part that needs

the most time in the whole procedure, it aims to save computational time. Another

example of a version of VNS is Variable Neighborhood Descent. In this method, the

changing of neighborhoods is done in a deterministic manner. The other variants and

the applications of the VNS are explained in detail in Hansen et al. (2010); Hansen

et al. (2017).

When we examine the applications of the VNS algorithm for transportation problems

in the literature, we see that there are many studies that give very successful results.

Hemmelmayr et al. (2012) solve the variable-sized bin packing problem using a

VNS heuristic. A hybrid meta-heuristic is developed with the use of lower bound

techniques for VNS. Their experimental results show that the suggested method is

quite competitive with the current studies in the literature. Sadati and Çatay (2021)

study a Multi-Depot Green Vehicle Routing Problem. To solve the problem, they use

a hybrid VNS algorithm by combining the general VNS with Tabu Search (TS). They

use the Green Vehicle Routing Problem data set from the literature to measure the
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performance of the technique. The results show that the algorithm gives very effective

solutions in a short time. Tokcaer (2018) use VNS to solve a different version of

SCDP. The comparison of the exact approach and VNS results indicates that VNS

gives approximate results in a much shorter computation time compared to the exact

solution method. So far, we have discussed single-objective studies for VNS. The

studies of VNS for multi-objective are discussed in the next section.

2.4 Multi-Objective Variable Neighborhood Search

The success of metaheuristics in solving single-objective problems has led researchers

to develop metaheuristics for solving multi-objective combinatorial problems. Pareto

simulated annealing (Czyzżak and Jaszkiewicz, 1998), tabu search algorithm (Alfieri

et al., 2020) and the ant colony algorithm (Rivera et al., 2022) are a few examples.

The multi-objective VNS is one of the successful metaheuristics. The multi-objective

VNS heuristic was first proposed by Geiger (2006). The purpose of the study is to

solve the flow shop scheduling problem. It is emphasized that determining the ideal

neighborhood structure is one of the most important decisions for the effectiveness of

the algorithm. The problem is also solved with a single neighborhood operator. The

computational results demonstrate that a single neighborhood is not enough to obtain

all efficient frontier points. But VNS provides major improvements on the solution.

Population-based metaheuristics are generally preferred for use on multi-objective

problems rather than trajectory-based metaheuristics. Genetic algorithms, harmony

search, and differential evolution are examples of population-based algorithms, while

ant colony optimization, tabu search, firefly algorithm, and variable neighborhood

search are examples of trajectory-based heuristics. The main reason for this is that

population-based metaheuristics perform with a set of solutions, that is generally

called a population. Meanwhile, trajectory-based metaheuristics perform with a single

solution. Using a set of solutions to obtain the Pareto frontier is an advantage. In order

to use this advantage in trajectory-based metaheuristics, Duarte et al. (2015) propose

using the approximate set of efficient solutions found during the algorithm process

as an incumbent solution to multi-objective problems. This approach is also useful

for applying other trajectory-based metaheuristics to multi-objective problems. Ripon

et al. (2013) present adaptive VNS to handle multi-objective facility layout problems.

They compare their algorithm results with genetic algorithm-based approaches. The
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results show that the proposed algorithm could find more near-optimal solutions. Soylu

and Katip (2019) investigate a bi-objective multiple allocation p-hub median problem.

While the minimization of the total transportation cost is assumed to be the first

objective function, the second one is the minimization of the multiple-transit routes

to increase customer satisfaction. They fİnd the exact solutions for small and medium-

scaled instances. They present the VNS algorithm to solve large-sized instances.

Mrkela and Stanimirović (2022) consider a multi-objective maximal covering location

problem. They propose three different multi-objective VNS variants. The results

of the applications are compared with the multi-objective evolutionary approaches.

The multi-objective VNS implementations give more efficient solutions, especially

for large-sized instances. Xu et al. (2021) propose multi-objective VNS to solve

the colored traveling salesman problem, that is a specific type of traveling salesman

problem. Their method is compared with four existing algorithms, which are two

GA and two VNS. The experimental results indicate that their multi-objective VNS

performs more efficiently compared with the other existing methods. Özpeynirci

et al. (2022) use a mathematical model to generate an efficient frontier for the multi-

objective portfolio selection problem. Furthermore, a VNS algorithm for the large-

scaled instances of the problem is developed to obtain an approximate Pareto frontier.

They utilize various performance measures to evaluate the efficiency of the suggested

algorithm, where the results indicate that the heuristic algorithm is able to find adequate

solutions in an acceptable time range.

In the previous sections of this chapter, we discussed the studies related to our

problem and the solution methods that we used. In the literature, the identification

and application of different solution methods for SCDP have already been covered.

Several contributions to the SCDP have been made in this thesis, described as follows:

• Predefined fixed routes are not used in SCDP. Instead, we aim to find efficient

results by considering all possible routes. Although solving the problem

becomes more complicated to solve via this addition, it also causes the freight

forwarders to save more in terms of cost and distance.

• To the best of our knowledge, the most important difference between our study

and other studies in the literature is that it deals with shipment consolidation and

dispatching problems with more than one objective function. In this respect, we

create a mathematical model to find the efficient frontier. And for larger-sized

10



instances, we develop a multi-objective variable neighborhood search heuristic.
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CHAPTER 3 : METHODOLOGY

The purpose of this study is to find the best routes for Shipment Consolidation and

Dispatching Problem (SCDP) with two objectives, where the first one is to minimize

the total cost and the second one is to minimize the total distance travelled. For this

purpose, we present a Multi-Objective Mixed-Integer Linear Programming (MOMILP)

model. Since the computation time is too long due to the difficulty of the problem,

the exact solution method is not efficient to solve, especially for the large instances

of the problem. Thus, a meta-heuristic algorithm is suggested to obtain near-optimal

solutions in acceptable computation time.

In this chapter, we define the problem and discuss the assumptions. We then propose

the multi-objective mathematical model for the SCDP that has no predefined routes and

present the solution techniques. Finally, we present the Variable Neighborhood Search

(VNS) algorithm developed to obtain approximate solutions in short computation time.

3.1 Problem Definition

We aim to determine the best route for SCDP considering two objectives where the first

one is to minimize the total cost and the second one is to minimize the total distance.

The total cost comprises of the fixed cost of each vehicle used, additional cost for extra

stops and cost of using transshipment terminals. Furthermore, per kilometer cost for a

vehicle is computed according to the distance of the farthest location from the initial

location among the destinations assigned to that vehicle. For SCDP based on real-life,

we model the problem considering the following assumptions:

• Data about orders and vehicles is deterministic.

• Orders can be delivered with two different options. The first option is direct

delivery. The second option is to deliver the order by using one of the contracted

transshipment terminals.

• For the orders which are delivered via the transshipment terminal, the terminal

is in charge of the delivery of the order to the final destination. The cost is

determined based on the size of the order and the transshipment terminal used.

• Routes of vehicles are open routes. All vehicles start their route from the initial

location. Then they stop by the destinations that are assigned to them. Routes
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end at their last order’s final destination. They do not turn back to the starting

point.

• It is included in the fixed cost for a limited number of stops. The additional cost

is applied for each stop that exceeds the number of stops allowed to be charged

as fixed costs.

• According to the vehicles capacity and the time-windows of orders for deliveries,

it is determined whether the orders can or cannot be in the same vehicle.

• The transit time of destinations is assumed to be constant and regardless of the

assigned vehicle or any other orders assigned to that vehicle.

Since orders have a release date and due date information, the problem has a time

dimension. According to the release date, due date and travel time of orders, it is

decided whether it is possible for the orders to assign to the same vehicle. Instead of

adding the time-windows as new constraint sets in the proposed model, we define a

parameter that identifies whether the orders can be in the same vehicle or not. The

corresponding parameter is as follows:

akl=
{

1 if orders k and l can be assigned to the same vehicle
0 otherwise

A basic sample is illustrated in Table 1. It is assumed that the transit time of an order

is 5 days. The release dates and deadlines of orders are shown in the table. The orders

must depart the latest 5 days before their deadlines. This time duration is shown as

light grey in the table. The section marked with dark grey represents the available

departure dates for each order. Orders (1) and (2) could leave together on day 2 or day

3 in the same vehicle. On the other hand, order (1) cannot be in the same vehicle with

order (3), because they do not have any common departure day. Lastly, orders (2) and

(3) can depart together on 4th day in the same vehicle. In this manner, the values of

a12, a13 and a23 are 1, 0 and 1, respectively.
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Table 1. Time-windows for deliveries

Day

1

Day

2

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9
Day 10

Order

1

Order

2

Order

3

3.2 Mathematical Model Formulation

According to the assumptions that are discussed above, we develop the mathematical

model for the problem as follows:

Indices and Sets

K : Set of orders, k, l ∈K

T : Set of vehicles, t ∈T

L : Set of locations, i, j ∈L

L0 : Initial location, L0 ⊂L

Lq : Set of transshipment terminals, Lq ⊂L

Ld : Set of destinations, Ld ⊂L

Parameters

vk : Volume of order k

wk : Weight of order k

lk : Length of order k

ν : Volume capacity of vehicle

ω : Weight capacity of vehicle
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τ : Length capacity of vehicle

pk : Delivery location of order k, where pk ∈L

di j : Distance between locations i and j

pkm: Cost per kilometer

f oc: Fixed cost of operating a vehicle

costki : Cost of using transshipment terminal i to deliver order k

µ : Maximum number of extra stops

φ : Number of stops allowed to be charged as fixed costs, where 1 ≤ φ ≤ µ

ρ : Additional cost for extra stops

akl :


1 if orders k and l can be assigned to the same vehicle

0 otherwise

Decision Variables

αt = Fixed cost of vehicle t

βt = Number of extra stops for vehicle t

xt
k =


1 if order k is departed in vehicle t

0 otherwise

yt
k =


1 if order k is delivered directly with vehicle t

0 otherwise
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zt
ki =


1 if order k is in vehicle t and delivered through transshipment terminal i

0 otherwise

γ t
i j =


1 if location j is visited right after location i by vehicle t

0 otherwise

δ t
i =


1 if vehicle t visits location i

0 otherwise

Mathematical Model

Min Z1 = ∑
t∈T

(αt + pβt + ∑
i∈Lq

∑
k∈K

costkizt
ki) (3.1)

Min Z2 = ∑
i∈L

∑
j∈L : j ̸=i

∑
t∈T

di jγ
t
i j (3.2)

Subject to:

αt ≥ (d0 j.pkm+ f oc)δ t
j j ∈L \L0 , t ∈T (3.3)

δ
t
pk
≥ yt

k k ∈K , t ∈T (3.4)

δ
t
i ≥ zt

ki k ∈K , i ∈ Lq, t ∈T

(3.5)

βt ≥ ∑
i∈L \L0

δ
t
i −φ t ∈T (3.6)

βt ≤ µ t ∈T (3.7)
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xt
k = yt

k + ∑
i∈Lq

zt
ki k ∈K , t ∈T (3.8)

∑
t∈T

xt
k = 1 k ∈K (3.9)

xt
k + xt

l ≤ 1 k, l ∈K | akl = 0, t ∈T

(3.10)

∑
k∈K

vkxt
k ≤ ν t ∈T (3.11)

∑
k∈K

wkxt
k ≤ ω t ∈T (3.12)

∑
k∈K

lkxt
k ≤ τ t ∈T (3.13)

αt ≥ αt−1 t ∈T | t ≥ 2 (3.14)

∑
j∈L \{i}

γ
t
i j ≤ δ

t
i i ∈L , t ∈T (3.15)

∑
i∈L \{i}

γ
t
i j = δ

t
j j ∈L \L0, t ∈T (3.16)

ut
i−ut

j +1≤ (µ +φ)(1− γ
t
i j) i, j ∈L , t ∈T (3.17)

ut
i ≤ βt +φ , i ∈L , t ∈T (3.18)

xt
k,y

t
k,z

t
ki,γ

t
i j,δ

t
i ∈ {0,1} i, j ∈L , t ∈T (3.19)

αt ,ut
i ≥ 0 i ∈L , t ∈T (3.20)
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βt ∈ Z≥ t ∈T (3.21)

The objective function (3.1) aims to find the minimum overall cost, which is computed

as the summation of the fixed cost of vehicles, the additional cost of extra stops

and the cost of delivery from the transshipment terminals. The objective function

(3.2) minimizes the overall distance travelled by the vehicles. Constraint set (3.3)

defines the fixed cost of each vehicle. The fixed cost includes both the fixed operating

cost and the cost per kilometer regarding the farthest destination from the vehicle’s

initial point. Constraint set (3.4) ensures that if an order is delivered directly, the

destination of that order is assigned to it. Similarly, constraint set (3.5) ensures that

if an order is delivered from a transshipment terminal by a vehicle, the transshipment

terminal location is assigned to that vehicle. Constraint sets (3.6) and (3.7) define the

number of additional stops and ensure that it does not exceed the maximum number.

Constraint set (3.8) guarantees that if an order is assigned to a vehicle, it is delivered

either directly or from the transshipment terminal. Constraint set (3.9) assures each

order is assigned a single vehicle. Constraint set (3.10) prevents the assignment of

two orders to the same vehicle if those orders cannot have a common departure day

due to their release dates and deadlines. Constraint sets (3.11), (3.12) and (3.13)

are volume, weight and length capacity constraints for each vehicle, respectively.

Constraint set (3.14) is for symmetry breaking, which ensures that the higher index

vehicle is used after the lower index vehicle. Constraint sets (3.15) and (3.16) limit that

if a vehicle visits a location, it can be only visited right after one location and after that

location at most one location can be visited. Constraint sets (3.17) and (3.18) are sub-

tour elimination constraints.We used the Miller–Tucker–Zemlin formulation which is

proposed by Miller et al. (1960) as sub-tour elimination constraint sets. ut
i represents

the dummy variables that keep track of the number of locations visited counting from

the depot, and are bounded by the maximum allowable stops by a truck. Constraint

sets (3.19), (3.20) and (3.21) restrict sign and identify types of decision variables.

18



3.3 Generating the Efficient Frontier

In this thesis, the mathematical model for SCDP is a bi-objective optimization problem.

Due to the conflict between Z1 and Z2 objectives, no unique optimal solution exists.

However, by managing the computation between these objective functions, a set of

Pareto-optimal solutions can be developed. The idea of optimality is replaced in

multi-objective problems with the concept of Pareto optimality or efficiency. If an

objective function cannot be improved without degrading at least one other objective

function, the solution is considered Pareto optimal (Mavrotas, 2009). Because the

model’s two objectives are contradictory and cannot be optimized simultaneously,

multi-objective solution methods should always be used. The following are some of the

most important multi-objective solution methods, which are the ε-constraint approach

and the augmented ε-constraint approach.

3.3.1 ε-Constraint Method

There are different approaches to obtain efficient solutions for multi-objective opti-

mization problems, as we reviewed in Chapter 2. ε-constraint and weighting approach

are two of the most widely used approaches; see Steuer (1986). Furthermore, ε-

constraint approach has superiorities over the weighting approach. For instance, there

can be a lot of unnecessary runs in the weighting approach because there are a number

of weight combinations that produce the same efficient solution (Mavrotas, 2009).

For bi-objective problems, the ε-constraint technique optimizes one of the objective

functions while including the other objective function in the model as a constraint and

changing the right-hand-side iteratively. In this way, a model with a single objective is

constructed from the prior model. Considering the mathematical model introduced on

Section 3.1, the ε-constraint approach is performed as below.

Min Z1 (3.22)

Subject to:

Z2 ≤ e2 (3.23)

Equations (3.3)− (3.21)
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The operation principle of the above model is to find the optimal value of Z1 first by

considering the Z2 as a constraint. The result of Z1 is noted as Z∗1 and Z2 as Z′2. Then,

e2 is updated as Z′2 - 1. To find each non-dominated solution, the model is solved with

the updated value of e2, until the optimal value of Z∗2 is found. The efficient set of the

problem is obtained with various variations in e2. The reason why we prefer to create

an efficient frontier by updating Z2 values instead of Z1 is that Z2 is an integer. Instead

of trying to find the optimal epsilon value to improve a continuous variable, it has been

much more efficient to get a non-dominated solution by subtracting an integer variable

by one. Nevertheless, the obtained solutions in the conventional ε-constraint method

are not always Pareto-optimal. In other words, some weakly efficient solutions may be

produced. Mavrotas (2009) proposed the augmented-constraint method to overcome

this drawback of the conventional ε-constraint method.

3.3.2 Augmented ε-Constraint Method (AUGMECON)

In this thesis, we use the augmented ε-constraint approach to generate the Pareto

front for the MOMILP. The acronym for this procedure is the AUGMECON method.

The AUGMECON is an advanced variant of the standard ε-constraint approach that

prevents weakly Pareto-optimal solutions from being obtained (Mavrotas, 2009).

One of the drawbacks of the conventional ε-constraint approach is that the generated

solutions are not always Pareto optimum. By performing lexicographic optimization

to every objective function, the augmented ε-constraint approach aims to overcome

this drawback. In this manner, the payoff table contains only Pareto-optimal solutions.

In practice, the working principle of lexicographic optimization is to first optimize the

first objective function and obtain the minimum value of Z1 which is Z∗1 . We add a

constraint as Z1=Z∗1 after we find Z∗1 and optimize the second objective function. As

a result, we can obtain a minimum value of Z2 where Z1 is optimal. By including

the relevant non-negative slack variables (s2), the objective function constraint is

turned into equality. Consequently, we apply the formulation of the problem based

on AUGMECON as given in the following mathematical model.
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Min Z1− eps× (s2) (3.24)

Subject to:

Z2 + s2 = e2 (3.25)

s2 ≥ 0 (3.26)

Equations (3.3)− (3.21)

Here, e2 is equal to one less than the last obtained minimal value of Z2 where Z1 is

optimal, and eps is a very small value. By using the Augmented ε-constraint approach,

the Pareto solution is found and reported.

The pseudo-code of the augmented ε-constraint approach is given in Algorithm 1 for

a bi-objective minimization problem. The procedure of the method could be explained

as follows.
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Algorithm 1 Augmented ε-Constraint Method
1: Create payoff table
2: Calculate Zmin

1 and Zmin
2

3: Calculate Zmin{Z2}
1 → min{Z1 : Z2 = Zmin

2 } and Zmin{Z1}
2 → min{Z2 : Z1 = Zmin

1 }
4: Add (Zmin

1 ,Zmin{Z1}
2 ) to the Pareto-optimal set

5: e2→ Zmin{Z1}
2 − ε

6: while e2 ≥ Zmin
2 do

7: Solve the following model:

Min Z1− eps(s2)

Subject to:

Z2 + s2 = e2

s2 ≥ 0

Equation(3.3)− (3.21)

8: Add the optimal values of Z∗1 and Z∗2 to the Pareto-optimal set
9: e2→ Z∗2− ε

10: end while
11: Report the Pareto-optimal set

3.4 Variable Neighborhood Search

In this section, we first present the basics of the variable neighborhood heuristic.

We then discuss the multi-objective version of the heuristic and the details of our

implementation to the shipment consolidation and dispatching problem.

3.4.1 Basics of Variable Neighborhood Search Heuristic

Considering most real-world problems are NP-hard, the exact solution techniques

could be insufficient to solve real-life problems in polynomial time. Optimization

and general heuristic methods perform poorly either for too much computation time

or stuck in some local optima. When we have a restricted amount of time and the

problem is NP-hard, it is a smart idea to utilize metaheuristics. Although metaheuristic

algorithms do not promise to find exact solutions, they can find near-optimal solutions

within an acceptable time period. Considering that we are trying to solve an NP-

hard problem, it is obvious that the performance of the epsilon constraint method will
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be insufficient, especially for large instances. Therefore, we foresee using heuristic

methods to obtain the solutions in an acceptable time range.

One of the most basic and widely used versions of those is the local search algorithms.

The general concept of local search algorithms starts with a feasible solution, which is

usually found by a simple heuristic and progresses by trying to improve the objective

function value by making some local changes. The algorithm eventually finds a

local optimal solution, which is not always the global optimal solution. Different

metaheuristics have been developed in order to avoid becoming stuck in a local optimal

solution. Bee colony, tabu search, and genetic algorithm can be given as examples of

the most commonly used metaheuristics. One of the effective metaheuristic methods is

the Variable Neighborhood Search (VNS) algorithm, which was introduced by Hansen

and Mladenović (1997).

Researchers have applied VNS to many different optimization problems, since it was

introduced. Vehicle routing problem (Hemmelmayr et al., 2009), p-median problem

(Fleszar and Hindi, 2008) and portfolio selection (Özpeynirci et al., 2022) can be given

as examples. As VNS can get very good results for location based problems (Hansen

and Mladenović, 1997), we expect VNS to produce near-optimal solutions for our

problem as well. Figure 2 illustrates the basic logic of the VNS for minimization

problems. The search principle of VNS aims to reach the global optimal point by

allowing both intensification and diversification. We can control the balance of them

by determining the neighborhood combinations and their frequency.
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Figure 2. Basic VNS (Source: Hansen et al. 2010)

3.4.2 Multi-Objective Variable Neighborhood Search for Shipment Consolidation
and Dispatching Problem

The basic principle of the VNS is to search in the solution space while avoiding

local optima by changing the neighborhood. When applying this principle, unlike

the population-based heurictics, as a trajectory-based metaheuristic, basic VNS uses a

single solution instead of a set of solutions. To overcome this problem, Duarte et al.

(2015) proposed that the approximate Pareto front discovered throughout the search

process can be considered the current solution to a multi-objective problem. Thus,

we apply the algorithm to develop an approximate efficient frontier by denoting the

solutions in the Pareto frontier.

In this section, we introduce a VNS heuristic to solve the bi-objective shipment

consolidation and dispatching problem.

The pseudo-code of the proposed multi-objective VNS is provided in Algorithm 2.

The necessary criteria for the algorithm are determined during initialization. By using

different heuristic algorithms, the initial efficient frontier set S is created. Then, by

using the defined neighborhood structures, the shaking operation starts for each s in

set S. Following that, we perform a local search for the found s′ and obtain s′′. We

check whether any of the obtained neighborhoods of s update the set S or not. We can
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have four different cases for the new neighborhoods:

(i) All of the solutions in S can dominate s′ and s′′. So, the efficient frontier S is not

updated.

(ii) Some of the solutions in S can be dominated by s′ or s′′. In this situation, s′ or s′′

is added to set S and the dominated solutions are eliminated from the set S.

(iii) All of the solutions in S can be dominated by s′ or s′′. If so, all the solutions

are removed from current S and the new non-dominated solution is added to the

efficient frontier.

(iv) s′ or s′′ can be a non-dominated solution. For this case, we update the efficient

frontier by adding the new non-dominated solution.

For the new solution found in case (i), the algorithm continues with the next

neighborhood of s. However, if one of the cases (ii), (iii) or (iv) is valid, k is updated

as k← 1 and the search continues for the newly discovered solution. This procedure

continues until all solutions in S are explored. The algorithm is repeated for the current

S until the stopping criteria is satisfied. In the proposed algorithm, we set the stopping

condition as the maximum number of iterations. Figure 3 shows the flow diagram of

our proposed algorithm.
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Algorithm 2 Multi-objective Variable Neighborhood Search
1: Initialization:
2: Define the set of neighborhood structures. Nk(k = 1, ...,kmax)

3: Generate a set of non-dominated frontier using different heuristics.
4: S← set of non-dominated solutions
5: Determine the stopping condition.
6: t← current number of iterations
7: tmax← maximum number of iterations
8: Main step:
9: for t = 1→ tmax do

10: Denote all efficient frontier solutions in S as unexplored
11: while S has at least one unexplored solution do
12: Select an unexplored solution s in S and denote it as explored.
13: for k = 1→ kmax do
14: Shaking:Generate a random feasible solution s′ using kth

15: neighborhood of s. (s′ ∈ Nk(s)). S← update
16: Local Search: Solve the proposed multi-objective mathematical
17: model for s′ to apply local search and find s′′.
18: if s′ or s′′ update S then
19: k← 1

20: else
21: k← k+1

22: end if
23: end for
24: end while
25: end for
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Figure 3. Flowchart of the Proposed Multi-objective Variable Neighborhood Search
Algorithm

3.4.2.1 Initialization

In order to provide a robust launch of the algorithm, we try different heuristics

methods. Instead of starting from a single non-dominated solution, neighborhood

structures start to be explored from many different non-dominated points, thanks to

the different heuristics used. After we obtain the initial solutions from the heuristics,

we produce other feasible solutions by randomly changing the delivery points. The

three heuristics that we use are as follows:
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Nearest Neighbor Algorithm

To create the initial solution, we first use the nearest neighbor algorithm for m locations

and m vehicles. The algorithm determines the number of vehicles needed. While

applying the algorithm, it is assumed that all orders are delivered to their direct

destinations.

Initially, according to the distance matrix (D) the order with the nearest delivery

point to the depot is determined. The solution starts by assigning this order to the

selected vehicle (Kt). Then the algorithm assigns the nearest order to the current order’s

destination. The algorithm checks if the orders are eligible to be in the same vehicle

with respect to their release dates and deadlines, which we indicate as a parameter of

akl . It continues to assign the orders to the same vehicle until the vehicle capacity

is exceeded. For other vehicles, the same procedure is applied. The algorithm stops

when all orders are assigned to a vehicle. Overview of the suggested heuristic is given

in Algorithm 3.
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Algorithm 3 Nearest Neighbor Algorithm
1: Input: D← distance matrix
2: R← set of remaining orders
3: c← current location
4: CT ← capacity of vehicles
5: Output: Feasible solution
6: St ← set of the orders in vehicle t

7: for t = 1→ m do
8: c← 0

9: for j = 1→ m do
10: n← Determine the nearest order for the c

11: if n is eligible for St and capacity of vehicle t<= CT then
12: Assign n to St

13: Remove n from R

14: c← n

15: end if
16: end for
17: if R is empty then
18: break;
19: end if
20: end for

Nearest Neighbor Algorithm with Randomized Distance Matrix

The distance matrix is randomized by multiplying each distance with a random number

between 0.5 and 1.5. According to the varying values of the distance parameter, the

very same nearest neighbor algorithm procedure is applied; see Algorithm 3. The non-

dominated frontier is enriched by obtaining additional feasible solutions.

Savings Algorithm

One of the other simple heuristics used for location-based problems is the savings

algorithm. We present the Savings Algorithm in Algorithm 4. We assume that

all orders are delivered to their direct destinations with a different vehicle. At the

beginning, we calculate the savings for each possible pair of orders. Instead of two

29



vehicles departing from the depot, a single vehicle departs from the depot and delivers

the orders one by one. Savings occur by connecting two locations of orders. The

savings are calculated by SVkl = dk0 + d0l − dk for all k, l >= 1 and k ̸= l, where dkl

represents the distance between the delivery points of orders k and l. The savings

are sorted in descending order. Starting from the maximum savings, we merge the

routes into the same vehicle. While the routes are merging, the capacity and eligibility

conditions must be satisfied. The algorithm stops when there is no feasible solution

that can be produced by saving. We also apply the same procedure to save the total

distance instead of saving the total cost. Thus, we get two different solutions for the

objectives of cost-saving and distance-saving.

Algorithm 4 Savings Algorithm
1: Input: D← distance matrix
2: RS← set of remaining pair of orders
3: SVkl ← set of savings for merging the order k and l’s delivery points
4: Output: Feasible solution
5: St ← set of the orders in vehicle t

6: Sort the SVkl in descending order
7: for t = 1→ m do
8: for i = 1→ m do
9: for j = 1→ m do

10: n← Determine the maximum SVkl from current RS

11: if i and j is eligible for St and capacity of vehicle k<= CT then
12: Assign i and j to St

13: Remove the pairs which starts with i and finishes with j from
14: RS

15: end if
16: end for
17: end for
18: if RS is empty then
19: break;
20: end if
21: end for

From the heuristics we mentioned above, we obtain several different feasible solutions;

one from the nearest neighbor algorithm, ten from the nearest neighbor algorithm with
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a randomized distance matrix, one from a savings algorithm using an objective function

to minimize the total cost, and one from a savings algorithm using an objective function

to minimize the total cost. The obtained solutions comprise only direct deliveries to

the final destination of orders. Yet there is another delivery option that is delivered

via transshipment terminals. We randomly change the delivery option of each order in

order to explore the various feasible solutions for delivery via transshipment terminals.

Therefore, for each solution that we obtain by using different heuristics, we create

different versions of the solutions with randomly changed delivery options. Finally,

we update the efficient frontier by using the new solutions. Thus, we initialize with a

robust non-dominated frontier.

3.4.2.2 Shaking

Randomized perturbation in VNS, known as shaking, is one approach to escape the

local minimum. It is an important part of the VNS algorithm in which a shaking

procedure generates a neighborhood solution of the current solution. We identified

four neighborhood structures for the shaking procedure. Also, we use two different

levels (ℓ=1, ℓ=2) for each neighborhood. The intensity of the change created by

the neighborhood is determined by the level. In total, we search through eight

neighborhoods for each solution. We define neighborhood structures as follows:

• Move: If it is possible, we move ℓ randomly selected orders to randomly selected

vehicles. If there is no feasible solution with moving action, continue the

procedure with the next neighborhood.

• Swap: We select a pair of orders (η1, η2) randomly such that η1 ̸= η2 from

different vehicles. We swap the assigned vehicles of a selected pair of orders,

if feasible. If there is no feasible solution with swapping action, continue the

procedure with the next neighborhood.

• Perturbation: We select ℓ vehicles randomly and remove all orders from them.

Then we randomly assign orders from different vehicles to the selected vehicles.

Lastly, we randomly place removed orders for the vehicles. If there is no feasible

solution with perturbation, continue the procedure with the next neighborhood.

• Remove: Suppose T is the total number of vehicles for the current solution. We

select the vehicle with the largest remaining capacity. Then place all orders in
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T − ℓ vehicles. If there is no feasible solution with removing action, continue

the procedure with the next neighborhood.

3.4.2.3 Local Search

We present a mathematical model for the local search procedure. The algorithm

has two objectives: to minimize total cost and to minimize the total distance for

each vehicle in the current solution. We use the current solution as the input to the

mathematical model. The input of the mathematical model is identified as two different

sets, as follows:

T ′ : Set of vehicles that has been updated in the latest iteration, t ∈T ′

St : Set of orders assigned to vehicle t, t ∈T ′

The model for local search procedure is as follows;

Min Z1 = ∑
t∈T

(αt + pβt + ∑
i∈Lq

∑
k∈K

costkizt
ki) (3.27)

Min Z2 = ∑
i∈L

∑
j∈L \i

∑
t∈T

di jγ
t
i j (3.28)

Subject to:

αt ≥ (d0 j.pkm+ f oc)δ t
j j ∈L \{0}, t ∈T

(3.29)

δ
t
i ≥ zt

ki k ∈K , i ∈ Lq, t ∈T

(3.30)

δ
t
pk
≥ yt

k k ∈K , t ∈T (3.31)

xt
k = yt

k + ∑
i∈Lq

zt
ki k ∈K , t ∈T (3.32)
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xt
k = 1 k ∈ St , t ∈T ′ (3.33)

∑
j∈L \i

γ
t
i j ≤ δ

t
i i ∈L , t ∈T (3.34)

∑
i∈L \i

γ
t
i j = δ

t
j , j ∈L \{0}, t ∈T

(3.35)

ut
i−ut

j +1≤ (µ +φ)(1− γ
t
i j), i, j ∈L , t ∈T (3.36)

ut
i ≤ βt , i ∈L , t ∈T (3.37)

xt
k,y

t
k,z

t
ki,γ

t
i j,δ

t
i ∈ {0,1} i, j ∈L , t ∈T (3.38)

αt ,ut
i ≥ 0 i ∈L , t ∈T (3.39)

βt ∈ Z≥ t ∈T (3.40)

The objective function (3.27) minimizes the overall cost, which is computed as the

sum of the fixed cost of vehicles, the additional cost of extra stops, and the cost of

delivery from the transshipment terminals. Objective function (3.28) minimizes the

total distance. Constraint set (3.29) defines the fixed cost of each vehicle. The fixed

cost includes the fixed operating cost and the cost per kilometer regarding the farthest

destination from the initial location of the vehicle. Constraint set (3.30) ensures that

if an order is delivered directly by a vehicle, the destination of that order is assigned

to that vehicle. Similarly, constraint set (3.31) ensures that if an order is delivered

from a transshipment terminal by a vehicle, the transshipment terminal location is

assigned to that vehicle. Constraint set (3.32) guarantees that if an order is assigned to

a vehicle, it is delivered either directly or from the transshipment terminal. Constraint

set (3.33) assures assigning each order to the corresponding vehicle according to the
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current solution . Constraint sets (3.34) and (3.35) are related the decision variables

with each other. Constraint sets (3.36) and (3.37) are sub-tour elimination constraints.

Constraint sets (3.38), (3.39) and (3.40) restrict sign and identify types of decision

variables.

This formulation is modified as a single objective mathematical model by normalizing

the objective functions Z1 and Z2. Instead of using objective function (3.27) and

objective function (3.28), we define a normalized objective function as follows:

Znorm = w1
Z1

Cmin
+w2

Z2

Dmin
(3.41)

Where w1,w2 ≥ 0 and w1+w2 = 1, equation (3.41) defines Znorm as the overall cost of

the solution by dividing Cmin, the lower bound on the overall cost and the total distance

of the solution by dividing Dmin, the lower bound on the overall distance. For small-

sized instances, Cmin and Dmin is founded respectively the minimum value of cost and

distance of the mathematical model that is presented in Section (3.2). For medium and

large-sized instances, since optimal values cannot be found in an acceptable time, the

minimum value of cost and distance values in the initial solution found by VNS are

used as Cmin and Dmin.

The general framework of the proposed local search is presented in Algorithm 5. First,

we prepare the necessary data for the algorithm. For the initial non-dominated solution

set, we apply the local search algorithm for all orders. Afterwards, the mathematical

model is solved only for the orders and vehicles that have been changed with the

shaking procedure. We ensure this by updating the value of the decision variable X t
k

either 1 or 0. After these adjustments, we solve the mathematical model by using

the callable library of Cplex solver. Then, according to the best solution that the

mathematical model found, we update the solution according to the solution structure

of the heuristic algorithm.
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Algorithm 5 Local Search

1: Input: T ′ : Set of vehicles that has been updated in the latest iteration
2: St : Set of orders assigned to vehicle t, t ∈T ′

3: Cmin : The lower bound on the total cost
4: Dmin : The lower bound on the total distance
5: for k ∈K do
6: for t ∈T do
7: if k ∈ St and t ∈T ′ then
8: X t

k← 1

9: else
10: X t

k← 0

11: end if
12: end for
13: end for
14: Solve the following model:

Min Znorm = w1
Z1

Cmin
+w2

Z2

Dmin

Subject to:

Z1 = ∑
t∈T

(αt + pβt + ∑
i∈Lq

∑
k∈K

costkizt
ki)

Z2 = ∑
i∈L

∑
j∈L \i

∑
t∈T

di jγ
t
i j

Equation(3.29)− (3.40)

15: Adapt the best solution found to the solution structure of the heuristic
algorithm.
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CHAPTER 4 : COMPUTATIONAL EXPERIMENTS

In this chapter, first, we clarify the data used in the experiments. Afterwards, we

examine the results of the augmented ε-Constraint Method we applied for the exact

approach. Eventually, we present and analyze our heuristic approach results.

During the testing of both the exact and heuristic approaches that we proposed, we

used the data sets provided by Tokcaer (2018). We do not use the set of fixed routes

data they use. As we mentioned before, the presented solution methods aim to choose

the most efficient route from the set of feasible solutions. The data about locations,

transshipment terminals, and distances between locations is fixed for every instance set.

Instances are created with different combinations of 22 previously known locations.

The sizes of the orders are examined in three different dimensions. These are weight,

volume, and length. Total weight, volume, and height values are calculated for each

order according to the pallets or boxes they contain. The sample set is diversified over

three main parameters. These are the number of orders, the elasticity of orders for time

windows, and the diversity of orders’ destinations.

Number of orders: The number of orders is represented with the parameter I. It

can have values of 10, 20,and 30. Each order has a release date and according to

the distance between its destination and the depot, a deadline is determined for each

order. As the distance gets closer, the transit time gets shorter with the same rate. This

narrows the time interval that the orders can depart.

Elasticity of orders for time windows: Parameter B is defined to control the elasticity

of orders for time windows. Time windows are determined with respect to the release

date and delivery date of orders. The existing transit time is replaced by multiplying

the values 0.1 and 0.7. In the samples examined, those multiplied by 0.1 are considered

as B = 10, and those multiplied by 0.7 are considered as B = 70. When B is 10, the time

between the due date and the release date is short. The same applies in the opposite

case.

Diversity of order’s destinations: D is used as a parameter to define the density

of destinations. Different levels of D (5, 11, and 22), the diversity of the orders’

destinations are controlled. D does not represent the exact number of destinations

36



Table 2. The using levels of parameters for instance generation

Parameter Level

I 10 20 30

B 10 70

D 5 11 22

in the instance. It is defined as the upper bound of the number of destinations. For the

smaller level of D provides to assign more orders to the same destination, while the

larger level of D assigns orders mostly to different destinations.

Table 2 shows the levels of data used in the instances used in the study. For each

combination of parameters, there are 10 different instances. Therefore, we have a total

of 180 instances. Using this data, two different solution approaches are proposed to

solve the problem. We use dedicated computers for each of these two approaches.

4.1 Exact Approach

As indicated in section 3.3.2, the suggested bi-objective MILP is solved using the

augmented ε-constraint approach. Only the instances that have 10 orders are solved

utilizing the augmented ε-constraint approach, because the method cannot solve larger-

sized instances in a reasonable time. The proposed MOMILP is developed in C++

programming language on Microsoft Visual Studio 2019 and solved in IBM ILOG

CPLEX 12.8. We performed all the experiments for MOMILP on Windows 10 Pro

64-bit Intel Xeon Gold 6138 with 2.00 GHz processor computer with 20 GB RAM.

Minimizing the total cost is considered an objective function where the total cost is

a constraint. We prefer to obtain Pareto-optimal solutions with this structure. Because

our distance is an integer while the cost is a decimal number. Thus, we use the slack

variable s = 1 because we use the integer constraint instead of determining the best

value of the slack variable when the total cost is a constraint. We also used value of

ε level as 10-3. The time limit is set to 3 hours for each iteration because the exact

solution approach takes a long time, even for small-sized instances. Therefore, the

solutions found do not guarantee optimality. Total time varies according to the number

of non-dominated points on the efficient frontier. This time limit given for the problem
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with daily operation planning is excessive for real-life scenarios. However, we applied

this method to ensure that the exact solution is insufficient to solve this problem and

that we can compare the proposed heuristic method to approximate solutions to the

optimal solutions.

Figure 4. Non-dominated solutions obtained by augmented ε-constraint approach

Figure 4 gives an illustrative example of the non-dominated solutions obtained by the

augmented ε-constraint approach for a small-sized instance with parameters of I = 10,

B = 10 and D = 5. The model has difficulty in finding optimal results with the more

restriction on distance. In the iterations where the right-hand side value of the distance

constraint is greater, the exact solution can be obtained in a short time. As the distance

is restricted with a smaller lower bound, routing becomes more important, and this

increases the solution time exponentially. Table 3 shows the total cost, total distance,

and GAP values of each point for the same instance. In the results found, it is seen that

the GAP grows as the total distance value decreases within the three-hour time limit.
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Table 3. Non-dominated solutions generated by augmented ε-constraint method

Total cost Total distance GAP

20695 7736 -

20884 7605 -

20921 7441 -

21111 7310 -

21276 7060 -

21504 6765 1.60%

22226 6470 4.41%

23016 6365 7.72%

23396 6230 9.30%

23407 6175 9.10%

24129 5880 11.12%

25562 5585 15.92%

To be able to represent numerically the impacts of objective functions on each other,

two solutions from the solution set that are the furthest apart, as shown in Figure 4,

are chosen and compared. The comparison of these selected solutions in the non-

dominated solution set is shown in Table 4. Based on the results, the decreasing the

total cost in 19.03% lead to an increase the total distance in 27.80%. Due to the results,

the overall cost and overall distance do not have a strict inverse relationship with each

other. Although the cost increases for a smaller distance value, the percentages of

change are not very high.
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Table 4. Comparison of two extreme points in a non-dominated solution set

Solution I Solution II
Percentage

of change

Total

cost
25562 20695 19.03%

Total

distance
5585 7736 27.80%

Table 5 shows the results of the augmented ε-constraint method, which is implemented

only for small-sized instances. Ten different instances are used for each combination

of parameters B and D where I = 10. As a result, the method was applied to 600

different samples. The found values are the average numbers of these 10 instances

within the time limit of 10800 seconds for each iteration. The average number of

exact and approximate efficient points and average GAP values are indicated for each

instance of B and D combination. In addition to the efficient points that could not be

found exactly, a feasible solution could not be found within the given time limit for

some examples. In other words, the results found contain missing efficient points.

As a result, even over a long time period, results are produced with significant GAP

values. For instances with more than 10 orders, feasible results cannot be produced

within the given time limit. This situation has revealed that the exact solution approach

for the problem is quite inadequate. So, we propose a heuristic that can find efficient

results in an acceptable time. The next section shows comparisons with the results

found by the augmented method for small-sized instances. Also, for larger-sized

instances, we report the performance of the approach using different performance

metrics.
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Table 5. Experimental results of augmented ε-constraint method for instances with
I = 10

B D

Avg. # of

efficient points Avg. GAP

Avg. # of exact

efficient points

Avg. # of approximate

efficient points

10

5 4.3 7.2 4.21%

11 2.6 7.0 5.31%

22 2.6 9.6 6.82%

70

5 5.7 7.3 7.92%

11 4.6 10.0 6.95%

22 3.2 16.8 13.21%

4.2 Heuristic Approach

As indicated in section 3.4.2, the proposed multi-objective VNS is used to solve SCDP

for all existing instances that we have. The proposed MOVNS is developed in C++

programming language on Microsoft Visual Studio 2019. The mathematical model

developed for local search is solved by the CPLEX solver with the callable library. We

carried out all tests for MOVNS on Windows 7 Ultimate 64-bit Intel Core i5-4210U

with 1.70 GHz processor computer with 4 GB RAM.

We apply the VNS heuristic for 240 instances that we introduced the parameters at

the beginning of the chapter. Also, we use some other parameters which is specific

with the VNS heuristic. For the stopping condition, we used the maximum number

of iterations. First, we identified the number of iterations as 80 for each instance.

Then we tested each of the instances according to their parameter I. A random sample

is selected from each combination of B and D parameters for the experiments. In

other words, the experimental results were calculated according to the average of the

results obtained from six different samples for each level of I. In the experiments, it is

observed that after a certain number of iterations, there is no significant change on the
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Table 6. Average number of iterations with the latest change in the efficient frontier

Avg #

of iterations

I=10 36

I=20 67

I=30 80

efficient frontier. According to the results of these experiments, the maximum number

of iterations for instances with I = 10, 20, and 30 is determined as 40, 70, and 80,

respectively. Table 6 shows the average for instances with different values of each I

parameter, after which iteration no change is observed in the efficient frontier.

Furthermore, we used the Cmin and Dmin values given in equation (3.41) as parameters

for MILP used in the local search procedure. Note that, w1 and w2 values may affect

the results of local search phase and the solution quality of VNS algorithm. After

conducting preliminary experiments, we assigned equal weights to both objectives.

For the Cmin and Dmin values for the instances where the I parameter is 10, the results

found from solving the mathematical model suggested in Section 3.2 for each objective

function separately are used. For instances with I = 20, and 30, the minimum total cost

value among the solutions obtained by VNS in the initial solution is calculated as Cmin

and the minimum total distance value as Dmin.

To analyze the VNS heuristic’s performance, we compare its non-dominated set with

the augmented ε-constraint approach utilizing three performance measures proposed

by Czyzżak and Jaszkiewicz (1998): percentage, dist1, and dist2.

We do not know the exact Pareto frontier of the problem for instances with more than

10 orders. Even for instances with 10 orders, the exact approach could not find all

exact non-dominated points. To measure the performance of the suggested algorithm,

we defined a new reference set that was proposed by Soylu (2007). A Non-Dominated

Union Set (NDUS) is composed, which comprises the non-dominated solutions of all

algorithms. Hence, the proximity indicator can be calculated according to NDUS.

Assume R is our reference set of non-dominated points that is generated with the
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augmented ε-constraint approach or with the union non-dominated set that is generated

by VNS with 10 different random seeds respectively, and V is the set of solutions

generated by the VNS algorithm. The following are the definitions and formulations

of these performance measures:

The first performance measurement is percentage, and it represents as the percentage

of non-dominated points that are found in both the reference set and the heuristic

algorithm. To compare the small-sized instances with the exact solution method, the

reference set of R is used the non-dominated solution set of the augmented ε-constraint

method. For the rest of the comparisons, the reference set of R is used the union non-

dominated solution set of VNS with different random seeds.

percentage =
card{V ∩R}

card{R}
×100%

Second performance metric is dist1 and it is defined as the average distance between a

solution point of x ∈ R and the closest solution point of y ∈V .

dist1 =
1

card{R} ∑
y∈R
{min

x∈V
{c(x,y)}}

Last performance metric is dist2 and it is defined as the average maximum between a

solution point of x ∈ R and the closest solution point of y ∈V .

dist2 = max
y∈R
{min

x∈V
{c(x,y)}}

Czyzżak and Jaszkiewicz (1998) propose using the following achievement-scalarizing

function to determine the distance between solutions x and y, c(x,y):

c(x,y) = max
j
{0,ω j( f j(y)− f j(x))}

Hereby, if x approaches the value of solution y on all objectives, the measure becomes

zero. Otherwise, the maximum weighted difference from y for each objective is used.

The weighting factor ω j is computed as follows where ∆ j represents f j’s range in R:

ω j =
1
∆ j

While the dist1 and dist2 values decrease, the more the heuristic method’s estimated
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efficient frontier approaches the set R. On the other hand, a higher percentage value

means that the performance of the solution approach is superior.

Figure 5. Non-dominated solutions obtained by augmented ε-constraint method and
multi-objective VNS algorithm

Figure 5 is the illustrative example of the non-dominated solutions obtain via the

augmented ε-constraint approach and multi-objective VNS algorithm for a small-sized

instance with parameters of I = 10, B = 10 and D = 5. The used performance metrics

values were computed as percentage = 66.67, dist1 = 0.020, dist2 = 0.080. The

performance of VNS heuristics seems not so high according to the performance metric

percentage. Because efficient frontier does not have so many points. It decreases the

percentage whereas, VNS algorithm detects 8 non-dominated points out of 12 in 379 s.

Figure 6 illustrates the same instance with Figure 5. In Figure 6, green symbols show

the union efficient set of the results obtained by VNS with 10 different random seeds.

The used performance metrics values were computed as percentage = 75.00, dist1 =

0.013, dist2 = 0.061. In solutions with different random seeds, performance metrics

get better.
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Figure 6. Non-dominated solutions obtained via augmented ε-constraint approach and
the union non-dominated solution set of multi-objective VNS algorithm with different
random seeds

When we compare Figure 5 and Figure 6, we observe that there is another non-

dominated solution in the union of heuristic solutions in Figure 6, in addition to the

non-dominated solutions obtained by the heuristic result in Figure 5. In Figure 6, it

is seen that the union of heuristic solutions is an efficient frontier that is very close

to the efficient frontier obtained by the mathematical model. As expected, the union

heuristic set from replications with different random seeds achieved better results in

all performance metrics than the efficient points of the heuristic algorithm run with a

single random seed.
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Table 7. Results of Variable Neighborhood Search

I B D CPU (s) |V| |NDUS| P dist1 dist2

10

10

5 81.6 5.8 7.8 82.47 0.032 0.139

11 206.4 7.8 10.1 69.42 0.020 0.052

22 1529.4 13.3 16.8 67.35 0.007 0.021

70

5 208.4 4.8 6.6 65.80 0.190 0.454

11 133.4 3.7 4.7 57.63 0.213 0.509

22 1215.7 10.5 15.0 51.75 0.036 0.078

20

10

5 985.6 13.8 16.4 63.77 0.076 0.117

11 2500.1 7.4 13.0 55.54 0.021 0.043

22 6094.8 10.1 13.4 53.12 0.036 0.138

70

5 448.3 9.3 10.7 52.35 0.141 0.372

11 1900.2 7.4 10.8 32.30 0.189 0.691

22 - - - - - -

30

10

5 1207.7 18.0 20.5 52.41 0.108 0.599

11 7367.6 16.6 19.2 45.53 0.067 0.152

22 - - - - - -

70

5 5835.1 9.0 10.5 42.50 0.358 1.341

11 9815.3 11.1 14.3 30.8 0.819 2.373

22 - - - - - -

The performance evaluation of the VNS is shown according to the NDUS in Table 7.

To determine the NDUS, we merge the latest populations of all runs, then detect the

non-dominated solutions of the total population. Table 7 shows the average CPU for

10 samples with 10 replication, average number of efficient solutions in set V , and

percentage (P), dist1 and dist2 values for the instances with NDUS for each parameter

combination. As can be seen in Table 7, as the I and D parameters increase in the
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problem, the CPU time increases, while parameter B has no significant effect on the

CPU time. A significant portion of CPU time is due to local search phase. The values

in the percentage performance criterion are not very high because of the low number

of non-dominated points in the efficient frontier. The inability to find only a few points

precisely reduces the percentage. On the other hand, although the non-dominated one

in NDUS cannot be found exactly, the small values of dist1 and dist2 indicate that there

is a point very close to it. This shows that the algorithm works with good performance

by obtaining efficient results.

47



CHAPTER 5 : CONCLUSION

In this thesis, we consider shipment consolidation and dispatching problem with two

objectives. Our aim is to minimize the overall cost while minimizing the overall

distance. We define the problem with its assumptions. Then we propose a multi-

objective mathematical model. We use the augmented ε-constraint method to generate

the non-dominated points. The experimental results show that the exact approach needs

long computational times to solve even small-sized problems. Since our problem is

based on daily operation planning in real life, it is very important to solve the problem

in a short time. Therefore, we suggest a multi-objective VNS heuristic to obtain the

approximate Pareto frontier in an acceptable time.

To analyse the performance of our proposed solution methods, we use the data set

provided by Tokcaer (2018). The data set consists of a total of 180 instances. This data

set is diversified over three different parameters that are the number of orders, elasticity,

and diversity of destinations. Using this data, we find the non-dominated solutions

of the problem with using the augmented ε-constraint approach and VNS algorithm.

Comparative results are illustrated on an small-sized instance. Since the exact approach

fails to find the non-dominated solutions in a reasonable time, a non-dominated union

set of VNS is used as a reference set. To measure the performance of the VNS

heuristic, three different measurements are used which are the percentage of non-

dominated points that are found in both the reference set and the heuristic algorithm,

the average and maximum distances between non-dominated solutions in reference set

and estimated solutions. Results of the experiments show that the proposed multi-

objective VNS heuristic performs well and obtains the solutions in a reasonable time.

Several future research directions may be addressed for this problem. Firstly, the

problem can be handled as multi-modal by adding different transportation modes such

as road, rail, air, or waterway. Also, with this innovation, the model can be adapted

to real world problems by adding the constraint that some orders cannot be carried

by some modes. Moreover, the number of handling operations, which is an important

process for multi-modal problems, can be added to the model as a new objective as

Tokcaer and Özpeynirci (2018) considered in their study. We may also consider the

impact of shipment plans on the environment. The mode and transshipment terminal

related decisions and the distance travelled affect the total carbon emission of the
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operation, which can be considered as another objective.

Currently, we are solving the routing problem in local search phase optimally, which

requires a high computational effort. Instead, a heuristic may be applied in local search

or different versions of VNS may be considered with the aim of saving computational

time.

Finally, in this study, we created efficient solutions that the decision-maker to select the

most preferred among them. However, which one of these efficient solutions should

be selected is not in the scope of our study. The making the decision among the

efficient solutions can be difficult and requires analytical solution methods. Thus, as

a future work, multi-criteria decision support methods can be implemented to non-

dominated solutions found. In this manner, decision-makers can choose their final and

most desired solution from a set of various efficient solution points.
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