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ABSTRACT

SIMULTANEOUS OPERATION OF TRUCKS AND UNMANNED AERIAL

VEHICLES AT PACKAGE DELIVERY

İbroşka, Baybars

Industrial Engineering Master Program

Advisor: Assoc. Prof. Dr. Selin Özpeynirci

August, 2021

With the developing technologies, the use of unmanned aerial vehicles has become

more popular. Although it was previously used only for military purposes, with the

acceleration of its development, its usage area has expanded and it has started to appear

in sectors such as health, agriculture, transportation, mapping and communication.

While shopping on the Internet previously appealed to a certain audience, the number

of e-commerce users has increased significantly with the pandemic. As a result, with

the increase in the number of people and points that cargo trucks will reach, various

difficulties have emerged in terms of planning in transportation. One way to overcome

all these difficulties is to make the use of unmanned aerial vehicles more widespread

in this sector with proper planning and control, thus shortening the long distance that

trucks will travel as much as possible. In this study, we consider a simultaneous

operation of trucks and unmanned aerial vehicles at package delivery. We develop

a General Variable Neighborhood Search algorithm and compare the results with the

existing studies in the literature. Computational experiments show that our approach

can find very good solutions in reasonable times and outperforms the existing methods

in most instances.

Keywords: Transportation, Routing, Drone delivery, Unmanned aerial vehicles,

Variable Neighborhood Search.
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ÖZET

PAKET TESLİMATINDA KAMYON VE İNSANSIZ HAVA ARACININ EŞ

ZAMANLI ÇALIŞMASI

İbroşka, Baybars

Endüstri Mühendisliği Yüksek Lisans Programı

Tez Danışmanı: Doç. Dr. Selin Özpeynirci

Ağustos, 2021

Gelişen teknolojiler ile beraber insansız hava aracı kullanımı daha da popüler-

leşmiştir. Önceden sadece askeri amaçlarla kullanılsa da gelişiminin hızlanmasıyla

beraber kullanım alanı genişleyerek sağlık, tarım, taşımacılık, haritalama ve iletişim

gibi sektörlerde de görünmeye başlanmıştır. Internet üzerinden alışveriş, önceden be-

lirli bir kitleye hitap ederken pandemi ile birlikte e-ticaret kullanıcı sayısı ciddi şekilde

artmıştır. Bunun sonucunda kargo kamyonlarının ulaşacağı kişi ve nokta sayısının art-

masıyla beraber taşımacılıkta planlama bakımından çeşitli zorluklar ortaya çıkmıştır.

Tüm bu zorlukları aşmanın bir yolu da insansız hava aracı kullanımını, bu sektörde

uygun planlama ve kontrol ile daha yaygınlaştırarak kamyonların gideceği uzun

mesafeyi mümkün olduğunca kısaltmaktır. Bu çalışmada, paket teslimatında kamyon

ve insansız hava araçlarının eşzamanlı çalışmasını ele alıyoruz. Geliştirdiğimiz Genel

Değişken Komşuluk Arama (General Variable Neighborhood Search) algoritması

literatürdeki mevcut çalışmalarla karşılaştırılmıştır. Yapmış olduğumuz deneyler,

yaklaşımımızın makul zamanlarda çok iyi çözümler bulabildiğini ve çoğu durumda

mevcut yöntemlerden daha iyi performans gösterdiğini gösteriyor.

Anahtar Kelimeler: Ulaşım, Rotalama, Drone teslimatı, İnsansız hava araçları,

Değişken Komşuluk Araması.
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CHAPTER 1: INTRODUCTION

In this chapter, firstly we explain the usage areas of unmanned aerial vehicles (that

will be referred to as UAV or drone interchangeably) in practice, then in the next

section we define the problem that this thesis focuses on, and in the final section we

present the general structure of the thesis.

1.1 UAV Technology in Practice

In the world and in our country, one of the first factors to consider when changing

and developing technologies are examined is the use of unmanned aerial vehicles.

The impact of this growing and spreading technology is clearly noticeable. It

has been observed that unmanned aerial vehicles are designed in different ways,

primarily in military areas for use in various operations. Afterwards, this rapidly

developing technology has been used in communication, health, mapping, agriculture

and transportation fields.

Considering today’s conditions, when we consider the transportation sector, it is seen

that cargo transportation has a big place in our lives with the effect of e-commerce.

Nowadays, with the advancing technology and due to pandemic, people make their

purchases over the internet. This situation leads to an increase in the number of

destination points that the cargo transporters are trying to reach and also increase in

distances, decreasing the package sizes and increasing the delivery frequency. As a

result, planning of transportation operations has become more difficult. One way to

solve these problems is to make unmanned aerial vehicles more widespread in this

sector and to ensure that trucks travel less by appropriate planning.

There are several companies, including Amazon, which predict this problem and test

the use of unmanned aerial vehicles in transportation. As an example, Amazon Prime

Air delivers directly to the destinations that are particularly difficult to reach. In

addition to this, UPS aims to make delivery with the use of cargo truck together with

the unmanned aerial vehicle set up on the top of the truck. In this way, the unmanned

aerial vehicle delivers to a point, while the cargo truck is delivering a separate point,

aiming to speed up the delivery.

1



1.2 Problem Statement

Package delivery with the UAV’s, which we will begin to see in package trans-

portation with the developing technology, results in many new routing problems.

UAV included problems appear as an extension of Vehicle Routing Problem (VRP)

with capacity constraints, or as Travelling Salesperson Problem (TSP) extensions

that ignore the capacity of trucks and assume that UAV’s can carry one package per

delivery. TSP extensions have more examples than VRP extensions in the literature.

The reason for this is because of the decrease of package sizes due to the effect of e-

commerce, capacities are often neglected. We can categorize these problems based on

the drone’s ability to move, or in other words, its capability of departure and landing

on nodes during the transport operation. If we consider the first category as scenarios

where deliveries are made directly from the warehouse, we can give Amazon Prime

Air as an example. Another category can be defined as the situation in which the truck

and drone deliver simultaneously, which is being tested by UPS. On the other hand,

the number of trucks and drones used in the package transport operation also causes

differentiation of problems and increases diversity.

In this thesis, we focus on the UAV delivery problem which is an extension of the TSP.

In the Classic TSP, the salesperson is expected to deliver to n points at the lowest cost.

The cost here refers to the total distance traveled. In our case, assuming the salesperson

is the cargo truck, we can define all n points as customers waiting for package delivery.

In addition, with the involvement of a drone into the delivery operation, it is expected

that either truck or drone will deliver to each point at the lowest cost. The cost here

can be considered as the total distance traveled or total time required for delivering all

packages.

We can take this problem to a different dimension by increasing the number of

trucks and drones used in the transport operation. We may encounter different types

of problems where there are one truck and more than one drones, multiple trucks

and one drone, or multiple trucks and multiple drones in the system. In addition

to the number of trucks and drones used in delivery, the mobility of the drone is

another important factor affecting the problem environment. Following cases may be

considered regarding the mobility of the drones: the drones are only allowed to depart

and land on the warehouse, the drones are only allowed to depart and land on the truck,

the drones can depart from a truck and land on different truck when there are multiple

trucks. Finally, problems with multiple trucks and drones where the drones can land

2



(a) TSP Solutions (b) mTSP Solutions

Figure 1: Sample Solution Representations

on or departure from any vehicle or warehouse. We can observe the visualization of

these problem types in Figure 1.

In this thesis, we focus on Multiple Traveling Salesperson with Drones (mTSPD),

which has a few examples in the literature and is a complex problem, including

multiple trucks and multiple drones, and the drones are allowed to depart from a truck

or the warehouse, and land on the same truck, a different truck or the warehouse.

1.3 Purpose of the Study

The aim of this thesis is to offer solutions for the problems found in the literature

about the simultaneous operation of truck and UAV for package delivery. In line

with the objectives, new solution proposals for the problems were developed and

computational experiments and tests related to the subject were carried out.

When we examined the literature in line with our study, we realized that the problems

involving multiple trucks and multiple drones were rarely included in the literature,

and we have directed our work specifically on this subject. The most comprehensive

problem found in the literature is the Multiple Traveling Salesperson with Drones

(mTSPD) problem proposed by Kitjacharoenchai et al. (2019). In this way, we steered

our work by trying to achieve robust solutions with the General Variable Neighborhood

Search (GVNS) heuristic that we developed. We tested and compared our experiments

on datasets shared by Kitjacharoenchai et al. (2019).

3



1.4 Structure of the Thesis

In the next chapters, we cover the following topics. In Chapter 2 we present the

literature review which consists TSP and VRP variants that drone and truck delivery

problems are based on or have similar characteristics, also the different problem types

of drone and truck delivery problems, and the studies carried out for these problems.

In Chapter 3, we first present the mathematical model developed for a single truck

and a single drone tandem. Then, we present the model and problem definition of

the mTSPD problem, which is the main focus of the study, and the General Variable

Neighborhood Search (GVNS) algorithm that we developed to solve the problem. We

report the experimental results of the proposed General Variable Neighborhood Search

(GVNS) algorithm in Chapter 4. Lastly in final Chapter 5, we state the summary of the

study and future future work.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we describe our literature review under 2 different sections. First,

we give brief information about the TSP and VRP problems that lead to the problems

where the drone and truck work simultaneously. Next, we present the problems that the

drone and the truck deliver simultaneously and the solutions offered to these problems.

2.1 Travelling Salesperson Problem and Vehicle Routing Problem

In this section, we examine the relationship of routing problems involving the drone

with other routing problems already found in the literature.

The package delivery tandem of truck and drone is relevant to the Covering Traveling

Salesperson (CSP) in that the truck is not required to deliver to every customer. CSP

is first proposed by Current and Schilling (1989), CSP is a generalized version of TSP

that can be applied in many different fields and different problems. CSP aims to travel

the least costly route keeping all customers within a predetermined area, but the truck

does not have to visit every destination. This definition is an approach that can be taken

as a basis in biomodal delivery systems, just like in scenarios where truck and drone

deliver together except drone has to visit remaining customers.

In addition, if we consider the drone as a detachable part of the truck, we can find

Vehicle Routing Problem (VRP) extensions suitable for this definition in the literature.

In the Truck and Trailer Routing Problem (TTRP), customers have vehicle type

constraints on which certain vehicles can be shipped. These are divided into following

types, truck and trailer can deliver together or only truck can deliver. In cases where

only the truck can enter, the truck must detached with the trailer at certain points and

deliver on its own so that it can ship to customers that only the truck can visit. Chao

(2002) has provided a solution to this problem with the Tabu Search method and Lin

et al. (2009) with the Simulated Annealing approach to solve this problem.

Lin (2011) presents a study with similar characteristics and limitations to the simul-

taneous operation of a drone and truck. The study deals with the pickup and delivery

problem, the operation where a heavy vehicle can carry a light vehicle in addition

to the load. A light vehicle can pick up and deliver a load independently from a

heavy vehicle, and a light vehicle can also travel with a heavy vehicle or independently.

These constraints can be given as examples of the constraints found in problem types

5



consisting of drones and trucks.

2.2 Drone Extension of TSP and VRP

There are various studies regarding problems on truck and drone delivery. We can

categorize the problems according to their drone and truck tandem or drone movement

flexibility.

Dorling et al. (2016) propose, Drone Delivery Problem (DDP) as an extension of

VRP. They present the DDP problem as two different mathematical models that vary

according to its objective function. The first of these is MC-DDP, it minimizes the

cost, the other mathematical model named as MT-DDP, which minimizes time in case

of emergency. Sub-optimal results were aimed using Simulated Annealing, as this

problem is difficult to solve optimally even in conditions with a small number of

customers. While constructing Simulated Annealing, they also presented the DDP

Cost Function, which includes factors such as the weight and cost of batteries and the

load carried by drones.

Wang et al. (2017) propose Vehicle Routing Problem with Drones, and studied many

different worst-case scenarios on VRP-D. They also propose several upper bounds on

the ratio of time saving by using drones against other traditional routing problems that

use only truck in the routes. Poikonen et al. (2017) extends their previous work by

integrating the following factors: the battery life of the drone, cost metrics, and the

fixed cost of deploying drones.

Murray and Chu (2015) define the Flying Sidekick Travelling Salesman Problem

(FSTSP) that investigates simultaneous delivery of one truck and one drone tandem.

If the drone ends its delivery by landing at the depot, it can not launch again from

the depot, since FSTSP’s motivation is the use of drones where depots are far from the

delivery nodes. They also define another problem called the Parallel Drone Scheduling

Travelling Salesman Problem (PDSTSP). In PDSTSP there is a fleet of one truck and

one or more homogeneous drones. Drones are not binded with truck, thus they operate

independently from trucks and directly deliver from depot to nodes. They propose

mathematical models for FSTSP and PDSTSP; however they cannot find optimal

solutions with their models and propose heuristics for each problem. For FSTSP, they

present route and re-assign heuristic, where they first find TSP solution and then use

a re-assign algorithm to add drones to the solution. They also present the numerical

analysis of impact of different TSP heuristics to the solutions.

6



Ponza (2016) examined FSTSP in detail and investigated "Simulated Annealing",

"Ant Colony Optimization" and "Naive Approach" as possible solution approaches

for FSTSP. Among these solutions, he carried out experiments by using "Simulated

Annealing" and presented a new instance.

Ferrandez et al. (2016) compare energy consumption of system by investigating the

drone and truck speeds. They use Genetic Algorithm to find best route for TSP. They

develop K-means algorithm to find launch locations of drones.

Since FSTSP can not find optimal solutions even for six node instances, Agatz et al.

(2018) propose a new problem called TSP-D with a different mathematical formulation

and they can find optimal solutions up to twelve nodes. In TSP-D, only one drone

and one truck deliver simultaneously like FSTSP, however a drone can only launch

from a truck and land into a truck in customer nodes. Also a truck can visit the same

node more than once, which helps to increase drone usage by increasing the launching

and landing nodes. Regarding NP-hardness of the problem, they propose route-first-

cluster-second algorithm for TSP-D problem. They first obtain a TSP solution -which

is also feasible for TSP-D when we consider no drone deliveries exist- then they

divide the solution by assigning some nodes to drone and some nodes to truck. In the

assignment phase, they use two different heuristics which are “A Greedy Partitioning

Heuristic” and “An Exact Partitioning Algorithm”. Bouman et al. (2018) present

another solution approach to the TSP-D problem by using dynamic programming.

de Freitas and Penna (2020) propose a hybrid heuristic for FSTSP to improve solutions

of instances from Ponza (2016) and also they rearrange their algorithm for TSP-D from

Agatz et al. (2018). In their hybrid heuristic, they first use MILP TSP solver to find TSP

solutions, then they use General Variable Neighborhood Search (GVNS) algorithm to

improve solutions. Ha et al. (2018) propose a different variant of TSP-D which extends

from FSTSP. Authors develop mathematical formulation and two different heuristics

for min-cost TSP-D.

Murray and Raj (2020) define a new problem called The Multiple Flying Sidekicks

Travelling Salesman Problem (mFSTSP), an extension of FSTSP. The mFSTSP

consists of one truck and multiple heterogeneous drone fleet. Each package must be

delivered by either a truck or a drone. Each customer has different drone acceptability,

with the aim of achieving a solution for more realistic situations. They propose a

7



mathematical formulation and a three-phased heuristic solution approach to achieve

solutions.

Regarding the drone delivery problems which extended from TSP, Kitjacharoenchai

et al. (2019) propose a problem that has multiple drones and multiple trucks and has

the most flexible drone movement named as Multiple Travelling Salesman Problem

with Drones (mTSPD). In mTSPD, drones can depart from the depot or from a truck.

Also drones can land into the depot or any of the trucks, not necessarily on the one

they have departed from.

We present the classification of truck and drone delivery problems in Table 1.

In this thesis, we consider the problem defined by Kitjacharoenchai et al. (2019)

and develop a variable neighborhood search heuristic with the aim of obtaining near-

optimal solutions in reasonable time.
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CHAPTER 3: METHODOLOGY

In this chapter, we first present the mathematical model developed for a single truck

and a single drone tandem, for better understanding the problems that we mentioned

in Chapter 1 and Section 2.2. Next, we present the Multiple Traveling Salesperson

Problem with Drones (mTSPD) defined by Kitjacharoenchai et al. (2019), which

is the main focus of this study. Finally, we explain in detail the General Variable

Neighborhood Search (GVNS) approach we proposed for the mTSPD problem.

3.1 Mathematical Model for Single Truck & Single Drone Tandem

We developed a mathematical model that covers TSP with drone problem. In our

mathematical model, drone can depart from truck while truck is delivering to customer.

However, truck must wait in delivery point until drone comes back from its delivery.

ci j (cost of truck delivery from i to j) is calculated by Manhattan Distance Formula and

cdi j (cost of drone delivery from i to j) is calculated by Euclidian Distance Formula,

since drones do not need to follow the road, and can fly over the buildings and other

barriers.

Sets

i, j = 1...n represents delivery points

Parameters

ci j: cost of truck delivery from i to j.

cdi j: cost of drone delivery from i to j.

Decision Variables

xi j =

1, if truck delivers a package to node j using arc (i, j)

0, otherwise

qi j =

1, if drone delivers a package to node j using arc (i, j)

0, otherwise

Tri =

1, if truck delivers to node i

0, otherwise

Di =

1, if drone delivers to node i

0, otherwise
ui: sub-route elimination variable
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Minimize Z =
n

∑
i=1

n

∑
i=1

(xi j ∗ ci j +qi j ∗ cdi j ∗2) (3.1)

Subject to

Tri +Di = 1 ∀i (3.2)

n

∑
j=1

xi j = Tri ∀i|i 6= j (3.3)

n

∑
i=1

xi j = Tr j ∀ j|i 6= j (3.4)

n

∑
j=1

qi j ≤ 1 ∀i (3.5)

n

∑
i=1

qi j = D j ∀ j (3.6)

qi j ≤ Tri ∀i, j (3.7)

ui−u j +n∗ xi j ≤ (n−1) ∀i, j|i > 1 (3.8)

1≤ ui ≤ n ∀i|i > 1 (3.9)

xi j,qi j,Tri,Di ∈ {1,0} ∀i, j (3.10)

ui ≥ 0 ∀i (3.11)

Objective function (3.1) minimizes the total distance travelled by drone and truck.

Constraint (3.2) guarantees that each delivery point must be visited by either the truck

or the drone. Restrictions (3.3) and (3.4) limit that if truck delivers to a node, there can

be only one way to enter to the node and one way to exit from the node. Constraint (3.5)

guarantees that drone can only return using just one arc. Constraint (3.6) guarantees

that drone can use arc (i, j) only if node j is delivered by drone. Constraint (3.7) forces

the drone to return back to the node that it departures from. Restrictions (3.8) and (3.9)

are subtour elimination constraints. Constraints 3.10 and 3.11 are set constraints.
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3.2 Multiple Travelling Salesperson Problem with Drones (mTSPD)

The mTSPD arises from the idea of simultaneous operation of trucks and drones

for package delivery. As seen in Figures 1a and 1b, drones can depart from any truck

or depot, they can also land on any truck or directly to depot. Nodes can be visited via

a truck or a drone, but not both. Drones can only merge with trucks on nodes; they are

not allowed to merge while trucks are moving. Whichever vehicle comes first to the

meeting points has to wait until the other vehicle arrives. At each node, there can be

only one drone landing or departure operation.

The mathematical model is built on FSTSP model, introduced by Murray and Chu

(2015), with additional constraints regarding the definition of the problem. In mTSPD,

the objective of problem is minimizing the arrival time of the vehicle which arrives

latest to the depot. In mTSPD, there is only one depot, however they define the depot

as two different nodes, refereed to as starting depot (0(s)) and ending depot (0(r)) in the

mathematical model. Since there are multiple trucks in mTSPD, m trucks depart from

0(s) and visit n nodes with drones, then they have to return to 0(r). Set of customers

is defined as C = {1,2,3,4, ...,n}. Additionally, C0 = C∪{0(s)} is defined as the set

of customers that includes starting depot and C+ =C∪{0(r)} as the set of customers

that includes ending depot. Travel times on the arcs for trucks and drones are different

due to the structure and mobility of the vehicles. Truck travel time is defined as T T
i j on

arc (i, j) and drone travel time as T D
i j on arc (i, j). F = {(i, j,k)} is used to define all

possible node combinations that drone can use for delivery.

In addition, the following assumptions are considered:

• The departure node i cannot be ending depot. (i 6= 0(r) or i ∈C0)

• The delivery node j cannot be equal to the departure node i. Additionally,

delivery node j must be in customer set C. (i 6= j, j ∈C)

• The landing node k cannot be equal to either departure node i or delivery node

j, and landing node j must be an element of the set C+. (k 6= i,k 6= j,k ∈C+)

The following decision variables are defined: xi j is equal to 1, if truck uses arc (i, j)

to deliver node j, 0 otherwise (i ∈ C0, j ∈ C+). yi jk is equal to 1, if drone departure

from i to deliver node j and lands into node k, 0 otherwise (i ∈C0, j ∈C,k ∈C+). Tj is

defined as the truck arrival time at node j and similarly, D j is used to denote the drone

arrival time at node j ( j ∈C+). Finally, ui is a decision variable used for the subtour

elimination constraints.

12



3.2.1 Mathematical Model

In this section, we present the mathematical model for mTSPD, developed by

Kitjacharoenchai et al. (2019), for the sake of completeness.

Indices

i, j,k represent customers and depot.

Sets

C Set of customers (1,2,3, ...,n)

C0 Set of customer nodes including the starting depot, C∪0(s)

C+ Set of customer nodes including the ending depot, C∪0(r)

F Set of all possible three-node sorties of the drone path

Parameters

tT
i, j Truck travel time between nodes i and j

tD
i, j Drone travel time between nodes i and j

m Number of trucks in the entire fleet

n Number of total customers to be visited

Decision Variables

T li: Truck arrival time at node i

Dli: Drone arrival time at node i

xi j =

1, if a truck traverses arc (i, j) from customer i to customer j

0, otherwise

yi jk =

1, if a drone traverses arcs (i, j) and ( j,k)

0, otherwise

Minimize Z = Dl0(r) (3.12)

Subject to

∑
i∈C0
i 6= j

xi j + ∑
i∈C0
i 6= j

∑
k∈C+
(i jk)∈F

yi jk = 1 ∀ j ∈C (3.13)

∑
j∈C+

x0(s), j = m (3.14)

∑
i∈C0

xi,0(r) = m (3.15)

ui−u j +nxi j +(n−2)x ji ≤ n−1 ∀i, j ∈C, i 6= j (3.16)
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1+(n−2)xi,0(s)+ ∑
j∈C
i 6= j

xi j ≤ ui ≤ n− (n−2)x0(s),i−∑
j∈C
i6= j

xi j ∀i ∈C (3.17)

∑
i∈C0
i6= j

xi j = ∑
k∈C+
k 6= j

x jk ∀ j ∈C (3.18)

∑
j∈C
i 6= j

∑
k∈C+

(i, j,k)∈F

yi jk ≤ 1 ∀i ∈C0 (3.19)

∑
i∈C0
i 6=k

∑
j∈C

(i, j,k)∈F

yi jk ≤ 1 ∀k ∈C+ (3.20)

2yi jk ≤ ∑
h∈C0
h6=i

xhi + ∑
l∈C
l 6=k

xlk ∀i, j ∈C,∀k ∈C+ (3.21)

y0(s), j,k ≤ ∑
h∈C0
h6=k

xhk ∀ j ∈C,∀k ∈C+ (3.22)

∑
i∈C0
i 6= j

∑
k∈C+

(i, j,k)∈F

yi jk ≤ 1−∑
a∈C
a≤ j

∑
b∈C+

( j,a,b)∈F

y jab ∀ j ∈C (3.23)

∑
i∈C0
i6= j

∑
k∈C+

(i, j,k)∈F

yi jk ≤ 1− ∑
a∈C0
a6= j

∑
b∈C

(a,b, j)∈F

yab j ∀ j ∈C (3.24)

Dli ≥ T li−M

(
1−∑

j∈C
i 6= j

∑
k∈C+

(i, j,k)∈F

yi jk

)
∀i ∈C (3.25)

Dli ≤ T li +M

(
1−∑

j∈C
i 6= j

∑
k∈C+

(i, j,k)∈F

yi jk

)
∀i ∈C (3.26)

Dlk ≥ T lk−M

(
1− ∑

j∈C0
j 6=k

∑
j∈C+

(i, j,k)∈F

yi jk

)
∀k ∈C+ (3.27)

Dlk ≤ T lk +M

(
1− ∑

j∈C0
j 6=k

∑
j∈C+

(i, j,k)∈F

yi jk

)
∀k ∈C+ (3.28)

T lk ≥ T lh + tT
hk−M

(
1− xhk

)
∀h ∈C0,∀k ∈C+ (3.29)

Dlk ≥ Dli + tD
i j + tD

jk−M
(

1− yi jk

)
∀i ∈C0,∀ j ∈C,∀k ∈C+ (3.30)

Dl0(s) = 0 (3.31)

T l0(s) = 0 (3.32)
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xi j ∈ {0,1} ∀i, j ∈C∪C0∪C+ (3.33)

yi jk ∈ {0,1} ∀i, j,k ∈C∪C0∪C+ (3.34)

Dli ≥ 0 ∀i ∈C∪C0∪C+ (3.35)

T li ≥ 0 ∀i ∈C∪C0∪C+ (3.36)

Objective (3.12) of the problem is to minimize the maximum length among all routes

or it can be defined as to minimize the maximum time the last vehicle (drone or truck)

returns to the depot. Constraint set (3.13) guarantees that each node is visited either by

a truck or a drone. Constraints (3.14) and (3.15) make sure that the truck leaving the

depot returns to the depot. Constraint sets (3.16) and (3.17) are the subtour elimination

constraints. Constraint set (3.18) ensures that if a truck arrives at a node, it must leave

that node. Constraint sets (3.19) and (3.20) guarantee that at most one drone can depart

from or land onto a node (starting depot and ending depot are included). Constraint

set (3.21) guarantees that trucks must visit the nodes where a drone lands or departs.

Constraint set (3.22) ensures that if a drone lands on node k, then a truck has to arrive

that node. Constraint set (3.23) does not allow more than one drone to follow the same

route. Constraint set (3.24) makes sure that if a drone delivers to node j, no other

drone can travel to that node. Constraint sets (3.25) and (3.26) ensure that departure

time of drone and truck must be the same. Constraint sets (3.27) and (3.28) guarantee

that if truck and drone merge on the same node, their arrival times must be the same.

Constraints (3.25)-(3.28) ensure that if either truck or drone comes first to a node, it

waits for the other to depart. Also, if a truck and drone merge at a node, their arrival

and departure times will be the same. Constraint (3.29) and (3.30) calculates the truck

and drone arrival time for each node, respectively. Constraints (3.31) and (3.32) ensure

that truck and drone arrival times are 0 at the starting depot. Finally, constraints sets

(3.33)-(3.36) are the set constraints.

3.2.2 Solution Approach

The mathematical model proposed by Kitjacharoenchai et al. (2019) can find the

optimal solution to problems with at most 8 nodes. The optimal solutions to the

problems with 25 nodes and 50 nodes defined by Kitjacharoenchai et al. (2019) could

not be found in the time limit of one hour.

In this study, we propose a General Variable Neighborhood Search (GVNS) heuristic

to find good quality solutions for mTSP with drones. We develop a general variable

neighborhood search (GVNS) algorithm by using Union Variable Neighborhood
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Descent (U-VND) in the local search / improvement phase to solve our problem.

GVNS is a variant of Variable Neighborhood Search (VNS), which exceeds the limit

of optimization possibilities in local search to overcome the complexity of mTSPD

(Hansen et al., 2017). In the following sections, we explain the most commonly used

variants of VNS for a better understanding of the approach that we use in this study.

3.2.2.1 Variable Neighborhood Search (VNS)

Variable Neighborhood Search (VNS) is a simple and effective metaheuristic

that is widely used by researchers for solving combinatorial and global optimization

problems. Its basic idea is systematic change of neighborhood both within a local

search algorithm where there is a descent phase to find a local optimum and a

perturbation phase to get out of the corresponding region (Mladenović and Hansen,

1997; Hansen and Mladenović, 2001; Hansen et al., 2017; Hansen and Mladenović,

2018). VNS diversifies into many variants based on how it is built and how it is applied.

3.2.2.2 Basic Variable Neighborhood Search (BVNS)

Basic VNS is proposed by Mladenović and Hansen (1997), consisting of 3

main parts called Shaking, Local Search and the part where it is decided how the

neighborhood will change. Algorithm 2 shows the structure of the BVNS algorithm. In

shaking step (line 4), it generates random x′ from kth neighborhood to prevent getting

stuck with local optima. In local search step (line 5), there are 2 methods to apply when

searching for an improved solution, called first improvement and best improvement.

In the first improvement, after the first improvement on solution x′, the heuristic stops

running and algorithm moves on to the next step. In another method, best improvement,

the best result obtained among all results obtained from solution x′ in local search is

found, and then algorithm moves on the next step which is NeighborhoodChange (line

6). In NeighborhoodChange, the algorithm compares incumbent solution x with the

solution x′′ which is obtained from LocalSearch. If x′′ is better than x, x′′ becomes

the new incumbent solution (x = x′′), and k will return to its starting value (k← 1);

otherwise the next kth neighborhood applies on next iteration. This process repeats

until the ending condition is met. Ending condition can be defined as the total CPU

time or total number of iterations for algorithm to run until there is no improvement,

or various other stopping conditions can be defined.
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1 repeat
2 k← 1

3 while k <= kmax do
4 x′← Shake(x, k)

5 x′′← LocalSearch(x′)

6 NeighborhoodChange(x,x′′,k)

7 end

8 until ending_condition met

Figure 2: Basic Variable Neighborhood Search Algorithm

3.2.2.3 Reduced Variable Neighborhood Search (RVNS)

Reduced Variable Neighborhood Search (RVNS) is a variant of VNS which is

obtained discarding the LocalSearch step from BVNS (see Algorithm 2). Since local

search is not included in RVNS, there wil not be any descent made, and much faster

results can be obtained. The reason for this is that the algorithm searches for new

results by comparing the solution x′ obtained randomly by using the kth neighborhood

in the Shake (Algorithm 3, line 4) with incumbent solution x. Comparison is done in

NeighborhoodChange step (line 5) as in BVNS. If a better solution is obtained, then

solution x′ becomes the new incumbent solution x (x← x′), and k will return to the

first value defined in the set of neighborhoods; otherwise the algorithm continues with

next kth neighborhood. This fast structure of RVNS saves a significant amount of time

when used in large-scale problems, and since fast and robust results are obtained in

this way, its usage area is more common in large-scale problems.

1 repeat
2 k← 1

3 while k <= kmax do
4 x′← Shake(x, k)

5 NeighborhoodChange(x,x′,k)

6 end

7 until ending_condition met

Figure 3: Reduced Variable Neighborhood Search Algorithm

3.2.2.4 Variable Neighborhood Descent (VND)

Variable Neighborhood Descent (VND) is another common variant of VNS among

researchers. VND differs from BVNS by doing a discrete search without using the

Shake step (See Algorithm 2). Just like RVNS differs from BVNS by just doing a

stochastic search. We can also express VND as BVNS without perturbation phase.

17



VND algorithm is based on the following facts:

• The local optimum reached by one neighborhood may not be the local optimum

for the other neighborhoods.

• The local optimum reached by all neighborhoods is defined as the global

optimum.

Since there is no perturbation phase in algorithm, VND needs more than one

neighborhood in its structure to run effectively and to obtain robust solution, and the

algorithm must be designed very well to avoid falling into the local optimum traps.

According to empirical studies of Mjirda et al. (2016), there are 4 main decisions that

affect the good functioning of the VND algorithm. As a result of these decisions,

variants of VND occur and the structure of the algorithm is formed. Mjirda et al.

(2016) point out these decisions as follows:

1. Run order of the neighborhoods in VND.

2. Deciding on search strategy. These are first improvement or best improvement.

We mention about this search strategy in the section BVNS 3.2.2.2 where we

explain LocalSearch step.

3. Moving strategy when improvement is achieved. This strategy names VND

variants based on how neighborhoods change when improvement occurs.

• Basic VND (B-VND): when improvement is achieved, it returns to the first

defined neighborhood.

• Pipe VND (P-VND): continues to run with the neighborhood where

improvement takes place.

• Cyclic VND (C-VND): when the improvement takes place, it continues to

run with the next neighborhood in the neighborhood set.

• Union VND (U-VND): in this variant, all defined neighborhoods operate

as one whole neighborhood.

4. Obtaining initial solution. Considering that there is no perturbation in the VND,

the initial solution can be critical not to drop to the local optimum too quickly.

When we evaluate these 4 decisions and VND variants that we mentioned, we can say

that many different VND structures can be created for different problem types. Each

variant has its own advantages and disadvantages. Mjirda et al. (2016) have carried out
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a detailed empirical study comparing the performances of these variants on the TSP

problem.

1 Define set of neighborhoods Nk (k = 1, ...,kmax);

2 k← 1;

3 repeat
4 x′← Nk(x);

5 NeighborhoodChange(x, x′, k)

6 until ending_condition met;

Figure 4: Variable Neighborhood Descent Algorithm

3.2.2.5 General Variable Neighborhood Search (GVNS)

General Variable Neighborhood Search (GVNS) can be defined as an improved

variant of BVNS. It is possible to obtain hybrid variations when we use other

metaheuristics in the LocalSearch phase in BVNS (Mjirda et al. (2016)). Besides,

if we use one of the VND variations that we mentioned in Section 3.2.2.4 in the

LocalSearch phase of BVNS (see Algorithm 2, line 5), we obtain GVNS. We present

the basic structure of GVNS in Algorithm 3.2.2.5, we explain the details of GVNS in

the following section 3.2.3 which is our proposed GVNS algorithm for mTSPD.

1 repeat
2 k← 1

3 while k <= kmax do
4 x′← Shake(x, k)

5 x′′← VND(x′)

6 NeighborhoodChange(x,x′′,k)

7 end

8 until ending_condition met

Figure 5: General Variable Neighborhood Search Algorithm

3.2.3 Proposed General Variable Neighborhood Search Approach

In this section, we explain the GVNS algorithm that we develope in order to obtain

robust and good results for mTSPD. When we examined the literature, we saw that

GVNS algorithms developed for similar problems can achieve successful results. As an

example, Soylu (2015) presented the GVNS algorithm for the mTSP problem, which

consists Sequential-VND in the LocalSearch phase. Apart from that, de Freitas and

Penna (2020) developed a Hybrid-GVNS algorithm for the FSTSP problem, which

is more similar to our problem definition. They applied GVNS on the TSP results
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obtained by using TSP-Solver in the HGVNS algorithm. In the LocalSearch phase,

they use Randomized Variable Neighborhood Descent (RVND) algorithm.

The GVNS structure we build, unlike Kitjacharoenchai et al. (2019) and de Freitas and

Penna (2020), performs the optimization of drone and truck routes together instead of

obtaining the TSP result separately, thanks to its neighborhood structures. We describe

these neighborhoods’ structures in Section 3.2.3.5 and Section 3.2.3.7, and Figure 14

provides a visual representation of neighborhoods.

We present the pseudocode in Algorithm 6, which outlines the GVNS algorithm we

develop. In initialization step (line 1), we start the GVNS algorithm by obtaining

TSP or mTSP results by using Nearest Neighbor Algorithm according to the number

of trucks (m), customer number (n) and coordinates of depot and customer nodes

(coordinates) given in the problem set (See Sections 3.2.3.1-3.2.3.2). We determine

the termination condition of our GVNS algorithm as to stop if no improvement

is achieved after a specified number of iterations. Line 4 represents the Shake

phase, line 5 represents the LocalSearch phase, and lines 6 to 10 represent the

NeighborhoodChange phase as in the BVNS algorithm explained in Section 3.2.2.2.

As we mentioned before, since we use U-VND in the LocalSearch phase, the algorithm

we developed is called as GVNS. According to Mjirda et al. (2016)’s experiments, it

was stated that U-VND takes more CPU time than the other VND variants mentioned

in Section 3.2.2.4. As a result of our preliminary experiments and considering the

definition of our problem, we found that neighborhoods working together as a whole

rather than sequentially had a better effect on the outcome. If there is no improvement

occurs at the end of the iteration, we move on to the next Shake neighborhood in the

list. (See Fig 23 for flowchart of the proposed GVNS)

1 x←Initialization(m, n, coordinates)

2 iter← define the number of iterations for termination

3 i← 1 repeat
4 x′←Shake(x, k)

5 x′′←U-VND (x′)

6 if f (x′′)< f (x) then
7 x← x′′

8 else
9 k← k+1

10 end
11 i← i+1

12 until i <= iter

Figure 6: Proposed General Variable Neighborhood Search Algorithm
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3.2.3.1 Initialization

First of all, in the initialization phase, we need to create a robust solution vector for

the GVNS algorithm to work effectively. In addition, it is a very critical issue that the

operations to be performed by the neighborhoods can be easily applied on the solution

vector. We develop two solution vectors that represent truck solution vector and drone

solution vector separately. We create two vectors’ structures as follows:

Truck Vector
As it is seen in Figure 7, first and only cell in the first section in the vector

represents the truck number (m). In the next section, each number represents the

number of nodes that trucks visit. In the last section of the vector, each color coded part

in the third section represents the visiting sequence of each truck by the same order.

The algorithm adds depot to starting and ending points (as seen in Figure 7) of each

route while making calculations.

Figure 7: Truck Vector

Drone Vector
As in the truck vector structure, in the first section of the vector, the cell represents

the number of drones used in delivery. The second section of the vector shows the

number of nodes that are delivered by each drone. In the last section, each color coded

part shows each drone by the same order. Each cell in each part represents departure

node, visiting node and landing node, respectively (Figure 8).

Figure 8: Drone Vector

3.2.3.2 Initial Solution with Nearest Neighbor Algorithm

In this section, we present the Nearest Neighbor Algorithm in Algorithm 9 that

is used to create the initial solution. Before the GVNS algorithm starts to process,
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we obtain a feasible (m)TSP solution without any drones using the Nearest Neighbor

Algorithm according to the number of nodes (n) and trucks (m) in the problem. First

of all, as stated in line 2, we create a separate travel time matrix for the truck (tT ) and

the drone (tD), using the number of nodes (n) and the coordinates of the nodes given

in the problem set. In the next step, we create nested for loops that will assign each

node to each truck. In this way, we assign nodes to each truck one by one. In line 6,

we identify the nearestNode among the remainingNodes to the last node assigned to

truck j. Then we assign this node to truck j and subtract it from the remainingNodes

set. Finally, we update the tV according to the latest changes. (See Step 6, 7, 8, 9).

After all nodes are allocated to the trucks, we create an empty dV in line 11 and we

obtain our solution vectors and travel time matrices.

1 tV,dV, tD, tT ←NearestNeighbor(m, n, coordinates)

2 tT , tD←CreateMatrices(n, coordinates)

3 remainingNodes←define set of n customers

4 for i = 0 to n do
5 for j = 0 to m do
6 nearestNode←determine the closest node to the previous node of

truck j from remainingNodes

7 assign nearestNode to truck j

8 remove nearestNode from remainingNodes

9 tV ←update recent changes

10 end

11 end
12 dV ←create blank vector

13 return tV , dV , tMatrix, dMatrix

Figure 9: Nearest Neighbor Algorithm

3.2.3.3 Cost Evaluation

In this section, we present the algorithms where we calculate the objective function

value of the solution using tT , tD and the solution vectors (tV , dV ) that we constructed,

with Algorithms 10 and 11. According to our objective function, we minimize the

arrival time of the last vehicle (either drone or truck) that arrives at the depot. We

present two different algorithms to calculate the arrival time at the depot. These

are named as calculate_arrival and cost_evaluation. The calculate_arrival algorithm

is a sub-algorithm that works recursively within the cost_evaluation algorithm and

calculates the arrival time at each node.

When calculating the objective function, we classify each point under 3 categories:

22



• landing node: refers to the node where truck and drone meet.

• drone node: refers to the point where the drone delivers.

• other nodes: refers to the node where the drone does not deliver or land.

This classification facilitates the calculation of the objective function value. This can

be explored in detail in the following sections.

1 arrival_timenode←calculate_arrival(node, tD, tT , landing = False,

drone = False)

2 if node == 0 then
3 return 0

4 else if node has arrival time then
5 return arrival_timenode

6 else
7 if landing == True then
8 pre_t = the truck node where the truck delivers before node

9 pre_d = the drone node where the drone delivers before lands to node

10 return max(calculate_arrival(pre_t)+

tT
pre_t,node,calculate_arrival(pre_d, drone=True)+

tD
pre_d,node),calculate_arrival(pre_t)+ tT

pre_t,node−
calculate_arrival(pre_d, drone=True)+ tD

pre_d,node

11 else if drone == True then
12 pre_t the drone and truck node where the drone departs before visits to

node

13 return calculate_arrival(pre_t)+ tD
pre_t,node

14 else
15 pre_t = the truck node where the truck delivers before node

16 return calculate_arrival(pre_t)+ tT
pre_t,node

17 end

18 end

Figure 10: Calculate Arrival Time

In the cost_evaluation algorithm, in line 2, we define an empty arrival_array for

the arrival time of each node (See Algorithm 11). It has a structure that includes

the arrival times of the truck and drone separately. Then, in line 3, we create the

landing list of the nodes where the drone lands using dV , and in line 4, we create

the route_ending_time list, which includes the arrival time of each route to the depot.

Then, in line 5, we make the classifications that we mentioned above with the for loop

that includes all the nodes in the tV and call the calculate_arrival function according

to the determined conditions. We classify each node from line 5 to 15. If tV or

dV is infeasible, we take the objective function value as infinite and terminate the

cost_evaluation algorithm (See line 8). Then, in line 17, the arrival time of each route

to the warehouse is calculated and recorded in the route_ending_time list. In line 18,
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if any drone lands at the warehouse, its arrival time at the warehouse is added to the

route_ending_time list. Finally, in route_ending_time list, we return the maximum

value as the value of the objective function.

We calculate the arrival_time of each node using the following formulas in the

calculate_arrival function:

Let T li is arrival time of truck at node i and Dli is arrival time of drone at node i.

• landing node arrival_time: max(T li−1 + tT
i−1,i,Dli−1 + tD

i−1,i)

• drone node arrival_time: T li−1 + tD
i−1,i

• other nodes arrival_time: T li−1 + tT
i−1,i

We show the above formulas in lines 10, 13, 16 which are integrated into Algorithm

10 and they work recursively.

1 arrival_array, ob jective, route_ending_time←cost_evaluation(tD, tT ,

tV , dV)

2 arrival_array←create empty array for arrival times

3 landing_nodes←identify drone landing nodes from dV

4 route_ending_time←create empty list for each route

5 foreach node in tV do
6 if node 6= 0 and node in landing_nodes then
7 if tV or dV is in f easible then
8 set ob jective = ∞ and exit

9 end
10 pre_d = the drone node where the drone delivers before lands to node

11 arrival_array1,pre_d ←calculate_arrival(pre_d,drone = True)

12 arrival_array1,node,arrival_array2,node←
calculate_arrival(node, landing = True)

13 else if node 6= 0 then
14 arrival_array1,node←calculate_arrival(node)

15 end
16 foreach last_node of tV do
17 route_ending_timeroute← arrival_arraylast_node + tT

last_node,0

18 end
19 if any drone lands into depot then
20 route_ending_timedrone← arrival_arraydrone + tD

drone,0

21 end
22 ob jective = max(route_ending_time)

23 return ob jective,arrival_array,route_ending_time

Figure 11: Cost Evaluation
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3.2.3.4 Shake Phase

We use four different neighborhoods named as random_swap, random_oneMove,

random_visitorSwap and random_droneRemove in the shaking phase. The main

structure of these neighborhoods is designed to move to different solutions to avoid

local optimum traps by operating randomly while making changes.

Input : x, k

Output: x
′

1 Define neighborhood structures Nk(k = 1, ...,kmax)

2 x
′ ← Nk(x)

3 return x
′

Figure 12: Shake Phase

3.2.3.5 Shake Neighborhoods

In this section, we explain the neighborhoods we use in the Shake phase, which

can also be called as perturbation phase. The neighborhoods that we present aims

to slightly worsen the result by performing a stochastic search to escape the local

optimum, hoping for the result to get better. We present neighborhoods as follows.

1. random_swap Neighborhood: This neighborhood swaps positions of two

randomly selected nodes visited by trucks.

2. random_oneMove Neighborhood: This neighborhood moves one randomly

selected node from a randomly selected truck to another randomly selected truck.

3. random_visitorSwap Neighborhood: This neighborhood swaps the vehicle

type (drone or truck) of delivery point randomly.

4. random_droneRemove Neighborhood: This neighborhood removes a random

node that is visited by drone and assigns it to a random truck.

3.2.3.6 Local Search / U-VND

In Union Variable Neighborhood Descent (U-VND), we develop neighborhoods

that are different from the Shake phase. The main purpose of this approach is to

boost the probability of improvement of our objective. Regarding our objective, our

main direction is to minimize the longest route’s completion time. In the U-VND

phase, our neighborhoods’ main focus is routes that have the worst objective function

value in each iteration to directly affect the objective function value. We develop nine
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neighborhoods which are named as swapMove, visitorSwap, swap, oneMove, 2-Opt,

departure, landing, droneAdd and random_droneAdd.

Input : x′

Output: x′′

1 Define set of neighborhoods Nl (l = 1, ..., lmax)

2 l← 1

3 while l < lmax do
4 x′← Nl(x′)

5 l← l +1

6 end
7 x′′← x′

8 return x′′

Figure 13: Union Variable Neighborhood Descent

3.2.3.7 Local Search / U-VND Neighborhoods

In this section, we explain the neighborhoods that we use in the U-VND phase

in detail and present their pseudo codes. Apart from that, we have created Fig 14 to

give a better explanation of the effect of the neighborhoods on solutions. We present

neighborhoods as follows.

swapMove Neighborhood
This move basically combines swap and oneMove neighborhoods. If the number of

trucks in the problem set is less than 2, the neighborhood stops running because there

is no other route to move or swap (See Algorithm 15, line 2). First, the worst route is

defined as maxCostRoute list. If there are less than 2 nodes assigned to maxCostRoute,

neighborhood stops running because if it moves a node to another route, there will

be no node assigned to the maxCostRoute and this creates an infeasible solution

in our problem (lines 5-8). After this condition, the list of nodes that truck visits

(except maxCostRoute) is defined as truckNodes using the tV (line 8). swapMove

neighborhood swaps a node from worst truck route with a node from another route.

Next, it takes the adjacent node to swapped node and moves to the same route that swap

has been made. If any improvement is achieved, it terminates the process; otherwise,

it continues and tries other combinations and returns the best possible combination

among all.
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(a) swapMove Neighborhood (b) visitorSwap Neighborhood

(c) oneMove Neighborhood (d) swap Neighborhood

(e) departure Neighborhood (f) landing Neighborhood

(g) 2-opt Neighborhood (h) droneAdd Neighborhood

Figure 14: U-VND Neighborhoods
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1 tV ′←swapMove(truckNumber, tV)

2 if truckNumber< 2 then
3 exit

4 end
5 maxCostRoute← specify max cost route

6 if # of nodes in maxCostRoute < 2 then
7 exit

8 end
9 truckNodes← specify truck visiting nodes from tV

10 set improved = False

11 for i = 0 to len(maxCostRoute)−1 do
12 for j = 0 to len(truckNodes) do
13 if improved == True then
14 break

15 end
16 if truckNodes j in maxCostRoute then
17 pass

18 else
19 f irst_node← maxCostRoutei

20 second_node← maxCostRoutei+1

21 swap_node← truckNodes j

22 insert second_node after swap_node

23 swap f irst_node with swap_node

24 tV ′← update recent changes

25 new_ob jective← cost_evaluation(tD, tT , tV ′, dV)

26 if new_ob jective < ob jective then
27 set improved = True

28 end
29 set tV ′← tV

30 end

31 end

32 end
33 return Best tV ′

Figure 15: swapMove Neighborhood

visitorSwap Neighborhood
This neighborhood swaps the types of vehicles that visit a node Figure 14b. We

present the pseudocode of neighborhood in Algorithm 16. If the drone does not

exist in the incumbent solution vectors, neighborhood terminates without executing

a move (line 2). First the neighborhood identifies the nodes where the drone delivers

as droneNodes in line 5, then in line 6, it identifies the worst route as maxCostRoute,

without including the nodes that already exist in droneNodes. In lines 8-20, two nested

for loops with all options are created between the nodes that can be swapped, where

the truck delivers in maxCostRoute and the nodes where the drone delivers in the

droneNodes. It swaps truck_node with drone_node and update tV ′, dV ′ according

to the most recent swap. Then it checks in line 16 if there is an improvement. If any
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improvement is achieved, it terminates the process; otherwise, it continues and tries

other combinations.

1 tV ′,dV ′←visitorSwap(tV , dV)

2 if dV is empty then
3 exit

4 end
5 droneNodes← identify drone visiting nodes

6 maxCostRoute← specify max cost route

7 set improved = False

8 for truck_node in maxCostRoute do
9 for drone_node in droneNodes do

10 if improved == True then
11 break

12 else
13 swap truck_node with drone_node

14 tV ′, dV ′← update recent changes

15 new_ob jective← cost_evaluation(tD, tT , tV ′, dV ′)

16 if new_ob jective < ob jective then
17 set improved = True

18 end
19 set tV ′← tV

20 set dV ′← dV

21 end

22 end

23 end
24 return Best tV ′, Best dV ′

Figure 16: visitorSwap Neighborhood

swap Neighborhood
This neighborhood differs from the random_swap in the Shake phase in terms of

the structure of the neighborhood. In swap, a discrete search is performed as opposed

to a stochastic search in random_swap. See the Figure 14d to better understand

the moves that neighborhood executes. In Algorithm 17 we present the pseudocode

of neighborhood. If there are less than 2 trucks in the problem, the neighborhood

terminates the process without changing solution vectors. First, in swap, the worst

route is defined as maxCostRoute, then the nodes that are delivered by a truck are

defined as remainNodes, but the nodes in maxCostRoute are not included in the

remainNodes (lines 5-6). Then in lines 8-20 a nested for loop is created, it contains

the nodes in maxCostRoute and remainNode. Thus, swap neighborhood includes all

nodes that can be swapped in the iteration. In lines 13-14, it swaps f irst_node from

maxCostRoute with second_node from remainNodes, and updates tV ′ according to

this change. In the next step it checks whether the objective function value improves

or not. Neighborhood terminates the process as soon as the improvement is achieved,
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otherwise it continues to try other possible swaps.

1 tV ′← swap(truckNumber, tV)

2 if truckNumber < 2 then
3 exit

4 end
5 maxCostRoute← specify max cost route

6 remainNodes← identify all truck visiting nodes except maxCostRoute

7 set improved = False

8 for f irst_node in maxCostRoute do
9 for second_node in remainNodes do

10 if improved == True then
11 break

12 else
13 swap f irst_node with second_node

14 tV ′← update recent changes

15 new_ob jective← cost_evaluation(tD, tT , tV ′, dV)

16 if new_ob jective < ob jective then
17 set improved = True

18 end
19 set tV ′← tV

20 end

21 end

22 end
23 return Best tV ′

Figure 17: swap Neighborhood

oneMove Neighborhood
This neighborhood varies from the random_oneMove in the Shake stage because

of the construction of the neighborhood. See the Figure 14c to better understand

the moves that neighborhood executes. We present the pseudocode of oneMove

neighborhood in Algorithm 18. Firstly, oneMove defines the worst route in line 5 as

maxCostRoute, and in the next step, it checks the number of nodes that maxCostRoute

has. If the number of nodes assigned to maxCostRoute is less than 2, neighborhood

terminates without making any changes, because if it moves the only existing node to

another route, it will get an infeasible result. Between lines 11-28, nested for loops are

created containing the nodes of maxCostRoute and the nodes of truckNodes. In this

way, oneMove includes all positions that nodes in maxCostRoute can move through.

In line 16, if a node in truckNodes exists in maxCostTruck, neighborhood does not

perform an operation and thus saves run time. In the following steps, f irst_node

from maxCostRoute is placed after second_node from truckNodes and tV ′ is updated

according to this change. In the next step it checks whether the objective function

value improves or not. If it achieves any improvement, stops the process and executes

that move. Otherwise, it continues to try other possible moves until all possible moves
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have been tried, then returns the best possible move among them.

1 tV ′← oneMove(truckNumber, tV)

2 if truckNumber < 2 then
3 exit

4 end
5 maxCostRoute← specify max cost route

6 if # of nodes in maxCostRoute < 2 then
7 exit

8 end
9 truckNodes← specify truck visiting nodes from tV

10 set improved = False

11 for i = 0 to len(maxCostRoute) do
12 for j = 0 to len(truckNodes) do
13 if improved == True then
14 break

15 end
16 if truckNodes j in maxCostRoute then
17 pass

18 else
19 f irst_node← maxCostRoutei

20 second_node← truckNodes j

21 insert f irst_node after second_node

22 tV ′← update recent changes

23 new_ob jective← cost_evaluation(tD, tT , tV ′, dV)

24 if new_ob jective < ob jective then
25 set improved = True

26 end
27 set tV ′← tV

28 end

29 end

30 end
31 return Best tV ′

Figure 18: oneMove Neighborhood

2-opt Neighborhood
The 2-opt algorithm was first presented by Croes (1958) in order to solve the

TSP problem. It has been rearranged to affect each truck route for U-VND stage.

Visualization of the 2-opt neighborhood can be observed in Figure 14g.

departure Neighborhood
The departure neighborhood changes the departure node of a drone. Figure 14e

shows the operations applied in this neighborhood. In Algorithm 19, we present the

pseudocode of the neighborhood. If the dV solution vector is empty, or in other words

if there is no drone in the solution, the neighborhood terminates without any action

(line 2). First of all in line 5, the neighborhood determines the nodes where the drone

has no interaction as available_dep, which are the points where the trucks are making

delivery and no drone lands or departs. Next, it defines the drones’ delivery nodes as

31



droneNodes list. We create nested for loops in lines 8-20 to find the best departure

point from all available_deps. In line 13, it replaces the ith node in available_dep

with the departure node of the drone and updates the dV ′ according to this replacement.

After this modification, the new objective function value is calculated in line 23 and

if an improvement occurs, it stops running and returns the newly formed dV ′. If no

improvement occurs, it continues searching and returns the best dV ′ after trying all

possible replacements.

1 dV ′← departure(dV)

2 if dV is empty then
3 exit

4 end
5 available_dep← identify truck visiting nodes and depot where drones are not

departure or landing

6 droneNodes← specify drone visiting nodes

7 set improved = False

8 for i = 0 to droneNodes do
9 for j = 0 to available_dep do

10 if improved == True then
11 break

12 end
13 make available_dep j departure node of droneNodesi

14 dV ′← update recent changes

15 new_ob jective← cost_evaluation(tD, tT , tV , dV ′)

16 if new_ob jective < ob jective then
17 set improved = True

18 end
19 dV ′← dV

20 end

21 end
22 return Best dV ′

Figure 19: departure Neighborhood

landing Neighborhood
The landing neighborhood works exactly the same as the departure neighborhood.

The only difference is, it tries to improve the landing point, not the departure point.

This can be seen in line 13 of the landing neighborhood Algorithm 20. The moves that

landing neighborhood executes can be observed in Figure 14f.
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1 dV ′← landing(dV)

2 if dV is empty then
3 exit

4 end
5 available_land← identify truck visiting nodes and depot where drones are

not departure or landing

6 droneNodes← specify drone visiting nodes

7 set improved = False

8 for i = 0 to droneNodes do
9 for j = 0 to available_land do

10 if improved == True then
11 break

12 end
13 make available_dep j landing node of droneNodesi

14 dV ′← update recent changes

15 new_ob jective← cost_evaluation(tD, tT , tV , dV ′)

16 if new_ob jective < ob jective then
17 set improved = True

18 end
19 dV ′← dV

20 end

21 end
22 return Best dV ′

Figure 20: landing Neighborhood

droneAdd & random_droneAdd Neighborhoods
We build the droneAdd neighborhood in two different structures. Besides droneAdd,

we also develop the random_droneAdd neighborhood. The reason is, droneAdd takes

a lot of time to run in a solution with no drones or solutions with a small number of

drones. This problem occurs because there are too many available nodes to choose

when adding drones into the solution. Even if random_droneAdd adds a poorly

assigned drone to the result, the operations of the departure, landing, and visitorSwap

neighborhoods allow these poorly added drones to have a better impact on the result.

As the number of nodes that the new drones can use decreases, droneAdd comes

into play, saving time and more effectively assigns drones to the nodes. We present

the visualisation of droneAdd in Figure 14h and the pseudocode in Algorithm 21.

droneAdd and random_droneAdd do not work together in the same iteration. We can

find the number of drones that can be added in a given instance using the following

formula: ⌊
n+2

3

⌋
(3.37)

The +2 in this formula represents the start and end depots in the problem definition.

3 represents the number of nodes required (departure, visit, land) to add the drone to

the result. If the current number of drones is half or less than the number we get as

33



a result of this formulation, we use random_droneAdd, otherwise droneAdd works in

iteration. In line 8, if the number of nodes required to add the drone is not available,

the neighborhood terminates without any changes. In lines 11-21, we create nested for

loops to assign drones to the available nodes. tV ′ and dV ′ are updated according to the

changes in line 14 and the new objective function value is calculated. Neighborhood

returns the best dV ′ and tV ′ after trying all possible options.

1 tV ′,dV ′← droneAdd(droneNumber, tV 4, dV)

2 if droneNumber <=

⌊
n+2

3

⌋
/2 then

3 exit

4 end
5 maxCostRoute← specify max cost route’s nodes that no drone interactions

6 available_dep← identify truck visiting nodes and depot where drones are not

departure or landing

7 available_land← identify truck visiting nodes and depot where drones are

not departure or landing

8 if len(maxCostRoute)<= 1 or

len(availabl_dep)+ len(available_land)<= 3 then
9 exit

10 end
11 for i = 0 to maxCostRoute do
12 for j = 0 to available_dep do
13 for k = 0 to available_land do
14 remove maxCostRoutei, available_dep j, available_landk from

maxCostRoute

15 tV ′, dV ′← update recent changes

16 new_ob jective← cost_evaluation(tD, tT , tV ′, dV ′)

17 set tV ′← tV

18 set dV ′← dV

19 end

20 end

21 end
22 return Best tV ′, Best dV ′

Figure 21: droneAdd Neighborhood
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3.3 Lower Bound

In this section, we propose the lower bound we created for the mTSPD problem.

We use 3 cases when calculating the lower bound, and separate these cases according

to the possible drone movements (See Fig 22). We present the cases as follows.

(a) Case-1 Representation (b) Case-2.A Representation

(c) Case-2.B Representation

Figure 22: Visualization of Cases Used in Lower Bound Calculation

Let tD
i j drones’s travel time between i and j, and let tT

i j is truck travel time between i

and j, and d corresponds to the depot.

3.3.1 Case-1

Case-1 represents the movement where the drone departs from the depot and lands

back in the depot. Let’s say node i is the furthest node from depot in the problem set.

We calculate the Case-1 value with following formula:

• LB1 = tD
di ∗2 or it can be shown as LB1 = tD

di + tD
id

3.3.2 Case-2.A

Case-2.A represents the situations where first drone departs from depot and lands

on the depot, and the seconds drone departs from the truck and lands on the truck again
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(See Fig 22b).

First, let’s say 1 is farthest node from the depot, and 2 is the second farthest node

from the depot.

• LBA12
i j = max{tD

d1 ∗2; tT
di +max(tT

i j ; t
D
i2 + tD

2 j)+ tT
jd} ∀i, j

Last, let’s say 2 is farthest node from the depot, and 1 is the second farthest node from

the depot.

• LBA21
i j = max{tD

d2 ∗2; tT
di +max(tT

i j ; t
D
i1 + tD

1 j)+ tT
jd} ∀i, j

According to the formulations we mentioned above, we define LBA as follows:

• LBA = min{LBA12
i j ;LBA21

i j } ∀i, j

3.3.3 Case-2.B

Case 2.B represents situations where the first drone departs from the depot and

lands on the truck, and the second drone departs from truck and lands on the depot.

First, let’s say 1 is farthest node from the depot, and 2 is the second farthest node.

• LBB1
i j = max{max(tT

di + tT
i j ; t

D
d1 + tD

1 j)+ tT
jd; tD

di + tD
i2 + tD

2d} ∀i, j

Last, let’s say 2 is farthest node from the depot, and 1 is the second farthest node.

• LBB2
i j = max{max(tT

di + tT
i j ; t

D
d2 + tD

2 j)+ tT
jd; tD

di + tD
i1 + tD

1d} ∀i, j

According to the formulations we mentioned above, we define LBA as follows:

• LBB = min{LBB1
i j ;LBB2

i j } ∀i, j

3.3.4 LB Calculation

After calculating the LB of the cases we mentioned, now we calculate the LB of

the problem set with the formulation below:

• LB = max{LB1;min(LBA;LBB)}
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Initialization
Generate initial
mTSP solution

Apply kth shaking
neighborhood

Apply U-VND

Is termination
condition met?

Is there any
improvement?

STOP

k = k+1

no

yes

no
yes

Figure 23: Flowchart of the Proposed General Variable Neighborhood Search
Algorithm
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CHAPTER 4: EXPERIMENTAL RESULTS

We carried out computational experiments to evaluate the performance of the

proposed General Variable Neighborhood Search (GVNS) algorithm. We developed

the algorithm by using Python programming language and run on 2,7 GHz Dual-Core

Intel Core i5 processor with 8 GB 1867 MHz DDR3 Ram. We used the test data

set from Kitjacharoenchai et al. (2019) to compare our GVNS with their proposed

algorithms. In the test data set, there are small, medium and large sized problems with

8, 25 and 50 nodes, respectively. Apart from the number of nodes, each problem type

divided into different categories such as the location of the depot and the distribution

of the nodes (See section 4.1). We ran each problem set with the number of trucks

varying from 1 to 5 and we ran each instance 20 times as in Kitjacharoenchai et al.

(2019). We applied different neighborhoods and neighborhood orders in Shake and U-

VND during the experiments. Based on the preliminary experiments and observations

that we have done, we decided to use the order of the neighborhoods which are given

in Table 2. We ran medium sized problem sets on the termination condition that 300

iterations will end if there is no improvement. For large problem sets we decreased the

termination condition to 200 iterations, for the purpose of decreasing the run time of

the algorithm.

Table 2: Order of Neighborhoods Used in GVNS

Phase Neighborhoods in order

Shake random_swap, random_oneMove, random_visitorSwap, random_droneRemove

U-VND swapMove, visitorSwap, swap, oneMove, twoOpt, dep, land, dep, land, random_droneAdd, droneAdd, dep, land, dep, land

4.1 Datasets

We used the datasets provided by Kitjacharoenchai et al. (2019) during the testing

process of the GVNS algorithm that we developed. As we mentioned before, these

datasets consist of 5 different types. These are named according to their structure from

Type 1 to 5. When mentioning about these datasets in results, we abbreviate T1, T2,

T3, T4, and T5 to represent Type 1-5, respectively. They generated these instances

in different types in a 1000x1000 unit2 area. The first type of instance T1, consists

of the central warehouse located at (500, 500) and customers uniformly distributed

around it. The second type of instance T2, includes a depot located at (500, 0) which

is the bottom of the area and customers are uniformly distributed around it, just like

in T1. The third type of problem T3, consists of the central depot (500, 500) as in
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T1, and the customers distributed in a circle at a radius of 500. The fourth problem

type T4, involves a centrally located depot and circularly distributed customers. Unlike

T3, customers take the form of a ring because they located the customers far from the

depot. The last problem type T5, includes a central depot and customers located in 5

different regions. For a better understanding, we plotted the instances (50 Nodes) that

we used in our experiments in Figure 24.

(a) Type-1 Dataset (b) Type-2 Dataset

(c) Type-3 Dataset (d) Type-4 Dataset

(e) Type-5 Dataset

Figure 24: Dataset Visualisation

39



4.2 Results

In Tables 12 and 13, we present computational results of GVNS and compare with

GA-ADI and K-means ADI proposed by Kitjacharoenchai et al. (2019). Under the

name of each algorithm, we list best found solution, average of objective function

values after 20 runs and run time in seconds for each instance. Kitjacharoenchai et al.

(2019) proposed another algorithm called Random ADI, however we discard it from

comparison since this algorithm does not perform as good as the other ones.

We compare the results based on three criteria, which are best found solution, average

objective value after 20 runs and run time in Tables 14 and 15. We present the best

values of each criterion for all algorithms and also we show the deviation from best

value for each algoriths separately in Table 14 and Table 15. The deviations from best

values are calculated with following formula:

• GAP = algorithmValue/bestValue−1.

In order to examine the results we obtained, we determined 3 main categories. These

are the number of trucks, the instance type, and finally the number of nodes. We

evaluated these categories according to the 3 criteria as we mentioned before. These

evaluations can be examined in the following sections.

4.2.1 Examination of the Results Based on the Number of Trucks

In this section, we examine how the results we obtained vary according to the

number of trucks in the problem. There are 10 instances of each vehicle number, with

5 each in 25 and 50 node instances. According to the criteria that we mentioned before,

we present Table 3, to show the number of times each algorithm finds the best solution

after 20 runs. Apart from that, we also present Table 4 to show how much the solutions

found by each algorithm deviate from the best results as a percentage.

Table 3: Number of Best Solutions According to the Number of Trucks

Minimum Objective Average Objective Run Time

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Truck

1 0 0 10 0 0 10 0 2 8

2 5 2 4 5 2 3 3 2 5

3 0 5 5 2 4 4 1 4 5

4 1 4 5 2 4 4 2 3 5

5 2 1 8 2 4 4 1 4 5

Total 8 12 32 11 14 25 7 15 28
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Table 4: Average Gaps According to the Number of Trucks

Best Found Gap Average Best Gap Average Run Time Best Gap

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Truck

1 5.54% 10.97% 0.00% 4.52% 8.30% 0.00% 141.69% 89.31% 2.58%

2 2.13% 15.49% 2.25% 0.54% 12.65% 4.69% 62.88% 38.50% 27.94%

3 5.80% 3.67% 2.00% 2.18% 3.57% 4.57% 62.13% 34.17% 18.36%

4 4.49% 5.33% 1.36% 2.82% 4.06% 4.26% 56.99% 36.37% 21.83%

5 5.01% 11.92% 0.86% 2.16% 7.04% 3.16% 66.61% 44.12% 12.89%

Average 4.59% 9.47% 1.29% 2.45% 7.12% 3.34% 78.06% 48.49% 16.72%

When we examine the tables, we can clearly see that in instances where there is

only one truck, the GVNS finds better results than the GA-ADI and K-means ADI

algorithms in all instances, both in the average of 20 runs and in the best results.

Among them, GVNS falls behind K-means ADI in run time in only 2 instances. In

Table 4, when we look at the deviations from the best results, we can say that GVNS

is better than the others except the average of the instances with 2 trucks. On the other

hand, when we look at the deviations from the averages of 20 runs, we can say that

GVNS falls behind GA-ADI except for single truck instances.

4.2.2 Examination of the Results Based on the Instance Types

In this section, we examine how the results obtained with the GVNS algorithm

vary according to the problem types. Each instance includes 5 different sub-problems

according to the number of trucks from 1 to 5. When we include both 25 and 50 nodes,

we can state that each instance consists of 10 sub-problems according to the problem

types. We present Table 5 that shows the number of times each algorithm finds the best

solution according to the instances in given criteria. Table 6 shows the deviation of the

solutions found by each algorithm from the best results as a percentage.

Table 5: Number of Best Solutions According to Instance Type

Minimum Objective Average Objective Run Time

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Instance

T1 2 3 5 2 3 5 1 4 5

T2 1 0 9 1 0 9 0 4 6

T3 0 2 8 1 3 6 4 0 6

T4 1 3 6 0 7 3 0 4 6

T5 4 4 4 7 1 2 2 3 5

Total 8 12 32 11 14 25 7 15 28
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Table 6: Average Gaps According to Instance Type

Best Found Gap Average Best Gap Average Run Time Best Gap

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Instance

T1 5.71% 5.57% 1.15% 2.39% 3.78% 1.08% 87.97% 54.19% 22.70%

T2 5.75% 13.04% 1.09% 3.09% 9.47% 0.77% 86.16% 52.06% 16.25%

T3 7.63% 7.60% 0.50% 3.47% 4.38% 1.76% 71.45% 58.87% 14.21%

T4 2.49% 3.44% 1.24% 2.29% 1.25% 5.89% 68.10% 35.80% 21.21%

T5 1.39% 17.72% 2.50% 0.99% 16.72% 7.19% 76.63% 41.54% 9.23%

Average 4.59% 9.47% 1.29% 2.45% 7.12% 3.34% 78.06% 48.49% 16.72%

When we examine Table 5, the first noticeable difference emerges in the T2 problem

type. In the T2 instances, both the best results and the average of 20 runs, the GVNS

algorithm reached the best value in 9 instances. We can state that it falls behind GA-

ADI in only 1 instance. On the other hand, if we look at Table 6, we can say that

GVNS algorithm in T4 instances is worse than K-means ADI and GA-ADI, also in

T5 instances it is worse than GA-ADI on the average of 20 runs. However, in the T1,

T2 and T3 instances, it outperformed other algorithms in the average of 20 runs, and

shows a better performance than other algorithms in terms of best results among all

problem types except T5.

4.2.3 Examination of the Results Based on the Number of Nodes

In this section, we group the instances according to the number of nodes and

present the results as a kind of summary. As in the previous sections, in Table 7,

we present the number of best results each algorithm achieves according to the criteria

we specified, and in Table 8 we report the deviations of the solutions found by each

algorithm from the best result as a percentage.

Table 7: Number of Best Solutions According to the Number of Nodes

Minimum Objective Average Objective Run Time

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Node

25 5 8 14 6 9 10 0 0 25

50 3 4 18 5 5 15 7 15 3

Total 8 12 32 11 14 25 7 15 28
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Table 8: Average Gaps According to the Number of Nodes

Best Found Gap Average Best Gap Average Run Time Best Gap

Algorithm GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS GA-ADI K-means ADI GVNS

Node

25 3.44% 6.66% 1.51% 2.07% 4.90% 4.05% 150.76% 92.92% 0.00%

50 5.75% 12.29% 1.08% 2.82% 9.35% 2.62% 5.36% 4.06% 33.44%

Average 4.59% 9.47% 1.29% 2.45% 7.12% 3.34% 78.06% 48.49% 16.72%

When we look at Table 7, in the instances with 25 nodes, we observe that GVNS finds

the best result 14 times among 25 instances. In the average of 20 runs, we can say

that GVNS surpassed other algorithms by catching the best average 10 times. When

we examine the average run time criterion, GVNS has an overwhelming advantage

over other algorithms. When we examine Table 8 for instances with 25 nodes, we can

say that GVNS is superior in defined criteria except the deviation from the average

of 20 runs. On the other hand, for the instances with 50 nodes, when we examine

Tables 7 and 8, we observe that GVNS falls behind in average run time, unlike 25

node problems. However, when we examine the criteria for the best result found and

the average of 20 runs, we can state that GVNS has more superiority over the other

algorithms.

4.2.4 Graphical Comparison of Results

In this section we present the graphs that show the results of the algorithms we

compared in the previous sections. In Figure 25, we present a comparison of the best

results found by the algorithms for instances with 25 nodes and the average results

obtained after 20 runs. In Figure 26, we share the same comparison for instances with

50 nodes.
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(a) Results of T1-25 Nodes (b) Results of T2-25 Nodes

(c) Results of T3-25 Nodes (d) Results of T4-25 Nodes

(e) Results of T5-25 Nodes

Figure 25: Comparison of Results for Instances with 25 Nodes
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(a) Results of T1-50 Nodes (b) Results of T2-50 Nodes

(c) Results of T3-50 Nodes (d) Results of T4-50 Nodes

(e) Results of T5-50 Nodes

Figure 26: Comparison of Results for Instances with 50 Nodes
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4.2.5 Small Instances

In this section, we present the results of our experiments on the small instances

that Kitjacharoenchai et al. (2019) proposed. Small size instances are included

in the experiments to show how successful the proposed GVNS algorithm is at

finding optimal results. The results of 35 different 8’node instances shared by

Kitjacharoenchai et al. (2019) are as follows.

Table 9: Comparison of Small Instances

Instance MIP GA-ADI GVNS

Objective Time (sec) Best Objective Best GAP (%) Average Average GAP (%) Average Time (sec) Best Objective Best GAP (%) Average Average GAP (%) Average Time (sec)

T1A 1442 111.3 1442 0.00% 1458.35 1.13% 4.01 1442 0.00% 1456.45 1.00% 1.28

T1B 1422 60.4 1422 0.00% 1423.65 0.12% 4.25 1422 0.00% 1496.90 5.27% 1.35

T1C 1350 62.42 1350 0.00% 1350.00 0.00% 4.61 1350 0.00% 1351.45 0.11% 1.26

T1D 1469 63.63 1469 0.00% 1469.00 0.00% 7.84 1469 0.00% 1517.35 3.29% 1.41

T1E 1193 112.22 1193 0.00% 1198.30 0.44% 5.63 1193 0.00% 1271.95 6.62% 1.26

T1F 1105 83.45 1105 0.00% 1105.00 0.00% 5.44 1105 0.00% 1197.40 8.36% 1.36

T1G 1186 67.49 1186 0.00% 1186.00 0.00% 7.53 1186 0.00% 1198.45 1.05% 1.30

T2A 1932 85.33 1932 0.00% 1937.90 0.31% 5.26 1932 0.00% 1999.85 3.51% 1.30

T2B 1662 92.45 1662 0.00% 1662.00 0.00% 5.38 1662 0.00% 1686.20 1.46% 1.34

T2C 1725 87.4 1725 0.00% 1733.95 0.52% 5.06 1725 0.00% 1844.50 6.93% 1.37

T2D 1721 76.58 1721 0.00% 1721.00 0.00% 5.76 1721 0.00% 1721.00 0.00% 1.32

T2E 1509 67.54 1509 0.00% 1509.00 0.00% 4.83 1509 0.00% 1530.45 1.42% 1.26

T2F 1880 73.44 1880 0.00% 1882.85 0.15% 5.82 1880 0.00% 1990.65 5.89% 1.33

T2G 1925 74.63 1925 0.00% 1925.00 0.00% 8.08 1925 0.00% 2044.10 6.19% 1.29

T3A 1181 86.2 1181 0.00% 1181.00 0.00% 5.07 1181 0.00% 1223.20 3.57% 1.34

T3B 1481 73.68 1481 0.00% 1498.85 1.21% 5.57 1481 0.00% 1562.75 5.52% 1.32

T3C 647 80.3 647 0.00% 647.35 0.05% 5.44 647 0.00% 743.15 14.86% 1.34

T3D 1261 71.69 1261 0.00% 1272.75 0.93% 4.46 1261 0.00% 1344.75 6.64% 1.29

T3E 1148 118.45 1148 0.00% 1148.00 0.00% 5.29 1148 0.00% 1167.00 1.66% 1.26

T3F 1426 73.44 1426 0.00% 1426.00 0.00% 5.74 1426 0.00% 1426.00 0.00% 1.28

T3G 1509 76.01 1509 0.00% 1512.90 0.26% 6.41 1509 0.00% 1532.90 1.58% 1.35

T4A 1613 77.6 1613 0.00% 1636.45 1.45% 3.97 1613 0.00% 1688.45 4.68% 1.31

T4B 1563 71.27 1563 0.00% 1575.45 0.80% 4.32 1563 0.00% 1658.55 6.11% 1.41

T4C 1481 79.88 1481 0.00% 1498.85 1.21% 5.57 1310 -11.55% 1444.95 -2.43% 1.44

T4D 1548 78.27 1548 0.00% 1552.50 0.29% 4.46 1548 0.00% 1565.70 1.14% 1.28

T4E 1589 97.25 1589 0.00% 1613.60 1.55% 6.27 1589 0.00% 1672.60 5.26% 1.25

T4F 1426 74.13 1426 0.00% 1426.00 0.00% 5.74 1652 15.85% 1739.60 21.99% 1.37

T4G 1358 74.47 1358 0.00% 1360.25 0.17% 7.02 1358 0.00% 1407.50 3.65% 1.29

T5A 1066 93.22 1066 0.00% 1066.00 0.00% 5.7 1066 0.00% 1081.65 1.47% 1.35

T5B 944 135.6 944 0.00% 944.00 0.00% 4.54 944 0.00% 944.00 0.00% 1.32

T5C 878 131.76 878 0.00% 878.00 0.00% 4.67 878 0.00% 885.25 0.83% 1.30

T5D 1133 123.22 1138 0.44% 1138.50 0.49% 4.68 1138 0.44% 1168.35 3.12% 1.35

T5E 1008 77.9 1014 0.60% 1018.55 1.05% 4.31 1014 0.60% 1030.30 2.21% 1.29

T5F 1270 95.32 1283 1.02% 1287.80 1.40% 4.38 1283 1.02% 1296.30 2.07% 1.36

T5G 1188 140.21 1202 1.18% 1215.80 2.34% 3.75 1202 1.18% 1243.30 4.65% 1.29

When we examine Table 9, we observe that the GVNS algorithm can reach optimal

results in small size problems such as GA-ADI. As a result, we also prove the

robustness of our proposed GVNS. On the other hand, we can say that the GVNS

algorithm falls behind the GA-ADI in the averages obtained after 20 runs.

4.3 Lower Bounds of Problem Sets

In this section we present the LB values of the small sized problem sets in Table 10

and the LB values of the medium and large sized problem sets in Table 11.
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Table 10: Lower Bounds of Small Sized Problems

Instance Lower Bound

T1A 903
T1B 862
T1C 960
T1D 859
T1E 798
T1F 715
T1G 876
T2A 1337
T2B 1363
T2C 1213
T2D 1295
T2E 1318
T2F 1416
T2G 1458
T3A 817
T3B 751
T3C 458
T3D 787
T3E 702
T3F 913
T3G 895
T4A 948
T4B 972
T4C 846
T4D 781
T4E 941
T4F 1021
T4G 882
T5A 675
T5B 764
T5C 733
T5D 707
T5E 604
T5F 610
T5G 755
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Table 11: Lower Bounds of Medium and Large Sized Problems

Instance Node Lower Bound

T1 25 833
T2 25 1381
T3 25 793
T4 25 911
T5 25 716
T1 50 913
T2 50 1431
T3 50 695
T4 50 780
T5 50 713

4.4 Dashboard

We also develop a Python based dashboard to facilitate the examination and

monitoring of the results of our GVNS algorithm. With the help of this dashboard,

we can observe the evolution of best solution of the selected instance over each

iteration where an improvement is obtained. As seen in Figure 27, we can see the

best found solution’s visualisation on the left chart and we can see the improvement of

the objective value over iterations on the right chart. Moreover, when we activate the

details by using top-left switch, we can observe each truck routes’ objective function

values and solution vectors (See Figure 28). In addition to this, we can track each

iteration by changing the iteration number using the slider at the top of the dashboard.

After changing the iteration number, you will see that the charts dynamically update

themselves according to the result in that iteration.
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Figure 27: Dashboard Overview

Figure 28: Dashboard Details
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Table 12: The Results of The Algorithms in Instances with 25 Nodes

Instance m
General VNS GA-ADI K-means ADI

Min. Obj. Avg. Obj. Avg. Time Min. Obj. Avg. Obj. Avg. Time Min. Obj. Avg. Obj. Avg. Time

T1 1 2707 2879.80 10.13 2788 2962.60 43.11 2909 3047.55 32.52
2 1672 1840.45 25.04 1725 1816.05 52.25 1646 1795.65 40.73
3 1313 1430.15 27.22 1350 1451.80 65.46 1249 1453.35 48.43
4 1181 1255.75 32.24 1172 1243.55 72.91 1273 1296.35 56.17
5 1067 1155.90 30.61 1133 1187.80 77.93 1136 1199.85 62.67

T2 1 2793 2941.50 13.26 2918 3076.10 43.67 3170 3258.75 29.35
2 2093 2244.20 21.56 1887 2084.20 53.45 2503 2580.30 41.94
3 1756 1909.95 32.34 1813 1970.80 67.01 1834 2085.20 47.76
4 1647 1839.05 30.66 1757 1915.30 76.78 1831 1957.95 64.21
5 1646 1834.50 28.27 1768 1842.95 80.92 1869 1930.50 66.68

T3 1 2290 2518.60 10.89 2349 2518.65 40.26 2450 2561.80 31.34
2 1546 1705.45 20.20 1580 1655.50 50.52 1695 1790.20 41.07
3 1152 1365.75 27.46 1282 1320.50 55.14 1177 1270.50 47.54
4 1061 1149.20 35.40 1111 1155.55 61.53 1072 1105.65 55.90
5 1023 1070.05 31.16 1045 1096.80 64.13 1010 1037.65 60.78

T4 1 2621 2808.15 12.74 2711 2825.85 42.11 2757 2868.80 31.92
2 1747 1863.40 29.41 1721 1770.00 52.12 1732 1765.70 39.34
3 1414 1573.30 30.98 1376 1441.85 66.16 1345 1397.70 46.81
4 1203 1332.65 32.48 1210 1293.00 71.84 1185 1215.95 53.88
5 1082 1204.55 34.84 1098 1198.95 73.53 1167 1169.70 54.39

T5 1 1979 2240.80 11.03 2021 2293.10 45.09 2080 2329.00 29.89
2 1305 1534.05 23.77 1287 1317.60 54.58 1287 1322.90 39.10
3 1101 1196.80 25.49 1087 1081.45 60.5 1078 1104.35 45.67
4 965 1044.50 35.92 957 982.30 65.63 907 965.55 49.04
5 820 902.95 39.46 820 846.95 71.14 1067 1126.45 58.35

Average 26.10 60.31 47.02
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Table 13: The Results of The Algorithms in Instances with 50 Nodes

Instance m General VNS GA-ADI K-means ADI

Min Obj Avg Obj Avg Time Min Obj Avg Obj Avg Time Min Obj Avg Obj Avg Time

T1 1 3151 3653.55 97.72 3712 4049.45 92.99 3564 4017.10 89.11
2 2418 2616.95 180.27 2340 2500.95 91.10 2472 2604.15 92.21
3 1617 1991.45 139.06 1801 2031.30 103.69 1779 1971.05 101.60
4 1543 1754.00 166.32 1580 1778.90 117.23 1532 1899.05 107.10
5 1373 1521.05 150.75 1410 1500.65 128.08 1433 1495.95 118.40

T2 1 3682 3998.60 79.14 3761 4297.75 91.13 4175 4508.50 88.45
2 2443 2801.50 134.62 2537 2810.35 98.80 2693 3041.35 86.68
3 2098 2367.30 127.01 2287 2428.00 104.79 2336 2548.10 99.46
4 1985 2155.45 153.79 2134 2237.10 106.60 2218 2349.40 105.50
5 1817 2076.80 148.78 2056 2168.50 116.79 1970 2104.60 111.30

T3 1 3152 3647.45 79.85 3526 3883.65 91.17 3751 4027.25 102.90
2 1930 2254.20 132.82 2078 2310.60 90.66 2259 2448.25 103.40
3 1522 1738.00 127.70 1595 1797.80 98.90 1468 1797.18 111.50
4 1322 1520.90 162.95 1481 1571.34 111.05 1406 1576.95 126.80
5 1118 1342.10 149.53 1250 1406.15 124.85 1272 1447.85 126.80

T4 1 3174 3399.00 86.85 3344 3541.25 94.44 3343 3570.40 87.41
2 2053 2199.35 146.76 2110 2225.75 92.99 2164 2315.15 91.75
3 1648 1924.85 159.18 1664 1876.40 100.64 1791 1858.10 96.87
4 1561 1742.20 159.23 1537 1591.25 111.35 1498 1545.50 105.90
5 1318 1560.10 160.17 1369 1403.40 126.30 1335 1394.25 116.50

T5 1 2698 2806.25 99.91 2768 2970.35 94.97 3254 3378.75 86.03
2 1772 2017.20 118.28 1707 1882.65 98.76 2964 3155.55 109.60
3 1466 1667.60 119.50 1442 1511.10 105.24 1410 1687.95 95.12
4 1232 1432.50 132.26 1239 1336.70 110.12 1409 1456.40 116.20
5 1121 1280.40 129.68 1045 1215.30 125.02 1394 1447.45 117.20

Average 133.69 105.11 103.75
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Table 14: Deviations of Algorithms from the Best Results in Instances with 25 Nodes

Instance m Best
Solution

Deviation From
Best Solution Average

Best

Deviation From
Average Best Average Run

Time Best

Deviation From
Average Run Time Best

GVNS GA-ADI K-means
ADI GVNS GA-ADI K-means

ADI GVNS GA-ADI K-means
ADI

T1 1 2707 0.00% 2.99% 7.46% 2879 0.00% 2.90% 5.85% 10.13 0.00% 325.70% 221.12%
2 1646 1.58% 4.80% 0.00% 1795.65 2.47% 1.14% 0.00% 25.04 0.00% 108.65% 62.64%
3 1249 5.12% 8.09% 0.00% 1430 0.00% 1.52% 1.63% 27.22 0.00% 140.52% 77.95%
4 1172 0.77% 0.00% 8.62% 1243.55 0.92% 0.00% 4.25% 32.24 0.00% 126.15% 74.22%
5 1067 0.00% 6.19% 6.47% 1155 0.00% 2.84% 3.88% 30.61 0.00% 154.62% 104.76%

T2 1 2793 0.00% 4.48% 13.50% 2941 0.00% 4.59% 10.80% 13.26 0.00% 229.40% 121.38%
2 1887 10.92% 0.00% 32.64% 2084.2 7.67% 0.00% 23.80% 21.56 0.00% 147.87% 94.49%
3 1756 0.00% 3.25% 4.44% 1909 0.00% 3.24% 9.23% 32.34 0.00% 107.19% 47.67%
4 1647 0.00% 6.68% 11.17% 1839 0.00% 4.15% 6.47% 30.66 0.00% 150.43% 109.43%
5 1646 0.00% 7.41% 13.55% 1834 0.00% 0.49% 5.26% 28.27 0.00% 186.21% 135.84%

T3 1 2290 0.00% 2.58% 6.99% 2518 0.00% 0.03% 1.74% 10.89 0.00% 269.79% 187.86%
2 1546 0.00% 2.20% 9.64% 1655.5 2.99% 0.00% 8.14% 20.20 0.00% 150.11% 103.33%
3 1152 0.00% 11.28% 2.17% 1270.5 7.44% 3.94% 0.00% 27.46 0.00% 100.78% 73.10%
4 1061 0.00% 4.71% 1.04% 1105.65 3.92% 4.51% 0.00% 35.40 0.00% 73.80% 57.90%
5 1010 1.29% 3.47% 0.00% 1037.65 3.12% 5.70% 0.00% 31.16 0.00% 105.83% 95.08%

T4 1 2621 0.00% 3.43% 5.19% 2808 0.00% 0.64% 2.17% 12.74 0.00% 230.47% 150.50%
2 1721 1.51% 0.00% 0.64% 1765.7 5.51% 0.24% 0.00% 29.41 0.00% 77.25% 33.79%
3 1345 5.13% 2.30% 0.00% 1397.7 12.54% 3.16% 0.00% 30.98 0.00% 113.53% 51.08%
4 1185 1.52% 2.11% 0.00% 1215.95 9.54% 6.34% 0.00% 32.48 0.00% 121.18% 65.88%
5 1082 0.00% 1.48% 7.86% 1169.7 2.93% 2.50% 0.00% 34.84 0.00% 111.03% 56.10%

T5 1 1979 0.00% 2.12% 5.10% 2240 0.00% 2.37% 3.97% 11.03 0.00% 308.71% 170.93%
2 1287 1.40% 0.00% 0.00% 1317.6 16.42% 0.00% 0.40% 23.77 0.00% 129.57% 64.46%
3 1078 2.13% 0.83% 0.00% 1081.45 10.59% 0.00% 2.12% 25.49 0.00% 137.37% 79.18%
4 907 6.39% 5.51% 0.00% 965.55 8.12% 1.73% 0.00% 35.92 0.00% 82.69% 36.51%
5 820 0.00% 0.00% 30.12% 846.95 6.50% 0.00% 33.00% 39.46 0.00% 80.26% 47.85%

# of Best 14 5 8 10 6 9 25 0 0
Average 1.51% 3.44% 6.66% 4.03% 2.08% 4.91% 0.00% 150.76% 92.92%

Table 15: Deviations of Algorithms from the Best Results in Instances with 50 Nodes

Instance m Best
Solution

Deviation From
Best Solution Average

Best

Deviation From
Average Best Average Run

Time Best

Deviation From
Average Run Time Best

GVNS GA-ADI K-means
ADI GVNS GA-ADI K-means

ADI GVNS GA-ADI K-means
ADI

T1 1 3151 0.00% 17.80% 13.11% 3653 0.00% 10.85% 9.97% 89.11 9.66% 4.35% 0.00%
2 2340 3.33% 0.00% 5.64% 2500.95 4.60% 0.00% 4.13% 91.10 97.88% 0.00% 1.22%
3 1617 0.00% 11.38% 10.02% 1971.05 1.01% 3.06% 0.00% 101.60 36.87% 2.06% 0.00%
4 1532 0.72% 3.13% 0.00% 1754 0.00% 1.42% 8.27% 107.10 55.30% 9.46% 0.00%
5 1373 0.00% 2.69% 4.37% 1495.95 1.67% 0.31% 0.00% 118.40 27.32% 8.18% 0.00%

T2 1 3682 0.00% 2.15% 13.39% 3998 0.00% 7.50% 12.77% 79.14 0.00% 15.14% 11.76%
2 2443 0.00% 3.85% 10.23% 2801 0.00% 0.33% 8.58% 86.68 55.31% 13.98% 0.00%
3 2098 0.00% 9.01% 11.34% 2367 0.00% 2.58% 7.65% 99.46 27.70% 5.36% 0.00%
4 1985 0.00% 7.51% 11.74% 2155 0.00% 3.81% 9.02% 105.50 45.78% 1.04% 0.00%
5 1817 0.00% 13.15% 8.42% 2076 0.00% 4.46% 1.38% 111.30 33.68% 4.93% 0.00%

T3 1 3152 0.00% 11.87% 19.00% 3647 0.00% 6.49% 10.43% 79.85 0.00% 14.18% 28.87%
2 1930 0.00% 7.67% 17.05% 2254 0.00% 2.51% 8.62% 90.66 46.51% 0.00% 14.05%
3 1468 3.68% 8.65% 0.00% 1738 0.00% 3.44% 3.41% 98.90 29.12% 0.00% 12.74%
4 1322 0.00% 12.03% 6.35% 1520 0.00% 3.38% 3.75% 111.05 46.74% 0.00% 14.18%
5 1118 0.00% 11.81% 13.77% 1342 0.00% 4.78% 7.89% 124.85 19.77% 0.00% 1.56%

T4 1 3174 0.00% 5.36% 5.32% 3399 0.00% 4.19% 5.04% 86.85 0.00% 8.74% 0.65%
2 2053 0.00% 2.78% 5.41% 2199 0.00% 1.22% 5.28% 91.75 59.96% 1.35% 0.00%
3 1648 0.00% 0.97% 8.68% 1858.1 3.55% 0.98% 0.00% 96.87 64.32% 3.89% 0.00%
4 1498 4.21% 2.60% 0.00% 1545.5 12.71% 2.96% 0.00% 105.90 50.36% 5.15% 0.00%
5 1318 0.00% 3.87% 1.29% 1394.25 11.89% 0.66% 0.00% 116.50 37.49% 8.41% 0.00%

T5 1 2698 0.00% 2.59% 20.61% 2806 0.00% 5.86% 20.41% 86.03 16.14% 10.39% 0.00%
2 1707 3.81% 0.00% 73.64% 1882.65 7.14% 0.00% 67.61% 98.76 19.77% 0.00% 10.98%
3 1410 3.97% 2.27% 0.00% 1511.1 10.32% 0.00% 11.70% 95.12 25.63% 10.64% 0.00%
4 1232 0.00% 0.57% 14.37% 1336.7 7.13% 0.00% 8.95% 110.12 20.11% 0.00% 5.52%
5 1045 7.27% 0.00% 33.40% 1215.3 5.32% 0.00% 19.10% 117.20 10.65% 6.67% 0.00%

# of Best 18 3 4 15 5 5 3 7 15
Average 1,08% 5,75% 12,29% 2,61% 2,83% 9,36% 33,44% 5,36% 4,06%
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CHAPTER 5: CONCLUSION

In this thesis, we have stated the new optimization problems that occur with the

entry of the unmanned aerial vehicles into the cargo transportation sector with the help

of developing technology. First of all, we developed a mathematical model consisting

of a single drone and a single truck tandem. This problem definition first entered the

literature with FSTSP, afterwards this problem examined from a different perspective

with TSP-D. Since the mTSPD problem proposed by Kitjacharoenchai et al. (2019) is

the most comprehensive TSP problem in the literature, including multiple drones and

multiple trucks, we focused our study on mTSPD problem.

In this direction, we started to work on the VNS algorithm and its variants, which

is a fast and effective metaheuristic, and we proposed the GVNS algorithm in order to

obtain robust and good results for mTSPD in reasonable time. We used the datasets

generated by Kitjacharoenchai et al. (2019) to test our GVNS algorithm and compare

its efficiency and robustness with the algorithms they proposed.

The datesets that we used in our experiments are divided into 3 main categories as

small, medium and large according to the number of nodes, which are 8, 25 and 50

nodes, respectively. In addition, these problem sets are divided into 5 sub-problems,

named as T1, T2, T3, T4 and T5, according to the location of the customers and the

depot in given area.

As a result of our experiments on these given problem sets, we compared the results

we obtained on the basis of 3 different criteria. These are determined as best found

solution, average objective function value after 20 runs and average run time of

algorithm. According to the experiments we have done, the GVNS algorithm we have

proposed has found better results in 32 instances out of 50 instances. It also performed

better on the average objective function value after 20 runs across 25 instances.

For future research, we can modify our proposed GVNS algorithm for different

problem types. We can change the objective function of the problem and specify

multiple objectives for different conditions. For example, we can expand the problem

by creating a objective that minimizes cost for situations where cost is important and

different objective that minimizes time for emergencies. In addition, the charging

capacities of drones can also be included in the problem and we can include the
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heterogeneous drone fleet in the problem. This will provide a more realistic situation

and introduce more different types of problems, as different types of drones will

provide variation in flight distances and maximum speeds.
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Hansen, P., Mladenovic, N., Todosijević, R. and Hanafi, S. (2017), ‘Variable

neighborhood search: basics and variants’, EURO Journal on Computational

Optimization 5, pp. 423–454.

55



Kitjacharoenchai, P., Ventresca, M., Moshref-Javadi, M., Lee, S., Tanchoco, J. M.

and Brunese, P. A. (2019), ‘Multiple traveling salesman problem with drones:

Mathematical model and heuristic approach’, Computers & Industrial Engineering

129, pp. 14–30.

Lin, C. (2011), ‘A vehicle routing problem with pickup and delivery time windows,

and coordination of transportable resources’, Computers & Operations Research

38(11), pp. 1596–1609.

Lin, S.-W., Yu, V. F. and Chou, S.-Y. (2009), ‘Solving the truck and trailer routing

problem based on a simulated annealing heuristic’, Computers & Operations Research

36(5), pp. 1683–1692. Selected papers presented at the Tenth International Symposium

on Locational Decisions (ISOLDE X).

Mjirda, A., Todosijević, R., Hanafi, S., Hansen, P. and Mladenovic, N. (2016),

‘Sequential variable neighborhood descent variants: An empirical study on the

traveling salesman problem’, International Transactions in Operational Research

24(3), pp. 615–633.
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