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ABSTRACT

EXPLOITING COPLANAR CLUSTERS TO ENHANCE 3D LOCALIZATION
IN WIRELESS SENSOR NETWORKS

Çağırıcı, Onur

M.Sc. in Intelligent Systems Engineering
Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Cem Evrendilek
Co-Supervisor: Assoc. Prof. Dr. Hüseyin Akcan

January 2015, 61 pages.

This thesis studies range-based WSN localization problem in 3D environments
that induce coplanarity. In most real-world applications, even though the en-
vironment is 3D, the grounded sensor nodes are usually deployed on 2D planar
surfaces. Examples of these surfaces include structures seen in both indoor (e.g.
floors, doors, walls, tables etc.) and outdoor (e.g. mountains, valleys, hills etc.)
environments. In such environments, sensor nodes typically appear as coplanar
node clusters. We refer to this type of a deployment as a planar deployment.
When there is a planar deployment, the coplanarity causes difficulties to the tra-
ditional range-based multilateration algorithms because a node cannot be unam-
biguously localized if the distance measurements to that node are from coplanar
nodes. Thus, many already localized groups of nodes are rendered ineffective in
the process just because they are coplanar. We, therefore propose an algorithm
called Coplanarity Based Localization (CBL) that can be used as an extension of
any localization algorithm to avoid most flips caused by coplanarity. CBL first
performs a 2D localization among the nodes that are clustered on the same sur-
face, and then finds the positions of these clusters in 3D. We carry out experiments
using trilateration for 2D localization, and quadrilateration for 3D localization,
algorithm and experimentally verified that exploiting the clustering information
leads to a more precise localization than mere quadrilateration. We also propose
a heuristic to extract the clustering information in case it is not available, which
is yet to be improved in the future.

Keywords : Range-based localization, wireless sensor network, WSN localiza-
tion in 3D, NP-Hardness
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ÖZ

3B’DE KABLOSUZ ALGILAYICI AĞ KONUMLAMASININ
İYİLEŞTİRİLMESİ İÇİN EŞDÜZLEMSEL KÜMELERİN KULLANILMASI

Çağırıcı, Onur

Akıllı Mühendislik Sistemleri, Yüksek Lisans
Fen Bilimleri Enstitüsü

Tez Yöneticisi: Doç. Dr. Cem Evrendilek
İkinci Tez Yöneticisi: Doç. Dr. Hüseyin Akcan

Ocak 2015, 61 sayfa

Bu tez, 3B’de mesafe ölçümüne dayalı kablosuz algılayıcı ağları (KSA) konumlama prob-
lemini, eşdüzlemselliği tetikleyen ortamlarda inceliyor. Gerçek hayat uygulamalarının
çoğunda, ortam 3B olmasına rağmen, uçmayan algılayıcılar 2B düzlemsel yüzeyler üze-
rinde dizilirler. Bu yüzeyler iç mekan yüzeyleri (katlar, kapılar, duvarlar, masalar vb.)
olabileceği gibi, dış mekan yüzeyleri (dağlar, vadiler, bayırlar vb.) de olabilir. Bu tür or-
tamlarda algılayıcılar tipik olarak eşdüzlemsel kümeler halinde görünürler. Bu tip dizil-
ime düzlemsel dizilim adını veriyoruz. Düzlemsel dizilimin bulunduğu ortamlarda, eş-
düzlemsellik geleneksel mesafe ölçümüne dayalı konumlama algoritmaları için zorluklar
oluşturur çünkü bir düğüm, eşdüzlemsel düğümlerden elde edilen uzaklık ölçümleriyle
muğlak olmayan bir şekilde konumlanamaz. Böylece, hali hazırda konumlanmış birçok
düğüm grupları, eşdüzlemsel oldukları için etkisiz hale gelirler. Bu nedenle, düzlemsel
konuşlanma olduğunu bildiğimiz durumlarda, bu güçlükle başa çıkmak için, Coplanarity
Based Localization (CBL), Türkçe adıyla Eşdüzlemsellik Tabanlı Konumlama (ETK)
adında bir algoritma sunuyoruz. Sunduğumuz algoritma herhangi bir konumlama algo-
ritmasının uzantısı olarak kullanılabilmektedir. ETK, ilk olarak eşdüzlemsel yüzeylerde
bulunan düğüm kümelerini, aynı kümedeki diğer düğümlere göre pozisyonlarını bulmak
için bir 2B konumlama algoritması kullanır ve daha sonra kümelerin 3B’de yerlerini
bulur. 2B konumlama algoritması olarak trilateration’u ve 3B konumlama algoritması
olarak quadrilateration’u kullanarak yürüttüğümüz deneylerde de gördüğümüz üzere,
kümelenme bilgisini kullanmak, salt quadrilateration’dan daha doğru sonuç veren bir
konumlamaya yol açıyor. Kümelenme bilgisinin gelmediği durumda ise, eşdüzlemsel
kümeleri keşfetmeye yönelik ve geliştirilmeye açık bir sezgisel de sunuyoruz.

Anahtar Kelimeler : Uzaklık-tabanlı konumlama, kablosuz algılayıcı ağları,
3B’de KAA konumlama, NP-Zorluk.
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Chapter 1

Introduction

Recent developments in technology pose a need for wireless sensor network (WSN)
technologies to be used broadly [1]. A WSN consists of wireless sensor nodes that
communicate among each other in order to complete a given task. There are
several application areas that use WSNs. Zhong made a classification of these
application areas in his thesis [2] namely, military tasks, industrial process moni-
toring and control, habitat and environment monitoring, health-care applications,
home automation, and vehicle networks and intelligent transportation systems.
The sensor nodes usually communicate with each other to pass their gathered
data to a destination. In Figure 1.1, we see a wireless sensor network. The
rectangles represent wireless sensor nodes and the dashed lines between them
represent their communication links.

Sensor Node

Sensor Node

Link

Figure 1.1: A wireless sensor network

Independent of the application area, the location information of wireless sen-
sors in a WSN is crucial to improve the quality of service. For all types of appli-
cations, the information of position can be appended to the data that is gathered
from the sensor nodes, easing the traceability of the sensors, as in WSNs that
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works in geographical routing. The information of positions is able to increase the
quality of the applications such as geographical based queries. When equipped
with proper devices, a sensor node can measure distance to another node in the
network using the communication links shown in Figure 1.1. Finding the positions
of these sensors is called WSN localization. If the sensor nodes are positioned only
by using the distance measurements, this process is called range-based localiza-
tion. Even though there are lots of studies on range-based WSN localization in
2D, [2, 3, 4, 5, 6, 7, 8], the volume of studies for 3D WSN localization is relatively
small [9].

The physical world we live in, however, is a 3D environment. Therefore, many
applications require localization in 3D. Most of the scenarios in real-world WSN
applications that need localization have usually deployments where the sensor
nodes sit on planar regions to form sets of planar clusters as seen in Figure 1.2.
In Figure 1.2a, there are 1000 sensor nodes deployed onto a valley. The same
number of sensors are deployed onto a mountain in Figure 1.2b, and inside a
multi-storey building in Figure 1.2c. It is hence observed that a method for
exploiting the information of structural information in 3D is very much needed
in order to improve the quality of localization achieved. In this thesis, we study
the range-based WSN localization problem in 3D environments in which sensors
are deployed onto planar surfaces.

1.1 Motivation

Localization, in general, is defined as finding the relative coordinates of an object,
with respect to a certain reference system. The corresponding coordinates can be
the relative coordinates in a room, coordinates in a building or global coordinates
on the earth. In order to find the position of an object, several techniques were
developed. A well-known method to localize an object on the earth globe is
called Global Positioning System (GPS) [10]. GPS uses four or more orbiting
satellites to localize an object on the earth. In 2000, Benefon released the first
cellular phone which uses an integrated GPS device [11]. With this development,
GPS has become a widely-used system throughout the world. However, there are
major drawbacks of GPS, which can be listed as:

• The accuracy is relatively low for critical usage (up to 15 meters deviation).

• The system has incremental costs.

• The energy consumption of the system is excessive.

• The system is nonfunctional in indoor environments.

These reasons have paved the way for a localization method that works in-
dependent of GPS. A considerable GPS-free localization system was designed
by Bulusu et al. in 2000 [3]. They use a frequency-based approach to localize

3



(a) Sensor nodes deployed onto a valley

(b) Sensor nodes deployed onto a mountain

(c) Sensor nodes deployed inside a building

Figure 1.2: Sensor nodes deployed onto a valley (a), onto a mountain (b), and
inside a multi-storey building (c).
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ultra-wideband (UWB) radio nodes [12]. UWB radio nodes are able to mea-
sure distances among themselves using ultra-wide band signals [13]. They can
be used both for static localization when the nodes are immobile [14], and dy-
namic localization when nodes are able to move [7]. This method was studied
extensively, and more research is still being conducted on GPS-free localization
[5, 4, 8, 15, 16, 17].

In 2001, Bahl and Padmanabhan developed a very popular indoor positioning
system (IPS) [18]. The system is called RADAR (not to be confused with Radio
Detection And Ranging [19]) and its working principle is similar to GPS but was
designed for one floor in a building. After RADAR was developed, several studies
were made in this area [20, 21]. The system uses three base stations in order to
localize objects and track their movements. Hence, the installment of the system
is expensive for a multi-storey building. Besides, power consumption of the base
stations increases with the number of the objects being tracked. Thus, developing
an energy efficient solution becomes critical for the succesful operation of IPSs.

A well-known decentralized system, called a wireless sensor network (WSN)
[22] has been used in order to achieve a scalable, efficient and low-cost localization
for indoor environments. WSN is a type of wireless ad hoc network [6, 23] and
uses low-cost devices called wireless sensor nodes. Localization can be done using
the wireless sensor nodes either by utilizing the pairwise distances among the
sensor nodes, called range-based localization [4, 18, 17, 7] or just by using the
connectivity information of the sensor nodes, called range-free localization [2, 3,
24].

Range-based WSN localization is a method to obtain the relative positions
of the sensor nodes with respect to a number of nodes with known positions by
using the available pairwise distances among the sensor nodes. While measuring
distances, sensor nodes use methods such as time of arrival (TOA) [6], time dif-
ference of arrival (TDOA) [25], or received signal strength (RSS) [26]. Although
range-based WSN localization is proven to be an NP-Hard problem [27], Eren et.
al. [28] showed that, if certain conditions are satisfied, range-based localization
can be done in polynomial time, using trilateration which uses three distance
measurements to localize a node. However, when there are errors in distance
measurements which is the case in real life, localization of a network by trilatera-
tion becomes intractable [29]. Despite being intractable, trilateration is still used
frequently [9, 4, 14].

In Figure 1.3, we see a node D, being localized by three nodes A, B and C.
The circles in the figure represent the distance between the unlocalized node and
the localized nodes. The coordinates of D can be determined by computing the
intersection point of these circles.

In 3D, quadrilateration can be used to localize WSN nodes. Analogous to
trilateration in 2D, quadrilateration uses four distance measurements from four
already localized non-coplanar nodes to localize a fifth node. In Figure 1.4, we
see the localization of an unlocalized node E, using the distance measurements
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Figure 1.3: A node being localized by three localized nodes in 2D

from four localized nodes A, B, C and D.

Figure 1.4: A node being localized by four localized nodes in 3D

When the localized nodes are on the same plane, i.e. coplanar, however,
no matter how many distance measurements are available, a node cannot be
unambiguously located unless it is also on the same plane as the others. In
Figure 1.5, there are many distance measurements from many localized nodes to
E. Since the localized nodes sit on the same plane, there are always two possible
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positions for the unlocalized node. One is E, and the other is the reflection of
E about the plane that the others sit on, E ′. Since E is not coplanar with the
localized nodes, there is no way of telling E ′ from E.

Figure 1.5: The unlocalized node E cannot be localized unambiguously because
of coplanarity.

In most real-world applications, sensor nodes are deployed on planar surfaces.
Examples of these surfaces include structures seen in both indoor (e.g. floors,
doors, walls, tables etc.), and outdoor (e.g. mountains, valleys, hills etc. recall
Figure 1.2) environments. In such environments, sensor nodes typically appear as
coplanar node clusters. We call this type of a deployment as a planar deployment.
We try to extract and utilize such information in order to achieve a better range-
based WSN localization than the traditional range-based localization methods,
such as trilateration [28], quadrilateration [15], and multilateration [25] when the
environment is particularly known to follow a planar deployment.

1.2 Contributions

Our main contributions in this thesis are:

1. We show that when the nodes are deployed on planar surfaces in 3D, as is
mostly the case in real-world applications, quadrilateration does not work
as expected due to a massive amount of coplanar sensors.

2. We propose an algorithm to utilize the coplanarity, if the sensor nodes
are known to follow a planar deployment pattern. We call this algorithm
Coplanarity Based Localization (CBL).

3. We show that CBL performs a more precise localization than mere quadri-
lateration when the information of coplanar node clusters are known apriori.

7



4. When the clustering information is unavailable, we propose a heuristic algo-
rithm that tries to extract the coplanar clusters. Although our first attempt
to extract clustering information is yet to be improved, we also clearly high-
light the need for an algorithm to extract such information accurately in
3D localization.

1.3 Organization of the Thesis

The organization of this thesis is as follows: In Chapter 1, we present the intro-
duction. In Chapter 2, we give the basic background and knowledge for range-
based wireless sensor network localization. In Chapter 3, we present CBL, and
a heuristic to extract coplanar clusters. Finally in Chapter 4, we conclude this
thesis.
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Chapter 2

Background and Terminology

In this chapter, we present basic background and terminology for WSN localiza-
tion.

A WSN graph is a graph G = (V,E), such that each vertex v ∈ V corresponds
to a sensor node. We assume that each sensor node has the same sensing range,
denoted by R, and an edge (v, w) ∈ E exists if and only if d(v, w) ≤ R where
d(v, w) denotes the Euclidean distance between v and w. This type of a graph is
called a unit-disk graph in 2D, and a unit-ball graph in 3D.

In our problem, a WSN graph can contain three types of nodes; namely seed,
localized, and unlocalized nodes. The coordinates of a seed node is known apriori.
The network is usually localized based upon the positions of such seed nodes. If
a node is not a seed node, but localized subsequently based onto the positions of
the seed nodes, it is called a localized node. We say that a node is unlocalized if
its position is unknown.

Localizing a WSN graph G means assigning a position to each vertex v ∈ V
in d ∈ 2, 3 dimensions, so that the distances given by the edge weights are all
satisfied. This operation is referred to as finding a point formation of G [30, 31].
The point formation of a graph G is denoted by GF. For instance, let us consider
a WSN graph with the vertex set V = {v1, . . . , v5}, and the edge set as given in
Figure 2.1.

In Figure 2.2, a possible point formation of the given graph in 2D is shown
with respect to the edge set given in Figure 2.1.

In Figure 2.3, 2D coordinates are assigned to the vertices of the graph whose
point formation is given in Figure 2.2.

If we fix the positions of any three nodes in Figure 2.3, then unique positions
can be assigned to the rest. If there is a unique point formation of a graph G
in d dimensions, then G is called globally rigid in d dimensions. Global rigidity
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d(v1, v2) = 2.00000
d(v1, v3) = 3.60555
d(v1, v4) = 3.00000
d(v2, v3) = 2.23606
d(v2, v4) = 3.60555
d(v2, v5) = 5.00000
d(v3, v4) = 3.16227
d(v3, v5) = 3.16227
d(v4, v5) = 2.82842

Figure 2.1: An example edge set of a graph

FG =

[v1, v2, v3, v4, v5],


0, 0
0, 2
2, 3
3, 0
5, 2




Figure 2.2: Point formation of the graph with the edge set given in 2.1

Figure 2.3: A point formation of a graph with the edge set given in Figure 2.1
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is both sufficient and necessary for a graph to be localizable in 2D [17], and can
be tested in polynomial time [32, 33, 34]. Although global rigidity is a necessary
condition is 3D as well [35], the sufficiency for a graph to be localizable in 3D
is still an open problem [34]. Saxe [36] proved that localization is an NP-Hard
problem for all dimensions even when the network is known to be localizable.

Trilateration [28] is a localization algorithm that uses distance measurements
from three non-collinear nodes to localize an unlocalized node in 2D. If a WSN
graph can be fully localized using trilateration, we say that this graph has a
trilateration ordering [28, 17]. In Figure 2.4, we see a graph with a trilateration
ordering where the vertices are labeled 1 through 9. The nodes 1, 2 and 3 are
picked as seed nodes and marked with squares.

1
2

3

46

5

9

8

7

Figure 2.4: A graph with trilateration ordering

The whole graph in Figure 2.4 can be localized in six steps with the following
ordering

1, 2, 3→ 4

1, 2, 3→ 5

2, 3, 4→ 6

2, 4, 6→ 7

1, 2, 7→ 8

3, 5, 6→ 9

Notice that we cannot localize the graph if the seed nodes have no common
neighbors. For instance, if we pick 3, 5 and 9 as seed nodes, then we cannot
localize any nodes since they have no common neighbors. In order to localize the
maximum possible number of nodes i.e. to reach the maximum recall percent-
age possible, the algorithm tries every possible node triplet as the seed when a
trilateration ordering is not specified. Even though trilateration is a polynomial
time algorithm, if the distance measurements are not fully accurate due to envi-
ronmental noise, localizing a graph with trilateration is NP-Hard [37] even when
a trilateration ordering is given as part of the input. In 3D, a similar algorithm,
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quadrilateration [9, 15] can be used to localize a WSN that uses distance mea-
surements from four non-coplanar sensors to localize an unlocalized sensor in 3D,
which is also a polynomial time algorithm.

Since we need to use non-coplanar nodes to avoid ambiguities, we should
detect if four nodes lie on the same plane. In order to detect coplanarity, we can
form a tetrahedron using the pairwise distances between four points a, b, c and
d. The volume of the tetrahedron can be found by Cayley-Menger determinant
[38] of the matrix given below.

M =


0 d(a, b)2 d(a, c)2 d(a, d)2 1

d(a, b)2 0 d(b, c)2 d(b, d)2 1
d(a, c)2 d(b, c)2 0 d(c, d)2 1
d(a, d)2 d(b, d)2 d(c, d)2 0 1

1 1 1 1 0


where d() corresponds to the Euclidean distance between nodes. Hence, the
volume of a tetrahedron can be computed as follows.

Vabcd =
√

det(M)

288

where Vabcd denotes the volume of the tetrahedron formed by the points a, b, c,
d, and given pairwise distances.

If det(M) > 0, then Vabcd > 0, indicating that the points are not coplanar. If
det(M) = 0, then Vabcd = 0, indicating that the points are coplanar. If det(M) <
0, then Vabcd /∈ R, indicating that the tetrahedron is incomplete. An incomplete
tetrahedron means that one of its corners is "open". In Figure 2.5, we see two
tetrahedra, one is complete and the other is incomplete.

Figure 2.5: A complete (on the left), and an incomplete (on the right) tetrahedron

Let us assume that a node D is to be localized by three localized nodes A,
B and C. The node D is said to be flip in 2D, if its computed position is in a
different topological region than its actual position with respect to the nodes A,
B and C. If a node is localized to a different topological area with respect to its
three beacons, this situation is referred to as a flip [39]. These topological areas
can be obtained by drawing three lines passing through each pair of localized
nodes, as seen in Figure 2.6.
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Figure 2.6: Seven topological regions that a node can be with respect to three
localized nodes

The drawn lines divide the plane into seven topological areas. In Figure 2.7 a
flip ambiguity is demonstrated. A, B and C are the localized nodes. The dashed
lines divide the 2D plane into seven regions. Three possible positions D1, D2 and
D3 are inside three different topological regions with respect to A, B and C.

Figure 2.7: Three possible positions for the node in three different topological
regions

The same concept can be used to define a flip in 3D. Note that each triplet
in a localized node quadruplet define a plane, dividing the 3-space into fifteen
regions with four planes. We say that a node is flipped in 3D if its estimated
position is inside a different region than its original position with respect to the
four localized nodes used to localize it.

Figure 2.8 demonstrates a planar deployment of 4000 nodes that are dis-
tributed into four coplanar clusters. In Figures 2.8a and 2.8b, we see the clusters
from two different angles of views. Each cluster contains 1000 nodes and in-
dicated with a different color. If two neighbor nodes are in the same cluster,
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they are called coplanar neighbors. Otherwise, we refer to them as interplanar
neighbors. Correspondingly, an edge between two coplanar neighbors is called a
coplanar edge, and otherwise, an interplanar edge. A group of nodes that are
in the same cluster cannot be used to localize one of their common interplanar
neighbors unambiguously.

Figure 2.9a and 2.9b demonstrate the corresponding views when an equal of
nodes are randomly distributed. The figures show the difference between a planar
deployment, and a random deployment in 3D. When there is a random deploy-
ment, the nodes are seen as a cloud of points. However, in planar deployment, the
planar structures are more distinguishable to the human eye. Moreover, during
the localization process, a single node has a relatively more number of coplanar
neighbors than its interplanar neighbors.

One can notice that every three nodes define a plane in 3D. However, the
planar deployments that we seek to exploit are not particularly these plane for-
mations with so few nodes in each cluster. In order to indicate how planar the
deployment is, we define a metric called planarity factor, denoted by µ, and cal-

culate it as 1 − k2

n
, where k is the number of the clusters and n is the number

of sensor nodes. It is basically the number of clusters divided by the number of
nodes on each cluster and subtracted from 1.
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(a) An example of a planar deployment as seen from a particluar angle

(b) The same planar deployment as seen from another angle.

Figure 2.8: Planar deployment
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(a) An example of random deployment with the same number of nodes as
seen from the same angle of view as in 2.8a

(b) The same random deployment as seen from the same angle of view as
in 2.9b

Figure 2.9: Random deployment
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Chapter 3

Coplanarity Based Localization

In this chapter we introduce the localization problem that we deal with, and
propose an algorithm to solve it. There are two main problems that we tackle
when the sensor nodes are known to follow a planar deployment pattern. The
first problem is localizing the coplanar clusters, in case we have the clustering
information, namely, we know which coplanar cluster does each node belong to.
This information can be obtained when airdropping the sensor nodes onto planar
surfaces with a known map. If the sensor nodes are dropped in clusters, even
though we may not know the exact positions of the sensor nodes, we will know
the planar surfaces that the nodes are on.

The second problem that we address arises when the clustering information
is either lost or not available. In this case, an additional effort is needed to
discover the coplanar node clusters. Only after the clustering information is
made available, CBL can exploit it. We refer to this second problem as extracting
the coplanar clusters or planar clustering.

In Section 3.1, we give the assumptions and preliminaries for the algorithms
that we present. In Section 3.2, we explain the algorithms that we use for 2D
and 3D localization, namely, trilateration and quadrilateration. In Section 3.3,
we present a framework for range-based localization of the coplanar node clusters
either found previously or given as part of input. If the clustering information is
not given, we describe a heuristic algorithm in Section 3.4, to find the coplanar
node clusters.

3.1 Assumptions and Preliminaries

We make the following assumptions while presenting the algorithms:

• WSN graph G = (V,E) is a global variable and can be reached by any
function.
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• Each sensor node n has a neighbor list that contains the nodes inside the
sensing range of n. Any subsets of the neighbors of n can be accessed by
using the notation n.Neighbors({ni, nj, nk, . . . }).

• A coplanar cluster Ci = (Vi, Ei) is a subgraph of a WSN graph G = (V,E)
where Vi ⊂ V , Ei ⊂ E, and ∀a 6= b ∈ Vi, (a, b) ∈ E ⇔ (a, b) ∈ Ei. The
coplanar clusters are stored inside a set called CSet, defined as a global
variable.

• The cluster of a sensor node n can be accessed by using the notation
ClusterOf(n)

• Each sensor node n has two positions, namely its local position and its global
position which are denoted by n.LPos and n.GPos respectively. Global
position is the coordinates in 3D. Local position is in 2D, and relative to
the local positions of its coplanar neighbors. If a node n in a cluster Ci is
localized with respect to nodes {Ci \n} only, we say that the node is locally
positioned. Determining the global position of a node means the that node
is globally positioned.

• All sensor nodes except the seed nodes are initially unlocalized in both 2D
and 3D.

• After performing 2D localization on a coplanar cluster Ci = (Vi, Ei), we are
able to obtain the 2D point formation of the sensors in that cluster.

• Although CBL can be used as an extension of any localization algorithm,
we assume that trilateration and quadrilateration are used for 2D and 3D
localization respectively. These two algorithms are presented in Section 3.2.

• When the distance measurements are noisy, we assume that a certain value
is added to the measured distance values based on the error magnitude.
The error is modeled as the summation of a high probability small noise
and a low probability large noise as experimentally gathered [4, 40, 41]. The
small noise is a Gaussian random process with mean N(f(R), E/100) where
R is the sensing range of the sensors, f(R) = 0.022ln(1 +R)− 0.038 and E
is the magnitude of error. The large noise value is selected with a uniform
random process between ±P% of the wireless range with probability 0.05
where P ∈ [0, 10]. It is assumed that we have the knowledge of the error
magnitude.

While running trilateration among a coplanar node cluster, we pick in that
cluster three seed nodes with a known distance between any two. Since we do not
know any of the coordinates initially, we construct a triangle on the z = 0 plane
using the pairwise distances among these three nodes. Figure 3.1 demonstrates
three nodes a, b and c picked as the seed nodes. The pairwise distances are
denoted by rab, rac and rbc.
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Figure 3.1: Assigning positions to the seed nodes

The first node, a is placed on the origin.

a.LPos← (0, 0, 0) (1)

Then, we place b on the positive side of the x-axis, at distance rab to a.

b.LPos← (rab, 0, 0) (2)

In Figure 3.1, we see three nodes a, b and c. As given in (1) and (2), we assign
the coordinates to a and b. The coordinates of c is yet to be computed and shown
as (x, y).

After assigning coordinates to a and b, we compute the two intersections as
follows.

x2 + y2 = r2ac (3)
(x− rab)2 + y2 = r2bc (4)

If we combine (3) and (4), then we have
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x2 − 2 ∗ rab ∗ x+ r2ab − x2 = r2bc − r2ac (5)

x =
r2ab − r2bc + r2ac

2 ∗ rab
(6)

Using (5), we compute x coordinate of the node c as in (6). From (3), we
obtain;

y2 = r2ac − x2 (7)

y = ±

√
4 ∗ r2ab ∗ r2ac − (r2ab − r2bc + r2ac)

2

4 ∗ r2ab
(8)

Notice that there are two possible values for the y coordinate. We pick the
positive value. As a result, given three seeds a, b and c with the pairwise distances,
we assign the following coordinates to the seeds:

a.LPos← (0, 0, 0)

b.LPos← (rab, 0, 0)

c.LPos← (x, y, 0)

where

x =
r2ab − r2bc + r2ac

2 ∗ rab

y =

√
4 ∗ r2ab ∗ r2ac − (r2ab − r2bc + r2ac)

2

2 ∗ rab

Before performing quadrilateration, we pick four seed nodes, a, b, c and d.
Instead of forming a triangle, we form a tetrahedron in 3D. Hence, we take the
intersection of three spheres. We place a, b and c onto z = 0 plane by using the
computations (1) to (8). Figure 3.2 demonstrates the projection of the spheres
on z = 0 plane. The centers of the spheres are a, b and c. The pairwise distances
are the radii of the spheres and denoted by rab, rac, and rad.

In order to assign coordinates (x′, y′, z) to d, we make the following computa-
tions.

r2ad = x′2 + y′2 + z2 (9)
r2bd = (x′ − rab)2 + y′2 + z2 (10)
r2cd = (x′ − x)2 + (y′ − y)2 + z2 (11)
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Figure 3.2: The projection of three spheres with centers a, b, c and d to the z = 0
plane.
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If we subtract two equations (9) - (10), then we have

r2ad − r2bd = (x′)2 − (x′ − rab)2 (12)
= 2 ∗ x′ ∗ rab − r2ab (13)

then we can compute x′ and y′ as follows.

x′ =
r2ad − r2bd + r2ab

2 ∗ rab
(14)

y′ =
r2ad − r2cd − (x′)2 + (x′ − x)2 + y2

2 ∗ y
(15)

Using the Pythagorean theorem, we can compute z

z = ±
√
r2ad − (x′)2 − (y′)2 (16)

Similar to 2D case, we pick the positive value among two possible values for
z coordinate. Hence, following the steps (1) to (10) we

a.GPos← (0, 0, 0)

b.GPos← (rab, 0, 0)

c.GPos← (x, y, 0)

d.GPos← (x′, y′, z)

where

x′ =
r2ad − r2bd + r2ab

2 ∗ rab

y′ =
r2ad − r2cd − (x′)2 + (x′ − x)2 + y2

2 ∗ y

z =
√
r2ad − (x′)2 − (y′)2

When three spheres intersect, there are two possible values for the z coordi-
nate, leaving us with two symmetrical points with respect to the plane through
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a, b and c. If we are localizing the point n in 3D, we need an extra distance mea-
surement from a point which is not coplanar with a, b and c, to choose between
two symmetrical points. The process of obtaining two candidate points, and then
arbitrarily picking one is referred to as semi-localization of a node.

If we use a fourth distance to another localized node d, then we are able
to pick the correct point p between p1 and p2, assuming that the distances are
accurate. However, if d is coplanar with a, b and c, both of the points will satisfy
the distance constraint and we will not be able to tell if p1 or p2 6= p1 is the
correct position for n.

p =


null : ‖

−→
p1d‖ = ‖

−→
p2d‖

p1 : ‖
−→
p1d‖ = d(n, d)

p2 : ‖
−→
p2d‖ = d(n, d)

(17)

where d(n, d) is the Euclidean distance between the unlocalized node n and the
fourth localized node d and ‖

−→
p1d‖ denotes the magnitude of the vector drawn

from p1 to the global position of d.

The last step assigns a unique value to the global position of unlocalized node
n. Thus, we call this process unique-localization of a node in 3D.

Definition 1 (Unique-localization of a node) A node n is said to be uniquely
localized with respect to four other localized nodes a, b, c and d such that a 6= b 6=
c 6= d, if there is only one possible position of n with respect to the global positions
of a, b, c and d.

Assigning a position to a single node is similar in trilateration and quadri-
lateration. When a node has two candidate positions, which can be obtained by
intersecting two circles in 2D and intersecting three spheres in 3D, a point can
be picked by using (17). However, if we consider that the distance measurements
might be noisy, a point qualifies as a solution if it is inside a certain margin with
respect to the distances as shown in Figure 3.3 where p1 and p2 are the candidate
points, r is the distance to the last node used to eliminate one of the solutions,
and E is the error magnitude.

σ(p1, p2, r) =


null, if

∣∣‖−→p1d‖ − r∣∣ ≤ r ∗ E
∧∣∣‖−→p2d‖ − r∣∣ ≤ r ∗ E

p1, if
∣∣‖−→p1d‖ − r∣∣ ≤ r ∗ E

p2, if
∣∣‖−→p2d‖ − r∣∣ ≤ r ∗ E

null, otherwise

Figure 3.3: Picking a position among two candidate points
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3.2 Trilateration and Quadrilateration

In this section, we present the algorithms that we choose to perform 2D and
3D localization. We use trilateration to find the local coordinates of the nodes
with respect to their coplanar neighbors and quadrilateration to find the global
positions of the nodes in a WSN graph.

In Figure 3.4a, we present trilateration algorithm. we first initialize the point
formation Fbest, that stores the best 2D point formation of the nodes in line 1.
Then, we iterate on each fully-connected non-collinear node triplet (a, b, c) from
line 2 through line 17. In line 3, we initialize F that stores the 3D point formation
of G with respect to each seed triplet (a, b, c). In line 4, we determine the local
positions of a, b and c by forming a triangle as explained in equations (1) - (8).
Then, we add a, b and c into a queue data structure Qlocalized that keeps track
of the localized nodes. From line 6 through line 14, we obtain the 2D point
formation F of the given graph G with respect to the seed nodes a, b and c. In
line 7, we remove the node i from Qlocalized and notify its neighbors. Notifying a
node in this context means increasing its localized neighbor count by one. In line
10, we check if j has are more than three localized neighbors. Hence, as last two
steps, we check if j is collinear with these neighbors in line 11 and try to localize
the node in line 12. If so, then we add j into the queue of localized nodes in line
13. When there are no more nodes left to be localized, we check if all the nodes
in the graph are localized. If so, then we return the obtained point formation
in line 15. In line 16, we check if the obtained point formation F contains more
nodes than the best point formation Fbest. If so, then we declare the new best
point formation as the current one in line 16. In line 18, we return the best point
formation with respect to the number of nodes.

In Figure 3.4b, we present quadrilateration algorithm. we first initialize the
point formation Fbest, that stores the best 3D point formation of the nodes in
line 1. Then, we iterate on each fully-connected and non-coplanar node triplet
(a, b, c, d) from line 2 through line 17. In line 3, we initialize F that stores the
3D point formation of G with respect to each seed quadruplet (a, b, c, d). In line
4, we determine the global positions of a, b, c and d by forming a tetrahedron as
explained in equations (1) - (16). Then, we add a, b, c and d into a queue data
structure Qlocalized that keeps track of the localized nodes. From line 6 through
line 14, we obtain the 3D point formation F of the given graph G with respect
to the seed nodes a, b, c and d. In line 7, we remove the node i from Qlocalized

and notify its neighbors. Notifying a node in this context means increasing its
localized neighbor count by one. In line 10, we check if j has are more than four
localized neighbors. Hence, as last two steps, we check if j is coplanar with these
neighbors in line 11 and try to localize the node in line 12. If so, then we add j
into the queue of localized nodes in line 13. When there are no more nodes left
to be localized, we check if all the nodes in the graph are localized. If so, then
we return the obtained point formation in line 16. In line 16, we check if the
obtained point formation F contains more nodes than the best point formation
Fbest. If so, then we declare the new best point formation as the current one in
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line 15. In line 18, we return the best point formation with respect to the number
of nodes.

Remark 1 For a given graph G = (V,E), finding a trilateration ordering con-
sists of O(|V |3) phases in the worst case. As three distance measurements from
three non-collinear nodes are sufficient to localize a node, O(|E|) time is spent in
each phase by using a queue data structure keeping the track of localized nodes.
This can be accomplished by keeping track of the number of localized neighbors of
every node and inserting a node when the count hits a score of three. An effective
three is the smallest count ≥ 3 with three non-collinear neighbors. On reaching
the count three for the first time check collinearity. From then on, every new in-
crement check only the new with any two previous. Therefore, it terminates after
at most after O(|V |3 ∗ |E|) steps. Quadrilateration, on the other hand, tries every
possible node quadruplet as seed in order to achieve its highest possible localization
percentage. Therefore, it runs in O(|V |4 ∗ |E|) time in the worst case.

We use CBL as the extension of the algorithms presented in Figures 3.4a and
3.4b. In the following section, we conduct simulations to test trilateration and
quadrilateration to observe the effect of error on the precision of localizations
achieved by both algorithms.
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input: Graph G = (V,E)
output: 2D point formation of G
Trilateration(G)
1: Fbest ← ([ ], [ ]) /∗Best point formation∗/
2: for each non-collinear and fully-connected {a, b, c} ⊆ Vi do
3: F← ([ ], [ ])
4: Form triangle using a, b, c /∗Equations (1) - (8)∗/
5: Qlocalized ← [a, b, c]
6: while Qlocalized is not empty do
7: i← dequeue(Qlocalized)
8: add (i, i.LPos) into F
9: for all neighbors j of i do
10: if (++j.Count) ≥ 3 then
11: if j.LocalizedNeighbors(1, 2, last) are not collinear then
12: if j can be localized in 2D then
13: enqueue(j,Qlocalized)

14: end while
15: if |F1| = |V | then return F
16: if |F1| > |F1

best| then Fbest ← F
17: end for
18: return Fbest

(a) Trilateration

input: Graph G = (V,E)
output: 3D point formation of G
Quadrilateration(G)
1: Fbest ← ([ ], [ ]) /∗Best point formation∗/
2: for each non-coplanar and fully-connected {a, b, c, d} ⊆ Vi do
3: F← ([ ], [ ])
4: Form tetrahedron using a, b, c, d /∗Equations (1) - (16)∗/
5: Qlocalized ← [a, b, c, d]
6: while Qlocalized is not empty do
7: i← dequeue(Qlocalized)
8: add (i, i.GPos) into F
9: for all neighbors j of i do
10: if (++j.Count) ≥ 4 then
11: if j.LocalizedNeighbors(1, 2, 3, last) are not coplanar then
12: if j can be localized in 3D then
13: enqueue(j,Qlocalized)

14: end while
15: if |F1| = |V | then return F
16: if |F1| > |F1

best| then Fbest ← F
17: end for
18: return Fbest

(b) Quadrilateration

Figure 3.4: Trilateration (a) and quadrilateration (b) algorithms
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3.2.1 Experimental Evaluation of Trilateration and Quadri-
lateration

In this section, we conduct experiments to test the performance trilateration and
quadrilateration when there is a random deployment. For the experiments with
trilateration, we deploy 100 sensors randomly in a 100× 100 units square with a
uniform distribution. For the experiments with quadrilateration, we deploy the
same number of sensors randomly inside a 100 × 100 × 100 units cube with a
uniform distribution.

We take the average node connectivity i.e. average number of neighbors per
node as the control value for the tests. We run 1000 tests for each connectivity
value, and report the average of the recall percentage. In Figure 3.5, we test both
algorithms with noiseless range measurements, and observe the changes in recall
percentages with respect to the increasing node connectivity.
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Figure 3.5: The recall percentages of trilateration (a) and quadrilateration (b)
with respect to increasing node connectivity

The figure tells us that both trilateration and quadrilateration require an
average connectivity of 15 neighbors per node. Now, let us check the average
offsets of both algorithms with increasing error magnitude. We ifc the average
connectivity at 15 neighbors per node, which is the value for both algorithms to
reach their maximum recall percentage. For trilateration, we use robust triangles
[43] to reduce the number of the flips. In Figure 3.6, we see the average offsets
for both algorithms with increasing error magnitude.

The figure tells us that the error has more impact in 3D compared to 2D.
Therefore, we expect that when we limit the use of quadrilateration by running
trilateration to find the local positions of the nodes, the average offset will drop.
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Figure 3.6: The average offsets of trilateration (a) and quadrilateration (b) with
respect to increasing error magnitude when the average node connectivity is 15

3.3 Localizing the Coplanar Node Clusters

In this section, we tackle the problem of localizing a WSN in 3D where there is a
planar deployment, and the information on the coplanar clusters is given apriori.
We first define the problem of localizing the coplanar node clusters, and then
propose an algorithm called Coplanarity Based Localization (CBL) to solve the
corresponding problem.

3.3.1 Problem Definition

The problem of localizing clusters is finding the 3D point formation of a WSN
graph G = (V,E) which is partitioned into k subgraphs within each of which the
nodes are coplanar. These partitions are called coplanar clusters and stored in a
set CSet = {C1 = (V1, E1), C2 = (V2, E2), . . . , Ck = (Vk, Ek)} with the following
properties.
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⋃
i∈[1,k]

Vi = V

⋃
i∈[1,k]

Ei ⊂ E

⋂
i∈[1,k]

Vi = ∅⋂
i∈[1,k]

Ei = ∅

∀a 6= b ∈ Vi, (a, b) ∈ E ⇔ (a, b) ∈ Ei

Two nodes v, w in the vertex set Vi of a coplanar cluster Ci = (Vi, Ei) are
called coplanar neighbors, and the edge (w, v) is called a coplanar edge. In an
effort to localize G in 3D, we first localize the nodes in each cluster Ci in 2D with
respect to their coplanar neighbors and then find the positions of the coplanar
clusters in 3-space. The coplanarity causes difficulties for traditional multilater-
ation methods because of flip ambiguities. Therefore, we propose a localization
algorithm with potential to increase the precision of the localization when there
is a planar deployment. This algorithm is called Coplanarity Based Localization
(CBL). CBL obviously assumes the existence of coplanar node clusters given as
the part of the input. Our approach has two main advantages over the known
3D localization techniques:

i) We break the WSN localization problem of size n in 3D into k 2D localization
problems.

ii) By using the clustering information, we avoid using coplanar nodes to localize
another node that may lead to a flip ambiguity.

The algorithm that we propose to find the 3D point formation of a WSN graph
G is presented in Section 3.3.2

3.3.2 The CBL Algorithm

In this section, we present the proposed algorithm CBL to localize a WSN in
3D when there is a planar deployment. CBL is presented as an extension of
quadrilateration with the ability to exploit the information on coplanar clusters.
It should be noted that CBL is orthogonal to the localization algorithm used at
its core. In other words, it will work with algorithms other than quadrilateration.

As the clustering information is assumed to be available, we can apply known
2D localization techniques in each cluster. We use trilateration presented in
Figure 3.4a as the 2D localization algorithm. Localizing a coplanar cluster means
computing the equation of the plane that the cluster is on. Thus, it is enough
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to find the global positions of three locally positioned nodes from a cluster to
compute the equation of the plane. These three nodes are called support nodes
of the cluster. Using the global positions of the support nodes, all the remaining
locally positioned nodes in a coplanar cluster can be globally positioned by a
simple transformation with respect to the support nodes as soon as the support
nodes are globally positioned.

In Figure 3.7, we see an example transformation of a coplanar cluster. Both
the local and the global positions of the support nodes are shown in red they are
marked with arrows. The dashed arrows indicate the transformation from z = 0
plane to the actual plane that the cluster is on.

Figure 3.7: Transformation of a coplanar cluster

The transformation process is as follows. Given three support nodes a, b and
c, let us denote the local coordinates of these nodes as alocal, blocal and clocal re-
spectively. The global coordinates of these nodes are denoted by aglobal, bglobal and
cglobal respectively. In order to build a transformation matrix, we use a common
coordinate system. Hence, we pick the centroid of the local coordinates, CL,
as the origin of local coordinate system and the centroid of the global coordi-
nates, CG, as the origin of the global coordinate system. The x-axis of the local
coordinate system is

−−→xlocal =

−−−−−−−−→
(CL)(alocal)

‖
−−−−−−−−→
(CL)(alocal)‖

(18)

where ‖
−−−−−−−→
(CL)(ilocal)‖ denotes the magnitude of the vector drawn from the origin

of the local coordinate system to the local coordinates of i. Then, we find a vector
that is orthogonal to x-axis by first finding
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~v =

−−−−−−−→
(CL)(blocal)

‖
−−−−−−−→
(CL)(blocal)‖

(19)

This vector is used to determine the z-axis of the local coordinate system,
which is orthogonal to ~x and ~v.

−−→zlocal =
−−→xlocal × ~v
‖−−→xlocal × ~v‖

(20)

Finally, we compute the y-axis of the local coordinate system, which is cer-
tainly orthogonal to x-axis and z-axis.

−−→ylocal =
−−→xlocal ×−−→zlocal (21)

The matrix of the local coordinate system is called input matrix and computed
as follows.

Minput =

x1local y1local z1local
x2local y2local z2local
x3local y3local z3local

 (22)

where the columns of the matrix are the transpositions of −−→xlocal, −−→ylocal and −−→zlocal

The global coordinate system is computed similar to steps (18) - (22).

−−−→xglobal =

−−−−−−−−−→
(CG)(aglobal)

‖
−−−−−−−−−→
(CG)(aglobal)‖

(23)

~v =

−−−−−−−−→
(CG)(bglobal)

‖
−−−−−−−−→
(CG)(bglobal)‖

(24)

−−−→zglobal =
−−−→xglobal × ~v
‖−−−→xglobal × ~v‖

(25)

−−−→yglobal =
−−−→xglobal ×−−−→zglobal (26)

Moutput =

x1global y1global z1global
x2global y2global z2global
x3global y3global z3global

 (27)
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The transformation matrix is computed using Minput and Moutput by making
the following matrix multiplication.

[Mtransform] = [Moutput] [Minput]
T (28)

where [Minput]
T denotes the transposition of the input matrix.

After we build the transformation matrix, we apply the transformation to each
locally positioned node n with local coordinates nlocal. We compute the global
coordinates of node nglobal by applying the transformation, we use the origins of
the local and the global coordinate systems, CL and CG.

nglobal = [Mtransform] ·
(−−→nlocal −

−→
CL
)
+
−→
CG (29)

where the origins CL and CG are treated as vectors from the point (0, 0, 0).

At the beginning of the localization process, after a cluster is picked as seed,
the nodes in that cluster cannot be used to perform a unique localization of a
node. Therefore, we are only left with the option of semi-localization of a node.
If a cluster is localized based on a semi-localized support node, we refer to that
cluster as a semi-localized cluster.

Definition 2 (Semi-localization of a cluster) A coplanar cluster Ci = (Vi, Ei)
is said to be semi-localized if one of the support nodes in Vi is semi-localized while
the other two are uniquely localized.

Once we are alone with a seed cluster and a semi-localized cluster, we can
localize a third cluster as given by the following definition.

Definition 3 (Rigid-localization of a cluster) A cluster C = (Vi, Ei) is
said to be rigidly localized if all the three support nodes in Vi are uniquely lo-
calized.

In Figure 3.8a, we see the semi-localization of an unlocalized coplanar cluster
UC. The support nodes of UC are indicated by letters s, a and b. After picking
one of the possible positions for the first support node, denoted by s and s′, the
remaining support nodes a and b can be uniquely localized with respect to s and
three other localized nodes from localized cluster.

Remark 2 The only possible combinations of positions of the support nodes
in Figure 3.8a are either (s, a, b) or (s′, a′, b′), which are reflections around the
localized cluster.

Remark 3 The rigid-localization of a cluster cannot be performed unless the
number of already localized clusters is m ≥ 2, and one coplanar cluster is on a
different plane than at least one of the remaining m− 1.
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In Figure 3.8b, we see that the support node s has one extra localized neighbor
which is not coplanar with the rest. Therefore, s can be uniquely localized,
determining unique positions for its coplanar neighbors. In order to localize all
the nodes, we have to perform rigid-localization of all the remaining clusters.

(a) Semi-localization of a cluster

(b) Rigid-localization of a cluster

Figure 3.8: Semi-localization (a), and rigid-localization (b) of an unlocalized
cluster

We present CBL in Figure 3.9. The algorithm takes a WSN graph G = (V,E)
as the input and returns the estimated 3D point formation of G. In order to
localize the maximum possible number of nodes i.e. to reach the maximum recall
percentage possible, the algorithm tries every possible coplanar cluster pair as
the seed cluster Cseed and semi-localized cluster Csemi. In line 1, we find the local
positions of the nodes with respect to their coplanar neighbors. We initialize the
point formation Fbest that stores the best 3D point formation of the nodes in line
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input: WSN graph G = (V,E), coplanar cluster set CSet = {C1, C2, . . . , Ck}
output: 3D point formation of G
CBL(G, CSet)
1: find local positions of the nodes using trilateration
2: Fbest ← ([ ], [ ]) /∗Best point formation∗/
3: for all Cseed ∈ CSet do
4: for each Csemi 6= Cseed ∈ CSet do
5: if Csemi can be semi-localized with respect to Cseed then

/∗See Figure 3.8a∗/
6: Qlocalized ← [Cseed, Csemi]
7: F← ([ ], [ ])
8: while Qlocalized is not empty do
9: Ci ← dequeue(Qlocalized)
10: for all nodes v ∈ Vi do
11: if v is globally positioned then
12: add (v, v.GPos) into F
13: for all neighbors w of v do

/∗Cw ← ClusterOf(w)∗/
14: if ++w.Count changes the state of Cw to rigid then

/∗Cw can be rigid-localized (see Figure 3.8b)∗/
15: enqueue(j,Qlocalized)

16: end for
17: end if
18: end for
19: end while
20: if all the coplanar clusters are localized then return F
21: if |F1| > |F1

best| then Fbest ← F
22: end if
23: end for
24: end forreturn Fbest

Figure 3.9: CBL algorithm
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2. Then, we iterate on each coplanar cluster Cseed from line 3 through line 23.
At each iteration, we pick Cseed as the seed cluster. In line 4, we iterate on the
coplanar clusters except the seed cluster. If we find a cluster Csemi that can be
semi-localized with respect to the seed cluster in line 5, then we add Cseed and
Csemi into a queue data structureQlocalized that keeps track of the localized nodes in
line 6. Then, we initialize F that stores the 3D point formation of G with respect
to each (Cseed, Csemi) pair. When we find a seed and a semi-localized cluster, we
perform rigid-localization for the remaining coplanar clusters, from line 8 through
line 19. In line 9, we remove the cluster Ci = (Vi, Ei) from Qlocalized. We iterate
on each node v in the vertex set Vi of cluster Ci in line 10. If v is globally
positioned, then we add v and its global position into F. Then, we notify the
neighbors w of v from line 13 through line 16. Notifying a node in this context
means increasing its localized neighbor count by one. In line 14, we first increase
the localized neighbor count of w and then check if the updated value leads to
the rigid-localization of the coplanar cluster of w. If so, then we add the cluster
of w into Qlocalized in line 15. When there are no more coplanar clusters left to
be localized, we check if all the clusters in the graph are localized. If so, then
we return the obtained point formation in line 20. In line 21, we check if the
obtained point formation F contains more nodes than the best point formation
Fbest. If so, then we declare the new best point formation as the current one. In
line 24, we return the best point formation with respect to the number of nodes.

Remark 4 By the same reasoning given in Remark 1, given a graph G = (V,E)
and k coplanar clusters, CBL works in O(k2 ∗ |E|) time in the worst case.

3.3.3 Experimental Evaluation of CBL

In this section, we present the experimental results on the performance of CBL
in various environments. We conduct our simulations for the environments that
show different types of characteristics in both planar clustering and localization
phases. These characteristics are basically modeled by the planarity factor µ,
calculated by dividing the number of coplanar clusters by the average number of
nodes in each cluster and subtracting the result from 1.

µ = 1− k2

n

where k is the number of nodes and n is the number of clusters.

We measure the quality of a localization with respect to the changes in re-
call percentage (i.e. the ratio of the localized nodes), and precision error (i.e.
positional offset per node). The control parameter for the tests is picked as the
magnitude of the environmental noise. It is verified experimentally that using
the available information on coplanar clusters leads to a more precise localization
than mere quadrilateration. While evaluating the experimental results, we refer
to the tests where information of clusters is utilized as CBL. When the network
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is localized by mere quadrilateration, we refer to these type of tests as quadri-
lateration. In mere quadrilateration, the clustering information is not used even
though it is available.

We conduct simulations using Java [44] as the programming language and
Eclipse IDE [45] as the development tool. We developed an in-house simulator
to simulate the environment by placing static nodes with a uniform distribution
probability in a 100× 100× 100 unit cubic volume.

We use two main types of deployments: the deployments where the clusters
are intersecting, and non-intersecting. In these two types of deployments, we use
various number nodes, and various number of clusters. A deployment is named
after the combination of the number of coplanar clusters, and the number of
sensor nodes on each coplanar cluster separated by a dash in between. We also
use the letter I or D at the beginning in order to indicate if the clusters are
intersecting or disjoint. In Table 3.1, we give the deployments that we use along
with the planarity factor of the deployment. We divide the planarity factors
of the deployments into three. Namely, low, average and high. We say that
the planarity factor is high when µ ∈ {0.988, 0.985, 0.980, 0.960}, average when
µ ∈ {0.920, 0.900, 0.840} and low when µ ∈ {0.680, 0.360, 0.100,−0.800}.

High Average Low

Deployment µ Deployment µ Deployment µ

I-3-200 0.988 I-4-100 0.960 D-16-50 0.680
I-3-270 0.985 D-8-100 0.920 D-16-25 0.360
I-4-200 0.980 I-5-50 0.900 D-27-30 0.100
I-5-160 0.968 D-8-50 0.840 D-27-15 -0.800

Table 3.1: The names of the sub-type deployments with respect to the number
of clusters and the number of nodes per cluster

The disjoint planar deployment is simulated with respect to the number of
coplanar clusters, k. In order to create disjoint clusters, we first divide the original
cube into k sub-cubes. In each sub-cube, we generate a random plane using the
plane equation ax+ by + cz + d = 0 and scatter equal number of nodes on these
planes.

In Figure 3.10a, we see a cube divided into eight sub-cubes. In Figure 3.10b,
the same cube is divided into nine sub-cubes

In our simulations, we use unit ball graph as the sensing model and assume
that the network graph is always connected. We denote the sensing range by R. In
order to model noisy range measurements, we use empirically gathered noise data
[40, 41]. Each edge (v, w) ∈ E in G = (V,E) is modified with respect to a random
number generated using a Gaussian random distribution with N(f(R), E/100)
where E is the magnitude of the error and R is the sensing range. f(R) is defined

36



(a) 8 sub-cubes (b) 9 sub-cubes

Figure 3.10: Slicing a cube with perpendicular planes

as follows;

f(R) = 0.022ln(1 +R)− 0.038

The large noise value is selected as ∓P% of the sensing range where P is
generated with a uniform random process between 0 and 10 units with probability
0.05.
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Figure 3.11: Recall percentage of CBL with noiseless distance measurements.

First, let us present the recall percentage of CBL with noiseless distance mea-
surements in Figure 3.11. Based on the recall percentages, we pick 40 units as
the sensing range for the tests with noisy range measurements, where over 80%
of the nodes are localized for all values of µ.
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(b) Recall percentages

Figure 3.12: The change in average offsets (a), and recall percentages (b) of
CBL and quadrilateration with respect to increasing error magnitude and various
planarity factors when the sensing range is 40 units
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In Figure 3.12a we see the average offsets and in Figure 3.12b we see the
recall percentages when the sensing range is 40 units and the error magnitude
takes values in range between 1 and 20. The figure tells us that exploiting the
clustering information reduces the average offset of the localization. Even though
the recall percentage of CBL is lower than quadrilateration, we can say that
instead of localizing a node imprecisely, CBL performs a more precise localization
than quadrilateration. Quadrilateration, on the other hand, is able to localize
more nodes with more precision errors.
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Figure 3.13: A closer view of the plots in Figure 3.12a

For a better comparison, we give the offset plots with a bigger scale in Figure
3.13. In Figure 3.13a, we see the average offset of CBL. In Figure 3.13b, we see the
average offset of quadrilateration. We see that ignoring the available clustering

39



information increases the offset by 10 units per node in general In Figure 3.13a,
we see the average offset of CBL. When the planarity factor is high, CBL causes
less offset than the other cases. Even though CBL is effected by the increasing
error magnitude, the average offset stays under 20 units per node when µ ≥ 0.960.
When the planarity factor is average, CBL localizes the network almost as precise
as the low planarity factor case. However, when the error magnitude increases,
the difference between two cases becomes more obvious. When the planarity
factor is low, CBL causes the highest average offset with an offset of around 30
units per node. When the planarity factor is average, the average offset ranges
between 15 units per node and 25 units per node.

3.4 Extracting the Coplanar Clusters

In this section, we deal with the case where there is a planar deployment and
the information on coplanar clusters are not available in 3D WSN localization
problem. First, we define the problem of extracting the coplanar clusters and
then we propose a heuristic algorithm to solve the defined problem.

3.4.1 Problem Definition

Given a set of points in 3D with no position information, the problem of extract-
ing the coplanar clusters is to cover these points with k planes based only on the
available pairwise distances. Given a WSN graph G = (V,E), the points corre-
spond to the nodes in V and the pairwise distances are the edge set E. We refer
to the partitions {C1 = (V1, E1), C2 = (V2, E2), . . . , Ck = (Vk, Ek)} as coplanar
clusters. Each node included into a coplanar cluster is called an on-plane node
while the rest is called as off-plane nodes. In 2D, a variation of this problem
is presented as "Covering a Set of Points with a Minimum Number of Lines"
in [46]. The problem presented assumes that the coordinates of the points are
known. Even though with known positions, it is proved to be inapproximable in
[47]. Instead of the positions, we are only able to use pairwise distances. Consid-
ering that these distances might be inaccurate, it is conjectured that extracting
the coplanar clusters is also a difficult problem.

For checking the coplanarity of four nodes, we use Cayley-Menger determinant
(for the details on Cayley-Menger determinant usage, see Chapter 2). Trying to
extract the coplanar clusters by using noisy pairwise distance measurements have
two main challenges.

i) Even though the points are coplanar, because of the inaccurate distances,
Cayley-Menger determinant gives either positive or an imaginary number as
its result. Therefore, we set a volume threshold κ to accept the results less
than some value. As a result of experimental verification, this value is set as
6 ∗ ln(E + 1) where E is the error magnitude.
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ii) When the distance between a group of interplanar neighbors are too close,
they might be interpreted as coplanar because of the volume threshold. In
order to avoid this, also use a value called hop distance denoted by θ. The
edges whose values are less than θ are unavailable during the extension pro-
cess. This value is set to half the average edge weight, and increased by one
at each iteration during the extension phase of the coplanar clusters.

Setting the Volume Threshold κ

As the distance measurements might possibly be inaccurate, searching for a per-
fect plane, would be a waste of effort. Therefore, we set a threshold value, κ,
for the volume of the tetrahedron formed by the six distance measurements
among four nodes {a, b, c, d}. We say that a node subset {a, b, c, d} are copla-
nar if Vabcd ≤ κ, where Vabcd is the volume of the tetrahedron formed by a, b, c
and d as given by Cayley-Menger determinant.

After finding a set of four coplanar nodes {a, b, c, d}, we create a coplanar
cluster Ci = ({a, b, c, d}). Then we try to add more nodes into Ci by finding
other nodes that are also coplanar with three of the nodes inside that cluster.
This process is called extending that cluster. We add a node n into a cluster Ci

if Vnabc ≤ κ such that {a, b, c} ⊂ Ci. When there is no node left to be added
into Ci, we search for another cluster Cj 6= Ci, and then extend Cj as described
above. We continue finding and extending clusters until there are no more off-
plane nodes left. The whole operation is called extracting the coplanar clusters
or planar clustering.

While extracting the coplanar node clusters, the volume threshold value needs
to be set carefully. Otherwise, a coplanar cluster might be expanded to include
nodes belonging to a completely different coplanar cluster. This situation arises
particularly when coplanar clusters are deployed on many planes are very close
to each other. In this case, it becomes a major issue to tell whether the variations
in the volume of tetrahedra stem from the errors in the distance measurements
or picking nodes in the vicinity of the intersection of actually different planes.
In order to set a volume threshold, 10000 tests are run by placing four points
a, b, c, d in a unit square. We take the average difference between actual volume
Vact
abcd and the volume computed with the noisy distance measurements Vcomp

abcd . As
a result, the volume threshold κ is defined as 6 ∗ ln(1 + E) where E is the error
magnitude.

Figure 3.14 demonstrates three examples for the usage of volume threshold.
In Figure 3.14a, there are four coplanar nodes. The volume of the tetrahedron
formed by these nodes is zero. When the distance measurements are noisy, the
same tetrahedron might be formed differently, as seen in Figure 3.14b. Even
though the nodes in Figure 3.14b are not coplanar, they are treated as coplanar
because the volume of the formed tetrahedron is less than the volume threshold.
In Figure 3.14c, the volume of the tetrahedron formed by four nodes is bigger
than the threshold. Thus, the four nodes are interpreted as non-coplanar nodes.

41



(a) A tetrahedron whose volume is zero

(b) A tetrahedron whose volume is between zero and the volume
threshold

(c) A tetrahedron whose volume is greater than the volume thresh-
old

Figure 3.14: A coplanar group of nodes (a), a non-coplanar group of nodes,
interpreted as coplanar (b), a non-coplanar group of nodes, not interpreted as
coplanar (c)
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If a group of coplanar nodes are within the communication range of nodes from
another coplanar cluster, the pairwise distances between interplanar neighbors
might be too small. Thus, the volumes of the formed tetrahedra could be smaller
than that specified by the volume threshold, even though the nodes are in different
coplanar clusters. In Figure 3.15a, we see a planar deployment where there are
16 coplanar node clusters. Each different color indicates a coplanar cluster found.
The cluster that is pointed at by a black arrow consists of nodes from actually
three different coplanar node clusters. This kind of clustering leads to very high
offsets since all the nodes in the found cluster will be localized imprecisely both in
2D and in 3D. Figure 3.15 demonstrates the improper expansion from two angles
of view. In Figure 3.15b, three black arrows with numbers indicate three different
clusters. In Figure 3.15c, we see the same deployment from a different angle of
view.

(a)

(b) (c)

Figure 3.15: An example of inappropriate expansion from two angles of view

This type of extensions occur when the volume threshold is greater than zero
and the interplanar edges are used frequently. In order to limit the usage of
interplanar edges, we take the following precautions.
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• We sort the nodes by their connectivities and seek for a set of four coplanar
nodes among the nodes with the lowest connectivity. Picking the nodes
with smaller number of neighbors reduces the possibility to use interplanar
connections while extending a cluster. As seen in Figure 3.16, the node v
has more neighbors since it is closer to another cluster while node w has
coplanar neighbors only. The interplanar edges are indicated with dashed
lines and coplanar edges are indicated with straight lines.

• We ignore the edges with higher weights than a pre-defined value called
hop distance and denoted by θ. Notice that in Figure 3.16, the interpla-
nar edges are usually longer than the coplanar edges. Thus, by setting a
hop distance, we reduce the possibility of checking the coplanarity with
interplanar neighbors.

Interplanar edge

Coplanar edge

v
ww

Figure 3.16: Two nodes from a coplanar cluster, and their neighbors

Setting the Hop Distance θ

As well as the volume threshold, the hop distance is also very important to achieve
an accurate extraction of coplanar clusters. Let us explain the effect of θ with an
example. In Figure 3.17, we see two coplanar clusters, denoted by C1 and C2,
with ten nodes on each. The coplanar edges are denoted by straight lines and
interplanar edges are denoted by dashed lines. In Figure 3.17a, the hop distance
is set as 10 units. Therefore, while extending a cluster, the distance values greater
that 10 units are ignored in order to avoid the extension demonstrated in Figure
3.15. However, seven out of twenty nodes are interpreted as off-plane because of
insufficient connectivity, even though they are in a coplanar cluster. In Figure
3.17b, the hop distance is set as 20 units. In this case, only two nodes are
interpreted as off-plane. Notice that one of the nodes in C1 has three interplanar
neighbors, and it forms a tetrahedron whose volume is less than the volume
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threshold. Hence, it was included into wrong cluster. In Figure 3.17c, the hop
distance is set to 30 units. Because of dense interplanar edges, after a small
number of nodes from C1 is included into C2, the extension of C2 continues
including the nodes in C1.

Considering the deployment given in Figure 3.17, we can say that for this
specific deployment, 20 units is the best hop distance. However, without any
information on the deployment, setting the hop distance as an arbitrary value
may end up with extracting k′ � k coplanar clusters where k′ is the number of
extracted clusters and k is the number of actual clusters. An example of this
case is demonstrated in Figure 3.18 with a coplanar cluster with 1000 nodes.
Assume that all the nodes are deployed on a single plane i.e. there is only one
coplanar cluster, as seen in Figure 3.18a. In Figure 3.18b, we see the 2D view
of the coplanar cluster shown in Figure 3.18a. If we know that there is only one
coplanar cluster, then we are able to run 2D localization algorithm on that cluster
and determine the global positions of all nodes the network. Otherwise, we have
to extract the coplanar clusters. Considering the noisy distance measurements,
if we set a hop distance very small, then we end up with extracting excessive
number of clusters out of one. In Figure 3.18c, we see the extracted clusters out
of the original one when the hop distance is 10 units.
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(a) θ = 10

(b) θ = 20

(c) θ = 30

Figure 3.17: Filtering edges with respect to changing hop distance
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(a) Sensor nodes deployed on one plane

(b) 2D view of the coplanar cluster (c) Extracted clusters out of the original one

Figure 3.18: Planar clustering of a coplanar node set
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To sum up, there are two types of improper extensions that we have to avoid.

i) Over-extension: The extension of a coplanar cluster to include more than
one cluster, as seen in Figure 3.15.

ii) Short-extension: The extension of a coplanar cluster that covers only a tiny
part of the actual coplanar cluster, as seen in 3.18.

We use the volume threshold κ and the hop distance θ in order to avoid
improper extensions. κ is set once at the beginning and is not changed during
the extraction process. Finding the best value for θ leads to the extraction of
the actual coplanar clusters, which is very difficult if we do not have information
on the deployment. Therefore, we set the hop distance as half the average edge
weight in the WSN graph G = (V,E).

θ =

∑
(v,w)∈E

d(v, w)

2 ∗ |E|
where E is the edge set and |E| is the number of edges in the graph.

After one round of extensions, if there are still off-plane nodes, then we in-
crease θ by one to include more nodes into the coplanar clusters. When θ is
increased, that means some unavailable edges become available for use while ex-
tending clusters. The algorithm that we propose to find the 3D point formation
of a WSN graph G is presented in Section 3.4.2.

3.4.2 A Heuristic to Extract Coplanar Clusters

In this section, we give our heuristic algorithm to extract the coplanar node
clusters in a given WSN graph. We assume that the number of coplanar clusters
is unknown as well as the number of sensors in each cluster. We present our
heuristic as a two part algorithm in 3.19. In Figure 3.19a, we give the overall
algorithm to extract the coplanar clusters. The algorithm tries to extract coplanar
clusters by using the available pairwise distances in WSN graph G = (V,E) and
adds the extracted clusters into coplanar cluster set CSet. Since the algorithm
only modifies the global variables, it does not take any input. The threshold
value κ and the hop distance θ are set inside the algorithm. Figure 3.19b shows
the extension process of a coplanar cluster.

Remember that a coplanar cluster is denoted by Ci = (Vi, Ei). We present
the heuristic by assuming that as a node is placed into a coplanar cluster Ci, it is
added into the vertex set Vi, and the coplanar edges of this node are added into
the edge set Ei.

The algorithm given in Figure 3.19a uses the WSN graph G = (V,E) and the
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input: WSN graph G = (V,E)
output: Coplanar cluster set CSet
1: function ExtractClusters(G)
2: κ← 6 ∗ ln(E + 1) /∗E is the error magnitude∗/

3: θ ←

∑
(v,w)∈E

d(v, w)

2 ∗ |E|
/∗Average edge weight divided by two∗/

/∗E is the edge set, and |E| is the number of edges in G = (V,E) ∗/
4: OffPlane← V
5: sort the nodes in OffPlane by connectivity in ascending order
6: i← 0
7: for Each fully-connected {a, b, c, d} ⊂ OffPlane do
8: if Vabcd ≤ κ then
9: Ci ← {a, b, c, d}
10: ExtendCluster(Ci, OffPlane, θ, κ)
11: add Ci into CSet
12: i← i+ 1

13: end if
14: end for
15: while (OffPlane 6= ∅) AND (θ ≤ sensing range) do
16: θ ← θ + 1
17: for Each Ci ∈ CSet do ExtendCluster(Ci, OffPlane, θ, κ)
18: end while
19: end function

(a) Overall planar clustering algorithm

1: function ExtendCluster(Ci, OffPlane, θ, κ)
2: repeat
3: Newbies← ∅
4: for Each {a, b, c} ⊂ Ci do
5: for Each off-plane node d ∈ OffPlane do
6: if (d(a, d) ≤ θ) AND (d(b, d) ≤ θ) AND (d(c, d) ≤ θ) then

/∗d(a, d) denotes the Euclidean distance between a and d∗/
7: if Vabcd ≤ κ then add d into Newbies
8: Ci ← Ci ∪ Newbies
9: OffPlane← OffPlane \ Newbies
10: until Newbies = ∅
11: end function

(b) Extending a coplanar cluster

Figure 3.19: Heuristic to extract coplanar clusters

49



coplanar cluster set CSet which are defined as global variables. Notice that CSet
is empty at the beginning. In line 2, we set the value of the volume threshold. In
line 3, the hop distance is set. In line 4, we mark all the nodes in the vertex set
of WSN graph as off plane by adding them into the set called OffPlane. Then,
we sort the nodes in OffPlane with respect to the number of neighbors they have
from lowest to highest in line 5. In line 6, we set an integer value i as zero. This
value will be used as the indices of the found clusters later on. In order to find
a cluster, we iterate on each node quadruplet (a, b, c, d) in the off-plane node set
in line 7. We check if these four nodes form a tetrahedron with a volume smaller
than the volume threshold in line 8. If so, then we create a cluster in line 9.
Then, we call the function to extend a coplanar cluster ExtendCluster(Ci,
OffPlane, θ, κ) where Ci is the cluster created in line 9, OffPlane is the set of
off-plane nodes, θ is the hop distance set and κ is the volume threshold. After
extension of the cluster is done, we add the cluster into the coplanar cluster set
in line 11 and then increase i by one in line 12. After we find a cluster and finish
extending it, we search for a new cluster. When all the fully-connected off-plane
node quadruplets are iterated and no clusters are found, we move onto the next
phase. Because of the limited edges, it is possible that some of the nodes are left
out while finding and extending clusters. Therefore, from line 15 through line 18
we keep on extending the found clusters. This second extension phase continues
until either the increasing hop distance is equal to the sensing range or there are
no more off-plane nodes left. In line 16, we increase the hop distance by one unit.
Of course, the increment might be different if the nodes are distributed into a
cube with a different volume. After updating the hop distance, we iterate on and
extend each coplanar cluster in the cluster set in line 17.

The extension process of a coplanar cluster is presented in Figure 3.19b. The
algorithm takes four parameters. Namely, a coplanar cluster to be extended Ci,
the set of off-plane nodes OffPlane, the hop distance θ and the volume threshold
κ. We search for off-plane nodes that is coplanar with any three of the nodes in
the coplanar cluster from line 2 through line 10. In line 3, we create a set called
Newbies to store the new nodes that will be added into the coplanar cluster. In
line 4, we iterate on each node triplet (a, b, c) in the coplanar cluster Ci. In line 5,
we iterate on each off-plane node d and we check if d is closer to a, b and c than
the hop distance in line 6. We assume that if a pairwise distance is not available
i.e. two sensor nodes cannot sense each other, the distance value is infinite. If all
three pairwise distances between d and a, b, c are less than θ, then we check if
the volume Vabcd is less than the allowed volume threshold κ. If all the conditions
are satisfied, then we add l into Newbies in line 7. When all the triplets in the
cluster are iterated, we add the found coplanar nodes into coplanar cluster Ci in
line 8. We also remove them from off-plane node set in line 9. The algorithm
runs until there are no new nodes to add into the coplanar cluster that is being
extended.

Remark 5 In the algorithm presented in Figure 3.19b, it might seem redundant
to iterate on each triplet in line 4 at each iteration of extraction. However, the
new nodes added into the coplanar cluster in line 8 might have common off-plane
neighbors with a node that is already in the cluster. Since we do not want to skip
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that off-plane neighbor, we iterate all the triplets all over again.

3.4.3 Experimental Evaluation of Planar Clustering

In this section, we present the experimental results on the performance of CBL,
run after the heuristic that we propose in Figure 3.19b with the same setup used in
Section 3.3.3. We have shown that CBL localizes the given network more precisely
in Section 3.3.3. In this section, we assume that the clustering information is not
present to test the proposed heuristic to extract coplanar clusters presented in
Figure 3.19.

First, planar clustering algorithm is run to extract coplanar clusters and then
CBL is used to localize the network. We present the results of experiments that we
use planar clustering before CBL with title PC + CBL. The charts where only
mere quadrilateration is run are entitled as Quadrilateration. In Figure 3.20, we
see the average offsets and recalls of CBL and quadrilateration when the clustering
information is not available. Figure 3.20a presents the average offsets and Figure
3.20b presents the recall percentages of two algorithms. The results show us
that when CBL is used with the proposed heuristic, we prefer quadrilateration to
localize the network. There is much more room for improvement of this algorithm.
We leave finding the hop distance and volume threshold for an accurate extraction
of the coplanar clusters as an open problem.
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Figure 3.20: Average offsets (a) and recall percentages(b) of CBL and quadrilat-
eration when the information on coplanar clusters is not available
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Chapter 4

Conclusion

In this chapter, we give our concluding remarks and future research directions for
range-based localization of a 3D WSN that we know to follow a deployment on
the planar surfaces. In Section 4.1, we give the related work. In Section 4.2, we
discuss our work and give the future research topics that we would like to study
on.

4.1 Related Work

Range-based localization is basically a graph embedding problem [48], which has
been shown to be strongly NP-Hard for all dimensions [36, 49].

In 2004, Aspnes et al. [50] showed that the problem is also NP-Hard for unit-
disk graphs . Eren et. al. [28] proposed trilateration, which is a polynomial time
algorithm that can be used to localize a WSN. However, trilateration needs exact
range measurements to function precisely, which is not the case in real-world
due to device errors or environmental noise. The environmental noise causes the
measured distances to be slightly different than the original distances. Evrendilek
and Akcan [37] showed that localization through trilateration is NP-Hard when
the distance measurements are imprecise.

The imprecise distance measurements cause a node to be localized far from
its original position. This positional offset accumulates at the latter stages of the
localization. In order to reduce this type of ambiguities, Akcan and Evrendilek
[43] used triangles whose angles are less than a certain value, referred to as robust
triangles.

Aspnes et. al. [17] investigated the localization and localizability of a network
in 2010. They defined the term global rigidity and showed that it is sufficient and
necessary condition for a WSN graph to be localized in 2D. Even though global
rigidity is defined for all dimensions, the sufficient and necessary conditions for a
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WSN to be localized in 3D have not been found yet.

If the sensor nodes estimate their own positions, i.e. self localization is per-
formed, the intractability of the problem signals an excessive amount of computa-
tion, potentially depleting the batteries of the self-localizing sensors. Therefore,
not only localizing the sensors, but also completing the process with less number
of computations is essential. Energy efficiency can be achieved either by reduc-
ing the energy spent per node [51, 52, 53], or by reducing the total number of
computations during the localization process [17, 28, 54]. A review of different
approaches of node localization discovery in wireless sensor networks can be found
in [9].

We study the WSN localization problem using clustering, which is an efficient
way to approach the problem [55]. In 2000, Amis et. al [56] present a heuristic
to form multi-hop clusters in a dynamic WSN. In 2002, Chatterjee et al. [57]
proposed a weighted clustering algorithm, that clusters the nodes in a WSN based
on the neighbor distances. In 2004, Demirbas et. al.[58] proposed a clustering
method named solid-disc clustering that works in constant time and similar to
[57], it is based on the Euclidean distances. In 2008, Zainalie and Yaghmaee
[59] designed an algorithm that clusters the sensor nodes with maximum number
of nodes in each cluster. In 2008, Lederer et. al. [60], developed an algorithm
that first partitions the sensor field into Voronoi cells with respect to the apriori
given landmark nodes and then extract the combinatorial Delaunay complex as
the dual complex of the landmark Voronoi diagram and embed the combinatorial
Delaunay complex as a structural skeleton. In 2009, Yue et. al. [61] followed
the work done in [60] and improved the localization quality by a landmark node
selection algorithm.

In 2012, Yao et. al. [62] studied the localization of a WSN in 3D, in which
sensors are deployed on surfaces. Different than our work, they use a layered
approach, that is based upon the nodal height measurements. Cucuringu et. al.
[63] developed a non-incremental non-iterative anchor-free algorithm for localiz-
ing sensor networks in 2D, which is experimentally shown to be robust to noisy
distance measurements.

We use an extra constraint while clustering, based on the observation that the
sensor nodes usually deploy on surfaces that can be modeled using planes. In line
with the method proposed by Akcan and Evrendilek [4, 43] in 2013 which uses
dual wireless radios, our work localizes the formed structures instead of localizing
each node one by one.

4.2 Discussion

In this section, we conclude this thesis by discussing our contributions to the
topic and pointing at the future research directions.

54



4.2.1 Summary of Contributions

This thesis addresses range-based wireless sensor network (WSN) localization
problem in 3D where the sensor nodes sit on planar surfaces to form rigid 2D
structures. Figure 4.1 shows the scope of this thesis in the state-of-art. We work
in the intersection of 2D and 3D localization and make a contribution to 3D
localization.

Localization
Range-based

Range-free

2D

3D

Figure 4.1: This thesis in the state-of-art

The summary of our contributions can be listed as follows.

• Our main contribution is the proposed algorithm for range-based WSN
localization in Section 3.3, CBL, that aims to exploit the structural infor-
mation where the sensor nodes are deployed on planar surfaces in a 3D
environment. CBL can be used as an extension of any localization algo-
rithm.

• We have shown that if the information on the coplanar clusters is not
present, extracting such information is very much needed.

• Based on the observation above, we have defined the problem of extract-
ing the coplanar clusters and presented a first-attempt heuristic to solve
the problem in Section 3.4. Even though our heuristic fails to extract the
information accurately, we have pointed out two parameters, the volume
threshold κ and the hop distance θ, that need to be set carefully.

• We have defined a metric called planarity factor to indicate how planar is
the deployment of the sensor nodes.
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4.2.2 Future Research Directions

For our future research, we would like to investigate the following.

• The most obvious research direction is to discover the relationship among
the planarity factor µ, the volume threshold κ and the hop distance θ.

• Another research direction is to investigate the theoretical bounds of the
coplanar cluster extraction. We would like to answer the following questions
about the problem:

– Is the problem NP-Hard?

– Is the problem approximable?

– Does the information about the planarity factor change the difficulty
of the problem?

– Given the pairwise distances, can we find values for the volume thresh-
old κ and the hop distance θ based on the average connectivity and
the average edge weight of the WSN graph?

• We would like to use CBL with different range-based algorithms than tri-
lateration and quadrilateration to find out if CBL improves the quality of
localization with other algorithms.
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