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Economics, İzmir, 35330, Turkey
3 Department of Physics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město,
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Abstract.
We study the discrete-time quantum walk on the line with a single phase

impurity. The spread and localisation properties of discrete-time walks initialized
at the impurity site are affected by the appearance of bound states and their
reflection symmetry. Here, we measure localisation by means of an effective
localisation length and an effective participation ratio, which are obtained by
averaging over all eigenstates and over all initial states, respectively. We observe
that the reduced coin system dynamics undergoes oscillations in the long-time
limit with the frequencies determined by the sublattice operator and the bound
state quasi-energy differences. The oscillations give rise to non-Markovian
evolution, which we quantify using the trace distance and entanglement based
measures of non-Markovianity. Indeed, we reveal that the degree of the non-
Markovian behaviour is closely related to the emergence of bound states due to
the phase impurity. We also show that the considered measures give qualitatively
different results depending on the number and symmetries of supported bound
states. Finally, comparing localisation and non-Markovianity measures, we
demonstrate that the degree of non-Markovianity becomes maximum when the
walker is most localised in position space.
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1. Introduction

The theory of open quantum systems provides the necessary means to study and
characterize the dynamics of quantum systems that are in an inevitable interaction
with their surrounding environments [1]. It is well known that although closed systems
evolve in time unitarily, dynamics of open quantum systems is no longer unitary due
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to the coupling to their environments. Such an interaction between the principal
open system and the environment typically results in decoherence of the principal
system, resulting in the loss of characteristic quantum properties such as coherent
phase relations. From the standpoint of dynamical memory effects, time evolution
of open quantum systems can be classified as exhibiting Markovian (memoryless) or
non-Markovian behaviour. As a consequence of the increasing experimental control
over quantum systems and the development of reservoir engineering techniques in
recent years, the study of quantum non-Markovianity has become a significant line
of research [2, 3]. Various different methods have been introduced for quantifying
and characterizing the non-Markovian behaviour in the dynamics of open quantum
systems. Among others, the approaches based on the information dynamics between
the open system and its environment have become prominent [4–8] since when
information flows from the environment back to the system throughout the dynamics,
the future states of the open system might depend on its earlier states.

Quantum walks have been proposed as the quantum counterpart of the classical
random walks [9] and they attracted considerable attention in the first place due to
their quadratically faster spreading rates compared to their classical analogues [10].
In nearly two decades, the subject has gained its place in quantum computation as a
substantial field of research on both the theoretical and the experimental sides [11]. It
turned out, for example, that quantum walks are promising resources for developing
new quantum algorithms [12] and are universal for quantum computation [13]. They
also provide a powerful framework for simulating physical systems [14, 15], quantum
state transfer [16–20] and for examining the topological quantum matter [21–25]. The
open system dynamics of quantum walks on the other hand has also been extensively
studied in existence of various noise channels [26–29]. One of the main consequences
of these studies is that decoherence may supress the spreading rate and give rise to
a quantum to classical transition in the probability distribution of the walker. Some
specific types of noise may even lead to Anderson localisation [30]. Many of these
theoretical works are supported by experiments performed over various physical setups
as well, including ultracold atoms in optical lattices [31], trapped ions [32,33], photons
in a fibre loop [34] and waveguide lattices [35].

The connection between localisation and non-Markovianity has been studied in
different settings, such as atomic impurities embedded in a disordered coupled cavity
array [36], in a quasi periodic Fermi lattice [37] and in a Bose Hubbard lattice [38].
These studies show that non-Markovian memory effects emerge as excitations localise
in the vicinity of the impurity. In quantum walks, non-Markovian effects can be
analysed without considering an extra external environment and focusing on the coin
space reduced dynamics where the spatial degree of freedom is traced out [39]. In
that case, the position space itself is treated as the environment of the coin space.
Even though this reduced dynamics is known to be non-Markovian for the standard
quantum walk, the presence of decoherence in the form of broken links wipes out the
non-Markovian behaviour and gives rise to a Markovian process. On the other hand,
it has also been shown that the non-Markovian behaviour can be enhanced when the
walker is subjected to some specific static or dynamic disorder [40]. In this paper, we
analyse non-Markovianity for the quantum walk on the line with a single impurity at
the origin. In particular, we examine the relationship between non-Markovianity and
emerging bound states depending on the impurity’s phase angle. After solving for
the bound states by a transfer matrix approach in section 2, we focus on the effects
of these bound states on the system’s evolution and investigate the reduced coin



Non-Markovianity and bound states in quantum walks with a phase impurity 3

dynamics from the point of view of quantum non-Markovianity. We characterize the
localisation in position space using the properties of bound states and participation
ratio of the probability distribution of quantum walks. We compare the trends in
these quantities with those from two non-Markovianity measures of the reduced coin
dynamics to reveal the connection between the phenomenon of bound state localisation
and non-Markovianity. We point out the differences between the outcomes of the two
non-Markovianity measures, which are based on state distinguishability and system-
ancilla entanglement, in relation with the emergence of bound states. Our results
for the localisation and non-Markovianity in comparison with each other follow in
section 3. We present a discussion of our results and conclude in section 4.

2. Quantum walk with a phase impurity

In analogy to the classical random walk, a single step Ŵ for the quantum walk on
the line is defined to include two consecutive unitary operations, a coin-toss Ĉ and
a conditional translation T̂ , which is given in the form Ŵ = T̂ Ĉ [9–11]. The time
evolution therefore takes place in the discrete bipartite coin-position Hilbert space
Hc ⊗Hp spanned by the states |c, n〉, where c ∈ {↑, ↓} describes the two coin states
being the eigenstates of the Pauli operator in z-direction, σ̂z, and n is an integer
labelling the discrete sites that the walker can be found. Thus, t steps of the walk
are realized by applying Ŵ repeatedly to an arbitrary initial state |Ψ0〉 and the total
state of the system at step t can be written as

|Ψt〉 = W t|Ψ0〉 =
∑
c,n

ac,n(t)|c, n〉, (1)

where ac,n(t) are complex coefficients belonging to the appropriate coin and position
states at time t. The probability to find the walker at any site n after t steps is
accordingly given as Pn(t)=

∑
c |ac,n(t)|2. The coin operator can preferably be chosen

as any unitary operator in SU(2). Here, we will restrict it to the rotations about
x-axis by an angle of 2θ ∈ [0, 4π], which are written as

Ĉθ = e−iθσ̂x ⊗ ÎN (2)

where σ̂x is the Pauli-X operator and ÎN =
∑
n |n〉〈n| is the identity operator acting

on the position space with dimension N . As it is seen, the coin operator only affects
the coin state and keeps the position state intact. The conditional translation operator
on the other hand moves the walker to the left or to the right depending on the coin
state shown here by

T̂ =
∑
n

[
|↑〉〈↑| ⊗ |n+ 1〉〈n|+ |↓〉〈↓| ⊗ |n− 1〉〈n|

]
, (3)

and thus entangling the coin and the position degrees of freedom in general [41].
The walk can also be considered as a stroboscopic simulation of a quantum

evolution generated by an effective Hamiltonian Ĥθ such that Ŵθ ≡ exp (−iĤθ), where
we assume that the time required for taking one step and ~ are both set to unity [21,22].
It is well-known that the spectrum of this Hamiltonian has a band structure with a
period of 2π, which arises from the discrete time-translation symmetry of the walk,
i.e., the Hamiltonian is in fact a representative of a recurring single-step evolution
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(see figure 2 (a)). The energy eigenvalues E here are called quasi-energies, similar
to the quasi-momentum k showing up due to discrete spatial translation symmetry
of Ŵθ in the standard quantum walk by a unit lattice spacing. The standard walk
Hamiltonian becomes diagonal in this quasi-momentum basis via the transformation
|c, k〉 = 1√

2π

∑
n e−ikn|c, n〉 with k ∈ [−π, π] and one obtains the dispersion relation

cosE(k) = ± cos θ cos k, where k is in units of ~ over the lattice spacing. Two quasi-
energy bands associated with the coin states are symmetric about E = 0 and the band
gap closes for θ = 0 or π. Any pair of eigenstates with a quasi-energy difference of π
can be associated with one another via the sublattice operator

Ŝ = Î2 ⊗
∑
n

(−1)n|n〉〈n|, (4)

which is both unitary and Hermitian, i.e., Ŝ2 = Î2N [42]. Thus, for each eigenstate
|E〉 of Ĥθ with quasi-energy E in a given band, there exists another eigenstate Ŝ|E〉
with quasi-energy E + π in the other band, which can actually be deduced directly
using (4),

ŜŴθŜ = −Ŵθ ⇒ ŜĤθŜ = Ĥθ + π. (5)

The sublattice operator has two degenerate eigenvalues ±1 such that eigenstates
corresponding +1 (−1) parity, which we will denote by |Se〉 (|So〉), occupy only even
(odd) labelled sites in the position space. These eigenstates can also be written in
terms of the symmetric (for +1) and anti-symmetric (for −1) superpositions of |E〉
and Ŝ|E〉 such that

|Se,o〉 = |E〉 ± Ŝ|E〉. (6)

Note that the step operator Ŵθ transforms |Se〉 to |So〉, or vice versa, up to an overall
phase of e−iE . Therefore, if one initializes the walk with either of |Ψ0〉 = |Se,o〉, the
total state will oscillate from one to the other forever, i.e., step operator moves the
state back and forth between two sublattices. It is worth mentioning here that this
periodic oscillation with a period of 2 will play an important role in our discussion of
non-Markovianity.

We will study the non-Markovian behaviour from the point of view of the coin sub-
system, which will be considered as an open system with the position space interacting
with it as the environment [39]. Therefore, the time evolution of the coin density
matrix will be investigated. Since the stationary states of the standard quantum walk
are product states of the form |Ek〉 = |χk〉⊗ |k〉, the reduced pure coin density matrix
can be written as ρcoin

k = |χk〉〈χk| = (I2 + ~rk · σ)/2, where

~rk =
1

sinE(k)
(cos k sin θ,− sin k sin θ,− sin k cos θ). (7)

We consider a modified version of the standard quantum walk such that whenever
the walker passes through the origin n = 0, it acquires a phase of eiφ as illustrated
in figure 1. This effect can be introduced to the step operator by rewriting it as

Ŵ ′θ = T̂ ĈθP̂ ≡ e−iĤ
′
θ to include the phase operator

P̂ = Î2 ⊗
∑
n

eiφn |n〉〈n|, (8)

where φn = φδn,0 and δn,m denotes the Kronecker delta function. This model was

studied by Wojcik et al. and the bound eigenstates of the double step operator Ŵ ′2θ are
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obtained [43]. We will provide an alternative solution for the stationary bound states
in this model for the single step operator Ŵ ′θ using a transfer matrix approach [44].
We note that a double step operator would be useless in our case since it restricts the
evolution to one of the sublattices, and hence, no oscillation takes place between |Se,o〉
and |So,e〉 contrary to the discussion we will have, where these oscillations lie at the
center of non-Markovian behaviour.

The phase operator P̂ breaks the translation invariance of the step operator Ŵ ′θ
in the considered model. However, we can still employ the reflection symmetry which
is introduced by the reflection operator

R̂ = σx ⊗
∑
n

| − n〉〈n|, (9)

in finding the stationary states of Ĥ ′θ as follows. Similar to the sublattice operator, R̂

also has the property R̂2 = Î2N and it possesses two degenerate eigenvalues ±1. Also,
by considering the commutation relations that [R̂, Ĥ ′θ] = 0 = [R̂, Ŝ], eigenstates of Ĥ ′θ
can be labelled by a definite ± parity, i.e. R̂|E±〉 = ±|E±〉, and application of Ŝ does
not change this parity and it yields the eigenstates with quasi-energies E± + π since
the condition (5) is still valid for Ŵ ′θ. These energy eigenstates can be written in the
component form

|E±〉 =
∑
n

α±n |↑, n〉+ β±n |↓, n〉, (10)

where the coefficients obey the constraint α±−n = ±β±n as a direct consequence of
the reflection symmetry. Thus, |E±〉 can be constructed by knowing only half of
their components. Also, by using Ŵ ′θ|E±〉 = exp(−iE±)|E±〉, one can obtain the
recursion relations between these coefficients and rearrange them in the following way(

α±n+1

β±n

)
= T (φn)

(
α±n
β±n−1

)
. (11)

Here, the matrix T (φn) is called the transfer matrix for site n and it connects the
adjacent coefficients in (10) (See figure 1), which is given in general as

T (φn) =

(
ei(E

±+φn) sec θ −i tan θ

i tan θ e−i(E
±+φn) sec θ

)
, (12)

with the inverse T−1(φn) = σxT (φn)σx. Reflection symmetry implies T (φ−n) =
σxT

−1(φn)σx = T (φn) and thus φn = φ−n. Since φn = φδn,0 in our model, we set
T (φn = 0) = T for n 6= 0. Now, the problem of finding the stationary states is boiled
down to determine a suitable pair (α±1 , β

±
0 )T in (10) satisfying the reflection property.

We can look for stationary states whose coefficients as simultaneous eigenvectors of
the transfer matrices must satisfy

T (φ)σx

(
α±1
β±0

)
=±

(
α±1
β±0

)
and T

(
α±n
β±n−1

)
=λ

(
α±n
β±n−1

)
(13)

such that (
α±n+1

β±n

)
= λn

(
α±1
β±0

)
, n ≥ 1. (14)

In the infinite chain limit, vanishing boundary conditions impose that |λ| < 1 for
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Figure 1. Schematic representation of a bound state and its probability
distribution over the position space. The walker acquires a phase eiφ due to the
impurity at the origin. As given in (11), the coefficients (αn, βn−1) are related
to each other by transfer matrices T and T (φ) for n 6= 0 and n = 0, respectively.
The localisation length l is determined from eigenvalue λ of the transfer matrix
T . Blue arrows represents the coin state in the phase space and their lengths are
drawn proportional to Pn.

bound states and matching the two forms(
α±1
β±0

)
= C(E±)

(
sin θ

sin(E±)− i
√

sin2 θ − sin2(E±)

)
,(

α±1
β±0

)
= C(E±) sin θ

(
ei(E

±+φ)

±e±iθ

)
(15)

gives the quasi-energy

E± = cot−1

(
±1− sin(θ ∓ φ) sin θ

sin θ cos(θ ∓ φ)

)
, (16)

provided that

sin (E± + φ∓ θ) = ±
√

sin2 θ − sin2E±

sin θ
. (17)

The normalization constant is given by |C(E±)|2 =
(
1− λ(E±)2

)
/2 with the transfer

matrix eigenvalue

λ±=λ(E±)=
1

cos θ

(
cos(E±)−

√
sin2 θ−sin2(E±)

)
. (18)

It is seen that |λ±| ≤ 1 provided that | sinE±| ≤ | sin θ|. When a solution with definite
parity and an eigenvalue −θ < E± < θ exists, then there is a sublattice symmetric

solution, which has λ± → −λ± and

(
α±1
β±0

)
→ Ŝ

(
α±1
β±0

)
, with the same parity and

shifted eigenvalue −θ+π < E± < θ+π. The combinations of the sublattice symmetric
pairs of reflection symmetric states, for example, give

∣∣S+
e,o

〉
= |E+〉 ± |E+ + π〉 which
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(a)

(c)

(b)

Figure 2. (a) Energy band diagram of the walk (θ = π/4) as a function of
the phase parameter φ, where φ = 0 corresponds to the standard quantum walk.
The analytic result given in (16) is drawn for reflection symmetric (blue dashed)
and anti-symmetric (red dot-dashed) bound state quasi-energy values, where
the numerical values (black dots) are omitted since they exactly coincide with
the analytic result. (b) Inverse localisation length of reflection symmetric (blue
dashed) and anti-symmetric (red dot-dashed) energy eigenstates and their sum
as the effective inverse localisation length (solid black) as a function of φ, which
is used as a measure of localisation. (c) Reduced coin density matrix parameter
rx for reflection symmetric (blue dashed) and anti-symmetric (red dot-dashed)
bound states as a function of φ gives average value about which oscillations in the
reduced density matrix take place.

are supported on even/odd sites. Similar combinations
∣∣S−e,o〉 exist for reflection anti-

symmetric bound states.
The reflection symmetric bound states exist only in the interval φ ∈ (0, 2π − 2θ)

and the reflection anti-symmetric bound states exist for φ ∈ (2θ, 2π). The quasi-
energies are shown with blue dashed and red dot-dashed lines in the quasi-energy
diagram as a function of φ in figure 2(a) for θ = π/4, which corresponds to balanced
walks. The numerical solution is performed for a large lattice with periodic boundary
conditions and the results are indistinguishable on this scale from the quasi-energies
of the bound states determined from the eigenvalues of the transfer matrix.

We would like to quantify the localisation in our model as a function of the
impurity phase φ. For this purpose one of the quantities we calculate is an effective
inverse localisation length `−1

eff which is the sum of the inverse localisation lengths over
all energy eigenstates. Since the localisation length diverges for an extended state in
the infinite chain limit, extended states’ contribution to `−1

eff also vanishes in that limit
and we are left with only the inverse localisation lengths of the bound states given by
the eigenvalues of the transfer matrix, i.e. `−1 = lnλ. Therefore, the sum of `−1 over
all stationary states is determined by the number of bound states and their localisation
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lengths. The total `−1
eff (solid black curve) is plotted in figure 2(b) as a function of

φ, where the individual contributions of symmetric (blue dashed) and anti-symmetric
(red dot-dashed) bound states are also shown. The localisation length of a bound state
is minimum when its quasienergy is at the center of the band gap (see (18)), so that
the reflection symmetric and anti-symmetric bound states become maximally localised
when φ = 3π/4 and φ = 5π/4, respectively. The total `−1

eff is symmetric about φ = π
where it attains its maximum value. Although it monotonically decreases towards
both sides of φ = π, kinks in `−1

eff occur at φ = π/2 (φ = 3π/2) at the (dis)appearance
of new bound states as φ increases from 0 to 2π.

Unlike the homogeneous quantum walk, in the presence of phase impurity the
energy eigenstates become entangled in the composite coin-position space in this model
and ρcoin becomes a mixed state. Furthermore, the y- and z-components of the density
matrix vector ~r become zero for all energy eigenstates (see (7) for the standard walk).
Here, we note the x-components of the reflection symmetric and anti-symmetric bound
states

rx,± = ±1

2

[
2λ± cos

(
E± + φ∓ π

4

)
+
(
1− λ2

±
)]
. (19)

As φ changes, rx changes from +1 to −1 for both the symmetric and anti-symmetric
bound states over the regions of their existence as shown in figure 2(c). (Since
the action of the unitary sublattice operator on the coin space is trivial, sublattice
symmetric bound state give the same ρcoin.) At φ ∼ 0.6π and φ ∼ 1.4π, the difference
in rx,± becomes zero, which means the two coin states become indistinguishable for
bound states of either parity.

3. Localisation & Non-Markovianity

3.1. Bound state localisation

We commence this section by presenting our results for time evolving states in balanced
quantum walks (θ = π/4) making connection to the stationary bound states obtained
in the previous section. In general, the dynamical properties resulting from the
evolution of the quantum walk depend on the initial state. We consider initial
states such as |Ψ0〉 = |ψc〉 ⊗ |0〉 which are localised at the origin, for examining
the effects due to the existence of bound states around the origin. Here, |ψc〉 is the
initial coin state and the reflection symmetry of |Ψ0〉 is defined by the symmetry
of |ψc〉 under rotation by π about the x-direction. For our purposes, we choose to
concentrate on the reflection symmetric and anti-symmetric initial states whose coin
subsystems are the eigenstates of σx, i.e., the initial states |ΨS〉 = 1√

2
[|↑〉 + |↓〉] ⊗ |0〉

and |ΨA〉 = 1√
2
[|↑〉−|↓〉]⊗|0〉, respectively. Time evolution starting from these states

yields symmetric probability distributions about the origin independent of the presence
of a phase impurity. For example, in case of |Ψ0〉 ≡ |ΨA〉, figure 3(a) shows the
probability distribution in position Pn(t) at t = 300 for all φ values. The significance of
the reflection anti-symmetric bound state for a given φ becomes clear when we compare
the degree of localisation and the overlap of the initial state with the corresponding
bound states |E−〉. For an arbitrary initial coin state |ψc〉 = cos γ2 |↑〉 + eiη sin γ

2 |↓〉,
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(a)

(c)

(b)

Figure 3. (a) The probability distribution Pn(t) of the walk after 300 steps for
the reflection anti-symmetric initial state |ΨA〉 as a function of the impurity phase
angle φ. (b-c) Depending on the overlap Fbound

−π/2,0 between |ΨA〉 and bound states,

the probability distribution can have a peak or a dip at the starting site of the
walker.

this overlap is given by

F bound
γ,η =

∑
E∈{Ebound}

|〈E|Ψt〉|2

=
(2− λ2

+ − λ2
−)− (λ2

+ − λ2
−) sin γ cos η

2
(20)

For our selection of initial coins, (20) simplifies to F bound
±π/2,0 = 1− λ2

±. The localisation

region apparent in figure 3(a), when φ ∈ (π/2, 2π), is directly related with F bound
−π/2,0

shown in figure 3(b). The walker is most localised when the overlap becomes maximum
at φ = 5π/4. Similarly, in the interval φ ∈ (0, π/2) the overlap with the bound
subspace is zero and the probability distribution has a dip around the initial site.
Four representative probability distributions for different φ values are shown in detail
in figure 3(c). For the standard quantum walk φ = 0, the probability distribution is
uniform in the middle region and there are two peaks near the edges which move
in opposite directions with constant speed. For any φ, the resulting probability
distribution spreads balistically in the position space, i.e., it’s variance is proportional
to t2. However, the proportionality constants may vary depending on the amount of
localisation, and hence, on φ.

The average probability distribution of the walk 〈Pn(t)〉 is obtained by averaging
Pn(t) over all possible initial coin states. However, we observe that we get exactly the
same result by only taking into account any pair of orthogonal coin states. This is due
to the fact that the average probability distribution resulting from two walks starting
with any two orthogonal coin states at the origin is equal to the one resulting from the
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evolution of a completely mixed coin state. (The resulting distribution is symmetric
since the completely mixed coin state at the origin is reflection invariant.) Also, for
the long-time limit, the bound states stay in the vicinity of the origin, whereas the
extended states get spread over the infinite position space yielding probabilities going
to zero. Based on these facts, we can obtain an analytic expression to estimate the
long-time behaviour of 〈Pn(t)〉 by projecting the evolved state onto the bound subspace
and averaging the corresponding probabilities over two orthogonal initial states, such
that

〈P0〉 =
1

2

[
(1− λ2

+)2 + (1− λ2
−)2
]

and (21)

〈Pn〉 =
1

4
[λ

2|n|−2
+ (1 + λ2

+)(1− λ2
+)2

+ λ
2|n|−2
− (1 + λ2

−)(1− λ2
−)2], (22)

where n 6= 0 and non-zero probabilities appear for even (odd) sites only after even
(odd) number of steps. To quantify the localisation, we utilize the participation ratio
of the averaged probability distribution, which is given by

PR =
∑
n

〈Pn(t)〉2 . (23)

For a uniform probability distribution over N sites, PR yields its minimum value
∼ N−1. At the other extreme of localisation at one site, PR takes its maximum
value of one. In figure 4, the numeric results for the PR (green solid curve) and 〈P0〉
(orange dashed curve) for 150 steps are represented. Both of them is calculated by
using the average probability distribution 〈Pn(t)〉 which is averaged over a pair of
orthogonal initial coin states as we mentioned before. We also provide the analytic
prediction of PR (black dots) for the long-time behaviour using (22) and (23) which
slightly differs from its numerical simulation, whereas we omitted that of 〈P0〉 for
clarity since it exactly fits to the numerical data. First of all, both curves exhibit
similar behaviour with respect to φ and 〈P0〉 pointing out that localisation occurs
around the impurity site. They get maximized at φ = π and vanish at the standard
quantum walk limit φ = 0, 2π. The kinks at φ = π/2, 3π/2 are due to bound states
appearing or disappearing in this model as discussed previously. This behaviour
matches exactly that of the effective localisation length determined by the bound
states in figure 2(b), which consequently shows that the localisation properties of the
walk in the long-time limit is determined by the number and character of the stationary
bound states. The slight difference between the numerical and analytical results of PR
stems from the finite number of time steps in the numerical simulation and the fact
that contribution from the extended states is completely excluded in the analytical
expression. As a consequence of this, the numerical data stays above the analytical
prediction. For example, as we approach the standard walk case, the wavefunction for
a finite-step walk stays relatively “localised” in comparison to that of the long-time
case which spreads infinitely over the position space without any localisation. Hence,
the numerical prediction will become zero in the standard walk in this limit as well.
The very good agreement between the numerical and analytical results in figure 4
implies that the effect of the extended states on the PR is negligible even after 150
steps.
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num
eric

analy
tic

PR

Figure 4. The numerical results for the participation ratio (PR) and the average
probability at the origin 〈P0〉 with respect to φ after 150 steps. The analytical
prediction for PR (black dots) is also provided.

3.2. Non-Markovianity

We now turn our attention to the non-Markovian behaviour of the dynamics of the
coin for the quantum walk with a phase impurity. As mentioned before, we are
interested in the effects of localised bound states and their symmetry on the degree
of non-Markovianity of the reduced coin evolution. In order to quantify the amount
of memory effects in the open system dynamics from different perspectives, we will
comparatively study two well-established measures of quantum non-Markovianity that
are based on the information flow dynamics between the coin and the spatial degrees
of freedom.

Let us first briefly discuss how to characterize the non-Markovian nature of an
open system evolution and identify the existence of possible memory effects in the
dynamics. Assume that we have a quantum map Λ(t, 0), i.e., a completely positive
trace preserving (CPTP) map describing the evolution of the open quantum system.
The property of divisibility implies that divisible maps satisfy the decomposition rule
Λ(t, 0) = Λ(t, s)Λ(s, 0), where Λ(t, s) is a CPTP map for all s ≤ t. Markovian or
so-called memoryless dynamical maps are recognized as the ones that satisfy this
decomposition rule. On the other hand, when the divisibility rule is violated, i.e.,
when Λ(t, s) is not a CPTP map or when it does not even exist, then the dynamical
map Λ is said to be non-divisible and the evolution it describes non-Markovian. The
concept of divisibility can also be discussed in the context of discrete dynamics, such
as quantum walk, where t, s ∈ N [45].

The first non-Markovianity measure that we utilize in our work is known as
Breuer-Laine-Piilo (BLP) measure [8] which is based on the idea of distinguishability
of two open system states under a given dynamical evolution. In this approach,
the changes in the distinguishability between two arbitrary initial states of the open
system during the dynamics are interpreted as the information flow between the open
system and its environment. In particular, if distinguishability between the initial
states decreases monotonically in time throughout the evolution, the dynamics is
said to be Markovian, since in this case information flows from the open system to
its environment in a monotonic fashion. However, if distinguishability temporarily
increases during the dynamics, then this is understood as a back-flow of information
from the environment to the open system giving rise to non-Markovian memory effects.
The distinguishability of two systems can be quantified through trace distance between
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their density matrices ρ1 and ρ2 as

D(ρ1, ρ2)=
1

2
||ρ1−ρ2||1 =

1

2
Tr
[
(ρ1−ρ2)†(ρ1−ρ2)

]1/2
(24)

which acquires its maximum value of one, when the states ρ1 and ρ2 are orthogonal.
At this point, we should stress that since CPTP maps are contractions for the
trace distance, BLP measure vanishes for divisible maps, resulting in a memoryless
evolution. However, we also emphasize that it is possible for trace distance to
monotonically decrease for certain non-divisible maps as well. Therefore, as is well
known in the recent literature, even though widely used as a measure for non-
Markovianity on its own, BLP measure is actually a witness for the non-divisibility of
quantum dynamical maps. The BLP measure can be expressed in discrete time as [45]

N = max
ρ1,2

∑
t,∆D>0

∆Dt =
∑
t

∆DtΘ(∆Dt), (25)

where Θ(x) denotes the Heaviside step function,

∆Dt = D(ρ1,t, ρ2,t)−D(ρ1,t−1, ρ2,t−1). (26)

and the maximization is carried out over all possible initial state pairs. It has been
shown that the pair which maximizes the sum in (25) is a pair of orthogonal of
states [46]. In our analysis, we study the reduced system dynamics of a pair of such
initial states, namely, |ψS,A〉 introduced before, with opposite reflection symmetry,
which will be later on revealed as the optimal initial state pair optimizing the BLP
measure.

The time evolution of ρcoin
S,A is particularly easy to visualize because the

parametrization ρcoin
t = (I + ~rt · ~σ)/2 has only one non-zero component, i.e. rx,t,

throughout the time evolution which is shown in figure 5 for representative values
of the phase φ. For φ = 0, which gives the standart quantum walk, both rSx,t
(black dotted line in figure 5(a)) and rAx,t = −rSx,t (black dotted line in figure 5(b))
undergo damped oscillations with a period of four steps as the steady-state is reached.
Since the oscillations are out of phase for these orthogonal initial states, the trace
distance between such states also oscillates in time with decreasing amplitude (black
dotted line in figure 5(c)). Therefore, even though there is a back-flow of information
from the environment to the open system in the standard walk, the damping in
oscillations shows that information flow between the two subsystems reduces and
eventually vanishes in time [39]. For non-zero values of φ, oscillations in the initial

state component r
A(S)
x,t arise depending on the overlap with the bound states. When

φ = π/4, the oscillations in rAx,t die out very quickly, whereas oscillations with period

two between sublattice symmetric pair of localised states survive for rSx,t as shown
by the blue dot-dashed line in figure 5(a)-(b). For φ = π/2, similar oscillations
exist, except they die out more slowly for rAx,t which has a finite overlap with the
emerging reflection anti-symmetric bound state whereas oscillations continue with
higher amplitudes for rSx,t since the reflection symmetric bound-state becomes more
localised for this value of φ. At φ = π where bound states of both parities exist,
oscillations in rx,t occur with higher amplitudes for both of the initial states in
comparison with the other shown phase values.

Having obtained the time dependence of ρcoin
S,A , we calculate the trace distance

D(ρS , ρA) = |rS,x−rA,x|, and display our findings in figure 5(c), as a function of φ. In
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(b)

(c)

(a)

Figure 5. Oscillations in the reduced coin density matrices starting from |ΨS〉 in
(a) and from |ΨA〉 in (b) as a function of time for representative values of the phase
parameter φ. The trace distance of these coin states D(ρS , ρA) = |rx,A − rx,S | is
shown in (c) and the oscillating behaviour gives rise to non-zero BLP measure.

contrast to the standard quantum walk where the trace distance oscillations die out in
time, we find that they survive for non-zero φ, as at least one of rS,Ax,t keeps oscillating
in time. However, we should keep in mind that the value of the trace distance also

depends on the mean values rS,Ax,t about which oscillations take place. For example,

when φ = π/2 we get oscillations in D(ρ1, ρ2) with smaller amplitudes than in rSx,t,
which will be of importance in our later discussions.

As the persistent oscillations in trace distance play a crucial role for the evaluation

of the BLP measure in our model, the oscillation means rS,Ax,t and the oscillation
amplitudes are plotted in figure 6(a). Comparison with figure 2(c) reveals that, as

the overlap between one of the the initial states and the bound states increases, rS,Ax,t
converges to the rx of the corresponding bound state and oscillations appear. For

the interval φ ∈ (π/2, 3π/2), rS,Ax,t becomes the same as rx in the long time limit.

The difference in rS,Ax,t approaches to zero at φ ∼ 0.6π and φ ∼ 1.4π, yielding very

small values for the trace distance together with the fact that essentially one of rS,Ax,t
oscillates about their common mean. For other values of φ, the trace distance is mainly
determined by the oscillations in rS,Ax,t . Since the period of the oscillations is two time
steps due to the sublattice symmetry, the changes in trace distance can be obtained
by subtracting the value at even time step from the neighbouring odd time step which
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is plotted in figure 6 (b) at three different times. These plots clearly demonstrate that
the trace distance oscillations quickly converge to their long time limit. As the bound
states get more localised for certain φ values and also the overlap of the initial states
with them increases, so do the amplitude of the oscillations in the trace distance.

To evaluate the BLP measure, we maximize the sum of the positive increases
in trace distance over all possible orthogonal pairs of initial states starting at the
impurity site which is shown in figure 6(c) as a function of φ for three increasing
values of time. The result reveals that the pair |ψS,A〉 that we used for the preceeding
analysis actually maximizes the sum in the BLP measure in the long-time limit. In
contrast to the standard walk, the initial states maximizing BLP measure are equal
superposition of symmetric and anti-symmetric states and these states do not change
under other decoherence mechanisms [39]. Near φ = 0, π/2, 3π/2, 2π, where bound
states are weakly localised, we find that other orthogonal pairs actually maximize
the BLP measure. However these regions get smaller as we consider longer time
evolutions. The sudden drop in BLP at φ = π/2, 3π/2 is related to the fact that
oscillations take place about similar mean values. More importantly, we establish that
the BLP measure of non-Markovianity increases with the emergence of bound states
and reaches its maximum value at φ = π when the number and localisation of bound
states assumes their maximum, as demonstrated by the effective localisation length
in figure 2(b). The relation of non-Markovianity and localisation is also apparent
comparing the BLP curve with the average PR shown in figure 4, which is maximum
at φ = π.

Next, we consider Rivas-Huelga-Plenio (RHP) [7] measure of non-Markovianity,
which is based on the dynamics of entanglement between the system of interest and
an ancillary system. The ancillary system A is assumed to have no dynamics of its
own and is completely isolated so that any initial entanglement between the system
and the ancilla can be affected by the open system dynamics only. In fact, similar to
the BLP measure, this measure is also a witness for the violation of the divisibility.
Considering the fact that no entanglement measure E can increase under local CPTP
maps, it is rather straightforward to observe that

E[(Λ(t, 0)⊗ I)ρcoin,A] ≤ E[(Λ(s, 0)⊗ I)ρcoin,A] (27)

for all times 0 ≤ s ≤ t. Hence, any increase in the entanglement between the open
system and its ancillary can be understood as a signature of non-Markovian memory
effects in the time evolution. In other words, while the entanglement contained in
ρcoin,A decreases monotonically for all Markovian processes, non-Markovian behaviour
in the dynamics can be captured through the temporary increase of entanglement.
In the same spirit of the BLP measure, one can then measure the degree of non-
Markovianity using the following quantity:

I(E) = max
ρCA

∑
t,∆ECA>0

∆ECA,t (28)

where ECA denotes the entanglement between the coin and a two level ancillary
system. For any entanglement measure ECA, the RHP measure is found by maximizing
I(E) over all initial reduced density matrices ρCA of the composite coin-ancilla system.
In order to calculate this measure, we start the evolution from composite initial
state |Φ+〉|0〉 = 1√

2
(| ←〉C | ↓〉A + | →〉C | ↑〉A)|0〉 and use concurrence [47] as

the entanglement measure. It has been shown that when concurrence is used as
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(a)

(c)

(b)

t even
t odd

Figure 6. (a) Long-time limit time average of the reduced coin density matrix
parameter rx for reflection symmetric (|ΨS〉) and anti-symmetric (|ΨA〉) initial
states as a function of φ. (Time average is taken over 100 steps between t = 400
and t = 500.) Instantaneous values at even and odd time steps are shown
by square and triangle markers, respectively. (b) Trace distance oscillation
amplitudes between initial states |ΨS〉 and |ΨA〉 at different times show that
they quickly converge to their long-time limit values for all φ. (c) BLP measure
N (25) at three different times. The maximization is performed over all the initial
coin states for quantum walks starting at the impurity site. The linear increase
in time reflects trace distance oscillations with constant amplitude. (See (b).)

entanglement measure, the optimum initial state maximizing the RHP measure is a
Bell state, for a single qubit interacting with an environment [48].

Figure 7(a) shows the variation of the concurrence in time which is calculated
from the reduced coin-ancilla state after tracing out the spatial degrees of the walker
during the evolution. For the standard quantum walk, the entanglement oscillations
with period of four steps are damped and slowly die out with time. Therefore, the
RHP measure accumulates a finite amount of non-Markovianity in the long time limit
which is similar to the behaviour of the BLP measure for the standard walk. On the
other hand, in contrast to the BLP measure, the nature of bound states emerging
with non-zero phase φ plays a key role for the coin-ancilla entanglement. In the
presence of reflection symmetric or anti-symmetric bound states only, the concurrence
dies out very quickly. This is due to the fact that the symmetric and anti-symmetric
states couple to different environmental degrees of freedom. For example, with only
symmetric bound states present, the symmetric part of the coin-position state remains
mostly localised in the vicinity of the impurity site whereas the anti-symmetric part
moves away from the origin. Hence, the coin-ancilla entanglement is quickly destroyed
upon tracing out the environmental degrees of position, as the coin-ancilla state
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becomes an incoherent mixture. An example of this situation is displayed in figure 7(a)
for φ = π/3. It is only when both reflection symmetric and anti-symmetric stationary
states exist that some entanglement can survive which shows non-decaying oscillations.
These oscillations are due to the finite dimension of the bound state subspace and the
frequencies of concurrence oscillations can easily be obtained from the quasi-energy
differences. Such a case is displayed in figure 7(a) for φ = π with two dominant
periods. One period is of two steps due to the sublattice symmetric bound states with
quasi-energy difference π and another one is approximately ten steps due to the quasi-
energy difference of ∆E ≈ 0.205π between reflection symmetric and anti-symmetric
states. The latter dependence again shows the importance of bound states of both
parities for the RHP measure. The energy difference ∆E does not change much as φ
changes in the domain of four bound states unless one group of bound states is very
weakly bound. (See figure 2)

Using the time evolution of the coin-ancilla entanglement as shown in figure 7(a),
we evaluate the RHP measure for all values of the impurity phase φ. The results are
plotted in figure 7(b) for three increasing values of the final time. The amount of
non-Markovianity measured by the RHP measure drastically depends on whether the
reflection symmetric and anti-symmetric bound states are both supported for a given
φ or not. In the interval φ ∈ (0, π/2) where only the symmetric bound states exist,
the concurrence vanishes quickly in time since the coin-ancilla Bell state can only be
supported if both symmetric and anti-symmetric bound states exist. Therefore, the
coupling of the symmetric and anti-symmetric coin states to different environmental
degrees of freedom completely destroys the Bell state of the coin-ancilla system and
results in a vanishing value for the RHP measure. A similar situation occurs in the
interval φ ∈ (3π/2, 2π) where only reflection anti-symmetric bound states exist and
coin-ancilla entanglement is destroyed. In the interval φ ∈ (π/2, 3π/2) where bound
states of both symmetries exist, the coin-ancilla entanglement is more robust and the
RHP measure captures the non-Markovianity increasing linearly with t in the long
time limit due to non-decaying oscillations in the coin-ancilla entanglement. In this
φ interval, the RHP displays the same behaviour as seen for the BLP measure in
figure 6(c).

4. Conclusion

We have provided a comprehensive and systematic analysis of non-Markovianity in
a quantum walk model with a phase impurity in relation with the phenomenon of
localisation. At the heart of analysis lies the manifestation of bound states emerging
due to the existence of the phase impurity at the starting site of the walker. We have
first presented a technique to analytically obtain the bound states of the model making
use of the transfer matrix method. These bound states emerge in one or two sublattice
symmetric pairs possessing definite reflection symmetry. With this knowledge at hand,
we have explored the localisation properties of the walker in the position space. To
this end, we have adopted two initial state independent quantities to measure the
degree of localisation, namely, the effective localisation length for all eigenstates and
an average participation ratio after time evolution over all initial states starting at the
impurity site. Our analysis clearly demonstrates that the degree of localisation of the
walker is directly determined by the properties of the bound states.

More importantly, our main contribution in this work is the unveiling of an
intrinsic relation between the emergence of bound states and the degree of non-
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(b)

(a)

Figure 7. (a) Concurrence between the coin and the ancilla qubit as a function
of time for representative values of the phase parameter φ. When bound states
with both positive and negative reflection parity exist, the concurrence shows
oscillations. (See text for the involved frequencies.) (b) Concurrence based RHP
measure as a function of φ at three different time steps showing linear increase
with time for φ ∈ (π/2, 3π/2). RHP has a vanishing value when well-formed
bound states of only positive or negative reflection parity exist.

Markovianity of the dynamics of the walker. In order to study non-Markovian
behaviour in the time evolution of the walker, after tracing out the spatial degrees
of freedom, we have utilized two distinct measures of quantum non-Markovianity,
i.e., the BLP and the RHP measures based on the dynamics of trace distance and
entanglement, respectively. These measures help us to understand the information flow
between the principal coin system and the position system forming the environment
from different perspectives. We show that, in the case of the existence of spatial
decoherence in the form of a phase impurity, the BLP measure is optimized by the
eigenstates of the coin operator for almost all values of the phase φ. Note that when
one has decoherence in terms of broken links instead, the degree of decoherence does
not change the optimal state maximizing the BLP measure [39]. Our investigation
also proves that phase impurity amplifies the degree of non-Markovianity quantified
by the BLP measure. The underlying reason behind this behaviour is the oscillations
in the state of the coin which essentially takes place between the sublattice symmetric
bound state components with a period of two steps. Then, in general, increasing
overlap between the initial and the bound states implies a greater degree of non-
Markovianity. However, also note that when the time average of the reduced coin
states corresponding to two orthogonal initial states are close to each other, the BLP
measure drops abruptly.

Next, we employed the RHP measure to analyse the degree of non-Markovianity
in the dynamics of the walker. When the coin state is maximally entangled with
an ancillary system initially, the amount of entanglement is known to oscillate in
time for the standard walk. However, our examination demonstrates that, in case of
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the existence of a phase impurity, if the bound subspace supports only one type of
reflection symmetric state, the coin-ancilla entanglement vanishes after a few time
steps and the RHP measure becomes very small compared to the standard walk
case. On the other hand, when both reflection symmetric and anti-symmetric bound
states are present, the entanglement oscillations are persistent in time, leading to high
values of RHP measure. Thus, while the RHP measure is generally in good agreement
with the BLP measure when both even and odd parity bound states exist, the RHP
measure fails to reliably detect the non-Markovian behaviour when only symmetric
or anti-symmetric bound states are present. Most importantly, as can be clearly seen
from both measures, maximum non-Markovianity is reached where our localisation
measures determined by the bound states become also maximum. Relationship
between non-Markovianity and localisation have been discussed in random static
disorder models [36, 40] where non-Markovianity increases with disorder. We observe
more nuanced behaviour between bound states and non-Markovianity as discussed
above.

We would like to indicate that the experimental realization of the model we
presented here is quite feasible with today’s technology. The time-multiplexing
quantum walk employs laser light pulses going successively around a fiber loop where
the position space is effectively encoded in the time domain from the point of view of
the detectors [34]. The main advantage of this setup is it’s scalability and it’s long
coherence times, i.e., it only requires a fixed number of optical elements to realize the
quantum walk for relatively large number of steps. The recent developments in the
setup allow deterministic out-coupling of the light pulses from any site by utilizing
electro-optic modulators [49]. It is also possible to introduce arbitrary phases specific
to any site by programming of the electro-optic modulators accordingly, which actually
would allow the realization of the model we provided here [30,50].

As a concluding remark, it would be interesting to study whether the oscillations
due to the bound states become robust in the case of many-body interactions with
more degrees of freedom in the context of quantum walks as a future work.
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Kocabaş at earlier stages of this work.

References

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford University
Press)

[2] Rivas A, Huelga S F and Plenio M B 2014 Rep. Prog. Phys. 77 094001
[3] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88(2) 021002
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[16] Kurzyński P and Wójcik A 2011 Phys. Rev. A 83(6) 062315
[17] Zhan X, Qin H, Bian Z h, Li J and Xue P 2014 Phys. Rev. A 90(1) 012331
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