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Emre, Ayten Beyza 

 

 

 

Master of Science Program in Industrial Engineering 

 

Advisor: Asst. Prof. Dr. Hamdi Giray Reşat 

 

August, 2021 

 

Although unimodal transportation is widely used in today's transportation operations, 

tendency to multimodal transportation is increasing because it offers the opportunity 

to reduce the total cost and time of transportation and at the same time provides 

resilience against the risks encountered during operations. Reducing the effects that 

transportation companies can face under different risk factors and determining which 

risk factors have a greater impact on company activities takes an important place in 

terms of planning activities. The hybrid solution approach created within the scope of 

this study aims to minimize the total transportation time, cost, and carbon footprint by 

using a multi-objective mathematical model, while simultaneously trying to minimize 

the total risk impact by taking into account the 7 predefined risk factors that can occur 

in multi-modal transportation activities. Developed multi-objective linear mixed 

integer optimization model is solved by using epsilon-constraint method and tested 

with real life data set. Pareto-solution sets are shared with decision makers and 
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decision makers have been enabled to plan and develop multimodal transportation 

activities under alternative risk factors for sustainable multimodal transportation 

activities. In addition, after performing size reduction to the obtained Pareto solution 

sets (cost, time, and carbon footprint) under obtained different risk factors, with the t-

distributed Stochastic Neighbor Embedding (t-SNE) method, k-means algorithm is 

performed through machine learning and then alternative risk clusters are shared for 

users in sector. 

 

Keywords: multimodal transportation, risk management, multi-objective optimization, 

supply chain management, t-SNE, clustering 
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ÖZET 

 

 

 

ÇOK MODLU TAŞIMACILIK MODELLERİNDE RİSK VE 

DAYANIKLILIK YÖNETİMİ İÇİN ÇOK AMAÇLI HİBRİT BİR 

SİSTEM OPTİMİZASYONU YAKLAŞIMI 
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Tez Danışmanı: Dr. Öğr. Üyesi Hamdi Giray Reşat 

 

Ağustos, 2021 

 

Günümüz taşımacılık operasyonlarında tek modlu taşımacılık yaygın olarak 

kullanılmasına rağmen taşımanın toplam maliyetini ve süresini azaltma olanağı 

sunması, aynı zamanda operasyonlar sırasında karşılaşılan risklere karşı esneklik 

sağlaması sebepleriyle çok modlu taşımacılığa yönelim artmaktadır. Farklı risk 

faktörleri altında taşımacılık firmalarının uğrayacakları etkileri azaltmak ve hangi risk 

faktörlerinin firma faaliyetleri üzerinde daha büyük etkiye sahip olduğunu 

saptayabilmek planlama faaliyetleri açısından oldukça önemli konumdadır. Bu 

çalışma kapsamında oluşturulan melez çözüm yaklaşımı çok amaçlı matematiksel 

model kullanılarak toplam taşımacılık zamanını, maliyetini ve karbon ayak izini 

minimize etmeyi amaçlarken, eş zamanlı olarak önceden tanımlanmış çok modlu 

taşımacılık faaliyetlerinde ortaya çıkan 7 adet risk faktörünü göz önüne alarak toplam 

risk etkisini minimize etmeye çalışmaktadır. Geliştirilen çok-amaçlı doğrusal karma 

tamsayı optimizasyon modeli epsilon-kısıt yöntemi ile çözülerek gerçek hayat veri seti 
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ile test edilmiştir. Pareto-sonuç seti karar vericiler ile paylaşılmış ve karar vericilerin 

sürdürülebilir çok modlu taşımacılık faaliyetleri için alternatif risk faktörleri altında 

çok modlu taşımacılık faaliyetlerini planlaması ve geliştirmesi sağlanmıştır. Ayrıca, 

elde edilen farklı risk faktörleri altında elde edilen Pareto çözüm setleri (maliyet, 

zaman ve karbon ayak izi) t-dağıtılmış Stokastik Komşu Gömme (t-SNE) yöntemi 

kullanılarak boyut azaltımı yapıldıktan sonra makine öğrenimi sayesinde k-ortalama 

algoritması ile sektör kullanıcıları için alternatif risk kümeleri paylaşılmıştır.   

 

Anahtar Kelimeler: çok modlu taşımacılık, risk yönetimi, çok amaçlı optimizasyon, 

tedarik zinciri yönetimi, t-SNE, kümeleme. 
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CHAPTER 1: INTRODUCTION  

 

 The current COVID-19 outbreak has both severe and economic consequences 

across the globe and affects over all societies leading to dramatic changes in business 

actions and consumers behaviors. Many businesses are forced to shut down their 

operations, and this leads to an unprecedented disruption of commerce in most 

industries due to this outbreak case. Majority of companies and brands face many 

short-term challenges over management of the supply chain, the workforce, cash flow, 

consumer demand, sales, and marketing activities under these new circumstances. 

Therefore, all these risk factors and challenges over supply chains should be carefully 

investigated and analyzed in order to minimize future effects and improve the 

infrastructures against similar upcoming risk factors. While converting supply chain 

systems into more sustainable versions, risk sensitive and resilient operations should 

also be designed, developed, and used in daily operations. Transportation activities in 

fragile industries stand for an appropriate candidate for ignition point of this 

conversion process in transportation sector with a significant share of between 2% to 

12% of gross domestic product (GDP) of countries (Gani, 2017). Total logistics cost 

has 8.5% of the U.S. GDP, according to the State of Logistics report for 2013 

(Robinson, 2014). Logistics sector accounts for about 10% of European economy (EU 

Science Hub, 2021) with €12.3 billion worth of European logistics and industrial assets 

(White & Case, 2019). In the developing countries (such as Turkey), the logistics 

sector has about 12% share in the country's GDP, which is over ₺500 billion in 2019 

(Utikad, 2020). Thus, the logistics sector has a significant share in the economies of 

both developed or developing countries and any minor improvement in logistics 

activities in terms of cost, time and sustainability perspective plays an essential role in 

this conversion stage. Many organizations try to convert and improve their 

transportation systems into more resilient and sustainable forms by searching new 

operational models and multimodal transportation systems are recently considered and 

chosen as one of the most suitable candidates for goals of sustainable transportation 

activities. Although, the level of operational planning and management of multimodal 

transportation is matured, parts about risk and resilient management in this new 

generation transportation models are not still studied and integrated thoroughly. Thus, 

one of the main novelties of this study is carefully to investigate potential risks and to 
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highlight how these risks are affecting daily life of the logistics providers by proposing 

multi-objective multimodal freight transportation optimization model operating under 

different risk factors and to offer effective solutions to make logistics operations 

resilient against to various risk factors.  

Under these considerations, the main novelties of this study are to: 

• identify and categorize the main risk factors and perform quantitative 

measurements of those risk factors for multimodal transportation activities 

• integrate those risk factors into the proposed optimization model for 

multimodal transportation considering total transportation time, cost, and 

environmental purposes in order to share alternative solution sets for decision 

makers or logistics providers such as supply chain director, logistic planner, 

logistic director, logistic operations manager, who are responsible of 

managerial decisions for logistic operations of company, under various risk 

conditions  

• classify the potential risk factors based on effectiveness on cost, time, and 

environmental considerations by using machine learning techniques  

 

There are several steps followed throughout this study. In Chapter 1, importance 

of risk management in supply chain and logistics activities, importance and share of 

logistics in supply chain, ways for making transportation efficient in the existence of 

risk, and novelty of this study are discussed. In Chapter 2, a detailed review of 

literature is presented in order to highlight the position of this study. Multimodal 

transportation optimization problems and risk management approaches studied in the 

literature, possible risk factors in the logistics are presented. Multi-objective 

considerations in these models and potential solution techniques are discussed. 

Additionally, dimension reduction and clustering techniques for transportation 

problems are mentioned. In Chapter 3, problem description, proposed model, solution 

approach for multi-objectivity, categorization of risks in the transportation and 

integration of those risks to the proposed multi-objective mixed integer linear 

programming model (MOMILP) implemented dimension reduction and clustering 

algorithm are covered. Data and network used in the scope of the proposed model are 

given in Chapter 4. Pareto solution sets of the proposed MOMILP model under 

different risk factors results, as well as results from dimension reduction algorithm and 
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clustering algorithm are shared and discussed in Chapter 5. Finally, general assessment 

and discussion of the study are shared, and future improvements are explained in 

Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

 

Globalization of markets and significant technologic developments in information 

and communication technologies enable the globalization of supply chains (Maslarić, 

Brnjac, and Bago, 2016) and transportation activities takes an important role on 

responsiveness, efficiency, and performance of global supply chains (Paul et al., 2020). 

In this globalization process, transportation activities are responsible from the logistics 

operations in the longer distances between suppliers, producers, and customers. Thus, 

it gets inevitable importance to design and operate more efficient, effective, and 

innovative logistics systems for transportation activities (Beldek, and Aldemir, 2017). 

Unimodal and multimodal transportation are the two main transportation types used in 

logistics. While only one mode of transportation is utilized in unimodal type, there are 

at least two transportation modes such as road, rail, air, or water way used in 

intermodal transportation from starting point to destination point (Udomwannakhet et 

al., 2018). Multimodal transportation is gained attention and preferred commonly by 

the logistics providers (Beldek, and Aldemir, 2017) because it enables more efficient, 

reliable, flexible, and sustainable solutions for global transportation activities 

(Steadieseifi et al., 2014). Therefore, there are many studies conducted in the literature 

for multimodal transportation optimization problems. Yang, Low, and Tang (2011) 

proposes an intermodal network optimization model to choose the best freight route 

with different transportation modes from China to India and goal programming 

approach is used for multiple and conflicting objectives in the model. Resat, and 

Turkay (2015) designs an intermodal transportation network for the Marmara Region 

of Turkey. A bi-objective model with minimizing total delivery times and total 

transportation costs that considers traffic congestion on links for different 

transportation modes is presented and the ε-constraint method is used as a solution 

technique. Baykasoğlu, and Subulan (2016) proposes a sustainable intermodal freight 

transportation-planning model with time, cost, and environment objectives by 

considering transportation mode, service type selection, load allocation, and 

outsourcing. Fuzzy goal programming approach is applied for solution methodology. 

Furthermore, a real-life application is performed for a large-scale international 

logistics company in Turkey. Hao, and Yue (2016) propose a mixed integer linear 

programming model for a container multimodal transport system supported with a 
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dynamic programming algorithm for optimal transport modes combination. Fazayeli, 

Eydi, and Nakhai (2017) and Rabbani, Sadri, and Rafiei (2016) present integer linear 

programming models for route selection with multimodal transportation and location 

routing problem. Both optimizing software tools and genetic algorithm are used as a 

solution technique to compare the results. Jian (2017) shares a mathematical model for 

the multimodal freight transportation problem based on a real-life case by taking 

shipping capacity limits, time slots and environmental issues into consideration. A sub 

gradient heuristic method based on lagrangian relaxation is developed for solution. 

Kaewfak, and Ammarapala (2018) develops a goal-programming model with cost, 

time, and risk minimization objectives for route selection problems in multimodal 

transportation. However, although multi modal transportation systems have such 

significant gains over operational conditions, they are very sensitive and vulnerable to 

insufficient transportation infrastructures (road, rail, maritime), usage of 

interconnected communication tools, as well as natural disasters and external threats. 

For example, few critical elements that could be defined as disturbances in multimodal 

transportation are: (World Economic Forum, 2021) 

1. Policy Risks such as import/export restrictions, conflict, and political unrest. 

For instance, trucks carrying Turkish goods were held up at the Russian 

borders, import limitations or banning was applied by Russia due to a political 

conflict between Turkey and Russia (BBC, 2015). 

2. Security Risks such as terrorism, crime issues etc. Such as, 9/11 terrorist 

attacks occurred in the U.S. led to border closure, stopping the port and airport 

activities, tighter controls, extensive security checks and as a result, widespread 

transportation delays, plant shutdowns and considerable cost to the U.S. were 

faced (Walkenhorst, and Dihel, 2002; North Carolina State University, 2005). 

3. Technological Risks such as inadequate transport infrastructure and 

communication discontinuities. In Mombasa, ships waited to be loaded and 

unloaded for several days due to port strike by workers in 2015 and costing 

authorities millions of dollars (The East African, 2015). 

4. Environmental Risks such as epidemics, natural disasters, bad weather 

conditions etc. For example, when two hurricanes called Katrina and Rita 

struck the U.S. Gulf Coast in 2005, the pipeline network used for oil and natural 

gas transport and Port of New Orleans, the largest export grain port of the US 

were shut down, key railroad bridges were ruined, some highways and airport 
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either collapsed or damaged and economic loss resulting from supply chain 

disruption was huge (Grenzeback, and Lukmann, 2007). Covid-19 pandemics 

worldwide impact such as border closures of countries, plant shutdowns, 

stopping the operation of ports disrupted global supply chains (Maritime 

Gateway, 2020). 

Improvement of resilience and as well as inclusion of new generation risk 

management mechanisms into decision making processes get significant importance 

in management of the transport industry, because while eliminating risks from the 

systems, there will be significant gains over operational costs (like reduction of fuel 

consumptions, usage of environmentally-friendly transportation modes, inventory 

holding costs, etc.); reductions of greenhouse gas emissions (CO2, NOx, etc.); and 

improvements over social welfare (reduction of traffic congestions, traffic accidents, 

etc.). Therefore, the existing approaches in the design of risk management systems in 

supply chains, especially in multi modal transportation systems, do not provide enough 

quantitative information to assess risks and to examine which combinations of 

corrective actions contribute to risk measures. The control and improvement of 

resiliency and risk management in multimodal transport systems are highlighted 

limitedly in current academic studies. Therefore, there is no appropriate methodology 

developed to assess the resilience in multimodal transportation activities. For example, 

in the study of Vilko, and Hallikas (2012), risks affecting multimodal maritime supply 

chains are identified and categorized, as well as their resulting effects to the overall 

supply chain are presented using Monte-Carlo simulation. El Mokrini et al. (2016) 

presents a risk assessment model regarding logistics outsourcing risks and multi-

criteria decision analysis for risk assessment is performed by using ELECTRE TRI. 

Choi, Chiu, and Chan (2016); Sayın, and Tekin (2017) study comprehensively about 

risk management of alternative risk types in logistics activities (such as; disruption risk 

management, operation risk control, disaster and emergency management, and 

logistics service risk analysis) and assesses implemented technologies towards these 

risks. Revilla, and Saenz (2017) presents the supply chain risk management strategies 

and their impacts on supply chain disruptions with an empirical analysis of case studies 

conducted in several countries. Senthil, Murugananthan, and Ramesh (2018) presents 

risk factors under nine major classes in reverse logistics activities by using multi-

criteria classification methods. These risk factors are associated with environmental, 

operational (inventory, procurement, management, outsourcing), information and data 
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security, and cultural activities. Rosyida, Santosa, and Pujawan (2019) mentions that 

when transportation network faces with a disruption, one of the best strategies is 

creating alternative routes and reducing the severe effects of disruptions for the 

continuity of logistical performance. Shi et al. (2019) provides a holistic view of 

sustainability in decision-making problems for the transportation industry by using 

CATWOE (customers, actors, transformation process, worldview, owners and 

environmental) analysis. Vilko, Ritala, and Hallikas (2019) shares a model to mitigate 

risks and recover the systems from disruptions along multimodal maritime supply 

chains. An analytical tool, which enables visibility and controllability of the risks, is 

designed to manage those risks. Li, Yang, and Chin (2019) investigates risk 

management for hazardous materials road transportation by proposing a fuzzy analytic 

hierarchy process, fuzzy failure mode and effect analysis for assessment of risks and 

nonlinear goal programming for the management of risks. Er Kara, Oktay Fırat, and 

Ghadge (2020) proposes a new model called data mining-based risk management 

model to identify, assess and mitigate different risk types in the supply chain. A case 

study example is used to show the implementation of the proposed model. Moreover, 

optimization models and their application on simulation environments (Ivanov, 2020; 

Ivanov, and Dolgui, 2021; Seck, Rabadi, and Koestler, 2015; Vieira et al., 2020; 

Oliveira et al., 2019) enhance the analysis of system behavior and functioning of 

strategies in more descriptive and predictive modes. Therefore, a simulation-based 

decision support system for real-time environmental and risk management will 

highlight the effectiveness of method in environmental impact mitigation and 

resilience improvement, also multimodal transportation will be analyzed under the 

influence of different types of perturbations, such as; vehicle utilization (lower load 

factors), price volatility (fluctuated exchange rates, fuel, capital), environmental 

regulations (GHG emissions), unpredictable traffic congestions, ICT inadequacy risk 

(unavailability of real-time data) about traffic congestions and weather conditions, etc.  

Multimodal transportation problems include different conflicting objectives 

where while one is tried to be minimized, other(s) can be maximized or minimized in 

real-life cases. This tradeoff makes problems hard and complex to be solved under 

personal computer systems, also known as NP-hard (Mnif, and Bouamamaa, 2017). 

Thus, several solution techniques are presented in the literature. Although heuristic 

approaches are quite common, they have risk of stacking on the local optima. On the 

other hand, exact solution techniques towards multi-objective problems have the 
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ability of obtaining optimal solutions. Hence, these techniques are also commonly used 

in literature. According to Hwang, and Masud (1979), there are three categories for 

solution of multi-objective mathematical models: the priori methods, the interactive 

methods, and the posteriori methods. In the priori methods, firstly, decision makers 

express their preferences and opinions for the objectives as setting goals or weighting 

the objectives then solution is found. However, it is possible that decision makers 

cannot make an accurate quantification of objectives in advance. In the interactive 

methods, decision makers are involved in the solution process and at each iteration 

information of decision maker’s preferences is asked. Nonetheless, an acceptable 

solution cannot be reached, and these methods do not guarantee the Pareto-optimal 

solutions. In the posteriori methods, firstly, solutions to the problem are found then 

decision makers’ opinion is taken for selection among the solutions. These methods 

are not popular because they are time consuming and require considerable 

computational effort. However, much more information can be conveyed to the 

decision maker and possibility of obtaining all efficient solutions make decision 

makers more confident for their final decision in this method. Thus, epsilon constraint 

method and the augmented epsilon constraint method, which is introduced later by 

Mavrotas (2009) as an improved version of epsilon constraint method, are two most 

widely used posteriori methods for multi-objective optimization models in general 

(Hwang, and Masud, 1979). Epsilon-constraint method is preferred by Demir et al. 

(2019); Heggen, Braekers, and Caris (2018) and Resat, and Turkay (2015) as an exact 

solution method for multi-objective models presented in their research. While 

Yakavenka et al. (2020) uses a goal programming approach for the multi-objective 

MILP model for the network design problem and Rasmi, and Turkay (2019) applied 

The Generator of ND and Efficient Frontier (GoNDEF) method as an exact solution 

technique to their model. Gazijahani et al. (2020) and Yu, and Solvang (2016) used 

augmented epsilon-constraint method. According to Mavrotas (2009), augmented 

epsilon-constraint method (AUGMECON) eliminates redundant iterations, weakly 

Pareto-optimal solutions, and this yields solution process to become faster and time-

effective compared to epsilon-constraint method. Furthermore, epsilon-constraint 

method can work efficiently for finding Pareto solutions for continuous problems but 

not discrete-continuous problems while the new version, AUGMECON, can produce 

Pareto solutions for both problems. In addition, solution of multi-objective 

optimization problems results in too many solution points under Pareto frontiers and 
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so that it will be so complex and inefficient for decision makers to choose one of them 

when multiple solutions and multiple criteria are emerged. Thus, there are various 

multiple-criteria decision making (MCDM) methods, which enables decision makers 

to choose most preferred solution alternative based on their preferences, introduced, 

and used in the literature. Simple additive weighting (SAW) (MacCrimmon, 1968), 

analytic hierarchy process (AHP) (Saaty, 1980), technique for order of preference by 

similarity to ideal solution (TOPSIS) (Hwang, and Yoon, 1981), elimination and 

choice translating reality (ELECTRE) (Roy, 1968), preference ranking organization 

method for enrichment evaluations (PROMETHEE) (Mareschal, Brans, and Vincke, 

1984) are some of the popular MCDM methods used in the literature. While there are 

MCDM methods used and implemented in various studies in the existence of multiple 

criteria and multiple solution points, these methods require an extensive work in the 

scope of this study which will lead us to search for other solution alternatives for 

multiple criteria and solution points. In this regard, performing clustering operation 

will enable to cluster similar solution points. Hence, it will be more effective to offer 

solutions for decision makers upon their preferences. There are various algorithms 

presented for clustering high amount of data based on their feature. These algorithms 

are grouped as partition method, hierarchical method, density-based and grid-based 

method. Among them k-means, which is classified as a partition method, is mostly 

used and common algorithm because of its simplicity, fast response time and efficient 

computational time (Umargono, Suseno, and Gunawan, 2020). Nonetheless, multi-

objective optimization solution sets generally include high dimensional data as the 

number of objectives increases, so to be able to perform clustering operation 

accurately, dimension reduction techniques that transform the data set into 2-

dimensional data are needed. There are some commonly used techniques in this matter 

in the literature. T-distributed stochastic neighbor embedding (t-SNE) introduced by 

(van der Maaten, and Hinton, 2008) and principal component analysis (PCA) created 

by Hotelling (1933) are two well-known techniques used in the literature for dimension 

reduction. However, PCA is a linear dimension reduction technique whereas t-SNE 

can be implemented in also non-linear data sets, and Platzer (2013) proved that t-SNE 

perform better visualization than PCA for all criteria. For this reason, t-SNE is a 

popular and mostly preferred dimension reduction algorithm in the literature. 
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CHAPTER 3: METHODOLOGY 

 

3.1. Problem Description 

As previously mentioned in the introduction part, risk is inevitable in logistic 

operations and can be highly disruptive in terms of cost, time etc. Thus, management 

of risk in transportation activities and having a risk resilient transportation network 

takes an important place. Since multimodal transportation is gaining popularity and 

mostly preferred in logistics and decision makers are interested in not only cost but 

also time and carbon footprint resulted from their logistics operations. It is determined 

to construct a multimodal and multi-objective mixed integer linear programming 

model that takes risk factors into account. In this model, aim is to select the best route 

from a specified origin to a destination by using alternative transportation modes for a 

container and to decide number of containers to be carried in the chosen route. Time 

window consideration is also added to model because leaving and entering time of a 

container to a node is an issue and this will make the model applicable in real-life 

cases. Also, containers should be hold in inventories of the nodes and whether 

transhipment occurred or not in a node is examined due to its effect on transportation 

cost. Also, several assumptions are used while developing the proposed model. 

• Only transportation of containers in multimodal network is taken into account. 

•  Size of container is taken as 20 TEU (Twenty-foot equivalent unit) and it is 

assumed that only one type of container is used. 

• Average speed values are taken as free-flow speed limits in each transportation 

mode and traffic congestion on the ways and load factors are ignored. 

• Travel times between two points for each transportation mode are calculated 

by dividing distances between these points by average speed values. For non-

integer results, rounding up operation is made to the closest integer value and 

all travel times are taken as integer. For example, if travel time between point 

A and B is found as 3.83 hours then this value is rounded to 4 hours. 

• European transportation network (between Turkey and Europe) is considered 

so the main and high volume capacitated, significant points in maritime and 

railroad transportation in intermodal network are selected and used in the 

model. 
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• Capacity of transportation for containers between two points is determined 

based on the Ro-Ro (combination of sea and road transportation) frequencies 

and RO-LA trips (combination of road and rail transportation) but no limitation 

is set for roadway capacity.  

• Total time period is defined as 24 hours and time between two consecutive 

indexes t and t+1 is set to 1 hour. 

• Waiting times during handling operations of containers are discarded. 

 

This model has three objectives to minimize total transportation time, cost, and 

carbon footprint. Total transportation time consists of transhipment time between 

nodes and total travel time of containers under different transportation modes. Cost 

objective includes (1) fuel cost spent for transportation of containers, (2) fixed cost per 

container due to vehicle usage in each transportation mode (3) transhipment cost 

between modes per container (4) material handling cost of containers in every node 

(5) inventory cost of keeping containers wait in the node for a transportation mode. 

Objective for the environmental effect of transportation considers total CO2 emissions 

resulting from multimodal transportation of containers.  

Figure 1 shows the visual representation of the methodology followed 

throughout this study. First, multi-objective mixed integer linear programming 

(MOMILP) model for multimodal transportation problem is developed and then 

several risk factors with the categorization and description of risks which will be 

exhibited in detail in the upcoming sections are integrated. Then, dimension reduction 

algorithm is applied to the Pareto solution sets obtained from MOMILP model. Lastly, 

risk clusters are obtained using a clustering algorithm. 
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Figure 1. Visual representation of methodology 

3.2. Model Formulation 

Sets 

i  Set of all nodes      (i = 1, …, I) 

j  Set of all nodes      (j = 1, …, J) 

h  Set of all nodes      (h = 1, …, H) 

k  Set of all transportation modes    (k = 1, …, K) 

m  Set of all transportation modes    (m = 1, …, M) 

t  Set of time units (hourly)    (t = 1, …, T) 

r  Set of risk categories      (r = 1, …, R) 

Parameters  

demandjkt       Demand at node j belong to mode k at time t [unit] 

distijk            Distances between node i and j with mode k [km] 
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dcostk               Fuel cost per container per km travelled with mode k [€/unit-km] 

fcost
k
  Fixed cost of transportation with mode k per container [€/unit] 

hcostik     Inventory holding cost per container at node i with mode k [€/unit] 

tscostkm             Transshipment cost from mode k to mode m [€] 

tstimekm Transshipment time for transportation from mode k to mode m [hour] 

mhcostik Material handling cost per container on node i with mode k [€/unit] 

cap
ijk

 Capacity for containers to be transported from node i to j with mode k 

[unit] 

Invcap
ik

 Inventory capacity for containers at node i for mode k [unit]  

M  Very large number  

τijk  Travel time from node i to node j with mode k [hour] 

clost  Cost of unmet demand per container [€/unit] 

epsilon  Very small number [10-6] 

f
2 

  up
  Upper bound of second objective function 

f
3 

  up
  Upper bound of third objective function 

δr  Capacity coefficient of risk r   

AvgEm
k
           Average emissions factor for mode k [gCO2/tonne-km]  

β               Average container capacity [20 tons]   

Decision Variables  

θijkt Containers transported from node i to node j with mode k with leaving 

time t 

xijkt Binary variable takes value 1 if there is a transportation from node i to 

node  j with mode k with leaving time t, 0 otherwise 

Iy
ikt

        Containers on hand at node i with mode k at time t  
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tsikmt     Binary variable that will take value 1 if there is a change  

(transshipment) from mode k to mode m at node i in time t, 0 

otherwise 

lostjkt   Demand of containers unmet at node j with mode k at time t 

slack2 Decision variable regarding to augmented ε-constraint method for 

second objective function  

slack3 Decision variable regarding to augmented ε-constraint method for third 

objective function 

Model                                                          

Min f1 = ∑ fcost
kk ∑ ∑ ∑ θijkttji + ∑  dcostk( ∑ ∑ distijkjik ∑ θijkt)t  + ∑ ∑ hcostikki ∑ Iy

iktt  

+ ∑ ∑ mhcostikki ∑ ∑ θijkttj + ∑  ∑ tscostkm ∑ ∑ tsikmtti𝑚𝑘  + clost ∑ ∑ ∑  lostjkttkj  (1) 

Min f2 = ∑ ∑ ∑ τijk ∑  xijkttkji  + ∑ ∑ tstimekm ∑ ∑  tsikmttimk        (2) 

Min f3 = ∑ AvgEm
k

∑ ∑ distijk ∑ βθ
ijkttjik                   (3) 

subject to 

∑ ∑ θijk,t-τijkk i; i≠j + lostjkt  ≥ ∑ demandjktk           ∀ j ∈ J, t ∈ T                         (4) 

∑ ∑ θihk,t-τihkki; i≠h + ∑  Iy
hk,t-1k = ∑ ∑ θhjmtmj; j≠h  + ∑ Iy

hmtm       

                                             ∀ h ∈ H, t ∈ T         (5) 

 θijkt ≤ cap
ijk

xijkt                               ∀ i ∈  I, j ∈ J, k ∈ K, t ∈ T,  i ≠ j             (6) 

Iy
ikt

 ≤ Invcap
ik

                                 ∀ i ∈  I, k ∈ K, t ∈ T                               (7) 

xijkt-τijk
+ xjhmt ≤ tsjkmt + 1                     ∀ i ∈ I, j ∈ J, h ∈ H, k ∈ K, m ∈ M, t ∈ T 

                                                                 , i ≠ j, j ≠ h, k ≠ m                       (8) 

xijkt-τijk
+ xjhmt ≥ 2tsjkmt                          ∀ i ∈ I,  j ∈ J, h ∈ H, k ∈ K, m ∈ M, t ∈ T  

                                                                 , i ≠ j, j ≠ h, k ≠ m                     (9) 

∑ ∑ ∑ tsikmt t ≥ 1 mk; k≠m                      ∀ i ∈ I                               (10) 
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θijkt,  Iyit
, lostjkt ≥ 0,  xikmt, tsikmt ∈ {0,1}   ∀ i ∈ I, j ∈ J, k ∈ K, m ∈ M, t ∈ T 

                               (11) 

Equation (1) shows first objective function and aims to minimize total 

transportation cost including total fixed cost per container for vehicle usage, fuel cost, 

inventory holding cost, material-handling cost and transhipment cost among modes. 

Equation (2) aims to minimize total transportation time and Equation (3) aims to 

minimize total CO2 emissions by using activity-based calculation explained in the 

McKinnon Report. There are two basic approaches represented by McKinnon, and 

Piecyk (2010) in their report for calculating total CO2 emissions. These are activity-

based and energy-based approach. Since necessary inputs for energy-based approach 

are not available due to the scope of the proposed model, activity-based approach is 

selected instead of energy-based approach. Constraint (4) ensures that the total cargo 

transported to a destination node can satisfy the demand of the node partially or totally 

and unmet demand will be lost demand for associated mode and period. Constraint (5) 

ensures conservation of flow on every node. Constraint (6) ensures that if there is 

transportation between two nodes then capacity of total containers to be transported 

cannot be exceeded. Constraint (7) limits the container number on hand at any node 

and any mode for each period. Constraint (8) and (9) check together whether there is 

a transhipment between two modes or not. Constraint (10) ensures that transhipment 

must be made at least once in each node. Lastly, Constraint (11) restricts sign and sets 

types of decision variables. 

3.3. Augmented ε-Constraint Method 

 In Chapter 2, solution techniques for multi-objective mathematical models are 

reviewed. Among them, epsilon constraint method and augmented epsilon constraint 

method (AUGMECON) are most widely used generation or posteriori methods for 

solution of multi-objective optimization problems. AUGMECON is the improved 

version of epsilon constraint method, and it was introduced by Mavrotas (2009). Thus, 

augmented epsilon constraint method is selected as a solution approach to deal with 

multiple objective functions in this study. Some revisions are made on the model in 

this regard. Equation (1) which represents total cost is taken as prior objective function 

because cost has the highest importance for logistics companies. Then upper bounds 

for Equation (2) and (3) are found which are f
2 

  up
 and f

3 

  up
, respectively. Furthermore, 

two slack variables are defined as decision variables and epsilon which is a very small-
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valued parameter is defined. Then, Equation (2) and (3) which are the time and 

emissions objectives are transformed to equalities by adding the slack variables and 

integrated to the model as constraints. After that, summation of slack variables is 

multiplied with epsilon value and this multiplication is subtracted from prior objective, 

objective function 1. By this way, model is turned into a form of single-objective 

model. These modifications are represented with below equations. 

 Min f1 − epsilon (slack2+ slack3)     (12) 

  subject to 

f2 + slack2 = f 
2

up
      (13) 

f3 + slack3 = f 
3 

up
      (14) 

           slack2, slack3 ≥ 0                          (15) 

           Equation (4)-(11) 

When the model is run, it is obvious that while other decision variables are aimed to 

be minimized due to cost factors, slack variables will be maximized to be able to 

minimize objective function (1). Consequently, increase in slack values lead to 

decrease in the value of objective function 2 and 3 that take place in equation 2 and 3. 

In the implementation of epsilon constraint method, one objective is taken as prior 

objective and other objective(s) are treated as constraints after setting their upper 

bound values while in AUGMECON method by means of introduced slack variables 

in epsilon constraint implemented model, weakly efficient solution points are not 

produced, redundant iterations are eliminated in the solution process, and this leads to 

less computational time. 

3.4. Categorization of Risks  

 Logistics operations include several risk factors. These risk factors can cause 

severe disruptions in these operations. Thus, categorization and integration of potential 

risk factors into the proposed model take an important place in this matter. After 

making detailed literature research and taking logistics provider’s opinion, risks that 

can be encountered during transportation activities categorized into seven parts. Table 

1 exhibits the categorization of specific risks for multimodal transportation activities 

under different risk classes. Epidemics, nuclear and natural disaster, and bad weather 
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conditions belong to environmental risk category. Import/export restrictions and 

political unrest fall into policy risk category. Terrorism, crime issues and breakdowns 

on links are in the security risk category. While interpretation problems fall into 

operational risks category, capacity problems and labor shortage on links takes place 

in the supply risks and economic risks category, respectively. Lastly, information and 

communication discontinuities and inadequacy of transport infrastructure on links are 

in the technological risk category. 

Table 1. Categorization of risks in logistics (Source: World Economic Forum, 2021) 

Category Risk 

Environmental 

Risk 

• Epidemics 

• Nuclear Disasters on node i 

• Natural Disasters on node i 

• Bad weather conditions on node i  

Policy Risks 
• Import / exports restrictions on node i for mode k 

• Conflict and political unrest 

Security Risks 

• Terrorism 

• Crime issues (sea piracy, pirate trade and organized crime) on 

node i for mode k 

• Breakdown issues on node i for mode k 

Operational Risks 
• Interpretation problems with documents, contracts, and 

permits on node i for mode k 

Supply Risks • Capacity problems on node i for mode k 

Economic Risks • Labour shortage on node i for mode k 

Technological 

Risks 

• Information and communication discontinuities on node i for 

mode k 

• Inadequacy of transport infrastructure on node i for mode k 

 

After categorizing risks and performing specifications on each category, risks 

are written as constraints and integrated into the model (MOMILP). All seven risks 

are assumed to be active in a specific point (city) in the transportation network 

(represented as node in the proposed model) and all the direct links from that risk-
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active node to the other nodes are assumed to be affected. This effect is reflected in 

the model as reducing the capacity for number of containers to be transported from the 

risk-active node to the other nodes. However, it is assumed that transportation 

capacities of links from other nodes to the risk-active node are not affected. 

Furthermore, δr parameter, which is defined as the capacity coefficient factor of each 

risk in Section 3.1, can take value between 0 and 1. Value for each risk capacity 

coefficient is determined after discussing with the decision makers. Since proposed 

model considers a short period of time, these capacity coefficient factors are taken as 

constant values. Also, while expressing each risk as constraint, decision makers’ 

opinion is taken. Table 2 illustrates how specific risks are converted into constraints 

and used in the proposed MOMILP model.  

Table 2. Description of risks and associated constraints in the model 

Risk # Risk Description Risk Constraint 

Risk 1 

Capacity reduction is made by multiplying the 

normal transportation capacities of each link 

(cap
ijk

) with the capacity coefficient factor of 

risk 1 (δ (1)) for each transportation mode 

during all time periods. For only risk 1 capacity 

is reduced to zero due to the stopping effect of 

this risk for the logistic operations. Thus, when 

risk 1 is emerged in a node in transportation 

network, no container can be sent from that risk-

active node to the other nodes with any 

transportation mode during all time periods but 

normal capacity limitations (cap
ijk

) are valid 

from other nodes to the risk-active node. 

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, k ∈ K, t ∈ T; 

      

 i = i1, r = 1 
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Table 2 (Cont’d) 

Risk # Risk Description Risk Constraint 

Risk 2 

Capacity reduction is made by multiplying the 

normal transportation capacities of each link 

(cap
ijk

)  with the capacity coefficient factor of 

risk 2 (δ (2)) for each transportation mode 

during all time periods. For example, when the 

value for δ (2) is set to 0.5, then capacity for 

number of containers (cap
ijk

) to be transported 

in each direct link (from the risk-active node to 

the other nodes with each transportation mode) 

will be the half of normal transportation 

capacities of those links during all time periods 

but no change on the transportation capacities 

for the links from the other nodes to the risk-

active node. 

 

  

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, k ∈ K, t ∈ T; 

      

 i = i1, r = 2 

Risk 3 

Capacity reduction is made by multiplying the 

normal transportation capacities of each link 

(cap
ijk

) with the capacity coefficient factor of 

risk 3 (δ (3)) for each transportation mode 

during all time periods.  

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, k ∈ K, t ∈ T; 

      

 i = i1, r = 3 

Risk 4 

Capacity reduction is made by multiplying the 

normal transportation capacities of some links 

(cap
ijk

) with the capacity coefficient factor of 

risk 4 (δ (4)) for a specific transportation mode 

and a specific time interval. For example, when 

the value for δ (4) is set to 0.5 and if it is 

determined that this risk will affect the 

operations in railway mode for 4 hours starting 

from t=0, then capacity for number of 

containers (cap
ijk

) to be transported in direct 

links with railway mode (from the risk-active 

node to the other nodes) will be the half of 

normal transportation capacities of those links 

from starting time 0 to ending time 4 but no 

change on the transportation capacities for the 

links from the other nodes to the risk-active 

node. 

 

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, t ∈ T; i = i1, 
 

  k = k1, t1 ≤ t ≤ t2, 

  

r = 4 
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Table 2 (Cont’d) 

Risk # Risk Description Risk Constraint 

Risk 5 

Capacity reduction is made by multiplying 

the normal transportation capacities of each 

link (cap
ijk

) with the capacity coefficient 

factor of risk 5 (δ (5)) for each transportation 

mode during all time periods.  

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, k ∈ K, t ∈ T; 

      

 i = i1, r = 5 

 

Risk 6 

Capacity reduction is made by multiplying 

the normal transportation capacities of each 

link (cap
ijk

) with the capacity coefficient 

factor of risk 6 (δ (6)) for each transportation 

mode for a specific time interval. For 

example, when the value for δ (4) is set to 0.5 

and if it is determined that this risk will affect 

the operations for 4 hours starting from t=0, 

then capacity for number of containers 

(cap
ijk

) to be transported in direct links (from 

the risk-active node to the other nodes for 

each transportation mode) will be the half of 

normal transportation capacities of those 

links from starting time 0 to ending time 4 

but no change on the transportation 

capacities for the links from the other nodes 

to the risk-active node.  

 

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, k ∈ K, t ∈ T; i = i1, 
 

        t1 ≤ t ≤ t2, r = 6 

Risk 7 

Capacity reduction is made by multiplying 

the normal transportation capacities of some 

links (cap
ijk

) with the capacity coefficient 

factor of risk 7 (δ (7)) for a specific 

transportation mode during all time periods. 

For example, when the value for δ (7) is set 

to 0.5 and if it is determined that this risk will 

affect the operations in railway mode, then 

capacity for number of containers (cap
ijk

) to 

be transported in direct links with railway 

mode (from the risk-active node to the other 

nodes) will be the half of normal 

transportation capacities of those links 

during all time periods but no change on the 

transportation capacities for the links from 

the other nodes to the risk-active node.  

 

 

θijkt ≤ cap
ijk

xijkt δr 

 

∀ j ∈ J, t ∈ T; i = i1, 
 

k = k1, r = 7  

 

3.4.1. Integration of Risk 1  

 Risk 1 is the environmental risk category. This risk factor has a stopping effect 

on logistics activities when it occurs. For example, when there was a heavy snow, ice 
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disrupting the transport in central and northern Europe, vehicles were struck at the 

traffic jam, highways were blocked and all of trucks and trains delayed for too long 

hours and railway services were cancelled (SDUT, 2021). Thus, after detailed 

research, it is decided that disasters and bad weather conditions that fall into this 

category can harm to the transportation modes and transporting any container from the 

points where this type of risk is active cannot be performed but only transportation of 

containers to the point. Therefore, while converting this risk into constraint, capacity 

for flow of containers that can be transported between two points for every 

transportation mode and every time unit is set to zero by multiplying the capacity with 

the related risk factor δ (1). Equation for the constraint regarding to this risk can be 

seen in Table 2. 

3.4.2. Integration of Risk 2  

 Risk 2 is the policy risk category. This type of risks generally arises because 

of political disagreements between countries. It is one of the examples that in February 

2014, trucks passage was stopped at the Bulgaria border gate for two weeks due to a 

political unrest between Turkey and Bulgaria and waiting trucks created a queue over 

10 kilometers (Hürriyet Daily News, 2014). Reducing the quote for the total 

transportation flow, closing the borders to prevent the passage of vehicles, or awaiting 

the vehicles for an unlimited length of time and causing delay of the deliveries are the 

other explicit examples of policy risks. Before coming to a decision about policy risk 

conversion into constraint, previous results and effects of this risk are analyzed from 

the past experiences of logistics companies and inquisition was also made with 

decision makers. Then, it is decided to reduce the flow capacity of containers that can 

be transported from the point, where this type of risk is active, for every transportation 

mode and every time unit and capacity of transportation for containers to the point is 

not restricted. This capacity reduction, which is denoted by δ (2), is specified by taking 

decision makers opinion and resulting equation for this risk is exhibited in Table 2. 

3.4.3. Integration of Risk 3 

Risk 3 is the security risk category. Terrorism is one of the examples that is in 

this risk factor. According to some news in Supply and Demand Chain Executive 

(2017), there were 346 terrorist attacks in total in 2016, and it is reported that  
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“The terrorism related to the Syrian conflict forced Lebanese officials to 

reroute $1 billion worth of exports and resulted in the loss of $754 million in 

revenue for the Jordanian trucking industry.”  

 

This one example can show how security risks can cause severe effects in 

logistics operations. Furthermore, after detailed research, it is concluded that this risk 

type is almost equally effective as risk type 1. Since risk 3 also can cause almost 

stopping effect on logistics operations from the points where those risks are concerned. 

For this reason, capacity for number of containers that can be transported from the risk 

active point was decreased for each transportation mode for all time by using risk 

factor, δ (3), which is close to zero whereas transportation of units to that point was 

not restricted. Logistics providers stated their approval for this matter, too. Constraint 

that stands for this risk type takes place in Table 2 with its description.  

3.4.4. Integration of Risk 4 

 Risk 4 is the operational risk category. Examples of this risk type are ship 

collisions, lack of skilled workers, carelessness, and lack of motivation among the 

workforces (Vilko, and Hallikas, 2012). In the light of idea exchange with decision 

makers, it is determined that operational risks will reduce the capacity as risk 1 but can 

take shorter amount of time to resolve compared to other risk types. Hence, it is 

considered that operational risks will set the transportation flow capacity to zero for a 

specific transportation mode and for a short period of time. Based on this 

consideration, risk factor, δ (4) that will reduce the capacity of flow is taken zero and 

time limitation for this capacity reduction is added to the constraint as well. Equation 

formed for this risk type can be found in Table 2. 

3.4.5. Integration of Risk 5 

 Risk 5 is the supply risk category. Stoppage with cargo on board, bottlenecks 

in transportation routes, employee strikes in ports and problems with custom clearance 

are some examples of supply risk (Vilko, and Hallikas, 2012). After detailed research, 

it is decided that this risk type will affect capacity of units to be transported from the 

point, where the risk is active, for each transportation mode for all time. Also, after 

making a comparison of this risk type effect with the other risk types, it is concluded 

that supply risk has the second lowest limiting impact on transportation capacity after 
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risk 6, economic risk category. Therefore, risk factor δ (5) is specified under this 

consideration. After that, constraint representing this risk type is constructed by 

multiplying actual flow capacity with the risk factor δ (5). This constraint can be seen 

in Table 2. 

3.4.6. Integration of Risk 6 

Risk 6 is the economic risk category. Currency fluctuations, sudden demand 

shocks, financial crisis are examples of this risk type (World Economic Forum, 2021). 

After meeting with decision makers, it is determined that economic risks have less 

disruptive impact on the transportation activities compared to other risk types and can 

take short amount of time to resolve. Hence, it is considered that operational risks can 

delimit the transportation flow capacity to a lesser extent and for a short period of time 

for each transportation mode. Based on this consideration, risk factor, δ (6), that limit 

the capacity of flow is taken bigger compared to other risk factors so that capacity 

reduction will not be in higher amount. Besides, time limitation for this reduction is 

added to the constraint.  Equation formed for this risk type can be found in Table 2. 

3.4.7. Integration of Risk 7 

 Risk 7 is the technological risk category. One of the examples of this risk factor 

is that increase in the usage of online systems brings possible cyber-attacks which can 

cause disruptions in information and communication and 41% of participants of a 

survey conducted in November 2011 faced with unplanned outages of IT or 

telecommunication systems (World Economic Forum, 2011). While forming the 

constraint for this risk type, inadequacy of infrastructure example, which falls into this 

category, was the focus. Thus, after taking the logistic provider’s opinion, it is decided 

that this risk type will yield a restriction on the capacity of total containers to be 

transported from the point where this risk is active by the amount of risk factor δ (7), 

set by the decision maker, for a specific mode and for all time. Table 2 exhibits 

constraint regrading to technological risk. 

3.5. Dimension Reduction Algorithm 

 t-Distributed stochastic embedding method (t-SNE) is a dimension reduction 

algorithm that is introduced by van der Maaten, and Hinton (2008), and it is one of the 

popular dimension reduction techniques used in the literature. This algorithm is used 

for transforming high dimensional data into 2- dimensional or 3-dimensional data. As 
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a result of implementation of proposed model, 4-dimensional Pareto solution sets will 

be obtained with cost, time, emission, and risk factor dimensions. Thus, it will be 

required to use a dimension reduction technique that will transform dimension of 

embedded data set into 2-dimensional so that effective clustering can be performed. t-

SNE is considered as an efficient algorithm due to its simplicity for implementation 

and better visualization outputs Platzer (2013), so for dimension reduction operation 

t-SNE is selected. In addition, there are several input parameters needed to apply this 

algorithm. Some of these input parameters are given in Table 3 with their descriptions. 

Table 3. Parameters used in t-SNE algorithm 

t-SNE 

Algorithm   

Parameters 

Description 

n_components Desired dimension of the given data set 

perplexity Number of nearest neighbours 

learning_rate Training rate of algorithm 

n_iter Maximum number of iterations 

init Algorithm for initialization of the embedded space 

 

As stated in Table 3, ‘n_components’ is related to the dimension size that user 

aimed to obtain at the end. Perplexity is the parameter that the algorithm performance 

relies on the changes in this parameter according to van der Maaten, and Hinton 

(2018). This parameter generally takes value between 5 and 50. Moreover, 

‘learning_rate’ parameter and ‘n_iter’ parameters are described as training rate of the 

algorithm and maximum number of iterations, respectively. Lastly, parameter ‘init’ is 

used for initialization of the algorithm. Detailed explanations about this algorithm and 

all the other input parameters can be found in (scikit-learn, 2020). In the scope of this 

study, t-SNE algorithm will be utilized for the solution sets obtained from proposed 

model (MOMILP) as mentioned previously. It will be explained in Chapter 5, what 

values the input parameters take and reasons for selection of those parameter values in 

detail. 
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3.6. Clustering Algorithm 

 Data set that is acquired from the t-SNE algorithm results will be used for 

clustering so that decision makers can see various solutions with same features such 

as least time, high cost and low emission under different risk types. There is a need for 

a clustering algorithm in this regard. Thus, k-means algorithm is selected for clustering 

because k-Means is most widely used and popular clustering algorithm in the literature  

(Umargono, Suseno, and Gunawan, 2020). This algorithm is used for capturing similar 

data points and clustering them together. While doing this, clusters are distanced as far 

as possible. To be able to apply this algorithm, there are some input parameters needed 

and some of these parameters are given with their descriptions in Table 4. 

Table 4. Parameters used in k-means algorithm 

k-means 

Algorithm   

Parameters 

Description 

n_clusters Number of clusters to create 

init Initialization of initial clusters 

n_init 
Number of times for running algorithm with different centroid 

seeds 

max_iter Maximum number of iterations 

random_state  Random number for initialization of centroids 

 

As presented in Table 4, ‘n_cluster’ parameter is used to set number of clusters 

and this parameter takes integer values. Init parameter is used for selection of initial 

clusters. Parameter ‘n_init’ represents number of times for running algorithm with 

different centroids. Lastly, while parameter ‘max_iter’ stands for the maximum 

number of iterations, ‘random_state’ parameter enables to choose random number 

initialization of centroids. Detailed explanations about this algorithm and all the other 

input parameters can be found in (scikit-learn, 2020). In the scope this study, k-means 

algorithm will be utilized for the data set resulted from t-SNE algorithm as mentioned 

previously. It will be explained in Chapter 5, what values the input parameters take 

and reasons for selection of those parameter values in detail. 
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CHAPTER 4: COMPUTATIONAL EXPERIMENTS 

 

As it was mentioned in Chapter 3, proposed multi-objective mixed integer 

linear programming model is used to represent logistics activities between Turkey and 

Europe. Since real life problems includes too much complexity and this will make 

modelling hard, proposed model is designed and formed under important assumptions. 

However, these assumptions lead to the high amount of data requirements with 

different levels of complexities.  

4.1. Data 

4.1.1. Transportation Costs 

In logistics activities, there are several parameters to be considered while 

forming a mathematical model of the current system. One of the main parameters in 

this sense is the cost. Transportation activities includes various cost types and each of 

them must be elaborated in a model as accurate as possible to be able to obtain more 

realistic results. MOMILP model which is presented in the methodology section 

considers different costs related to transportation such as fixed cost, fuel cost, 

inventory holding cost, transshipment cost and material handling cost per unit of 

container. In this sense, cost incurred in each transportation mode due to vehicle usage 

of per container is defined as fixed cost. Traveling cost of a container per km with each 

transportation mode is added to the model as fuel cost due to the transportation vehicle 

fuel usage. Cost of keeping a container in inventory under any transportation mode is 

defined as inventory holding cost. Lastly, handling cost of per container during the 

transportation is added to the model as material handling cost. To be able to determine 

values of these costs, several papers from the literature are reviewed and referenced, 

as well as operational data sets of some of the largest logistics providers in Turkey is 

also taken. Tables 5, 6 and 7 represent the fixed, fuel, inventory holding and material 

handling costs for alternative transportation modes. These tables are adapted from the 

reports on websites of Turkish Ministry of Commerce (T.C. Ticaret Bakanlığı, 2020) 

and Republic of Turkey State Railways (TCDD, 2020) and also studies of Baykasoğlu, 

and Subulan (2016); Resat, and Turkay (2015); Sun et al. (2018) and Wiegmans, and 

Janic (2019). 
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Table 5. Logistics costs for road transportation mode  

  Logistics Costs for Road Unit 

Fixed Cost 1.20 €/TEU-km 

Fuel Cost 0.38 €/TEU-km 

Inventory Holding Cost  0.05 €/TEU-h 

Material Handling Cost 2.71 €/TEU 

 

Table 6. Logistics costs for rail transportation mode 

  Logistics Costs for Road Unit 

Fixed Cost 685.00 €/TEU 

Fuel Cost 0.23 €/TEU-km 

Inventory Holding Cost  0.13 €/TEU-h 

Material Handling Cost 21.13 €/TEU 

 

Table 7. Logistics costs for sea transportation mode  

  Logistics Costs for Road Unit 

Fixed Cost 987.50 €/TEU 

Fuel Cost 0.03 €/TEU-km 

Inventory Holding Cost  0.09 €/TEU-h 

Material Handling Cost 126.00 €/TEU 

 

Since multimodality is one of the focuses in this study. Transshipment costs, 

that is incurred while changing the mode of transportation in a node, are used, and 

shown in Table 8. These values in Table 8 are obtained from the study conducted by 

Resat, and Turkay (2015). 
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Table 8. Transshipment cost between transportation modes (€/TEU)  

  Road Rail Sea 

Road 56.7 113.3 99.7 

Rail 113.3 90.7 170.0 

Sea 99.7 170.0 113.3 

 

4.1.2. Transportation Network 

Multimodal transportation is mostly preferred and common way of 

transportation, especially in Europe. Thus, the MOMILP model is constructed by 

considering the intermodal network between Europe and Turkey. The map in the 

Figure 2 illustrates the network that is used for modeling the intermodal freight 

transportation between Turkey and Europe. Logistics provider’s opinion was also 

taken before using the intermodal routes in the map.  

Points exhibited in the map are defined as nodes to the MOMILP model and 

colored arrows represent the available transportation mode between two points. It is 

considered that there is highway connection between most of the points even if it is 

not denoted in the map. For instance, there is not any connection between Barcelona 

and Munich or there is only railway connection seen between Trieste and Budapest, 

so constructed model also considers that road transportation can be utilized between 

such points where no connection or only one mode connection exists. While modifying 

these networks between points, decision maker’s advice is also sought. 
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Figure 2. Intermodal network map between Turkey and Europe (Source: Ekol, 2019) 

Distances between the points are collected for each existing transportation 

mode. Distances between nodes in roadway is obtained from (European Commission, 

2020) and distance unit is in km. Distances between rail stations in railway is taken 

from (European Commission, 2021) and distance unit is in km. Distances between 

ports in sea way is found from (SEA-DISTANCES.ORG, 2021) and distance units are 

obtained as miles and then converted into kilometer. All these distances obtained for 

each transportation mode are divided by the free flow speed limits of corresponding 

mode to set travel time between two points with each transportation mode. These speed 

limits used in the calculation of travel times can be found in Table 9. Additionally, 

transshipment times used for the duration of mode change are shown in Table 10. 

These time values are adapted from the study of Resat, and Turkay (2015). 

Table 9. Speed Limits (km/h) in each transportation mode 

Transportation mode Speed Limit (km/h) 

Road 90 

Rail 60 

Sea 35 
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Table 10. Transshipment times between transportation modes 

[hour] Road Rail Sea 

Road 0.1 0.12 0.17 

Rail 0.12 0.4 0.17 

Sea 0.17 0.17 0.7 

 

Additionally, capacity for transportation of containers in each transportation 

mode is determined depending on each mode’s conditions. While frequency of Ro-Ro 

vessel cruises, which is the combination of sea and road transportation, are considered 

for capacity of seaway transportation, trips for RO-LA, which is the combination of 

road and rail transportation, services are considered for the railway transportation. 

Since these voyages and services have a time schedule for departures at some certain 

time intervals so railway and seaway mode can be available at specific times. Thus, 

capacities for these transportation modes are set based on these considerations. 

Nonetheless, it is determined that there is no capacity limitation for road transportation 

and even if there is capacity constraint for the roadway transportation in the proposed 

model, that capacity value is set to a high value so that there will be no limitation for 

the transportation capacity for roadway. In addition, if a transportation mode does not 

exist between two points, then transportation capacity for containers is set to zero so 

that any flow cannot occur. Lastly, inventory capacities of each node, demand of each 

node and cost of each unmet demand are assumed after discussing with one the largest 

logistics providers of Turkey. 

4.1.3. Emissions Factors 

 Green logistics is one of the main considerations in the model. Since 

transportation of every container result in carbon footprint depending on the 

transportation mode choice. It is aimed to integrate total carbon footprint, that 

transportation causes, to the model. In Chapter 3, it is pointed out that activity-based 

approach is selected for total carbon footprint of transport and CO2 emissions factors 

in each transportation mode depending on per ton-km traveled must be set for this 

calculation. These factors that are used in Equation (3) are taken from McKinnon 

report (McKinnon, and Piecyk, 2011) and Table 11 shows emissions factor values 

regarding to transportation mode. 



31 
 

Table 11. Average Emissions Factors (Source: McKinnon, and Piecyk, 2010) 

Transport Mode gCO2/tonne-km 

Road transport 62 

Rail transport 22 

Short sea 16 
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CHAPTER 5: RESULTS 

 

5.1. Mathematical Model Solution Results  

 Proposed MOMILP model and all other risk activated models are implemented 

in GAMS (GAMS Development Corporation, 2019). A computer with AMD Ryzen 5 

3500U with Raedon Vega Mobile Gfx with 2.10 Ghz processor, and with 8.00 GB 

RAM is used for implementation of all models. Results are discussed in the subsections 

of this chapter. 

5.1.1. Base Model (without any risk factor) Solution Set  

 Base model is the model where any effect of risk is not involved. It is 

mentioned in previous sections that constructed multimodal transportation model has 

multiple objectives. Thus, AUGMECON method (Mavrotas, 2009) is utilized in this 

matter. While using this method, model was run 100 times with different epsilon 

values yielding different results. Obtained Pareto frontiers that shows non-dominated 

solution points are reflected in Figure 3. When frontiers are examined, it can be 

concluded that objective function 1 (cost) has an inverse relationship with both 

objective function 2 (time) and objective function 3 (emissions) because decrease in 

the value of one causes some amount of increase in the value of the other. Nonetheless, 

time and emissions objectives are positively related where one’s value is decreased, 

other’s value is also decreased or vice versa.  
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Figure 3. Base model Pareto solution diagrams 

To be able to express effects of objective functions on each other numerically, 

two points, farthest from each other, which can be seen in the Figure 3 are selected 

from the solution set and a comparison is made. Table 12 indicates the comparison of 

these points in the base model solution set. Based on the outcomes, decreasing cost 

objective by 98.24% will lead to increase in the total time and emissions values in 

87.91% and 98.76%, respectively. Also, Table 12 shows that increase in the value of 

time objective by 87.91% will result in 98.76% increase in the value of emissions 

objective. Thus, these numerical results denotes while objective function 1 has inverse 

relation with two other objectives, objectives 2 and 3 are quite positively related with 

each other. 

Table 12. Comparison of two points in the base model solution set 

 Solution Point I Solution Point II 
Change 

Percentage 

Obj. 1 Value 

(€) 
€ 40,401.00 € 712.86 98.24% 
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Table 12. Cont’d 

Obj. 2 Value           

(hour) 
€ 1,889.20 € 15,621.30 87.91% 

Obj. 3 Value               

(t-CO2) 
€ 0.25 € 19.94 98.76% 

 

5.1.2. Risk 1 Activated Model Solution Set  

Risk 1 is the environmental risk category, and it was explained in detail how 

risk 1 is converted into a constraint and integrated into the model, in Chapter 3. In this 

regard, risk 1 activated model is the model created by adding the constraint 

representing risk 1 to the base model and only one point is considered where risk 1 is 

active. After forming the risk 1 activated model, model was run 100 times with 

different epsilon values yielding different results, as performed in the base model part. 

Resulted Pareto frontiers that shows non-dominated solution points are reflected in 

Figure 4. 

 

Figure 4. Risk 1 activated model Pareto solution diagrams 
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It is desired to make a comparison on the results of base model and risk 1 

activated model to see impact of risk 1 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 1 activated model and two extreme 

points from the solution set of base model solution set are chosen. Point I and II in 

Figure 4 are the points used for risk 1 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 1 activated model is 

summarized in Table 13. According to Table 13, risk 1 leads to increase in cost by 

4.3%, time by 4.60% and emissions by 1.20%, based on the comparison of point Is, 

where cost is the highest. Moreover, we can state that risk 1 causes increase in cost by 

2.10%, time and emissions by 3% based on the comparison of point IIs, where cost is 

the lowest. We can conclude that when risk 1 occurs in a point, cost, time, and 

emissions values which are the three objectives increases. 

Table 13. Comparison of two points in base model and risk 1 activated model solution 

set 

 

Point I in 

Base 

Model 

Solution 

Point I in 

Risk 1 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base 

Model 

Solution 

Point II in 

Risk 1 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 42,138.20 4.30% 712.86 727.83 2.10% 

Obj. 2 

Value           

(hour) 

1,889.20 1,976.11 4.60% 15,621.30 16,090.00 3.00% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.250 1.20% 19.94 20.54 3.00% 

 

5.1.3. Risk 2 Activated Model Solution Set  

Risk 2 is the policy risk category, and it was explained in detail how risk 2 was 

converted into a constraint and integrated into the model, in Chapter 3. In this regard, 

risk 2 activated model is the model created by adding the constraint representing risk 

2 to the base model and only one point is considered where risk 2 is active. After 

forming the risk 2 activated model, model was run 100 times with different epsilon 

values yielding different results, as performed in the base model part. Resulted Pareto 

frontiers that shows non-dominated solution points are reflected in Figure 5.  
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Figure 5. Risk 2 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 2 

activated model to see impact of risk 2 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 2 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 5 are the points used for risk 2 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 2 activated model is 

summarized in Table 14. According to table, we can claim that risk 1 leads to increase 

in cost by 0.46%, time by 0.75% and emissions by 5.04%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 1 causes increase 

in cost by 1.50%, time by 2.30% and emissions by 1.91% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 2 occurs in a point, 

cost, time, and emissions values which are the three objectives increases. 
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Table 14. Comparison of two points in base model and risk 2 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 2 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 2 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 40,587.70 0.46% 712.86 723.55 1.50% 

Obj. 2 

Value           

(hour) 

1,889.20 1,903.32 0.75% 15,621.30 15,980.60 2.30% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.260 5.04% 19.94 20.32 1.91% 

 

5.1.4. Risk 3 Activated Model Solution Set  

Risk 3 is the security risk category, and it was explained in detail how risk 3 

was converted into a constraint and integrated into the model, in chapter 3. In this 

regard, risk 3 activated model is the model created by adding the constraint 

representing risk 3 to the base model and only one point is considered where risk 3 is 

active. After forming the risk 3 activated model, model was run 100 times with 

different epsilon values yielding different results, as performed in the base model part. 

Resulted Pareto frontiers that shows non-dominated solution points are reflected in 

Figure 6.  
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Figure 6. Risk 3 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 3 

activated model to see impact of risk 3 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 3 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 6 are the points used for risk 3 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 3 activated model is 

summarized in Table 15. According to table, we can claim that risk 3 leads to increase 

in cost by 1.40%, time by 3.10% and emissions by 3.18%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 3 causes increase 

in cost by 3.30%, time by 4.40% and emissions by 0.20% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 3 occurs in a point, 

cost, time, and emissions values which are the three objectives increases. 
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Table 15. Comparison of two points in base model and risk 3 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 3 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 3 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 40,966.60 1.40% 712.86 736.38 3.30% 

Obj. 2 

Value           

(hour) 

1,889.20 1,947.77 3.10% 15,621.30 16,308.70 4.40% 

Obj. 3 

Value               

(t-CO2) 

0.25 0.26 3.18% 19.94 19.98 0.20% 

 

5.1.5. Risk 4 Activated Model Solution Set  

Risk 4 is the operational risk category, and it was explained in detail how risk 

4 was converted into a constraint and integrated into the model, in Chapter 3. In this 

regard, risk 4 activated model is the model created by adding the constraint 

representing risk 4 to the base model and only one point is considered where risk 4 is 

active. After forming the risk 4 activated model, model was run 100 times with 

different epsilon values yielding different results, as performed in the base model part. 

Resulted Pareto frontiers that shows non-dominated solution points are reflected in 

Figure 7.  
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Figure 7. Risk 4 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 4 

activated model to see impact of risk 4 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 4 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 7 are the points used for risk 4 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 4 activated model is 

summarized in Table 16. According to table, we can claim that risk 4 leads to increase 

in cost by 0.46%, time by 0.23% and emissions by 0.50%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 4 causes increase 

in cost by 0.48%, time by 0.42% and emissions by 0.41% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 4 occurs in a point, 

cost, time, and emissions values which are the three objectives increases fairly. 
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Table 16. Comparison of two points in base model and risk 4 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 4 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 4 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 40,586.80 0.46% 712.86 716.28 0.48% 

Obj. 2 

Value           

(hour) 

1,889.20 1,893.55 0.23% 15,621.30 15,686.90 0.42% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.249 0.50% 19.94 20.02 0.41% 

 

5.1.6. Risk 5 Activated Model Solution Set  

Risk 5 is the supply risk category, and it was explained in detail how risk 5 was 

converted into a constraint and integrated into the model, in Chapter 3. In this regard, 

risk 5 activated model is the model created by adding the constraint representing risk 

5 to the base model and only one point is considered where risk 5 is active. After 

forming the risk 5 activated model, model was run 100 times with different epsilon 

values yielding different results, as performed in the base model part. Resulted Pareto 

frontiers that shows non-dominated solution points are reflected in Figure 8.  
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Figure 8. Risk 5 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 5 

activated model to see impact of risk 5 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 5 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 8 are the points used for risk 5 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 1 activated model is 

summarized in Table 17. According to table, we can claim that risk 5 leads to increase 

in cost by 1.50%, time by 0.80% and emissions by 0.50%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 1 causes increase 

in cost by 0.50%, time by 1.50% and emissions by 1.20% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 5 occurs in a point, 

cost, time, and emissions values which are the three objectives increases. 
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Table 17. Comparison of two points in base model and risk 5 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 5 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 5 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 41,007.00 1.50% 712.86 716.42 0.50% 

Obj. 2 

Value           

(hour) 

1,889.20 1,904.32 0.80% 15,621.30 15,855.60 1.50% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.249 0.50% 19.94 20.18 1.20% 

 

5.1.7. Risk 6 Activated Model Solution Set  

Risk 6 is the economic risk category, and it was explained in detail how risk 6 

was converted into a constraint and integrated into the model, in Chapter 3. In this 

regard, risk 6 activated model is the model created by adding the constraint 

representing risk 6 to the base model and only one point is considered where risk 6 is 

active. After forming the risk 6 activated model, model was run 100 times with 

different epsilon values yielding different results, as performed in the base model part. 

Resulted Pareto frontiers that shows non-dominated solution points are reflected in 

Figure 9.  
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Figure 9. Risk 6 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 6 

activated model to see impact of risk 6 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 6 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 9 are the points used for risk 1 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 6 activated model is 

summarized in Table 18. According to table, we can claim that risk 6 leads to increase 

in cost by 0.50%, time by 0.50% and emissions by 0.50%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 6 causes increase 

in cost by 0.80%, time by 0.50 and emissions by 0.70% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 6 occurs in a point, 

cost, time, and emissions values which are the three objectives increase fairly. 
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Table 18. Comparison of two points in base model and risk 6 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 6 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 6 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 40,603.00 0.50% 712.86 718.56 0.80% 

Obj. 2 

Value           

(hour) 

1,889.20 1,898.65 0.50% 15,621.30 15,699.40 0.50% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.249 0.50% 19.94 20.08 0.70% 

 

5.1.8. Risk 7 Activated Model Solution Set  

Risk 7 is the technological risk category, and it was explained in detail how 

risk 1 was converted into a constraint and integrated into the model, in Chapter 3. In 

this regard, risk 7 activated model is the model created by adding the constraint 

representing risk 7 to the base model and only one point is considered where risk 7 is 

active. After forming the risk 7 activated model, model was run 100 times with 

different epsilon values yielding different results, as performed in the base model part. 

Resulted Pareto frontiers that shows non-dominated solution points are reflected in 

Figure 10.  
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Figure 10. Risk 7 activated model Pareto solution diagrams 

It is desired to make a comparison on the results of base model and risk 7 

activated model to see impact of risk 7 on cost, time, and emissions. By this reason, 

two extreme points from the solution set of risk 7 activated model and two extreme 

points from the solution set of base model solution set were chosen. Point I and II in 

Figure 10 are the points used for risk 7 activated model and point I and II in Figure 3, 

where mentioned in the base model solution set part, are the points used for base model 

in this regard. Comparison between base model and risk 7 activated model is 

summarized in Table 19. According to table, we can claim that risk 7 leads to increase 

in cost by 1.50%, time by 1.50% and emissions by 1.10%, based on the comparison of 

point Is, where cost is the highest. Moreover, we can state that risk 7 causes increase 

in cost by 0.70%, time by 1.90% and emissions by 2.00% based on the comparison of 

point IIs, where cost is the lowest. We can conclude that when risk 7 occurs in a point, 

cost, time, and emissions values which are the three objectives increases. 
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Table 19. Comparison of two points in base model and risk 7 activated model solution 

set 

 
Point I in 

Base Model 

Solution 

Point I in 

Risk 7 

Activated 

Model 

Solution 

Change 

Percentage 

Point II in 

Base Model 

Solution 

Point II in 

Risk 7 

Activated 

Model 

Solution 

Change 

Percentage 

Obj. 1 

Value        

(€) 

40,401.00 41,007.00 1.50% 712.86 717.85 0.70% 

Obj. 2 

Value           

(hour) 

1,889.20 1,917.54 1.50% 15,621.30 15,918.10 1.90% 

Obj. 3 

Value               

(t-CO2) 

0.248 0.250 1.10% 19.94 20.34 2.00% 

 

5.2. t-Distributed Stochastic Neighbor Embedding Algorithm Application  

 It is explained that Pareto solution sets are obtained after running each afore 

mentioned model and corresponding Pareto solution diagrams are represented in 

previous parts. These Pareto solution sets include high amount of data that makes 

difficult to perform clustering algorithm due to the dimension of the data. Thus, it is 

determined to make dimension reduction on the solution sets. Performing a dimension 

reduction before clustering will enable to attain accurate results from clustering 

algorithm. Therefore, t-distributed stochastic neighbor embedding method is applied 

to the solution sets for reducing dimension to two and Python version 3.6.3 (Python 

Software Foundation, 2016) is utilized for the implementation of t-SNE. A computer 

with AMD Ryzen 5 3500U with Raedon Vega Mobile Gfx with 2.10 Ghz processor, 

and with 8.00 GB RAM is used. Additionally, parameter tuning is carried out and then 

t-SNE is performed with the tuned parameter. Application of t-SNE will be explained 

in sub-sections in detail.  

5.2.1. Tuning of Perplexity Parameter 

It was mentioned in Chapter 3 that t-SNE has several input parameters. van der 

Maaten, and Hinton (2008) who are the creator of this algorithm states in their study 

that change in the value of perplexity, which is defined as measure for effective number 

of neighbors, affects the performance of t-SNE and typical perplexity values are 

between 5 and 50. Based on this, it was decided to perform tuning operation for this 

parameter so different perplexity values was tried in t-SNE algorithm to make a 
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comparison among them and to perform tuning. Below figures exhibit the t-SNE 

outputs of these perplexity values.  

 

Figure 11. t-SNE outputs with different perplexity values (a) perplexity: 5 (b) 

perplexity: 10 (c) perplexity: 20 (d) perplexity: 30 (e) perplexity: 40 (f) perplexity: 45 

(g) perplexity: 50 

According to above graphs, graph (a), (b) and (c) in which perplexity is lower 

shows scattered visualization of the points whereas other graphs show that points are 

more centralized. Thus, it can be clearly seen that when perplexity value becomes 

higher, t-SNE algorithm will result in better quality outputs in our data set and for 

perplexity values greater than 30 in graph (d), (e), (f) and (g) t-SNE algorithm gives 

similar results. Therefore, t-SNE is also performed for the perplexity values higher 

than 50, and it is seen that t-SNE results has poor quality. Thus, it is determined to take 

perplexity value as 50. 
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5.2.2. t-SNE Algorithm Results 

 After tuning of perplexity parameter, t-SNE algorithm is applied to the 

obtained Pareto solution sets with tuned perplexity value. Table 20 shows the values 

of the parameters used in t-SNE algorithm. Parameter named ‘n_components’ 

represent the resulting dimension of data set. Since it is desired to obtain two-

dimensional data set, this parameter was taken as 2. Parameter ‘init’ which stands for 

initialization of dimension reduction algorithm can be either ‘random’ or ‘pca’. If 

random was chosen initialization of space embedding will be performed randomly 

whereas ‘pca’ choice will start t-SNE by first applying principal component analysis 

(PCA) algorithm to the data set. Thus, ‘init’ parameter is set to ‘pca’ because it is 

thought that starting with PCA algorithm will enable to obtain better results from t-

SNE algorithm. It was also mentioned previously how perplexity value is found. 

Lastly, default values are taken for ‘n_iter’ which is maximum number of iterations 

and learning rate parameters (scikit-learn, 2020). 

Table 20. Input parameters used in t-SNE algorithm 

t-SNE 

Algorithm Parameters  
          Value 

Perplexity             50 

n_components              2 

Learning rate            200 

n_iter           1000 

init            pca 

 

Figure 12 visualizes the outputs of t-SNE algorithm. This algorithm found 

corresponding x and y points for each of the solution point in the Pareto solution sets 

in two-dimensional space. When graph is examined, one can realize that points 

representing solutions for risk factors 1, 3 and 4 are almost overlapped with each other. 

Effects of these risks were explained in detail in Chapter 3 and even if risk 1, 3 and 4 

are different risk factors, their effect on the logistics activities are alike to each other. 

Thus, their resulting values in the Pareto solution sets are highly close. This is the main 

reason why t-SNE shows such output for risk factors 1, 3 and 4. 
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Figure 12. t-SNE algorithm results 

5.3.  k-Means Algorithm Application 

 Pareto solution sets that have high dimension is converted into 2-dimensional 

data after performing t-SNE algorithm. It is previously mentioned that this dimension 

reduction operation is applied for better clustering results. Thus, output of t-SNE is 

used as input to k-means algorithm and clustering is performed and Python version 

3.6.3 (Python Software Foundation, 2016) is utilized for the implementation of k-

means algorithm. A computer with AMD Ryzen 5 3500U with Raedon Vega Mobile 

Gfx with 2.10 Ghz processor, and with 8.00 GB RAM is used. Additionally, parameter 

tuning is carried out and then k-means is performed with the tuned parameter. 

Application of k-means will be explained in sub-sections in detail.  

5.3.1. Tuning of k Parameter 

 It was mentioned in Chapter 3 that k-means algorithm uses several input 

parameters, according to Umargono, Suseno, and Gunawan (2020), this algorithm 

shows weaknesses on cluster number choice and algorithm results highly depends on 

the parameter for cluster number which we denote in this study as ‘k’. Thus, one of the 

popular optimization methods, the Elbow method, is applied to find optimal number 

of clusters. Since there are seven risk factors, while minimum possible cluster number 

is one, maximum number of clusters can be seven. Thus, algorithm is run with different 

k parameters that takes value from 1 to 7 in the Elbow method. Figure 13 shows the 
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Elbow method results. For each of the cluster value in x-axis, corresponding within-

cluster sum of squared error value is denoted in y-axis. The Elbow method states that 

k-value must be set as the point where the last elbow shaped seen. When below figure 

is examined, it can be clearly seen that last elbow shaped is seen at point four in the x-

axis. That means optimum number of clusters must be four in k-means algorithm.  

 

Figure 13. Elbow method result for tuning of parameter k 

5.3.2. k-Means Algorithm Results 

 After completion of k parameter tuning, k-means algorithm is applied to the 

two-dimensional data set where was obtained from t-SNE algorithm. Table 21 shows 

the values of the parameters used in k-means algorithm. Parameter named ‘init’ 

represent the selection for initialization of cluster centroids and can be either ‘k-

means++’ or ‘random’. If ‘random’ is chosen, then initial centroids will be selected 

randomly whereas ‘k-means++’ option will provide a selection of cluster which 

quickens the convergence of the k-means algorithm. Thus, ‘k-means++’ option is set 

for the init parameter. Besides, parameter ‘random_state’, which is used for 

performing random number generation for centroid initialization, is taken as 0 so that 

randomness will not be probabilistic. It was also mentioned previously how total 

number of clusters is found. Therefore, ‘n_clusters’ which stands for number of 

clusters is set to 4. Lastly, ‘n_init’, which denotes how many times k-means uses 
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different centroid seeds, and ‘max_iter’ parameters are taken as default values 10 and 

300, respectively (scikit-learn, 2020). 

Table 21. Input parameters used in k-means algorithm 

k-means  

Algorithm Parameters  
          Value 

n_clusters              4 

n_init             10 

random_state              0 

max_iter            300 

init         k-means++ 

 

Below figures represent k-means algorithm results. In graph (a), four different 

colors denote only four clusters, but it does not show which risks fall into which cluster 

whereas in graph (b) coloring is applied based on which risks belong to which cluster 

with seven different colors. Besides, centroids of each cluster are pointed with black 

dots in each graph.  
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Figure 14. k-means algorithm results (a) cluster specified graph (b) risks specified in 

clusters graph 

Results of the k-means algorithm are analyzed to understand properties of 

clusters in terms of cost, time, and emissions values. Below table represents these 

analyses and table also shows risk factors that takes place in each cluster. Based on the 

table, cluster 1 is a cost-oriented cluster which means that least costly solutions are 

assigned to this cluster. However, while solution set in this cluster is cost friendly, time 

and emissions values are above the average at the same time. Cluster 2 includes lowest 

emissions-valued solutions thus is an emissions-oriented cluster with high cost and 

low time values. Cluster 3 is the time-oriented cluster with high cost and low emissions 
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values likewise the cluster 2. And the last cluster which is cluster 4 consists of the 

solutions which are low for cost and emissions but above the average for time.  

Table 22. Risk factor assignment to clusters and cluster features 

 
Risk Factor Cost Time  Emissions 

Cluster 1 2, 5, 6, 7 Lowest Medium Medium 

Cluster 2 1, 3, 4 High Low Lowest 

Cluster 3 2, 5, 6, 7 High Lowest Low 

Cluster 4 1, 3, 4 Low Medium Low 

 

When Table 22 is reviewed, it can be realized that risk factor 2, 5, 6 and 7 take 

places in both cluster 1 and 3, while risk factor 1, 3 and 4 falls within the clusters 2 

and 4. In Chapter 3, Pareto solution sets for each of the model are given and it is shown 

that these solution sets include several solution points. Some of them reflect high result 

for one of the cost, time, and emissions objective, whereas some of them are low or 

medium valued for the objectives. Thus, each solution sets consists of not one type of 

solution but various types with mixture of high, medium, low results. That is the reason 

that solution points in risk factors fall into not only one cluster but two clusters.  

When these results are shown to decision makers, they will be able to choose 

solutions based on their focus in the result set. For example, when a logistics company 

faces with risk 1, to be able to minimize the effect of this risk they must choose one of 

the solutions from the risk 1 activated solution set. This choice depends on decision 

makers’ requirements or priorities in terms of cost, time, and emissions. For instance, 

if decision maker states that cost is the focus in their logistics activities, and they 

always prefer least costly solutions then solution sets of 4th cluster for this risk factor 

will be offered to decision maker. Even if the risk cannot be prevented beforehand, 

effects of it will be able to be minimized by this way. 
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CHAPTER 6: CONCLUSIONS & FUTURE RESEARCH 

DIRECTION 
 

Supply chains have highly complex structures and technological 

improvements, increasing customer needs in today’s world lead supply chains to 

globalize.  

According to (Maslarić, Brnjac, and Bago, 2016, p. 12),  

     

         “Transportation is often presented as ‘the glue which connects members of a  

           supply chain’ on the efficiency of which the effectiveness of the whole chain  

          depends in the literature.”  

 

Thus, any disruption in transportation network can result in devastating effects 

in whole supply chain operations. It is a fact that risk is inevitable in real-life operations 

and transportation activities are prone to disrupt due to various risk factors. Thus, risk 

management in these activities and constructing resilient transportation network under 

any risk occurrence is highly important. For this purpose, multimodal transportation 

which is an effective transportation way in the logistics compared to unimodal type is 

taken into account and risk management studies is performed in this matter. A 

multimodal transportation optimization model is proposed in this regard. Also, multi-

objectivity consideration is added to the proposed model because not only cost but also 

time and environmental factors are the goals in logistics operations. Then, risk factors 

that transportation operations can face are categorized and integration of those risks 

into proposed model is performed to be able to measure the impact of several risks in 

terms of cost, time, and environmental considerations. After that, all obtained models 

with various risks involvement are implemented in GAMS (GAMS Development 

Corporation, 2019) and Pareto solution sets of each model where each risk is activated 

are analyzed and comparison of results with the base model in which any risk is not 

included is completed. Moreover, t-SNE algorithm is performed for reducing the 

dimension of obtained Pareto solution sets into 2-dimensions. In this way, clustering 

of same featured solution points could be made effectively by using k-means 

algorithm. Finally, results are shared with decision makers (logistic planner, logistic 

director, logistic operations manager) in one of the largest logistic firms in Turkey, 

who makes the decisions in managerial side for the transportation operations, so that 
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they can select and implement any optimal solution based on their focus (least costly, 

timely or less emissions) for their transportation activities when one of the previously 

categorized risk is active. Since intent is setting forth a generic model that can be 

utilized by several logistics companies for their operations. Revisions for which 

transportation modes to be in action, scope of transportation network such as supply 

and demand points, unit container size and costs regarding to per container, capacities 

of transportation used can be revised based on decision makers’ preferences. 

 In conclusion, this study enables to perform risk management in multimodal 

transportation activities and provides decision makers various solutions that they can 

select upon their preferences under any risk activation. By this way, severe impacts of 

risks could be reduced beforehand and risk resiliency and management in 

transportation networks can be achieved. As a future direction of this research, risk 

types can be extended, and some other alternative risks can be defined by making 

detailed research. Also, risks are considered to be effective for short period of time, 

but their impacts are much longer in real-life applications. Thus, risks can be converted 

into objectives as a utility function and their impact score can be aimed to minimize. 

By this way, their effect will be taken as continuous instead of limited time interval. 

In addition, while risks and their impacts have likelihood probabilities in real-life 

cases, this case is not considered in the scope of this study and all risk related 

parameters are assumed to be deterministic. Therefore, probabilistic cases regarding 

to risks such as risk occurrence probabilities, capacity coefficient factor can be 

implemented in this study as a future research direction. Moreover, load factor, traffic 

congestions, vehicle routing and capacity of vehicles in each transportation mode can 

be included to the proposed model and transportation network can be enlarged. 

Additionally, metaheuristics for the solution of developed model, some other machine 

learning and clustering algorithms can be implemented because of increase in 

complexity of the developed model in the future. Lastly, even though conducted study 

enables to narrow down the solution sets for the decision makers with the obtained risk 

clusters and solution points in each cluster, there is still multiple criteria and multiple 

solution points that can make difficult for decision makers to select an efficient 

solution. Thus, as a future research direction of this study, multi-criteria decision-

making tools such as simple additive weighting (SAW) (MacCrimmon, 1968), analytic 

hierarchy process (AHP) (Saaty, 1980), technique for order of preference by similarity 

to ideal solution (TOPSIS) (Hwang, and Yoon, 1981), elimination and choice 
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translating reality (ELECTRE) (Roy, 1968), preference ranking organization method 

for enrichment evaluations (PROMETHEE) (Mareschal, Brans, and Vincke, 1984) etc. 

can be implemented to the obtained risk clusters so that decision makers can make 

their final and most preferred decision from the multiple solution points from the 

created risk clusters. 
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