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ON EXCEEDANCES OF RECORD AND ORDER STATISTICS

I. G. BAIRAMOV AND M. K. KHAN

(Communicated by Edward C. Waymire)

Abstract. Exact, limiting distributions along with their rates of convergence
of exceedance statistics for both order statistics and record statistics are pro-
vided when the underlying distribution is arbitrary. The exact distribution of
record statistics for arbitrary underlying distributions is obtained as well.

1. Introduction

Let X1, X2, ..., Xn, ... be a sequence of iid random variables with distribution
function F which belongs to some class of distributions F. Let an := a(x1, x2, ..., xn)
and bn := b(x1, x2, ..., xn) be two Borel functions in �n satisfying an ≤ bn over �n.
Let νm be the number of Xn+1, Xn+2, ..., Xn+m falling in the interval (an, bn) which
is constructed from the observations of X1, X2, . . . , Xn. Evidently νm is the sum of
dependent binary random variables and its distribution depends on the probability

(1.1) P {Xn+1 ∈ (an, bn)} .

Some authors call this model a generalized Bernoulli model. If F = Fc is the
class of all continuous distribution functions, then the probability (1.1) is the
same for all F ∈ Fc if and only if an = a(X1, X2, ..., Xn) = Xi:n and bn =
b(X1, X2, ..., Xn) = Xj:n for some i and j (1 ≤ i < j ≤ n), where X1:n ≤
X2:n ≤ ... ≤ Xn:n are the order statistics constructed from the first observa-
tions X1, X2, ..., Xn. Furthermore, in this case (see Bairamov and Petunin [7]),
P {Xn+1 ∈ (Xi:n, Xj:n)} = j−i

n+1 . A random interval having such a property is called
an invariant confidence interval containing the future observations. If (an, bn) is an
invariant interval, then νm is a distribution free statistic for the class F. A sim-
ilar property is valid for record values. Let XU(n) denote the r-th record value
and let XU(n)+1, XU(n)+2, ..., XU(n)+m be the next m observations that come after
XU(n). It is easy to show that XU(n), XU(n)+1, XU(n)+2, ..., XU(n)+m are mutually
independent random variables and XU(n)+i, i = 1, 2, ..., m, has the same distri-
bution function F. When F is absolutely continuous, Bairamov [3] proved that
P

{
XU(s)+1 ∈ (XU(r), XU(s))

}
= 1

2r − 1
2s , r < s. A statistic connected with the num-

ber of observations exceeding the random threshold is called an exceedance statistic.
Several authors have considered Xr:n (1 ≤ r ≤ n) and XU(n), n > 1, as random
thresholds and studied the distributional properties of the corresponding exceedance
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statistics and their applications. More precisely, let X1, X2, ..., Xn be a sample with
distribution function FX and let Y1, Y2, ..., Ym be another sample, independent of
the first one, having distribution function FY . It is clear that if H0 : FX = FY

is true, then Y1, Y2, ..., Ym can be considered as Xn+1, Xn+2, ..., Xn+m, i.e., as a
continuation of X1, X2, ..., Xn. In the case of continuous underlying distribution
functions, Katzenbeisser [15], [16] obtained an expression for the distribution of
νm when (a(X1, X2, ..., Xn), b(X1, X2, ..., Xn)) = (Xi:n, Xj:n), 1 ≤ i < j ≤ n, and
proposed test criteria for testing the null hypothesis H0 : FX = FY versus the
Lehman alternatives, FY (x) = [FX(x)]θ , θ �= 1. Matveychuk and Petunin [17], [18],
and Johnson and Kotz [13], [14], studied a generalized Bernoulli model in terms
of placement statistics from two random samples and suggested test criteria for
testing the hypothesis H0 : FX = FY using νm. On the other hand, Bairamov [3]
considered record threshold models and derived exact and asymptotic distributions
of some exceedance statistics. For more on these developments see [20], [4], [8], [1],
[2].

The results mentioned above are for the case when the underlying distributions
are absolutely continuous. The main point of departure of this paper is that we
keep the underlying distribution arbitrary. Until now even the distribution of the
rth-order record value has not been characterized when F is arbitrary. Recently
Bairamov and Kotz [6] considered the case when the underlying distribution had
isolated atoms, a1, a2, . . . , an, where F (ai − 0) < F (ai), i = 1, 2, · · · , n, and F
is continuous otherwise. They studied the distributional properties of exceedance
statistics when the threshold is the rth-order statistic or the second record value.

In this paper we study distributions of exceedances associated with order statis-
tics and record values for arbitrary distributions. We derive the exact distribution
of the rth-record value for arbitrary underlying distributions, which was not avail-
able to date. The limit distributions, along with their rates, for exceedances of
record and order statistics are characterized. The main results are collected in the
next section and their proofs are provided in section 3.

2. The main results

Let X1, X2, · · · be a sequence of independent and identically distributed random
variables with distribution F of arbitrary type and let D be the set of points of
discontinuity of F . Throughout X1:n ≤ X2:n ≤ · · · ≤ Xn:n will represent the order
statistics from a sample of size n and Fr:n will be the distribution of Xr:n. For a
second sample, Xn+1, · · · , Xn+m, define the exceedance statistic, Sm(r), to be the
number of Xn+i that fall strictly below Xr:n. (We should remark that one may
modify our results if exceedance is defined as Xn+i ≤ Xr:n; however, we will not
duplicate such results.) The sampling distribution of Sm(r) is as follows.

Theorem 2.1. For k = 0, 1, · · · , m, we have

P (Sm(r) = k)(
m
k

) =
r
(
n
r

)
(m + n)

(
m+n−1
k+r−1

) (
1 −

∑
d∈D

(∆Fk+r:m+n)d

)
+

∑
d∈D

(F (d−))k (1 − F (d−))m−k(∆Fr:n)d,

where (∆Fr:n)d = Fr:n(d)−Fr:n(d−), and
∑

d∈D stands for summing over all points
of discontinuity of F .
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When D is empty, one gets the classical result of Gumbel and von Schelling [12],
see also Gumbel [10], [11], Epstein [9], and Sarkadi [19]. When D is a finite set,
one gets the recent result of Bairamov and Kotz [6].

Our next result deals with the weak convergence of the statistic Sm(r)/m. When
F is a continuous distribution, the weak convergence of Sm(r)/m to a beta distri-
bution was proved by Matvĕıchuk and Petunin [17], [18]. For the record exceedance
model, the weak convergence, when the underlying distribution is continuous, was
proved by Bairamov [3]. Bairamov et. al. [5] derived the limiting distribution of
Sm(r) falling in (an, bn) when an, bn are symmetric functions of their arguments.
The following theorem not only provides the weak limit of Sm(r)/m for an arbitrary
F but also gives its rate of convergence.

Theorem 2.2. For any distribution F , and any x ∈ (0, 1), the rate of weak con-
vergence is ∣∣∣P (Sm(r) ≤ mx) − L̂r,n(x)

∣∣∣ = O(m−1/2)

where

L̂r,n(x) :=

⎧⎪⎨⎪⎩
Br,n−r+1(F (d)) if x ∈ (F (d−), F (d)] for some d ∈ D,
Br,n−r+1(F (d))+Br,n−r+1(F (d−))

2 if x = F (d−) for some d ∈ D,

Br,n−r+1(x) otherwise,

and where Ba,b(x) is the beta distribution with parameters a, b. (Of course, the weak
limit is the right continuous version of L̂r,n.)

In particular, when F is a continuous distribution, we get

|P (Sm(r) ≤ mx) − Br,n−r+1(x)| = O(m−1/2).

Since Br,n−r+1(x) is a continuous distribution, by Polya’s theorem, weak conver-
gence of Sm(r)/m to Br,n−r+1(x) takes place uniformly in x.

Next, we identify the exact distribution of record values when the underlying
distribution is arbitrary. Let U(1) = 1 and let U(n) = min{i : i > U(n − 1), Xi >
XU(i−1)} for n > 1 be the record times and let XU(1), XU(2), · · · be the correspond-
ing record values. In our notation XU(1) = X1 is the trivial record value and XU(2)

is the first nontrivial record value. Note that if F is such that there is a point d so
that F (d) = 1 and F (d−) < 1, then with positive probability, a record could get
“stuck” forever. Due to this reason, throughout we will assume that if F (x) = 1
for some real number x, then x is a point of continuity.

When X1 has an absolutely continuous distribution function, F , it is easy to see
that the distribution of the first nontrivial record value is F (x) + (1−F (x)) ln(1−
F (x)). The following theorem gives the distribution of the first nontrivial record
value for an arbitrary distribution F .

Theorem 2.3. The distribution H2(x) := P (XU(2) ≤ x) is as follows:

H(F (x)) −
∑
d≤x

{
H(F (d)) − H(F (d−)) − R(F (d−))(∆F )d

} 1 − F (x)
1 − F (d)

,

where H(w) = w + (1−w) ln(1−w), R(w) = − ln(1−w), (∆F )d = F (d)− F (d−)
and

∑
d∈A stands for summing over all points of discontinuity of F in A.
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For the distribution of higher-order record values, we need some notation. Let

R2(x) :=
∫

(−∞,x]

1
1 − F (u)

dF (u), Rr(x) :=
∫

(−∞,x]

Rr−1(u−)
1 − F (u)

dF (u), x ∈ �,

for r = 3, 4, · · · . Let fr(x) = (− ln(1− x))r−1/(r− 1)! for x ∈ [0, 1) and zero other-
wise, and let φr be its cumulative distribution function. For d < x, let h2(x, d) ≡ 1,
h2(x, x) = 0, and

hr(x, d) :=
∫

(d,x]

hr−1(u−, d)
1 − F (u)

dF (u), r = 3, 4, · · · , d ≤ x,

gr(d) :=
{

f ′
r ◦ F (d)

fr−1 ◦ F (d−)
fr−1 ◦ F (d)

− (∆fr ◦ F )d

(∆F )d

}
(∆F )d, r = 2, 3, · · · , d ∈ D.

Theorem 2.4. The Radon-Nikodym derivative of Hr(x) := P (XU(r) ≤ x), with
respect to F , is Rr(x−). Furthermore,

Rr(x) = fr ◦ F (x) +
∑
d≤x

r∑
k=2

gk(d)hr−k+2(x, d), r = 2, 3, · · · ,

Hr(x) = φr ◦ F (x) + Gr(x) +
∑
d≤x

r∑
k=2

gk(d)
∫

(d,x]

hr−k+2(u−, d) dF (u),

where Gr(x) :=
∑

d≤x(fr ◦ F (d−)(∆F )d − (∆φr ◦ F )d).

Similar expressions for the joint distribution of record statistics also hold. For
any integer r ≥ 1, let ηi = 1 if XU(r)+i < XU(r) and zero otherwise, and let
S∗

m(r) =
∑m

i=1 ηi be the exceedance from the rth record. For any x ∈ (0, 1), the
limiting function S∗

m(r)/m is defined as follows:

M̂r(x) :=

⎧⎨⎩
Hr(d) if for some d ∈ D, x ∈ (F (d−), F (d)],
Hr(d)+Hr(d−)

2 if for some d ∈ D, x = F (d−),
Hr(sx) otherwise, where sx = sup{t : F (t) ≤ x}.

The right continuous version of M̂r(x) is the weak limit of S∗
m(r)/m with the

following rate.

Theorem 2.5. For any x ∈ (0, 1), we have

|P (S∗
m(r) ≤ mx) − M̂r(x)| = O(m−1/2).

In particular, when F is continuous, S∗
m(r)/m converges weakly (uniformly in x)

to φr(x). The exact distribution of S∗
m(r) can also be obtained; however, the ex-

pressions get somewhat messy. An explicit expression of the distribution of S∗
m(2),

for instance, is provided below.
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Theorem 2.6. Using the notation of Theorem (2.3), for � = 0, 1, 2, · · · , m, the
probability P (S∗

m(2) = �) is given by

P (S∗
m(2) = �)(

m
�

) =
∫ 1

0

u�(1 − u)m−� dφ2(u) −
∑
d∈D

∫ F (d)

F (d−)

u�(1 − u)m−� dφ2(u)

+
∑
d∈D

(F (d−))�(1 − F (d−))m−�(∆F )dR(F (d−))

+
∑
d∈D

(
−(∆R(F (.)))d +

(∆F )d

1 − F (d)

) [∫ 1

F (d)

u�(1 − u)m−� du

−
∑
δ>d

∫ F (δ)

F (δ−)

u�(1 − u)m−� du +
∑
δ>d

(F (δ−))�(1 − F (δ−))m−�(∆F )δ

]
.

3. The proofs

Proof of Theorem 2.1. Let An+i = {Xn+i < Xr:n}, and let D be the set of points
of discontinuity of F , and use the notation

KD :=
∑
d∈D

(F (d−))k (1 − F (d−))m−k(∆Fr:n)d.

Note that Fr:n is absolutely continuous with respect to F with derivative

dFr:n

dF
(u) =

F r−1(u)(1 − F (u))(n−r+1)−1

B(r, n − r + 1)
= br,n−r+1(F (u)), u ∈ Dc,

where br,n−r+1(x) is the density of Br,n−r+1(x). Hence, we have

P (Sm(r) = k)(
m
k

) = P
(
An+1 ∩ · · · ∩ An+k ∩ Ac

n+k+1 ∩ · · · ∩ Ac
n+m

)
=

∫
�
(F (t−))k (1 − F (t−))m−k dFr:n(t)

=
∫

Dc

(F (t−))k (1 − F (t−))m−k dFr:n(t) + KD

=
1

B(r, n − r + 1)

∫
Dc

(F (t))k+r−1 (1 − F (t))m−k+n−r dF (t) + KD

=
B(k + r, m − k + n − r + 1)

B(r, n − r + 1)

∫
�

1 dFk+r:m+n(t)

−B(k + r, m − k + n − r + 1)
B(r, n − r + 1)

∑
d∈D

(∆Fk+r:m+n)d + KD.

Simplifying the beta functions finishes the proof. �

Proof of Theorem 2.2. The proof depends on three cases: namely, (i) when x ∈
(F (d−), F (d)] for some d ∈ D, or (ii) when x = F (d−) for some d ∈ D, or (iii)
otherwise. The arguments being similar, we only provide the details in the first
case. So let there exist a d ∈ D so that x ∈ (F (d−), F (d)], and let Ax := {t :
F (t−) < x} = (−∞, d]. We may write

L̂r,n(x) =
∫
{t:F (t−)<x}

1 dBr,n−r+1(F (t)).
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If Sm,p is a binomial random variable with parameters m, p, we may write

P (Sm(r) ≤ mx) − L̂r,n(x) =
∫

(−∞,d]

(P (Sm,F (t−) ≤ mx) − 1) dBr,n−r+1(F (t))

+
∫
{t:F (t−)>x}

P (Sm,F (t−) ≤ mx) dBr,n−r+1(F (t))

=
(∫

C1

+
∫

C2

+
∫

C3

)
P (Sm,F (t−) > mx) dBr,n−r+1(F (t))

=: A(1) + A(2) + B,

where C1 = {t : x
2 < F (t−) < x}, C2 = {t : F (t−) ≤ x

2}, C3 = {t : F (t−) > x}. Let
σ2(x) = x(1 − x) for x ∈ [0, 1]. For A(2) just use Chebyshev’s inequality:

A(2) ≤
∫
{t:F (t−)≤ x

2 }

σ2(F (t−))
m(x/2)2

dBr,n−r+1(F (t)) = O(1/m).

Throughout Z ∼ N(0, 1) with cumulative distribution function Φ. Apply the Berry-
Esseen bound to get∫
{t: x

2 <F (t−)<x}

∣∣∣∣P (Sm,F (t−) > mx) − P

(
Z >

√
m(x − F (t−))
σ(F (t−))

)∣∣∣∣ dBr,n−r+1(F (t))

≤ C

cx
√

m

∫
{t: x

2 <F (t−)<x}
1 dBr,n−r+1(F (t)),

where cx is the minimum of σ(F (t−)) over {t : x
2 < F (t−) < x}. Since x ∈

(F (d−), F (d)], we have x − F (d−) > 0. Hence, the Chebyshev inequality gives

A(1) ≤ O(m−1/2) +
∫
{t:F (t−)<x}

P

(
Z >

√
m(x − F (t−))
σ(F (t−))

)
dBr,n−r+1(F (t))

≤ O(m−1/2) +
E|Z|

(x − F (d−))
√

m
.

The argument is mostly similar for B and we omit some of the details, except the
case when x = F (d) in which case a different argument is needed. Again,

B =
(∫

C4

+
∫

C5

)
P (Sm,F (t−) ≤ mx) dBr,n−r+1(F (t)) =: B(1) + B(2),

where C4 = {t : x < F (t−) < 1+x
2 }, C5 = {t : 1+x

2 ≤ F (t−)}. For B(2) the
Chebyshev inequality gives the rate. For B(1), the Berry-Esseen bound gives

B(1) ≤ O(m−1/2) +
∫
{t:x<F (t−)< 1+x

2 }
Φ

(√
m(x − F (t−))
σ(F (t−))

)
dBr,n−r+1(F (t))

≤ O(m−1/2) +
∫
{t:x<F (t−)< 1+x

2 }

∫
Bt

χBt
(u) dΦ(u) dBr,n−r+1(F (t)),(3.1)

where Bt := (−∞,
√

m(x−F (t−))), and χB is the indicator function over the event
B. Let Ax = {s : x < F (s−) < (1 + x)/2}. In our case, since x ∈ (F (d−), F (d)],
there are two possibilities. One, x ∈ (F (d−), F (d)), or two, x = F (d). In the first
case x − F (d−) > 0, and Chebyshev’s inequality gives the rate. Furthermore, if
x = F (d) and mint:F (t−)>x F (t−)− x =: cx > 0, then again Chebyshev’s inequality
will give the rate. So assume inft:F (t−)>x F (t−) = x. Now we need to make a little
more delicate argument. We use the fact that the Radon-Nikodym derivative of
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Br,n−r+1 ◦ F , with respect to F , is bounded by a constant K. This follows from
the fact that the density of Br,n−r+1 is bounded. For a given value of u < 0,
let Cx,u := {s : s ∈ Ax, u <

√
m(x − F (s−))}. That is, s ∈ Cx,u implies that

x < F (s−) < x − u√
m

. Using (3.1), we see that∫
{t:x<F (t−)< 1+x

2 }
Φ

(√
m(x − F (t−))
σ(F (t−))

)
dBr,n−r+1(F (t))

≤ K

∫ 0

−∞

∫
Cx,u

1 dF (t) dΦ(u) = K

∫ 0

−∞

(
x − u√

m
− x

)
dΦ(u) ≤ KE|Z|√

m
,

after ignoring the set D of Gaussian measure zero, for which F (t−) < x−um−1/2 ≤
F (t). The other cases can be exhausted by similar arguments. �

Lemma 1. For any positive integer k, we have the following:∫
(−∞,x]

(F (u−))k dF (u) = −
∑
d≤x

F (d)
(
(F (d))k − (F (d−))k

)
+

(F (x))k+1

k + 1
+

k

k + 1

∑
d≤x

(
(F (d))k+1 − (F (d−))k+1

)
.

This result also holds when (−∞, x] is replaced by (−∞, x) and (F (u−))k is replaced
by (F (u))k on the left side and {d ≤ x} is replaced by {d < x} and (F (x))k+1 is
replaced by (F (x−))k+1 on the right side respectively.

Proof. We will prove the first identity, since part two follows similarly. First,∫
(−∞,x]

(F (u−))k dF (u) +
∫

(−∞,x]

F (u) d(F (u))k = (F (x))k+1.

Now putting the following two expressions together gives the proof:∫
(−∞,x]∩Dc

F (u) d(F (u))k =
k

k + 1

∫
(−∞,x]∩Dc

1 d(F (u))k+1

=
k(F (x))k+1

k + 1
− k

k + 1

∑
d≤x

(
(F (d))k+1 − (F (d−))k+1

)
,∫

(−∞,x]∩D

F (u) d(F (u))k =
∑
d≤x

F (d)
(
(F (d))k − (F (d−))k

)
. �

Proof of Theorem 2.3. By the definition of the first nontrivial record value,

P (XU(2) ≤ x) =
∞∑

k=2

∫
(−∞,x]

∫
(−∞,v)

(F (u))k−2 dF (u) dF (v).

Now we use the result of the last lemma, first on the inner integral to get∫
(−∞,v)

(F (u))k−2 dF (u) = −
∑
d∈D

F (d−)
(
(F (d))k−2 − (F (d−))k−2

)
χ(d,∞)(v)

+
(F (v−))k−1

k − 1
+

k − 2
k − 1

∑
d∈D

(
(F (d))k−1 − (F (d−))k−1

)
χ(d,∞)(v),



1942 I. G. BAIRAMOV AND M. K. KHAN

where χA(v) is the indicator function of A. The last lemma gives∫
(−∞,x]

∫
(−∞,v)

(F (u))k−2 dF (u) dF (v) =
1

k − 1

∫
(−∞,x]

(F (v−))k−1 dF (v)

+
∑
d≤x

{
(k − 2) (F (d))k−1 − (F (d−))k−1)

k − 1

}
(F (x) − F (d))

−
∑
d≤x

F (d−)
(
(F (d))k−2 − (F (d−))k−2

)
(F (x) − F (d)),

and the last integral equals

(F (x))k

k(k − 1)
+

∑
d≤x

(
(F (d))k − (F (d−))k

)
k

−
∑
d≤x

F (d)
(
(F (d))k−1 − (F (d−))k−1

)
k − 1

.

Now adding over k gives that

P (XU(2) ≤ x) = H(F (x)) +
∑
d≤x

{
R(F (d)) − F (d) − R(F (d−)) + F (d−)

}
−

∑
d≤x

F (d)
{
R(F (d)) − R(F (d−))

}
+

∑
d≤x

{
H(F (d))
1 − F (d)

− H(F (d−))
1 − F (d−)

}
(F (x) − F (d))

−
∑
d≤x

F (d−)
(

1
1 − (F (d))

− 1
1 − (F (d−))

)
(F (x) − F (d)).

Combine the first terms of the first two sums, and the third and second terms of
the first two sums respectively, and use −F + (1 − F )R(F ) = −H(F ), to get the
final result. �

The proof of the following lemma, being similar to that of Lemma 1, is omitted.

Lemma 2. When a, c are positive integers, we have the following results:∫
(−∞,x)

(F (u−))a(1 − F (u−))cdF =
∑
d<x

(F (d−))a(1 − F (d−))c(∆F )d

+ B(a + 1, c + 1)

{
Ba+1,c+1(F (x−)) −

∑
d<x

(∆Ba+1,c+1(F (.)))d

}
.

The result also holds when (−∞, x) is replaced by (−∞, x] on the left side and
{d < x} is replaced by {d ≤ x} and Ba+1,c+1(F (x−)) is replaced by Ba+1,c+1(F (x))
on the right side.

Proof of Theorem 2.4. It is easy to see that R2(x−), as given in the theorem, is
the Radon-Nikodym derivative of H2(x) with respect to F . Let Rr−1(x−) be the
derivative of Hr−1 with respect to F . Then by the definition of Rr(x), we see that

Rr(x) =
∫

(−∞,x]

fr−1 ◦ F (u−)
1 − F (u)

dF (u) +
∑
d<x

r−1∑
k=2

gk(d)hr−k+2(x, d).
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Since hr−k+2(x, x) = 0, we may take the outer sum as
∑

d≤x. The integral term
can be evaluated as follows.∫

(−∞,x]∩Dc

fr−1 ◦ F (u−)
1 − F (u)

dF (u) =
∫

(−∞,x]

1 dfr ◦ F (u) −
∫

(−∞,x]∩D

1 dfr ◦ F (u)

= fr ◦ F (x) −
∑
d≤x

(∆fr ◦ F )d.

Putting the terms together, and using induction, we get that Rr(x−) is the Radon-
Nikodym derivative of Hr(x). To get Hr, note that

Hr(x) =
∫

(−∞,x]

fr ◦ F (u−) dF (u) +
∑
d≤x

r∑
k=2

gk(d)
∫

(d,x]

hr−k+2(u−, d) dF (u).

Finally, Hr is obtained since∫
(−∞,x]

fr ◦ F (u−) dF (u)

=
∫

(−∞,x]

1 dφr ◦ F (u) −
∫

(−∞,x]∩D

1 dφr ◦ F (u) +
∑
d≤x

fr ◦ F (d−)(∆F )d

= φr ◦ F (x) +
∑
d≤x

{
fr ◦ F (d−)(∆F )d − (∆φr ◦ F )d

}
. �

Proof of Theorem 2.5. With one exception, the proof of this theorem remains iden-
tical to that of Theorem 2.2, the exception being that the derivative of Br,n−r+1◦F
remained bounded, while the derivative of Hr, namely Rr(x−), need not be bounded
over �. The patch up requires noting that the proof of Theorem 2.2 needs bound-
edness over regions such as (−∞, t] where F (t) < 1, and Rr(t) is nonnegative,
nondecreasing, and hence it also obeys this condition. �

Proof of Theorem 2.6. Let (∆F k)d = F (d)k − F (d−)k. By the definition,

P (S∗
m = �)(
m
�

) =
∞∑

k=2

∫
�
(F (v−))�(1 − F (v−))m−� dF (v)

∫
(−∞,v)

(F (u))k−2 dF (u)

=
∞∑

k=2

∫
�
(F (v−))�(1 − F (v−))m−� (F (v−))k−1

k − 1
dF (v)

+
∞∑

k=2

∫
�
(F (v−))�(1 − F (v−))m−� k − 2

k − 1

∑
d∈D

(
∆F k−1

)
d
χ(d,∞)(v) dF (v)

−
∞∑

k=2

∫
�
(F (v−))�(1 − F (v−))m−�

∑
d∈D

F (d−)
(
∆F k−2

)
d
χ(d,∞)(v) dF (v).

Denote the above three terms as A, B, C. For B, C, we interchange the two sum-
mation signs and use Lemma 2 and then rewrite B − C as∑

d∈D

(
H(F (d)) − F (d−)

1 − F (d)
− H(F (d−)) − F (d−)

1 − F (d−)

) [
B(� + 1, m − � + 1)

{
1 −

β�(F (d)) −
∑
δ>d

(∆β�(F (.)))δ

}
+

∑
δ>d

(F (δ−))�(1 − F (δ−))m−�(∆F )δ

]
,
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where β�(x) = B�+1,m−�+1(x). A similar argument gives that

A =
∞∑

k=2

1
k − 1

[
B(k + �, m − � + 1)

{
1 −

∑
d∈D

(∆Bk+�,m−�+1(F (.)))d

}

+
∑
d∈D

(F (d−))k−1(F (d−))�(1 − F (d−))m−�(∆F )d

]

=
∫ 1

0

u�(1 − u)m−� dφ2(u) −
∑
d∈D

∫ F (d)

F (d−)

u�(1 − u)m−� dφ2(u)

+
∑
d∈D

(F (d−))�(1 − F (d−))m−�(∆F )dR(F (d−)).

Using the fact that H(w)−w = −R(w)(1−w), and then putting A, B−C together
finishes the proof. �

Acknowledgments

We would like to thank Professor Cihan Orhan for his support. The second
author was supported by TUBITAK while visiting Ankara University, Turkey.

References

1. M. Ahsanullah, Record Statistics, Nova Science Publishers, Inc., Cormack, New York, 1995.
MR1443904 (98d:62088)

2. B. Arnold, N. Balakrishnan, and H. N. Nagaraja, Records, John Wiley & Sons, New York,
1998. MR1628157 (2000b:60127)

3. I. G. Bairamov, Some distribution free properties of statistics based on record values and
characterizations of the distributions through a record, J. Appl. Statist. Sci. 5 (1997), no. 1,
17–25. MR1439625 (98d:62016)

4. I. G. Bairamov and S. N. Eryilmaz, Distributional properties of statistics based on minimal
spacing and record exceedance statistics, J. Statist. Plann. Infer. 90 (2000), 21–23. MR1791579
(2002f:62052)

5. I. G. Bairamov, O. L. Gebizlioglu and M. F. Kaya, Asymptotic Distributions of Statistics
Based on Order Statistics and Record Values and Invariant Confidence Intervals, In “As-
ymptotic Methods in Probability and Statistics with Applications” (Eds. N. Balakrishnan; I.
A. Ibragimov, and V. B. Nevzorov), 309–320, Birkhäuser, Boston 2001. MR1890335
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