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ABSTRACT

A MULTIGENE GENETIC PROGRAMMING APPROACH ON
WEATHER FORECASTING

Cevik, Neslihan
M.S. in Industrial Engineering
Advisor: Prof. Dr. Ahmet Sermet ANAGUN

June, 2020

Weather and precision of weather forecasts have a very important role in our daily
lives especially in the field of transportation since it directly affects the quality and the
safety of the service. In this study, the aim was to compare the forecast errors executed
by different forecasting approaches. The data has been provided by Republic of Turkey
Ministry of Agriculture and Forestry, General Directorate of Meteorology for Izmir
Adnan Menderes Airport with eight independent variables and the daily average
temperature and daily average wind speed as the dependent variables for the years
2015-2017. Results show that Multi-Gene Genetic Programming Approach and
Gaussian Regression with kernels; Rational Quadratic and Squared Exponential
models have lower RMSE values compared with the SVR and ANN.

KEYWORDS: weather forecasting, support vector regression, multiple regression,
nonlinear regression, data mining, multi-gene genetic programming, artificial neural

network



OZET

COKLU GEN GENETIK PROGRAMLAMA YAKLASIMI ILE HAVA TAHMINI

Cevik, Neslihan

Endiistri Miihendisligi Yiiksek Lisans Programi
Tez Danigmant: Prof. Dr. Ahmet Sermet Anagiin

Haziran, 2020

Hava durumu ve hava durumu tahminlerinin kesinligi, 6zellikle yolcu tasimaciligi
alaninda ve giinliik yasamimizda ¢ok 6nemli bir role sahiptir, ¢linkii hizmetin kalitesini
ve gilivenligini dogrudan etkiler. Bu calismada amag, farkli tahmin yaklasimlari
analizler sonucu elde edilen tahmin hatalarini kullanarak karsilagtirmaktir. Veriler, TC
Tarim ve Orman Bakanlig1, Izmir Meteoroloji Genel Miidiirliigii Adnan Menderes
Havalimani tarafindan 2015-2017 yillart i¢in, sekiz bagimsiz degisken ile giinliik
ortalama sicaklik ve riizgar hiz1 iki bagimli degisken olacak sekilde saglanmistir.
Coklu Gen Genetik Programlama Yaklasimi ve Gaussian Regresyonunun, SVR ve
ANN ile Kkarsilastirildiginda daha diisik RMSE degerleriyle daha basarili bir

performansa sahip oldugunu gostermistir.

ANAHTAR KELIMELER: hava durumu tahmini, destek vektor regresyonu, ¢coklu
regresyon analizi, dogrusal olmayan regresyon, veri madenciligi, ¢oklu gen genetik

programlama, yapay sinir agi.
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CHAPTER 1: INTRODUCTION

1.1 Forecasting

Accuracy of the forecast is vital for many cases in everyday life since it has huge
impact on costly and sensitive areas like transportation, industry, and environment. As
the number and complexity of the data increases each day, the sensitivity of the
precision gets more attention and extra care. Forecasting and the precision are not only
some extensions of the new developments but they already are the focus. Today there
are studies on creating new methods which can improve the level of precision
compared to the already used methods. Linear, nonlinear regression and Artificial
Neural Network (ANN) methods have been used excessively in the field of prediction.
Support Vector Regression and Multi Gene Genetic Programming (MGGP) are the
trending methods which are used especially when the data used for the study has a
nonlinear behavior. Instead of using the stand-alone Genetic Programming (GP),
studies show that MGGP has better performance with the nonlinear data. The MGGP
approach has been used especially in the fields of weather, streamflow, gas

consumption forecasting.

1.2 Problem Statement

Weather forecasting is one of the areas which should be strong on the point of
precision and has room for improvement. The importance of the precision of the
forecast depends on the data and analyzed system. This study focuses on daily average
temperature and wind speed forecasting for Izmir Adnan Menderes Airport since the
forecasting performance has an important role in the aviation sector and it is the reason
for choosing this site for this study. ADB is the largest airport in the Aegean region in
Turkey and has the total number of 7.10 million passengers for domestic and
international flights for the first half of 2019 (DHMI, 2018). Another reason for
choosing ADB as the site of study is the meteorology recording accuracy being a
priority for the facility; leading to having high quality data for a statistical analysis.
The impact of the performance of this study is also an important reason for choosing
ADB because of possible improvements on cost and security of the service.



The focus of the prediction is on the daily average temperature and wind speed for
this study, but it can be also be conducted for the other metrological parameters which
are especially important for aviation such as daily average cloudiness, daily average
atmospheric pressure. There are examples in the literature about the impacts of climate
change on the takeoff performance of aircrafts. A recent research mentions that
increase in temperature causes longer takeoff distances and lower climb rates. The
average takeoff distance is expected to increase by 0.95-6.5% from the period (1976-
2005) to the period (2021-2050) whereas the climb rate is expected to decrease by
0.68-3.4% for the previously mentioned periods (Zhou et al., 2018). A good
forecasting system can be used to take preventive action and especially for the aviation,

new regulations can be considered for the future.

The data which has been provided for this study is the meteorological data from
Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of
Meteorology for Izmir Adnan Menderes Airport between years 2015-2017. The reason
why data for 2018 hasn’t been used is that the quality of the data was not appropriate
for any analysis. In case of improvement on 2018 data, it can be added to assess the
success of this study. For all of the methods, 2015 and 2016 were used for training the
data whereas 2017 data was used for testing purpose. After making the regression
analysis it was clear that the data used for this analysis was nonlinear and that for
further analysis the methods should be applied by taking this information into

consideration.

1.3 Purpose of the Study

The aim of this thesis is to minimize the forecasting errors for the weather data on
predicting the daily average temperature and wind speed by comparing different
regression and forecasting approaches. The performance comparisons and discussions

on different methods are also included in this study.

There have been many examples of studies conducted in the area of weather
forecasting. One of the studies was on predicting the fog at Canberra International
Airport using artificial neural network (Fabbian, De Dear, and Lellyett, 2007) which
had a very critical impact on the area of aviation security and on reducing possible

risks. There have been separate studies on predicting the rainfall data using MGGP



approach and ANN (Alweshah, Ababneh, and Alshareef, 2017). There are also studies
on minimizing the forecasting errors on wind speed prediction using both ANN and
MGGP.

Among other studies conducted in the forecasting field, this study contributes to

other works in literature on following aspects:

e MGGP approach has not been used enough in temperature forecasting
considering the reachable literature

e SVR, ANN and MGGP performances on a large time series data set haven’t
been studied yet.

e SVR which is not common in forecasting since SVM was used more on

classification cases, has been extensively analyzed.

1.4. Structure of the Thesis

The remaining chapters of this thesis are organized as follows. In Chapter 2, impact of
weather parameters on aviation and the previous studies on forecasting with SVR,
ANN, MGGP and other methods commonly used in the literature are reviewed. The
regression methods used in this study and the implementation of the methodology are
discussed in Chapter 3. Performance evaluation regarding the forecast methods are
given in Chapter 4. Lastly, summary of the study and future plan regarding this
analysis are provided in Chapter 5.



CHAPTER 2: LITERATURE RESEARCH

2.1 Impacts of Weather Forecasting on Aviation

Impacts of weather parameters on aviation has to be studied carefully in order to
determine the focus of this study. There have been many works on determining the
specific safety risks of a possible weather extreme. The following part of this section
provides brief information on scientific deductions on the impacts of different weather

parameters.

The importance of forecasts arises in the aspect of economy and it can only be seen
by the influence on the individuals and organizations (Fabbian, De Dear, and Lellyett,
2007). The most affected party on this subject is surely the airlines and the airports
considering the costs and the damaged reputations besides the possible number of
people that can be affected in the case of an accident. Wind, turbulence, high density
altitude, temperature extremes, lightning, visibility problem, thermal lift are some of

the possible threats for the aviation that may cause accidents (Gultepe et al., 2019).

As it can be observed from Figure 2.1, wind caused aircraft accidents has the
highest value of 1149 accidents between the year 2003 and 2007 followed by visibility
and high-density altitude.
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Figure 2-1 Weather-related Accidents by category (Source: ASIAS, 2010)

Also, for the same study, the phase of the flight for wind related aircraft
accidents have been studied. According to the results, compared to other phases among
all wind caused accidents; landing and takeoff phases have greater number of incidents
with 663 and 216 incidents respectively (ASIAS, 2010). Appendix 1 shows the number
of accidents between 2003 and 2007 for all of the categories during landing and takeoff
actions. These two phases are very important for this study since they are connected
directly with the airport, the site. Both landing and takeoff take place when the aircraft
is near the airport so, an accurate weather forecasting is highly significant for many
airports especially for the landing and takeoff phases possessing high risks during
weather extremes. Figure 2.2 displays the accidents caused by the wind speed between
the years 2003 and 2007. As it can be observed from the Figure 2.1, takeoff and landing

phases of flights possess the highest risk of accidents due to the wind speed.
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Figure 2-2 Wind Accidents Phase of Flight (Source: ASIAS, 2010)

Although not having many accidents compared to the other categories in this
study, temperature extremes also have an impact on the aircraft performance. Extreme
high temperatures can create high density altitudes and can even cause heating of fuels
by the engines whereas extreme low temperatures can cause system to not operate as
a consequence of water being present in the system and the freezing (ASIAS, 2010).
As a result of an extreme low temperature having even 0.1mm of ice for 2 minutes on
the wing surface can increase the drag and can reduce the airplane lift by 25-30%
which can be considered as a very high risk (ASIAS, 2010).

Considering the above stated safety risks, meteorological parameters such as
wind, temperature, atmospheric pressure, and relative humidity should be measured
carefully with high quality, sensitive equipment and prediction tools should be
improved aiming highest accuracy. For example, visibility is a very hard parameter to
be predicted because it depends highly o local conditions (Fabbian, De Dear, and
Lellyett, 2007).

Nowcasts and forecasts are not only important for short term period but also
has an impact on the long term. In a study conducted by Zhaou et al. (2018) showed
that the increase in temperature over the years can affect the takeoff performance. It is

known that increasing temperature and decreasing pressure altitude decreases the



takeoff performance and this has been supported by the decrease of takeoff
performance of 30 airports, data provided by the Global Surface Summary of Day Data
produced by the US National Climatic Data Center due the to the climate change
between the year 1976 and 2005. Increase in temperature requires longer takeoff

distance and lower climb rate to meet airline safety standards (Zhou et al., 2018).

The cost aspect of effects of weather on aviation should not be neglected. The main
use of Terminal Aerodrome Forecasts, TAFs by airlines and aircraft operators is for
flight planning, both for before and during the flight since alternative fuel decision
should be made according to the forecasts for the destination. To carry additional fuel
or to encounter unexpected conditions can even turn the profit into a loss because of
extra flight time or diversion to an alternate landing site (Fabbian, De Dear, and
Lellyett, 2007).

2.2 Adaptations and Implementations of Current Techniques

As an example of predictive forecasting, there have been multiple studies on
predicting the rainfall with different methods. There has been a survey study on rainfall
predictions, and it has been observed that ANN is the most popular method used by
the researchers followed by MLR, SVM and BPNN (Hirani and Mishra, 2016). This
has guided the roadmap for this study as the alternative methods before implementing
MGGP. Another study conducted on forecasting the rainfall has compared different
kernels for SVR combined with a special data preprocessing technique and achieved
to develop a successful prediction model (Hasan, Nath, and Rasel, 2016). A study on
forecasting the fog occurrences for Canberra International Airport using data for 44
years using the ANN architectures aimed to improve the forecasting performance of
The Australian Bureau of Meteorology (BoM) for the National Fog Project (Fabbian,
De Dear, and Lellyett, 2007). There is also a study that came up with a very accurate
rainfall prediction system with Multi Gene Genetic Programming (MGGP) which
shapes the focus of this thesis (Alweshah, Ababneh, and Alshareef, 2017).

Another study on predicting the monthly rainfall data in Tenggarong Station, East
Klimantan, Indonesia had successfully performed using Backpropagation Neural
Network (BPNN) algorithm since methods such as Simple Regression, Exponential

Smoothing and autoregressive integrated moving average (ARIMA) didn’t have good



performance because of data being nonlinear (Mislan et al., 2015). They have
compared three different cases compared with their Mean Squared Error (MSE)
performance (Mislan et al., 2015). There is also a study on predicting river flow using
FFNN where they have compared AR and FFNN performances (Thota, 2018).

There are also hybrid algorithms developed by researchers that help improving the
accuracy of predictions. Combining RBF neural networks for rainfall prediction using
hybrid particle swarm optimization and genetic algorithm gave very successful results

on rainfall prediction (Wu, Long, and Liu, 2015).

Galashani et al. used both ANN and MGGP in order to predict the bond strength
of GFPR bars in concrete and they both outperformed MLR methods (Golafshani,
Rahai, and Sebt, 2015).

A study on predicting the dynamic travel time predictions to improve the traffic
information systems in United States used the MGGP comparing the performances of
different number of clusters (Elhenawy, Chen, and Rakha, 2014). Another study
conducted by Faris et al on 2014 compared the prediction performances of ANN, GA,
PSO and MGGP for the temperature of a metal cutting tool (Faris and Sheta, 2016).
As a result of their study, MGGP outperformed all of the other methods (Faris and
Sheta, 2016). There are other applications of MGGP such as predicting the student
failure rates based on the previous academic performance of the students (Orove,
Osegi, and Eke, 2015). This study created an application with the MGGP logic behind
and they have provided the codes for any contributions (Orove, Osegi, and Eke, 2015).

Mehr et al have connected the Moving Average method with MGGP for the
streamflow prediction while they have used the Pareto optimal solutions provided by
the GPTIPS on their study on Sendz Stream on 2017 (Danandeh and Kahya, 2017).
This hybrid method had a better performance compared to stand-alone GP, MGGP and
MLR methods but for comparing Pareto-optimal MAMGGP and MAMGGP, there
were no significant difference on the accuracy of the predictions (Danandeh and
Kahya, 2017). The idea behind combining MA with MGGP is reducing the
complexity of the models by applying a smoothing step in the beginning (Danandeh
and Kahya, 2017). One of the most significant research using the MGGP focused on
predicting the global solar irradiance to utilize the solar energy (Pan, Pandey, and Das,

2013). They have observed that with the application of MGGP, they have decreased



the error of 4% with the already used ANN method to 3% with the MGGP approach
(Pan, Pandey, and Das, 2013). The studies mentioned above are clear examples of
MGGP approach being a popular and successful method which can be employed

almost on every field.

Table 2.1 contains the list methods such as ANN, GP, MGGP, and hybrid methods
used in the field of forecasting especially weather forecasting. It can be observed that
MGGP has not been used extensively in the reachable literature. As a contribution to
the performance comparison for MGGP, ANN has been also analyzed in the
forecasting problems that use MGGP in many other studies. This concept lead this
study to include ANN as a regression method. There are also hybrid implementations

of MGGP and ANN which promise better forecasting performances.

Table 2-1 Literature Review

Method Area Relevant Literature
FFENN Black River Flow (Thota, 2018)
ANN/MGGP Bond Strength (Golafshani, Rahai, and Sebt, 2015)
Hybrid MA-MGGP Daily Streamflow (Danandeh and Kahya, 2017)
BPNN Daily Temperature (Narvekar and Fargose, 2015)
FFNN Fog Forecasting (Pasini, Pelino, and Potesta, 2001)
(Khatib, Mohamed, and Mahmoud,
ANN Global Solar Energy
2012)
MGGP Global Solar Irradiation  (Pan, Pandey, and Das, 2013)
GP Global Solar Irradiation ~ (Demirhan and Kayhan Atilgan, 2015)
SVR Global Solar Radiation (Olatomiwa et al., 2015)
SVR Global Solar Radiation (Ramedani et al., 2014)
GP Seasonal Forecasts (Neill et al., 2012)
(Ramesh, Anitha, and Ramalakshmi,
ANN, GP Surface Air Temperature
2015)
AR/GP Nile River Flow (Sheta and Mahmoud, 2012)
GEP Ozone Level (Samadianfard et al., 2013)
FFNN Sea Level Variability (Roshni, Sajid, and Samui, 2017)




CHAPTER 3: METHODOLOGY

3.1 Data Collection

The raw data was obtained for each parameter for three years in Microsoft
Office Excel sheets from the General Directorate of Meteorology for Izmir Adnan
Menderes Airport. The data contain ten different meteorological parameters. The
parameters being used as inputs are given in Table 3.1. The remaining parameters

being used as outputs, namely daily average temperature (°C) and daily average wind

speed (m/s) are given in Table 3.2.

Table 3-1 Input Variables

There were several data points which were not been able to recorded for certain
reasons, so those were filled with one of the conventional methods; simple arithmetic
average. Since the missing data were only for one day for the inputs, and that it was
not frequent to affect the consistency of the data, simple arithmetic average has been
used (Yozgatligil et al., 2013). Since more than 60% of the data for daily total rainfall

(mm=kg+m?), an input provided by General Directorate of Meteorology was missing,

Inputs Units
x1 Daily Maximum Atmospheric Pressure  hPa
X2 Daily Maximum Wind Direction ©®
x3  Daily Maximum Wind Speed (m/s)
X4 Daily Average Wind Direction ©)
xs Daily Maximum Temperature (°C)
x7 Daily Average Atmospheric Pressure (hPa)
xg Daily Average Cloudiness (8 Okta)
Xg Daily Average Relative Humidity (%)
Table 3-2 Output Variables
Outputs Units

xs  Daily Average Wind Speed  (m/s)

x10 Daily Average Temperature (°C)

10




it had to be removed from the study. In fact, one of the possible forecast targets was
the daily total rainfall for this thesis since it is known that rainfall has a high effect on
aviation especially on decreasing the visibility. In a study conducted by Yihua Cao,
Zhenlong Wu and Zhengyu Xu in 2014, effects of rain for the aircraft performance has
been discussed. As a result of their study they have listed possible negative effects of
rain to the aircraft and takeoff performance. These are; decreased visibility, poor
accuracy of measurement instruments on an aircraft, possible engine flameout because
of the standing water on the runway splashing from wheels to undercarriage, water
vapor condensation cloud occurrence in low-pressure regions etc (Cao, Wu, and Xu,
2014). These effects are not still extensively matched with the engineering concepts,
but the risk of possible effects is too high to take (Cao, Wu, and Xu, 2014). As a result
of the above reasons, in case of obtaining usable data, this study can be conducted for
the total daily rainfall prediction instead of daily average temperature and daily

average wind speed.

After filling the missing input data points and organizing the data in the order

of the years 2015 to 2017, the data was ready to be analyzed.

Figure 3.1 and Figure 3.2 show the daily average temperature and daily average

wind speed patterns for the years 2015-2017, respectively.

The correlation coefficients among the input and output variables are given in
Table 3.3. Highest correlation is between the input variable daily maximum
temperature and daily average temperature which was expected before the analysis
since they have similar time series pattern. It can be said that there is no correlation
between the input variable daily maximum wind direction and the daily average wind
speed. This supported the subset selection step conducted before the actual method

execution of all possible regression methods.

As it can be observed from the Figures 3.1 and 3.2, both daily average
temperature and wind speed data have the time series pattern, but no time series
regression method have been applied in this study. The reason behind this is the
nonlinear relationship between the input and output variables. Appendix C includes
the relationship between the input variables and the target variable daily average
temperature and only daily maximum temperature have a linear relationship with the

output variables. This fact shaped the methodology of this study in the aspect of not

11



using time series regression methods such as ARIMA (Autoregressive Integrated
Moving Average), SARIMA (Seasonal Autoregressive Integrated Moving Average),
etc. Methods known with their superior performances on nonlinear data have been

chosen.

Daily Average Temperature (°C) vs Time (days)

ig 1000 1200

Figure 3-1 Time Series Graph for Daily Average Temperature

40

Daily Average Wind Speed (m/s) vs Time (days)

14

0 200 400 600 800 1000 1200

Figure 3-2 Time Series Graph for Daily Average Wind Speed
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Table 3-3 Correlation Coefficients Among the Input and Output Variables

Attributes | X7 X8 X9 X4 X1 X6 X2 X3 Xs X10
X7 1 -0,14 (0,18 [-0,01 |0,98 [-0,55|-0,08 |-0,28 |-0,16 | -0,63
X8 014 |1 0,55 | 0,00 |-0,07 |-0,41 0,05 |0,08 [-0,13 |-0,32
Xo 0,18 | 0,55 |1 0,00 | 0,244 |-0,62 | -0,02 | -0,31 | -0,51 | -0,62
X4 -0,01 | 0,00 [0,00 |1 -0,02 (0,00 (0,03 [0,03 |0,01 [0,00
X1 0,98 |-0,07 [0,24 |-0,02 |1 -0,63 | -0,08 | -0,25 | -0,17 | -0,70
X6 -0,55 |-0,41 |-0,62 | 0,00 |-0,63 |1 0,034 | 0,074 | 0,11 | 0,98
X2 -0,08 | 0,047 | -0,02 | 0,03 |-0,08 [ 0,03 |1 -0,01 |0 0,04
X3 -0,28 (0,08 |-0,31]0,03 |-0,25 |0,07 {-0,01 |1 0,76 (0,18
Xs -0,16 ( -0,13 { -0,51 0,01 |-0,17 | 0,11 (O 0,76 |1 0,23
X10 -0,63 ( -0,32 | -0,62 | -0,00 | -0,7 0,98 (0,04 (0,18 0,23 |1

3.2 Multiple Regression Analysis

For the forecasting method, Multiple Linear Regression has been used as the
first method for the study since the forecasting system focuses on the impact of 9 inputs
on the output variable. There are many regression method alternatives provided by
different softwares. In this study, the regression methods were applied provided by the
Regression Learner Toolbox of MATLAB R2017a.

3.2.1. Multiple Linear Regression

Linear regression, known as the simplest method, models relationship between the
input and the output variables. In the presence of multiple input variables used for the
prediction of the output variables, the method is called as Multiple Linear Regression
(MLR). This may not be the case for many data set just as our data set used in this
thesis. We still applied linear regression to prove that the data set does not contain
linear relationship between input and output variables. The first step in this study was
to detect the linear relation between the variables and the responses. The study and the
methodology were to evolve around the characteristics of the data. As it can be
observed from the figures in Appendix Figure A-1 to C-7, all input data have a
nonlinear relationship with one of the targets, daily average temperature except the

daily maximum temperature. This was conducted to see the characteristics of the data.
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This step helps to the analysis of the impact of each variable on the response and
therefore to the construction of the best subset for the rest of the study. The correlation
between the variables have also been studied and as a result of the correlation matrix
in the Table 3.3 and the Variance Inflation Factor (VIF) being greater than 5 and 10
for some of the variables it has been decided that the data didn’t include the
multicollinearity. The determination for the use of the nonlinear regression tools have
been done with the linear regression assumptions; linearity, no or little

multicollinearity, no auto-correlation, homoscedasticity and multivariate normality.

After the application of linear regression methods, it has been clear that the
meteorological data is nonlinear and that linear regression methods are not suitable for
predicting temperature and wind speed. This led the study to search for nonlinear

regression and machine learning methods.

3.2.2. Subset Selection

In order to determine the best subset, Minitab® 17.3.1 Best Subsets tool has been
used. According to the results for the prediction of daily average temperature, X1, X3,
X4, X5, X6, X7, X8, Xg Were suggested as the best subset but since both Stepwise Selection
and Backward Elimination methods neglected x4, daily average wind direction, x4 has
been removed from the data set for the rest of the study. The results of the Stepwise
Selection, Backward Elimination and Forward Selection are provided in the Appendix
Table B-1 and B-2 for Daily Average Temperature and Daily Average Wind Speed,
respectively. The result table includes the S, R-squared and Mallow’s Cp measures.
The final decision for the subset selection was made considering these performance
measures. As a result, the final subset of input parameters has been chosen as x1, X3,

Xs, Xs, X7, Xg, and Xg for the prediction of daily average temperature.

For the prediction of daily average wind speed, the best subset feature selection
has also been applied. As a result, although having all of the inputs for backward
elimination, stepwise and forward selection method, both daily average and maximum
wind direction has been removed from the set of best subsets with the guidance of Best
Subsets tool. For the rest of this thesis, the analysis is conducted for the all data

including the daily average and maximum wind direction, and the best subset
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separately, and the performance evaluation will be provided for both cases for
comparison for daily average temperature and daily average wind speed.

3.2.3. Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric approach which uses
kernel-based probability models, making the method itself different from other
models. The non-parametric property of GPR removes the limitation of fitting over a
specific function and to have different probability distributions for all possible
functions. The model doesn’t provide specific values for each parameter, it only
computes the posterior probabilities using the trained data and the prior distribution
p(w) with parameter w (Heimann et al., 2018). The aim of this system is to find the
£, prediction distribution with the provided test data x* assuming that both prior and
likelihoods are following a Gaussian distribution as it can be seen from Equation
3.2.3.3 (Heimann et al., 2018).

p(YIX, w)p(w)

,X) = 3.2.3.1
p(wly,X) ) ( )
terior — likelihood X prior
postertor = marginal likelihood (3.23.2)
P13 30 = [ G 1wl Hdw
b (3.2.3.3)

The first step is to create the prior probabilities, with the mean and kernel

(covariance) functions in Equation 3.2.3.4.

f(x) ~ GP(m(x), k(x,x")) (3.2.3.4)

With the existence of prior with the Gaussian distribution we have the
sufficient knowledge about the space of functions (Heimann et al., 2018). The noise

factor in this model is shown as follows;

£~ N(0,02) (3.2.3.5)
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fx) ~ GP(m(x), k(x,x")) + &;j07 (3.2.3.6)

In order to add the training and testing data to the model, there should be the
covariance matrices constructed in Equation 3.2.3.7 (Heimann et al., 2018). The model
in Equation 3.2.3.7, containing the test data, can be used for prediction.

[X] ~N([#]’[K(X,X)+G€I K(X,X.) (3.2.3.7)
fe e K(X., X) K(X.,X.)

The notation K is used for the covariance kernel functions and for GPR, there
are several types of kernel functions. For the GPR, the kernels are used to express the
situation of similar inputs variables x; having similar target values y;. Hence, these
different types of kernels have been used in this thesis for comparison of the
performances of different methods. The most popular kernels used for GPR are;
constant, linear, squared exponential and rational quadratic each having different
parameters (Heimann et al., 2018). Equations 3.2.3.8 -3.2.3.10 show the kernel
functions of rational quadratic, exponential and squared exponential kernels,

respectively.

rz2 \ *
k(xl-,xj|9) = O'fz <1 +2a—2>

where g, is the length scale and a is the positive-valued scale-mixture (3.2.3.8)

parameter and where r = J(xi - xj)T(xl- — x;) is the Euclidean distance

between x; and x;.

k(xl-,xj|9) = afzexp (—5)
1

(3.2.3.9)
where r = \/(xi - xj)T(xl- — x;) is the Euclidean distance between x; and
Xj.
1 T
k(xi,leﬂ) — crfzexp [_E(xi - xj) Z(Xi - Xj)‘
ol (3.2.3.10)

where oy is the signal standard deviation.

16



The MATLAB Regression Learner tool optimizes the hyper parameters of the
kernel functions as an option and the hyper parameter optimization tool have been used
in this study. Table 3.4 and 3.5 show the model training results for GPR with 4 different
kernels for two different targets. According to the results, GPR with the Exponential
kernel outperformed compared with the other three kernels for daily average
temperature whereas, Exponential kernel had the best performance in training for daily

average wind speed.

Table 3-4 GPR Training Results for Daily Average Temperature

Trained Trained R- Trained Trained
Method RMSE Sq MSE MAE
All Best All  Best All Best All Best

GPR- Exponential 0,005 0,006 1 1 0 0 0,004 0,005
GPR- Rational Quadratic 1,04 0,79 098 086 1,07 063 080 0,60

GPR-Squared Exponential 1,04 1,04 0,98 098 1,07 108 0,80 0,80

Table 3-5 GPR Training Results for Daily Average Wind Speed

Trained Trained R- Trained Trained
Method RMSE Sq MSE MAE
All Best All Best | All Best | All Best

GPR- Exponential 0,20 0,26 09 099 004 007 015 0,20

GPR- Rational Quadratic 0,89 0,79 083 08 078 063 067 0,60

GPR-Squared Exponential 0,98 0,83 079 08 09 069 074 0,62

3.2.4. Regression Trees

Decision Trees are used both in the fields of classification and regression. When
the dataset has nonlinear property, it is very hard to compute a function that fits for all

of the dataset and it is recommended to partition the dataset into subgroups (Fox,
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2012). The method uses the trees to express the recursive patterns. The terminal nodes
or the leaves of each tree represent the specific cell in a partition (Fox, 2012). The
structure starts with a root node and it assigns the values to leaves as it goes through
questions on the inner nodes and the questions are determined according to the answers
given to the previous questions (Fox, 2012). This part is the recursive pattern and after
finding these patterns, one should try to understand the logic of simple local models.

The simple local model is actually the sample mean of dependent variables
predicted from the constant estimation of samples of Y (Fox, 2012). After the reaching
a certain stage, the model has to stop creating new nodes, or assigning values for
leaves. That certain stage is called the Information Gain (IG). The aim of the
information gain is to get the most informative features by splitting the nodes, in other
words the aim of the regression trees is to maximize the Information Gain (IG) at each

split (Li, 2019). The following Equation 3.2.3.1 shows the IG for binary decision trees;

(3.2.3.1)

N N,
16(Dy, f) = 1(Dy) — ( ;\Zf I(Diese) + %’“l(pﬁght)>

Here, the f is the feature of the specific split whereas D,, Djc¢¢, Dyigne are the
dataset of the parent and the child nodes. I is the impurity measure, N, is the total
number of samples in the parent node, and similarly Ny and N4, are the total
number of samples in the child nodes denoted as left and right (Li, 2019). As it can be
observed from the above equation, the IG is the difference between the impurity of the
parent node and the child nodes showing that as the impurity of the child nodes

decrease, the information gain increases (Li, 2019).

Advantages of this tree-like structure enables simple calculations and
distinguishing the important variables for the prediction. While using this method, the
maximum depth should be selected very carefully since it can lead to the overfitting
of the model. The most important part about the construction of these decision trees is
to determine the optimal maximum depth. Tables 3.6 and 3.7 show the training result
of both output variables and fine tree had the lowest RMSE values for both all and best

subset data.
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Table 3-6 Regression Trees Training Results for Daily Average Temperature

Trained
Trained R-Sq | Trained MSE | Trained MAE

Method RMSE
All Best | All Best | All Best | All Best
Tree-Medium Tree 123 123 098 098 153 153 094 094
Tree-Fine Tree 082 084 099 099 068 070 0,63 0,65

Ensemble-Boosted Trees 1,30 1,30 098 098 168 169 1,07 1,08
Ensemble-Bagged Trees 1,30 125 098 098 168 156 09 0,89
Tree-Coarse Tree 1,79 1,79 09 09 322 3,22 1,42 142

Table 3-7 Regression Trees Training Results for Daily Average Wind Speed

Trained
Trained R-Sq | Trained MSE | Trained MAE

Method RMSE
All Best | All Best | All Best | All Best
Tree-Medium Tree 093 093 o081 081 08 08 0,70 0,70
Tree-Fine Tree 069 071 09 089 048 050 050 0,52

Ensemble-Boosted Trees 0,89 088 083 083 0,78 0,78 0,68 0,68
Ensemble-Bagged Trees 0,82 082 086 086 066 067 062 0,62
Tree-Coarse Tree 1,16 1,16 0,71 0,71 134 134 0,88 0,88

3.3 Support Vector Regression

Support Vector Algorithm is a nonlinear generalization algorithm which has
been developed by Vapnik and Chervonenkis in 1963 and improved until present day
(Smola and Scholkopf, 2004). The motivation behind this algorithm was first the
classification but with the developments and improvements, it has also been used for
regression and time series forecasting. Support Vector Machine (SVM) was widely
used and continued to be improved with the work of Vladimir N. Vapnik and his team
especially on their work on optical character recognition (OCR), a real industrial
subject and many other areas due to its success on recognition tasks (Smola and
Scholkopf, 2004).

Support Vector Regression (SVR) on the other hand was first introduced by
Alex J. Smola and Bernhard Scholkopf (2004). The way it differs from SVM is that it
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aims to find the optimal hyperplane that fits for all the training set instead of a
classification problem. Allowing certain amount of errors, SVR tries to approximate
the target using the provided training data. Since the algorithm uses training data, this

method can be classified as a supervised learning method.

The aim for this method is to find the function f(x) which leads to obtaining at most
¢ deviation from the target values y; for the training data set. For training data
{(x1, 1), -, (x5, v)} € X x R where X denotes the input patterns which are

meteorological parameters for this study (Smola and Schélkopf, 2004).

Besides finding the function f(x) that has at most ¢ deviation, the desired f(x) is
expected to be as flat as possible. The Flatness in the case of Equation 3.3.1 is provided
with smallest w possible.

f(x) = (w,x)+ bwithw € X,b € R (3.3.1)

In order to find the smallest w, an optimization problem in Equation 3.3.2 is
constructed. The optimization problem in Equation 3.3.2 assumes that this
optimization problem is feasible, in other words that function f approximates all pairs
of (x;, ;) with ¢ precision (Smola and Schélkopf, 2004). Considering the fact that there
can be errors, the concept of soft margins is brought to the SVR just like the works of
Vapnik and Cortes in 1992 by adding the slack variables &;, ;" (Smola and Schélkopf,
2004) to solve the infeasibility problem in Equation 3.3.2.

1
minimize 3 [lw]|?
(3.3.2)

yi— (wlx)—b<e

subject to {(W|Xi) +h—y <e¢

The optimization problem in Equation 3.3.3 contains the constant ¢ > 0 representing
the trade-off between the flatness of f and the ¢ being larger than tolerated amount
(Smola and Schélkopf, 2004).

20



¢
1
minimize > llwl|? + CZ(fH &)

i=1
yi— (wix)) —b<e+¢
subject to {(wlx;) + b—y; <e+§&" (3.3.3)
Ei! Ei* =0

The trade-off leads to creation of an e-insensitive loss function |¢|, shown in Equation
3.3.4.

fle={y,_, JEI=¢ (33.4)

" l|é| — € otherwise

Figure 3-3 The soft margin loss for linear SVR (Source: Hirani and Mishra, 2016).

Figure 3.3 clearly shows the impact of having the points outside the tolerated

shaded area, adding as the cost representing the trade-off.

The optimization problem Equation 3.3.3 appeared to be solved in the dual
from more easily with the Lagrange function method (Smola and Schélkopf, 2004). L
being the Lagrangian and n;,n;*, a;, «;* being the Lagrange multipliers, Equation 3.3.5
depicts the dual problem for Equation 3.3.3.
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? £
1
L:= E||W||2 + CZ(Ei + &) —Z(m& +1:°80)
i=1 i=1

’
—Zai(s + & —yi +(wlx;) + b)

=1 (3.3.5)
{

_zai*(‘? + &+ vy — (wix) — b)

i=1

The non-negativity constraints for the Lagrange multipliers are shown in Equation
3.3.6, ;" referring n; and n;*.
@, 20 (3.3.6)

The partial derivate for Lagrange with respect to the primal variables (w, b, &;, &%) are
shown in Equations 3.3.7-3.3.9 (Smola and Schoélkopf, 2004).

{
(3.3.7)
abL = ((Zi* - (Zi) =0
2
d (3.3.8)
ou,L=w— ) (a;— a;")x; =0 o
2
0L =C—aW =1 =0 (3.3.9)

As aresult of substituting the Equations 3.3.7-3.3.9 to Equation 3.3.5, the optimization
problem in Equation 3.3.10 has been constructed (Smola and Schélkopf, 2004).

£
1
[ -3 Z (a; — ;") (e — o ){xi|x;)

ij=1

? ?
—SZ(%’ - ;") + zyi(ai - ;")
i=1 i=1

¢
subject to Z(al- — ;") =0anda;,a;" €[0,C]

=1

maximize

(3.3.10)

Through the construction of the optimization problem in Equation 3.3.10, the
slack variables have been removed because of the new formulation of (3.3.9) being

7 =C—a;™.

As a result of substitutions, Equation 3.3.8 is transformed into the following form;
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(1 £
(3.3.11)
w= (@ - @ thus ) = ) (@ — a)xilx) +b
i=1 i=1
The process of creating a linear combination of the training data x; is an
example of Support Vector Expansion concept (Smola and Scholkopf, 2004) and the
aim is to make the complexity of a function depend on the number of Support Vector’s

instead of the dimensionality of the input space X.

The b variable which has been used, hasn’t been discussed up to this point.
Karush—-Kuhn-Tucker (KKT) conditions are used to compute the b (Smola and
Scholkopf, 2004). According to these conditions, the products between dual variables

and constraints are not included.

ai(e+ & —yi +{wlx)) +b) =0

(3.3.12)
a (e+& +yi—(wlx)—b=0
(C—a)é =0
(3.3.13)
(C—ai)é =0

The implementation of SVR has been made on MATLAB R2017a, Regression
Learner Toolbox. The data for the years 2015 and 2016 were used to train the
regression models, where 2017 data was used to test the predicted values which was
generated using the trained SVR model. Table 3.8 and 3.9 show the training model
RMSE, R-squared, MSE, and MAE values for both all data and best subset for six
SVR models with different kernels for daily average temperature and wind speed,
respectively. As it can be observed from the tables, SVR with Cubic and Medium
Gaussian kernels had the best training performances with the RMSE 0.98 for the
prediction of daily average temperature for the best subset. The performance of the
daily average wind speed forecast is also the same with the temperature since it also
has the Cubic and the Medium Gaussian kernels with lower RMSE 0.88 and 0.85,
respectively.

The trained models were exported to the MATLAB code to be used in the
prediction with the input data of 2017 provided. All target values for 365 days have
been constructed with the code and they were used in order to detect the difference
with the actual 2017 target values and using the differences the RMSE for test data

23



have been obtained. Detailed comparison and discussion on test data is provided in
Chapter 4, Results.

Table 3-8 SVR Trained Model Analysis for Daily Average Temperature

Trained Trained R- Trained Trained
Method RMSE Squared MSE MAE
All Best | All Best All Best | All Best
Quadratic SVR 1,07 1,09 0,98 0,90 1,14 118 0,84 0,85
Cubic SVR 09 098 0,99 0,99 091 09 0,78 0,78
Linear SVR 121 121 098 0,98 146 1,47 094 0,95

Coarse Gaussian SVR 1,14 1,13 0,98 0,98 1,29 1,28 089 0,89
Medium Gaussian 0,94 0,98 0,99 0,99 0,88 09 0,78 0,80
SVR

Fine Gaussian SVR 149 122 097 0,98 221 148 1,16 0,99

Table 3-9 SVR Trained Model Analysis for Daily Average Wind Speed

Trained Trained R- Trained Trained

Method RMSE Squared MSE MAE

All | Best | All Best | All Best | All Best
Quadratic SVR 095 09 08 081 091 089 0,70 0,69
Cubic SVR 087 088 084 083 075 0,77 0,62 0,64
Linear SVR 1,02 101 0,78 0,78 104 101 0,76 0,75
Coarse Gaussian SVR 1,09 108 0,74 0,75 119 117 0,82 0,82
Medium Gaussian SVR 08 08 084 084 0,73 0,72 0,61 0,62
Fine Gaussian SVR 053 049 094 09 028 024 033 0,32

3.4 Artificial Neural Networks

Anrtificial Neural Network (ANN) is an extensively used method since 1950’s
but the ANN application on atmosphere science was first introduced by Rumelhart and
McClelland in 1986 (Fabbian, De Dear, and Lellyett, 2007). The first neural network
was simple perceptron used in linear models. After the need of a model for nonlinear
cases, multi-layer perceptron has been proposed (Fabbian, De Dear, and Lellyett,

2007). If the training procedure is applied correct, ANN provides the link between the
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input and the output variables. There are many studies in the literature about weather
forecasting especially with the ANN method and some hybrid methods developed with
different studies. Specifically, ANN has been used in tornado detection, predicting
precipitation and temperature over the years (Fabbian, De Dear, and Lellyett, 2007).
The reason behind the popularity of ANN is its capability to solve complex problems
where the knowledge in advance is not required. Besides its popularity, the reason why
ANN makes a good fit as a forecasting method is existence of the hidden layer enabling
the ANN architecture to include nonlinear features of the system and with that the

performance of the prediction gets better (Fabbian, De Dear, and Lellyett, 2007).

Many studies conducted in the rainfall prediction show that Backpropagation
Neural Network (BPNN) is working better compared to the other methods (Mislan et
al., 2015). Backpropagation is an iterated search algorithm adjusting the form of the
output layer back to the input layer for every run up to the point where no longer
improvements can be achieved (Golafshani, Rahai, and Sebt, 2015). In cases of data
not following a certain pattern, BPNN would face difficulties on having good
performance because of flawed networks. Fabbian and De Dear had this problem in
their work in 2006, so as a solution they have tried to adjust the ratio of fog events to
no-fog events but this did not give a better training system for the ANN (Fabbian, De
Dear, and Lellyett, 2007).

A simple ANN architecture has three main components. These are; input,
output and hidden layers. Input layer provides the data to the system and enables its
flow through the other layers, the first hidden layer for the learning procedure. Output
layer is the final point which includes the values that assesses the network’s learning
capability. Lastly, hidden layers are the layers which adjusts and transforms the input
into something output unit can use with the support of activation functions (Demirhan
and Kayhan Atilgan, 2015). The emergence of hidden layers has improved the accuracy
performance of MLP for nonlinear models (Fabbian, De Dear, and Lellyett, 2007). On
these previously defined layers, there are different number of neurons. These neurons
are the training and testing data provided in the beginning of the procedure. The
neurons operate and transmit the information between the layers until it leaves the

network from the output layer.

Also, there are weights between the layers, representing the effects of previous

layer on any layer element and these weights determine the information transfer
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between neurons (Khatib, Mohamed, and Mahmoud, 2012). Lastly there is the bias factor
between the neurons in hidden and output layers. Figure 3.4 shows the network

structure including the bias and the weights in system.

desired
~ Qutput

Activation >
function | Output
A

|
Threshold

Figure 3-4 Network Structure (Source: Khatib, Mohamed, and Mahmoud, 2012)

For the hidden and output layers there are similar processes. The first one is
computation of the sum of inputs that is received by a neuron. This sum is named as

the net input and Equation 3.4.1 depicts the calculation.

n
nety = Zwik.xi + biasy (3.4.1)

i=1

In the Equation 3.4.1, net, is the weighted sum of the k™ neuron, w;, is the weight
between the i and k™ neurons and lastly x; is the output of i™" neuron in the preceding

layer (Golafshani, Rahai, and Sebt, 2015).

The next step is to calculate the output of the k™ neuron which is named as out, in the
Equation 3.4.2 below using the sigmoid function (Golafshani, Rahai, and Sebt, 2015).

1
outy = f(nety) = 17 o-Cret) (3.4.1)
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Most common type of ANN networks is the Feed Forward Neural Networks
(FFNN), where the information flows through single direction forward (Thota, 2018).
Multilayer feedforward neural network uses gradient descent operators such as
backpropagation where the simple logic is to start from the most general possible

solution to the most specific by increasing the threshold unit (Banzhaf et al., 1998).

After entering the data to the ANN system, it tries to create a relationship between
the inputs and the target variables in order to come up with a model working with the
new data to be used for prediction. The structures of ANN depend on the following

aspects;

e Method used for training

e Number of hidden layers

e Learning algorithm

e Type of error function

e Direction of information flow
e Number of neurons in layers

e Activation function

Number of neurons should be sufficiently low to ensure successful generalization.
The determination of these aspects can be based on experimentation and experience of
the user (Golafshani, Rahai, and Sebt, 2015). The user should consider these before

constructing the network structure.

There are number of different learning algorithms used to train the network. We
have used Levenberg-Marquardt Backpropagation (LM), Resilient Backpropagation
(RP), Bayesian Regularization Backpropagation (BR), Fletcher-Powell Conjugate
Gradient Backpropagation (CGF), Scaled Conjugate Gradient Backpropagation
(SCG), BFGS Quasi-Newton Backpropagation (BFG) learning algorithms for this
thesis. LM is the most common learning algorithm known for its ability to process the
large data sets. LM is known for its robustness but as a disadvantage it needs memory.
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3.4.1. Application of ANN

The application of ANN on the weather data set was done on MATLAB from an
source code named as Neural Network Training Code. Six different learning
algorithms have been tried, keeping the rest of the parameters same as the default
settings. The comparison of these learning algorithms is provided in Section 4 on Table
4.1. Starting with the construction of the network structure we have tried using 1, 2, 3
and 5 number of hidden layers. The number of neurons in hidden layer has been set to
10.

All of the learning algorithms ended with lower RMSE with number of hidden
layers set to 1, so the rest of the analysis have continued with 1 hidden layer. Results
show that for prediction of daily average temperature Bayesian regularization
backpropagation and for daily average wind speed LM backpropagation learning

algorithm showed the best performance.

The Figure 3.5 shows the MSE epoch graph for the training, validation and testing
stages. The graph indicates that the best training performance is achieved at the 8"
epoch. Figure 3.6 shows the error histogram for three stages of BPNN with LM
learning algorithm. Models constructed under ANN appeared to be successful for all

three stages.

Best Validation Performance is 0.81555 at epoch 8

Train
Validation
Test

Best

Mean Squared Error (mse)

0 2 4 6 8 10 12 14
14 Epochs

Figure 3-5 Error-Epoch Graph for Daily Average Wind Speed (Best Subset-LM)
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Figure 3-6 Error Histogram for Daily Average Wind Speed (Best Subset- LM)

3.5 Multi-Gene Genetic Programming

Genetic Programming (GP) is a biologically inspired Machine Learning method
which is one of the most popular and successful branches of Evolutionary Algorithms
(Morrison, Searson, and Willis, 2010). GP uses the Darwinian Theory where each
computer program is represented with tree structures also known as genes with varying
lengths searching the candidate solutions by using the natural selection and the
evolution logic (Orove, Osegi, and Eke, 2015). GP can be applied for the following
purposes which makes the model itself very popular compared to the other methods

used in areas mentioned;

e Classification

e Regression

e Clustering

e Problem Solving

e Capturing Solutions for any type of problem (learning, optimization, game
playing, etc.)

The reason why it is popular is, unlike the other regression method, GP handles

both the tree structure and the regression parameters (Searson, 2009). The researchers
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or users who don’t have any background information on both the dataset and the
algorithm can easily analyze and interpret the model output. Without the need of
predefining the system structure or the estimates of the regression coefficients, GP
provides the relationship between the dependent and the independent variables
(Elhenawy, Chen, and Rakha, 2014). Another important feature of GP which leads the
users to prefer over ANN and SVR especially in this field of study is that ANN and
SVR has very long training processes (Elhenawy, Chen, and Rakha, 2014). GP has the
following features which makes it effective; heuristic nature of search, symbolic
program representation, input sensitivity, inductive nature, being comprehensive and
the allowance of unconstrained data types (Krawiec, 2010). GP representation of any
problem is a superset of other machine learning representation since it can include
Boolean operators, threshold functions that are used in ANN, conditional branching
structures and case-based structures like K-nearest neighbor systems (Banzhaf et al.,
1998). Besides the capability of including different representations of concepts, GP is
also superior because of not having the fixed size programs to evolve which actually

limits the performance of the machine learning techniques (Banzhaf et al., 1998).

As in the other machine learning processes, GP also has a learning and a testing
procedure where it has the learning domain including set of features as inputs and the
anticipated classes as results (Banzhaf et al., 1998). The training stage of the process is
basically the process of creating a computer program to predict the outputs of the
training set using the inputs provided (Banzhaf et al., 1998). The inputs provided for the
training stage are a part of the terminal stage which helps building the branches as a
starting point. Besides the input variable there are also constants such as random
ephemeral constants that are chosen randomly from the population in the beginning of
the run and they do not change during the whole process.

After the creation of the training system; the system performance, the prediction
success is determined by the inclusion of the test data. GP creates initial populations
in the form of tree structures and evolves them by using mutations and crossovers
operators for transformation until reaching the best performing population that fits the
objective. This process can also be observed in the hill climbing concept where it
continuously searches for the best solution but GP is actually a type of beam search
where it first searches for the most promising solutions (population) and then have

some transformations (Banzhaf et al., 1998). This is the reason why we can say that this
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method is exhaustive but successful performance-wise. Here, the use of the operators
has the most important role since for example crossover makes it sure that the best

combination of exchanged portions of parents is built to create better solutions.

3.5.1. MGGP Process

MGGP is seeking to minimize the mean squares error of the fitted data set by
evolving multiple solution just like the GP logic (Orove, Osegi, and Eke, 2015). The
feature that differs MGGP from the stand-alone GP is the multi gene (tree structures)
used to create the candidate solutions. This feature enables multiple lower depth trees
and as a result provides simpler, easily interpretable models compared to classical GP
(Danandeh and Kahya, 2017). Each tree structure contains functional sets each
presented on the nodes which connect the child and the parent nodes. Depending on
the complexity of a system, the functional set may even contain, sin, tan, exp besides
standard mathematical operators (Danandeh and Kahya, 2017). This feature is also a
very significant feature of GP, since it provides complex but accurate regression
models compared to other traditional regression methods. The first step of the GP is to
initialize a population with the provided training data. The individuals on the initial
population are the G,,,, number of randomly generated trees, where the number is
between 1 to the maximum number predefined by the user (Faris and Sheta, 2016).
This step is followed by assessing the fitness values of each individual. The fitness
function is by default the root mean squared error, it is the performance measure
determining the system solution with the actual solution obtained from the training and
testing data. Starting from the genes having the best solution among the others in the
population, evolution of the genes is performed. Figure 3.7 shows the MGGP process

diagram.

There are three different evolutionary operators. These are crossover, mutation
and reproduction. The crossover operation is the interchange of the genetic material
among genes on a randomly chosen crossover point to improve the fitness of an
individual (Elhenawy, Chen, and Rakha, 2014). Mutation on the other hand is the
replacement of a randomly selected subexpression of a gene with a randomly generated
subexpression (Krawiec, 2010). In other words, changing a part of genetic material
with a randomly generated subtree which may even include addition or deletion

(Orove, Osegi, and Eke, 2015). Some studies like the study performed by Mehr and
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Kahya proved that higher crossover fraction than mutation fraction on a model
performs better, so users should take this information into consideration (Danandeh
and Kahya, 2017).

Initilization of
population P

Population P of
individuals

Solution s

Evaluation
f(s)

Termination

Criteria

Selection
Mutation and
recon nation

Best Solution s

Figure 3-7 MGGP Procedure

Lastly, reproduction which is not used as much as crossover and mutation, is
copying the genetic material of the older best performing individuals to the next
generations (Elhenawy, Chen, and Rakha, 2014). As a result of these operations, new
generations which are the candidate solutions, are obtained. The first set of solutions
cannot be the best solutions since the process must undergo an evolution method until
it reaches to the best solution (Orove, Osegi, and Eke, 2015). The cycle shown in the
Figure 3.8 proves this rule. The cycle stops when it reaches the termination criteria
which is predefined by the user which can be reaching to the ideal solution or a

predefined runtime.

The models created throughout the cycle are the weighted linear combinations of each
gene, where the optimal weights used in the combinations are obtained by the Least
Squares (LS) method (Orove, Osegi, and Eke, 2015). This means that every prediction
of the target variable is the sum of weighted value of the trees of the multigene

individuals and the bias term. This mentioned relation is depicted in the Equation 3.5.1.
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The trees used in the models are the functions of zero or more N number of variables.
The GP procedure is depicted in the Table 3.10.

y=dy+d, *xtree; + -+ d,, * tree,, ...
where d is the bias term

(3.5.1)
dy, ..., dypare the gene weights with m number of genes

Table 3-10 GP Procedure (Source: Searson, 2015)

Basic steps describing the GP

: procedure GP

: begin GP

: Generate initial population of n individuals.
: Initialize the GP parameters.

: Calculate the fitness of each individual.

: while (t < Max Generation) or (stop criterion not met)

N o A WN R

: Select pair of individuals using Tournament Selection
Mechanism.

8: Produce a new offspring using crossover, mutation
and elitism.

9: Evaluate the population.

10: Replace current population with newly created one.
11: Update the generation counter.

12: end while

13: end GP

The algorithm for genetic programming has been demonstrated in the Figure
3.8 on a flowchart. MGGP applies the previously stated steps to achieve the best

performing population.

The determination of the maximum depth parameter (MDP), which is the
minimum depth which can be tolerated between the terminals and the root node. The

size of a tree structure can be determined by 2MPF,
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Figure 3-8 GP Process Flowchart

The initial parameters change/evolve over each iteration in order to reach the
best tree structure which is much easier for a user since they don’t have to think about
setting the best condition initially, GP evolves the best structures and parameters

automatically. Fitness in the case of determining the success of the model is reduced

sum of squared errors with respect to the provided data set.
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3.5.2. Application of MGGP

The analysis on MGGP has been executed on MATLAB R2017a, GPTIPS®
Toolbox. The GPTIPS provide the following features (Searson, Leahy, and Willis,
2010);

e Multiple tree (multi-gene) individuals

e Tournament selection & lexicographic tournament selection

e Standard sub-tree crossover operator

e Elitism

e Early run termination criterion

e Graphical population browser showing best and non-dominated individuals
(fitness & complexity).

e Graphical summary of fitness over GP run.

e 6 different mutation operators.

The analysis has been done on 3 different number of genes. The default number of
genes in GPTIPS is 0, but 4, 5 and 6 are the ones which show the best performance
considering both complexity and RMSE. The GP parameters used for the 5 number of
genes for the best subsets of daily average temperature and daily average wind speed
are shown in Table 3.11 The GP parameters except the maximum number of genes
have been left in their default values. Since the default settings for GPTIPS have been
used, and only number of genes have been modified for each attempt, the parameter

table is common for daily average temperature and daily average wind speed.

Figure 3.9 provides the gene weights with the bias factor and the p values for
the genes for the application with maximum number of genes set to 5. The toolbox
provides tree structures for the best performing model and the tree structures for model
of daily average wind speed with the best subset data having 5 genes is shown below
on Figure 3.10. The toolbox also provides the regression function of the best
performing model and it can also be observed in the Equation 3.5.2 and 3.5.3 for daily

average temperature and wind speed with 5 genes, respectively.
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Table 3-11 MGGP GPTIPS Parameters

Run parameter Value
Population size 100
Max. generations 150
Tournament size 2
Elite fraction 0.05

) Lexicographic selection pressure
Selection Method )
tournament selection

Probability of pareto tournament 0.7

Max. genes 5
Max. tree depth 4
Crossover probability 0.84
Mutation probabilities 0.14

y = 0.851x3 + 0.844x4 — 0.129x5 + 0.00685 tanh(x5) + 0.00685x6x7 (3.5.2)
—1.53e *x2x33 — 5.87e " *x3x6x7 + 123
GP algorithms are assessed by their percentage of runs ended with success, the
time needed to achieve the success and the difference between the actual and best
solution generated by the GP (Krawiec, 2010). The RMSE shouldn’t be the only
performance evaluation metric assessing the GP, so the user should also take the

complexity and runtime into consideration.

Data: weather

Gene weights
150 T T
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. I 1 1 1
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R? =0.98191

Figure 3-9 Gene Weights for 5 Gene Daily Average Temperature Prediction
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Figure 3-10 5 Genes Tree Structure for Best Subset Wind Speed

y = 0.563x2 — 0.0746x1 — 0.383x3 + 0.0974x4 — 0.383x5 — 0.023x6 (3.5.3)
+ 0.383x7 — 0.383 tanh(x2) — 0.00322x6(x2 — 1.0x5)
-179

Table 3-12 Comparison of RMSE and Complexity on different number of genes

RMSE Complexity

Temperature | Wind Speed | Temperature | Wind Speed
No of Genes

All Best AIll Best All  Best All Best
4 106 104 107 106 50 42 36 48
5 104 102 103 103 75 69 47 51
6 1,03 105 106 103 64 60 94 91
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CHAPTER 4: RESULTS

We can come to the inference from previous tables (Table 3.3-3.7) representing
the training RMSE results for all of the multiple regression methods and Table 4.1 that
the trained model had immensely better performance compared to the predicted value
performance. For example, for the prediction of the daily average temperature SVR
with the Fine Gaussian kernel had the 1.22 RMSE value for model training and 5.12
RMSE value for the testing procedure. We can say that the SVR with Fine Gaussian
kernel wasn’t able to create a successful generalization of the training data. The
proceeding 4.1 and 4.2 parts include the detailed analysis of the regression results for

daily average temperature and daily average wind speed, respectively.

The following Table 4.1 is the collection of RMSE result for all of the regression
methods for best subset and all data for the prediction of daily average temperature

and daily average wind speed.

4.1 Performance Evaluation

As the performance measure, the RMSE measurement have been used to determine
the accuracy of the prediction of the regression methods. The reason of choosing the
RMSE was its extensive use in the literature on prediction models for weather. The
RMSE calculation is given by the Equation 4.1.1. The Y is the actual target value and
Y* is the predicted value generated by the regression methods for testing data size of

n.

(4.1.1)
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Table 4-1 RMSE for Both Targets for All Methods

RMSE
Model Temperature | Wind Speed

All | Best | All | Best
ANN-Bayesian regularization backpropagation 1,13 | 1,05 | 1,08 | 1,11
ANN-BFGS Quasi-Newton 1,28 | 1,13 | 1,08 | 1,07
ANN-Fletcher-Powell Conjugate Gradient 165 | 156 |1,12 | 1,16
ANN-Levenberg-Marquardt backpropagation 1,34 | 1,27 | 1,13 | 1,03
ANN-Resilient backpropagation 213 [ 1,79 | 1,17 | 1,17
ANN-Scaled conjugate gradient backpropagation 168 | 1,75 | 1,25 | 1,22
Coarse Gaussian SVR 1,19 | 1,19 | 1,21 | 1,19
Cubic SVR 1,03 | 1,03 | 1,15 | 1,11
Ensemble w/ Bagged Trees 1,80 [ 1,80 |1,29 | 1,27
Ensemble w/ Boosted Trees 1,47 | 1,47 | 129 | 1,28
Fine Gaussian SVR 512 | 512 | 194 | 1,75
Gaussian Process Regression- Exponential GPR 1,13 (1,13 | 1,08 | 1,04
Gaussian Process Regression- Rational Quadratic GPR | 1,01 | 1,01 | 0,99 | 0,97
Gaussian Process Regression-Squared Exponential GPR | 1,01 | 1,01 | 1,04 | 0,97
GP-4 genes 1,06 | 1,04 | 1,07 | 1,06
GP-5 genes 1,04 | 1,02 |1,03 | 1,03
GP-6 genes 1,03 | 1,05 | 1,06 | 1,03
Linear Regression 1,18 | 1,18 | 1,04 | 1,03
Linear Regression-Interactions Linear 1,03 (1,03 | 1,03 | 1,00
Linear Regression-Robust Linear 1,17 1,17 | 1,03 | 1,00
Linear SVR 1,17 | 1,17 | 1,07 | 1,05
Medium Gaussian SVR 1,49 (149 |1,14 | 1,10
Quadratic SVR 1,01 | 1,01 | 0,99 | 0,96
Stepwise Linear Regression 1,14 | 1,07 | 1,00 | 1,00
Tree-Coarse Tree 1,85 | 1,85 | 1,47 | 1,47
Tree-Fine Tree 1,59 [ 1,59 |1,47 | 1,50
Tree-Medium Tree 161 | 161 |1,41 | 1,38
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4.1 Daily Average Temperature

As a result of the study, the forecasting procedure with the regression methods
applied for predicting the daily average temperature had the following performance
shown in the Table 4.1. Gaussian Process Regression with the kernels Rational
Quadratic and Squared Exponential and the SVR with Quadratic kernel and MGGP
with 5 and 6 number of genes had the best RMSE results among the regression

methods.

The reason behind the outstanding training performance for the several
regression methods for daily average temperature was the effect of the input variable,
daily maximum temperature. The only linear relation in this analysis was between the
daily average and maximum temperature which also can be observed in the Appendix
Figure A-1.

The focus of this thesis, the application MGGP on weather data set had a very
successful performance with the GPTIPS default parameters with varying number of
genes of 4, 5 and 6. In the presence of optimal parameters for the MGGP it is possible
that the method outperforms the other regression methods. The predicted and actual
daily average temperature graph can be seen in the following Figure 4.4. The Pareto
optimal solution can be obtained from the Figure 4.3. We can say that with respect to
the MGGP structured models predicting the daily average wind speed (see Figure 4.8),
for daily average temperature we have a very high percent of solutions with lower
RMSE and complexity measures. The solution represented with red dot is the best
performing solution with its level of accuracy and complexity. The Figures 4.1 and 4.2
presents the RMSE for training and testing data.
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Figure 4-1 Train/Test RMSE (Best Subset Daily Average Temperature—-MGGP)
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Figure 4-2 Actual vs. Predicted Scatterplot for training and test data
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Figure 4-4 Predicted /Actual Daily Average Temperature (Best Subset-5 genes)
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Figure 4-5 Daily Average Temperature (Best Subset GPR-Squared Exponential)

4.2 Daily Average Wind Speed

The forecasting performance is similar to the performance of daily average
temperature for testing step but not for the training. The possible reason has been
explained in the Section 4.1. Especially the Gaussian Process Regression for all 3
kernels had the best prediction performance compared both for the multiple regression
methods and the ANN and MGGP approaches. The comparison of the actual and
predicted 2017 daily average wind speed can be seen in the Figure 4.10 with GPR
method with the Squared Exponential kernel.

As a result of the MGGP approach, we have observed the following Figures
4.6-4.8. The scatterplot for the predicted target value and the actual daily wind speed
and the RMSE of both training and testing steps can be seen in the Figures 4.6 and 4.7.
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Figure 4-7 Actual vs. Predicted Scatterplot for training and test data

Figure 4.8 is very useful for visually recognizing all of the multigene regression
models. This graph contains the final population of the MGGP process representing
the relationship between the accuracy of the fitness of the model and the complexity
(Searson, 2015). The model highlighted with the red dot is the best performing model

in the population. The performances of these models are based on the R? values of the
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training data. Green dots on the plot represent the non-dominated solutions which are
also classified as the Pareto front of the models. The other solutions which either have
a higher fitness or a lower complexity, they have higher fitness or lower complexity,
respectively (Searson, 2015). The models represented with blue dots are the dominated

models, these are non-Pareto models.

The best solution can be obtained from both the Pareto-optimal solution and

the solution with highest accuracy and lowest complexity (Searson, 2015).
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Figure 4-8 Pareto Front Graph (Best Subset Daily Average Wind Speed-MGGP)
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In conclusion, in this study there have been the application of many different
regression approaches on a single data set. We have provided the comparison of these
methods both within the model with different parameters and among different
methods. Firstly, the data was collected from General Directorate of Meteorology for
Izmir Adnan Menderes Airport and then the data was processed to make it suitable for
regression analysis. When the data was ready to be used, the subset selection to avoid
overfitting has been done. For the rest of the analysis, both the data including all
parameters and the best subset have been used for comparison. After selecting the best
subset, linear regression analysis has been constructed to show that there is no linear
relationship between the variables. Application of nonlinear regression tools such as
multiple regression analysis has been done as a result of the data having nonlinear
relationship. These multiple regression methods included, Gaussian Process
Regression, Regression Trees, Support Vector Regression and Multiple Linear
Regression. The remaining two methods, ANN and MGGP were the focus of this
thesis. Finally, the RMSE performance evaluations of each method has been

compared.

As a result of the study the aim was to achieve best performing regression model
with various regression methods including the MGGP approach. In the end, some
multiple regression methods such as Gaussian Process Regression have competed with
the MGGP on predicting the target variables with their ability to catch and to
generalize a nonlinear relation. The MGGP application has only been done using 3
different number of genes which is an option that the toolbox, GPTIPS provides for
the user to change. There are other parameters which can also be adjusted to achieve
the best performing regression model for predicting both daily average temperature
and daily average wind speed for Izmir Adnan Menderes Airport. The use of SVR with
the other regression tools and achieving successful prediction performance was also
aimed in this study. The SVR is a commonly used classification tool and we have
supported the concept of using SVR as a regression tool on predicting weather related

parameters as a contribution to the literature.

Prediction of wind speed and temperature using MGGP was not common in the

reachable literature with this much comprehensive approach using 6 different
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regression methods. As a result of this study, we have provided a wide range of
alternatives of methods which can be used as a guide for future studies. There is no
significant difference of MGGP performance with respect to the other methods, but

this performance can be improved by optimizing the other parameters in the future.

As a future work, an experimental design on changing the MGGP parameters and
determining the most efficient will be conducted. Also, the dataset will be extended
with the 2018 and 2019 data to improve the model training and generalization ability

of the models.

The aviation sector values the precision of weather forecasts since it holds the
importance of cost and safety. Any improvement to the currently used forecasting

techniques will have huge impact to the airlines and airport managements.
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APPENDICES

Appendix A.

Accidents on Landing -Takeoff Phases 2003-2007
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Appendix Figure A-1 Number of Accidents During Landing-Takeoff Phases (data
from NTSB Aviation Accident and Incident Database 2010)
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Appendix B.

Appendix Table B-1 Regression Results for Daily Average Temperature

Method Inputs | S R-Sq R- R- Mallow | Regression
sg(adj) | sq(pred) | ’sCp Function
X3, Xs, X10=107.13-
Xs, X7, 0.0790x3+0.634
Stepwise Xg, X9 | 1,19 | 97,97% | 97,95% | 97,93% 7,87 3 X5+ 0.88165 Xs
Selection -0.11442x;
+0.2552xs+
0.02214 xq
X1, X3, X10=110.80-
X4, Xs, 0.0568x;-
Xe, X7, | 1,19 | 97,97% | 97,96% | 97,93% 8,48 0.0729xs-
Forward Xg, X9 0.0646x4+0.627
Selection 3xs+ 0.87766Xe-
0.0611x7+0.257
1xg+ 0.02209 Xq
X3, Xs, X0 = 107.13 -
X, X7, 0.0790x5+0.634
Backward Xg, Xo | 1,19 | 97,97% | 97,95% | 97,93% 7,87 3Xs+ 0.88165xe-
Elimination 0.11442x7+0.25
52xg+0.02214 Xq
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Appendix Table B-2 Regression Results for Daily Average Wind Speed

R- R- Mallow | Regression
Method Inputs | S R-Sq ) )
sg(adj) | sq(pred) | 'sCp Function
X5=-18.40
X1, Xz,
- 0.1107 x;+ 0.3
i X3, Xa,
Stepwise 517 x3- 0.4472 X
. Xe, X7, 0,1 | 78,79% | 78,65% | 78,40% 6,45
Selection 6+ 0.1364 x7- 0.
Xg, Xo,
1602xs- 0.05611
X10
Xo+ 0.4454 X419
X5:-18.40
X1, Xz,
- 0.1107 x;+ 0.3
X3, Xa,
Forward 517 x3- 0.4472xs
) Xe, X7, 0,1 | 78,79% | 78,65% | 78,40% 6,45
Selection +0.1364 x7- 0.1
Xg, Xa,
602 xs- 0.05611
X10
Xo+ 0.4454 Xq9
X5:-18.40
X1, Xz, -0.1107x,
X3, Xa, +0.3517 x3- 0.4
Backward
L Xe, X7, | 0,1 | 78,79% | 78,65% | 78,40% 6,45 472 xe+ 0.1364
Elimination
Xg, Xo, X7- 0.1602 Xg- 0.
X10 05611 xg+ 0.445
4 X10

57




Appendix C.

Appendix Figure C-1 Daily Average

Cloudiness-Temperature

Appendix Figure C-2 Daily Maximum
Temperature — Average Temperature

Appendix Figure C-3 Daily Average

Wind Direction - Temperature
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Appendix Figure C-4 Daily Maximum
Wind Speed — Temperature

Appendix Figure C-5 Daily Maximum
Wind Direction -Average Temperature

Appendix Figure C-6 Daily Maximum

Atm. Pressure — Average Temperature
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