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2Department of Physics, Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Břehová 7, 115 19 Praha 1-Staré Město, Czech Republic
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We explore the environment-induced synchronization phenomenon in two-level systems in contact with a
thermal dissipative environment. We first discuss the conditions under which synchronization emerges between
a pair of two-level particles. That is, we analyze the impact of various model parameters on the emergence of
(anti-)synchronization such as the environment temperature, the direct interaction between the particles, and the
distance between them controlling the collectivity of the dissipation. We then enlarge the system to be composed
of three two-level atoms to study the mutual synchronization between different particle pairs. Remarkably, we
observe in this case a rich synchronization dynamics which stems from different possible spatial configurations
of the atoms. Particularly, in sharp contrast with the two-atom case, we show that when the three atoms are in
close proximity, appearance of anti-synchronization can be obstructed across all particle pairs due to frustration.

I. INTRODUCTION

Synchronization is a universal phenomenon that is funda-
mental to numerous topics both in natural and social sci-
ences [1, 2]. In general, synchronous behavior can be said to
emerge in physical systems in two different manners: forced
and spontaneous. When an external pacemaker drives a sys-
tem and tends to impose its rhythm on it under suitable cir-
cumstances, there occurs forced synchronization also called
entrainment. Nonetheless, synchronization might also mani-
fest itself spontaneously, that is, solely as a consequence of
the interaction between the subsystems, even without the ex-
istence of any external drive. In classical systems, the ubiq-
uitous phenomenon of synchronization has been extensively
explored in various different settings in last few decades [3].
More recently, the study of synchronization has been extended
to quantum regime and attracted considerable attention [4].

In fact, synchronization could assume different definitions
in the quantum domain depending on the context. On the
one hand, certain studies consider the limit cycles of quantum
mechanical systems to witness synchronous dynamical behav-
ior, in close analogy with the classical theory of synchroniza-
tion [5–8]. On the other hand, some others focus on the tran-
sient quantum synchronization which actually describes the
emergence of synchronized evolution between local observ-
ables of an open quantum system as it decays to its steady
state [9]. Forced quantum synchronization has been examined
in several different models including qubits coupled to dissi-
pative resonators [10, 11], Van der Poll oscillators [12–14] and
spin-boson type models [15]. Besides, spontaneous quantum
synchronization has been also well investigated, for instance,
in systems of optomechanical arrays [16, 17], cold ions in mi-
crotraps [18], Van der Poll oscillators [19, 20], harmonic os-
cillators [21–24], collision models [25], a pair of spins cou-
pled to a common environment [26–29], subject to incoherent
pumping [30], and a dimer lattice with local dissipation [31].
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Several techniques based on different merits have been pro-
posed to identify the temporal correlations between the local
dynamics of subsystems in order to witness the emergence
of mutual quantum synchronization between them [32, 33].
In addition, certain well-known measures of quantum and to-
tal correlations (such as entanglement, quantum discord, and
mutual information) contained in the global system have been
analyzed as potential candidates to detect the occurrence of
synchronous behavior between the local evolution of the sub-
systems [4]. Despite an apparent link between the onset of
synchronization and the behavior of correlations in the global
system in certain models, there exists no general connection
between the two concepts. Indeed, exploiting the versatility
of collision model framework, it has been recently shown that
correlations in the global system play no relevant role for the
dynamical synchronization of local observables [25]. Lastly,
relation of quantum coherence and synchronization has also
been discussed in a bio-inspired vibronic dimer system [34].

In this work, we study the dynamical establishment of mu-
tual synchronization in a system of few two-level atomic par-
ticles due to their collective interaction with a dissipative ther-
mal environment in the complete absence of an external drive.
As a figure of merit, we use the Pearson correlation coeffi-
cient to quantify the degree of synchronization. We begin our
analysis by discussing the necessary conditions for the spon-
taneous emergence of synchronization between expectation
values of the local observables of a pair of two-level atomic
systems. In particular, we recognize that the main ingredient
responsible for the appearance of mutual synchronization is
the collectivity of the interaction of the two atoms with the
environment specified by inter-atomic distances. Even though
the possibility of transient synchronization of a pair of atomic
particles under dissipation has been discussed in relation with
the collective phenomena of super- and sub-radiance for a zero
temperature environment [29], possible effects of a finite envi-
ronment temperature on the emergence of synchronization un-
der dissipation has not been yet examined. Here, we demon-
strate that as the temperature of the environment increases,
synchronized evolution between the local observables of the
atoms cannot be maintained unless a certain degree of col-
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lective dissipation is ensured, which unveils the detrimental
role of temperature for the onset of synchronization. Further-
more, despite a relatively large number of studies carried out
on the relation between synchronization and correlations in
the global system [4, 9], the degree of quantum coherence
contained in the system has not been paid enough attention
in this regard. Therefore, we explore the relation between the
onset of spontaneous synchronization and the average residual
quantum coherence contained in the two-atom system. Our
findings show that there exists a connection between the two
concepts at least in the case of a two-atom open system.

What is even more important is that we next turn our atten-
tion to the case of three two-level atoms. Almost all of the
studies in the previous literature on the phenomenon of mu-
tual quantum synchronization have typically limited their fo-
cus on a pair of two-level spins or oscillators undergoing open
system dynamics, except for a very few number of papers
which study networks of harmonic oscillators [22, 23]. As a
consequence, in order to investigate the appearance of mutual
synchronization between different bipartitions of a composite
system, we consider three two-level atomic systems experi-
encing partial or full collective dissipation together in the ab-
sence of direct interaction among them. In this case, we find
a quite rich synchronization dynamics showing that the na-
ture of (anti-)synchronization between the local observables
of different atom pairs is crucially dependent on the spatial
configuration of atoms. For instance, we argue that when the
spatial configuration of the three atoms is such that the de-
gree of collectiveness of dissipation for all pairs of atoms is
identical, there might occur a form of frustration in the syn-
chronization dynamics and hence none of the atom pairs can
exhibit fully anti-synchronized behavior in their observables.
Relatedly, in striking contrast with the two-atom case, where
(anti-)synchronization is robust independently of the choice of
initial two-atom state, we show the strong dependence of the
synchronization dynamics on the initial state of the three atom
system. Hence, our results reveal that geometric effects such
as frustration can play a decisive role on the nature of mu-
tual synchronization even in the absence of direct interactions
among the constituents of few-body quantum systems.

The remainder of the paper is organized as follows. In
Sec. II, we introduce the open system model that we consider
throughout the manuscript and the figure of merit character-
izing synchronization phenomenon. Sec. III A presents our
results on the discussion of the conditions under which syn-
chronization emerges for a pair of two-level systems, and the
relationship between synchronization and the residual coher-
ence contained in the system. We display our results regard-
ing the appearance of mutual synchronization for a system of
three particles in Sec. III B, and finally we conclude in Sec. IV.

II. THE MODEL AND FIGURE OF MERIT

The model that we will consider in the rest of the work
describes the interaction of two-level atomic systems with a
quantized, thermal electromagnetic field environment. The
self-Hamiltonian for the central two level systems is given by

Hs =
∑N
i=1 ωiσ

z
i , where ωi is the transition frequency be-

tween the energy levels of the ith atom and σ’s denote the
usual Pauli matrices. Throughout this work, we set ~ = 1 and
fix the units of the other parameters accordingly.

Moreover, we will assume that the two-level atoms have
polarized dipole moments, deg, and that they can interact with
each other through the dipole-dipole (exchange) interaction
Hamiltonian Hd =

∑N
i 6=j fijσ

+
i σ
−
j where σ± are the raising

and lowering operators of the two-level atoms and fij is the
interaction strength. Taking into account the interaction with
the thermal photons and looking at the reduced dynamics of
two-level systems, one arrives at the following well-known,
quantum optical master equation [35, 36]

ρ̇ = −i [(Hs +Hd), ρ] +D−(ρ) +D+(ρ) = L(ρ), (1)

with

D−(ρ) =

N∑
i,j=1

γij(n̄+ 1)(σ−j ρσ
+
i −

1

2
{σ+

i σ
−
j , ρ}) (2)

D+(ρ) =

N∑
i,j=1

γij n̄(σ+
j ρσ

−
i −

1

2
{σ−i σ

+
j , ρ}). (3)

The first term in Eq. (1) accounts for the unitary self-evolution
and the dipole-dipole interaction between the two atoms. Fol-
lowing two terms introduce the interaction of the atoms with
the environment. While the second term (see Eq. (2)) is re-
sponsible for the spontaneous and thermally induced emis-
sion, the third term (see Eq. (3)) describes the thermally in-
duced absorption process of the atomic system. The rates at
which these processes take place are determined by the mean
number of photons at the transition frequency of the atoms
n̄ = (exp(βωi) − 1)−1 with β being the inverse tempera-
ture of the environment. Here, γij =

√
γiγja(k0rij) where

γi(j) = ω3
i(j)g with g = d2/3πε0c

3. Note that the positivity of
the dynamics dictates that a(k0rij) ≤ 1. Explicit forms of the
parameters fij and aij , which respectively control the strength
of the exchange interaction between the two atoms and the de-
gree of collectivity of the dynamics are given as [36–39]

fij =
3γ0
4

[
(1− 3 cos2 αij)

(
sin ξij
ξ2ij

+
cos ξij
ξ3ij

)

−(1− cos2 αij)
cos ξij
ξij

]
,

aij =
3

2

[
(1− 3 cos2 αij)

(
cos ξij
ξ2ij

− sin ξij
ξ3ij

)

+(1− cos2 αij)
sin ξij
ξij

]
.

Here, ξij = k0rij is a dimensionless parameter characterizing
the distance between the particles with k0 = ω0/c and rij =
|rij| = |ri−rj| is the relative positions of the ith and jth atom,
and αij is the angle between rij and deg.
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The presented model has two extreme limits that depend on
the spatial distance between the atoms considered inside the
system. When the distance between the atoms is large as com-
pared to the wavelength of the photons in the environment,
ξij � 1, the atoms couple to the environment individually.
In the other extreme limit, ξij � 1, the atoms are extremely
close to each other, leading them to collectively interact with
the environment. In terms of the collectivity parameter aij ,
the aforementioned cases can be characterized as aij = 0 and
aij = 1, respectively. In the following section, we will discuss
the effect of various model parameters on the synchronization
dynamics of our main system.

Having detailed the open system model we plan to inves-
tigate in our work, let us now introduce the figure of merit
for quantifying synchronization. In fact, one may directly ex-
amine the expectation values of the spin observables of sys-
tem atoms to conclude whether they exhibit a synchronous
behavior or not. In this way, the mutual synchronization is
identified if the expectation values of individual atoms fluctu-
ates in time in unison, i.e., if they oscillate with a fixed rela-
tive phase. The Pearson correlation coefficient Cxy provides a
convenient figure of merit for this characterization [4], which
essentially measures the linear correlation between two given
discrete variables x and y according to the formula

Cxy =

∑
t(xt − x̄)(yt − ȳ)√∑

t(xt − x̄)2
√∑

t(yt − ȳ)2
. (4)

Here, the bars represent the variable averages over the data set
indexed by t. The Pearson coefficient Cxy varies within the
interval [−1, 1] such that while Cxy = 0 indicates that there
is no linear correlation between two variables, Cxy = 1(−1)
points out a positive (negative) linear correlation. In our work,
the variables in question are the expectation values of the spin
observables of the system atoms s1 and s2 in the x direction,
namely, 〈σxs1〉 and 〈σxs2〉, and we denote the corresponding
Pearson coefficient by C12. In the numerical simulations, we
generate the expectation values as discrete samples covering
the time interval under study. Then, we calculate the expres-
sion given in Eq. (4) over a sliding time window ∆t along
the total simulation time to obtain a time dependent Pearson
coefficient, and hence, to see how separate oscillations get
phase-locked over time. Therefore, the summations and the
averages that appear in Eq. (4) are taken over the time ∆t,
and the Pearson coefficient is calculated repeatedly for adja-
cent time windows until the whole simulation time range is
covered. We also allow the adjacent time windows to overlap
for an interval of δt to prevent discrete jumps in the result-
ing C12 curve (for further information, see the Appendix in
[25]). In general, mutual synchronization is said to be estab-
lished when C12 does no longer change in time, i.e., when
the expectation values oscillate in time with a constant rel-
ative phase difference. We will particularly study the cases
where this phase difference is 0 (synchronization) and π (anti-
synchronization). Other possible cases are referred in the lit-
erature as time-delayed synchronization [4].
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FIG. 1. Time evolution of the local expectation values for the atomic
particles s1 (dark blue line) and s2 (light orange line) and the Pear-
son correlation coefficientC12 (dashed green line) displaying the dy-
namical onset of the spontaneous mutual anti-synchronization in a
two-atom system, which is collectively interacting with a zero tem-
perature dissipative environment.

III. RESULTS

Inside this section, we will present the outcomes of our in-
vestigation in three subsections. First, we begin by restrict-
ing our analysis to the case of two atoms that are undergo-
ing collective dissipation. We discuss the consequences of the
amount of detuning between the self-energies of the atoms
and the strength of the direct interaction between them for
the emergence of synchronization. Then, assuming resonant
atoms, we explore the impact of the environment temperature
and the spatial positions of the atoms on the appearance of
synchronized behavior between them. Afterwards, we will
examine the possible relation of average quantum coherence
contained in the global system of two atoms to the degree of
synchronization between the local system observables. Fi-
nally, we will extend our discussion of mutual synchroniza-
tion to the case of three two-level atoms.

A. The case of two atoms

Before starting to present our results, we would like to com-
ment on an important point that will be pertinent in the fol-
lowing sections. Since we intend to study the phenomenon of
transient synchronization, we will be monitoring the tempo-
ral similarities between the dynamics of the expectation val-
ues of local atom observables. As a matter of fact, one can
choose to focus on any physical observable of a two-level
system, that can be expressed as a linear combination of the
operators {σx, σy, σz, I2}, in order to discern the dynamical
onset of mutual quantum synchronization. For this purpose,
to be concrete in our presentation, we will be considering
the expectation value of the Pauli operator in the x-direction,
〈σxsi〉 = Tr[ρiσx], throughout this work, where ρi is the re-
duced density operator of the ith atomic system.

Let us now begin our analysis first considering a special
case of the studied model to basically comprehend the syn-
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FIG. 2. (a) Synchronization diagram displaying the final value of the Pearson correlation coefficient C12 with a color-coded legend, after a
time interval of t = 400, as a function of the strength of the dipole-dipole interaction between the two atoms and detuning between their
self-energies. (b) Time evolution of the Pearson correlation coefficient C12 for a set of four points, (i) red solid line, (ii) green dotted line, (iii)
orange dash-dotted line and (iv) blue dashed line, which are marked in the synchronization diagram.

chronizing nature of the open system dynamics in our work.
Here, we assume a zero temperature environment, that is,
there exists no thermally induced emission or absorption (n̄ =
0). For the sake of simplicity, we also suppose that there is no
detuning between the self-energies (ω1 = ω2) and no direct
interaction between the particles (f12 = 0). Furthermore, we
set the collectivity parameter of the dynamics as a12 = 1, that
is to say that we consider the case of fully collective dissi-
pation of the two atomic particles. We should also mention
that in our study, we assume the bipartite state of the two
atom system to be initially uncorrelated, that is, in the form
(cos θ1|0〉 + eiφ1 sin θ1|1〉) ⊗ (cos θ2|0〉 + eiφ2 sin θ2|1〉). In
the present case, to be specific, we choose the initial states of
the individual atomic particles as

|ψs1〉 = cos(π/4)|0〉+ sin(π/4)|1〉 (5)

|ψs2〉 = cos(π/4)|0〉+ e−iπ/3 sin(π/4)|1〉

Nevertheless, it is important to emphasize that we have per-
formed similar calculations for numerous random initial state
pairs of the two atoms and confirmed that the outcomes of our
analysis regarding synchronization remain qualitatively un-
changed, despite the quantitative differences. Thus, one can
say that mutual synchronization behavior does not really de-
pend on the initial state parameters but rather imposed by the
properties of the open system dynamics.

In Fig. 1, we display the time evolution of the expectation
values for the two atomic system particles s1 (dark blue line)
and s2 (light orange line) along with dynamics of the Pearson
coefficient C12 (dashed green line) which measures the de-
gree of synchronization between the atoms. Here, the model
parameters are fixed as ω1 = ω2 = 1 and g = 0.05, and
the Pearson correlation coefficient is evaluated for a partially
overlapping window δt = 6 of sliding time intervals ∆t = 9.
As can be easily observed from the plot, under the specified
circumstances, the dissipation process dynamically and spon-

taneously gives rise to the emergence of anti-synchronized be-
havior of the two atoms as the Pearson coefficient C12 → −1.
Since there is no direct interaction between the system parti-
cles, the only mechanism that can lead the system into anti-
synchronization is the collective interaction with the environ-
ment, which establishes an indirect interaction between the
atomic systems. Therefore, the phenomenon at hand here is
an example of environment-induced anti-synchronization that
have also been recently observed in different models [4, 25].
At this point, it is also important to note that, this phenomenon
has its roots in the time-scale separation between the decay
rates of the oscillations in the local observables, which are
dictated by the eigenvalues of the Lindbladian governing the
dynamics [9]. When one of these rates decays considerably
slower as compared to the others such that it survives while the
others quickly approach to zero, we observe the emergence of
synchronous behavior between the local observables.

Having recognized the anti-synchronizing tendency of the
open system dynamics in question, we are turning our atten-
tion to the possibility of detuning between the self-energies
of the atomic particles s1 and s2. In addition to the presence
of detuning, we now also allow the two particles to directly
interact with each other with an exchange interaction whose
strength is determined by the model parameter f12. Once
again, without any loss of generality, we suppose that the ini-
tial state of the atomic particles is described by the state pair
in Eq. (5), and g = 0.05 and ω1 = 1. In Fig. 2(a), we present
a synchronization diagram demonstrating the synchronization
behavior for the two particles in terms of the detuning between
their self-energies and the exchange interaction between them.
Specifically, the diagram shows the final value of Pearson cor-
relation coefficient with a color-coded legend at time t = 400
for a partially overlapping time window δt = 6 of sliding time
intervals ∆t = 9. The reason we set this value as the final
time point of our analysis is that after this time period expec-
tation values of the observables become arbitrarily small, i.e.,
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FIG. 3. Synchronization diagram showing the final value of the Pear-
son correlation coefficient C12 with a color-coded legend, after a
time interval of t = 150, as a function of the mean number of pho-
tons and the collectivity parameter of the dissipation process.

they vanish for all practical purposes. To put it differently,
if synchronization between the atomic particles could not be
established until t = 400, this means that the open system
have already reached its steady state before the emergence
of transient synchronization. Looking at the diagram, one
can notice that there exists a trade-off between the detuning
between the atomic particles and the strength of the dipole-
dipole coupling. In particular, anti-synchronized dynamics of
the atomic observables (C12 ≈ −1) can only be spotted when
the direct exchange interaction between the two atoms is suf-
ficiently strong to compensate for the detuning. In order to ac-
quire a better understanding of the situation, we show the time
evolution of Pearson coefficient in Fig. 2(b) for four particular
color-coded points marked on the diagram in Fig. 2(a) with
small roman numbers from (i) to (iv). For all of these points,
detuning between the self-energies of the atoms is fixed to be
ω2/ω1 = 1.08. Here we see from the plot (iv) that a direct
interaction strength of f12 = 0.05 completely recovers the
loss of anti-synchronized evolution between the atoms, which
occurs in case of vanishing exchange interaction as displayed
by plot (i). When it comes to two remaining curves, namely
(ii) and (iii), we observe that even though the final value of
the Pearson coefficient cannot reach C12 ≈ −1, it settles
to a constant value within the time interval t = 400. This
in fact means that although the dynamics of the observables
of the two atomic particles do not become anti-synchronized,
their oscillations get dynamically phase-locked and continue
to evolve with a common pace. Such a behavior is recognized
in the recent literature as time-delayed synchronization and
studied in relation with the collective phenomena of sub- and
super-radiance [29]. Indeed, it is also possible to say that full
anti-synchronization is time-delayed synchronization simply
with a phase difference of π radians. To summarize our find-
ings here, Fig. 1 and Fig. 2 clearly exhibit that the main role
played by the direct exchange interaction between the atoms
for the appearance of anti-synchronization is the compensa-
tion of the detuning between the atomic self-energies. More-

1.00 1.02 1.04 1.06 1.08 1.10

1.0

0.8

0.6

0.4

0.2

0.0

0.01

0.02

0.03

0.04

0.05

0.00

FIG. 4. Residual quantum coherence in the bipartite state of two
atoms, as measured by l1-norm coherence at time t = 400, as a
function of the strength of the dipole-dipole interaction between the
two atoms and the degree of detuning between their self-energies.

over, when the strength of this direct exchange interaction is
not significant enough to induce full anti-synchronization be-
tween the two atomic particles, it might still give rise to the
phenomenon of time-delayed synchronization.

Up until this point, we have assumed that the atoms inter-
act with a dissipative environment at zero temperature in a
fully collective manner, that is, n̄ = 0 and a12 = 1. There-
fore, the next thing we intend to do is to understand the effects
of the thermally induced emission and absorption processes,
and the collectivity parameter on the emergence of transient
anti-synchronization. Since we have seen in our previous dis-
cussions that detuning between the self-energies of the atoms
can be simply compensated with a sufficiently strong dipole-
dipole interaction, here we suppose that ω1 = ω2 = 1 and
f12 = 0 to solely focus on the impact of environment tem-
perature and the degree of collectiveness of the dissipation
on the synchronization. Thus, with the color-coded synchro-
nization diagram displayed in Fig. 3, we show the effect of
the mean number of photons n̄ at the transition frequency of
the atoms and the collectivity parameter a12, which is con-
trolled by the distance between the atoms, on the onset of anti-
synchronization. In this figure, the final value of the Pearson
coefficient C12 is evaluated at the time t = 150 for a par-
tially overlapping window δt = 6 of sliding time intervals
∆t = 9. Initial state of the atomic particles s1 and s2 is set as
in Eq. (5) and g = 0.05. Our findings reveal that increasing
environment temperature is detrimental for the establishment
of anti-synchronized dynamics between the local observables
of the atom pair. Moreover, it becomes evident that anti-
synchronization cannot be achieved unless the two atoms are
sufficiently close to each other. In other words, as the thermal
effects in the environment become more and more significant,
anti-synchronization could no longer be maintained unless a
certain degree of collective dissipation is guaranteed.

In the final part of this section, we explore the existence
of a possible relation between the emergence of spontaneous
anti-synchronization between the expectation values of the in-
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dividual atoms and the presence of quantum coherence in the
two-atom system. In fact, such a link between several dif-
ferent quantum and total correlation measures and synchro-
nization has been extensively investigated in the recent litera-
ture [4]. It has been understood that synchronization between
the local observables can be spotted through the behavior of
global correlation quantifiers only in certain models, and thus
there exists no general connection between the concepts. To
our knowledge, in all of the previous works on this subject, the
emergence of mutual synchronization and the degree of cor-
relations are comparatively studied after fixing the initial state
of the open system. However, it is clear that the amount of cor-
relations or coherence in the global system can be highly state
dependent in general, despite the fact that the behavior of syn-
chronization is not qualitatively affected by the choice of dif-
ferent initial states. In other words, quantum synchronization
is evidently a property of the dynamics rather than the initial
state of the system, hence, we believe that a more preferable
comparison between the two concepts should be done by eval-
uating the average quantum coherence contained in the global
system. Here, we quantify coherence in the global two-atom
system using the so-called l1-norm of coherence [40],

Cl1(ρ) =
∑
i 6=j

|〈i|ρ|j〉|, (6)

which is nothing other than the sum of the absolute values of
the off-diagonal elements appearing in the density operator ρ.

In Fig. 4, we present a color-coded graph displaying the
amount of average residual quantum coherence contained in
the the two-atom system at time point t = 400 as a function
of the strength of the dipole-dipole interaction between the
atoms and the degree of detuning between their self-energies.
We have calculated the coherence values shown in the plot,
averaging over 105 random pairs of initial states of the form
(cos θ1|0〉+eiφ1 sin θ1|1〉)⊗(cos θ2|0〉+eiφ2 sin θ2|1〉), where
the real-valued angles θ1,2 ∈ [0, 2π] and φ1,2 ∈ [0, π] are sam-
pled considering a uniform probability distribution. Also, in
order to allow for a direct comparison between synchroniza-
tion and coherence, the model parameters here are chosen as
in Fig. 2, that is, ω1 = 1, n̄ = 0 and g = 0.05. Comparatively
analyzing the diagrams in Fig. 2 and Fig. 4, it is not difficult to
observe that there is indeed a resemblance between them. In
particular, one can notice that in the parameter region where
the two-atom system has a relatively large residual coherence,
anti-synchronized dynamics can be established between the
atomic particles. In effect, for the coherence contained in the
two-atom system is closely related to the expectation values
of the local observables, such a link between the two might be
rather expected. However, we note that this apparent relation
cannot always be guaranteed in a model independent sense,
since the presence of residual coherence does not always im-
ply the manifestation of transient synchronization.

B. The case of three atoms

In this section we ask a more curious and non-trivial ques-
tion, i.e., what happens to the synchronization dynamics if

we have three two-level atoms, instead of two, as our main
system? Since the emergence of mutual synchronization is
identified by comparatively looking at the oscillations in the
local observables of two system particles, in the case of three
atoms, we will need to analyze the behavior of these observ-
ables among the three possible bipartitions of the main sys-
tem. We have seen in the previous section that the consid-
ered model tend to drive the atomic particles to behave in an
anti-synchronous manner, and the key role in such dynamics
is played by the collective interaction with the environment.
Therefore, in order to keep things as simple as possible and fo-
cus on the actual cause of anti-synchronization, we will only
vary the collectivity parameter in our analysis, while fixing
the strength of the direct interaction between the atoms and
the environment temperature to be zero, fij = n̄ = 0, and we
assume that all atoms are resonant, ω1 = ω2 = ω3 = 1.

Fig. 5 schematically describes the two different spatial con-
figurations we consider throughout this section in which we
label the three atomic particles as s1, s2 and s3. We first inves-
tigate the case of fully collective dissipation, where all system
particles are very close to each other. Then, we move on to the
case where all atomic particles are positioned on a line and s1
is equidistant from both s2 and s3. Naturally, in this second
case, collectivity parameters between s1 − s2 and s1 − s3 are
identical which simply implies a12 = a13 > a23.

The discussion of mutual synchronization for three parti-
cles already complicates things even in the simplest case de-
picted in Fig. 5(a) where all three atomic particles experience
a fully collective dissipation process. Let us briefly discuss
some general aspects of this setting following a simple line
of thought. We have already seen that collective dynamics in
the two-atom case will lead the observables of the atoms to
behave in an anti-synchronized manner. Therefore, when we
bring in the third atom, one would be inclined to think that
each dissipator involving any two atoms in the master equa-
tion will try to induce anti-synchronization between them.
However, it is clearly not possible to achieve this; for instance,
if the dynamical oscillations of the expectation value of the lo-
cal observable of s1 is anti-synchronized with those of s2 and
s3, then s2 and s3 must in fact be fully synchronized in time.
As can be already demonstrated with this simple example, the
presence of a third atomic particle here could indeed dramati-
cally affect the mutual synchronization dynamics.

We now move on to a more quantitative discussion of the
three atom case and begin the analysis of the situation at hand
by studying the time evolution of the expectation values for
each particle, and corresponding Pearson coefficients for dif-
ferent bipartitions, i.e. C12, C13 and C23, presented in Fig. 6.
To begin with, we note that the atoms s1 and s2 are always
chosen to be in the same initial state as in the two-atom prob-
lem throughout this subsection. We also suppose that the ini-
tial state of the third atom s3 is given by

|ψs3〉 = cos(π/8)|0〉+ sin(π/8)|1〉, (7)

and the Pearson correlation parameters ∆t and δt are the
same as the two-atom case. We first assume that all three
atoms are in close proximity (a12 = a13 = a23 = 1), i.e.,
they are indistinguishable as described in Fig. 5(a). The out-
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(a)

(b)

FIG. 5. Two different spatial configurations describing the relative
inter-atomic distances for the three particle main system. (a) All of
the three particles s1, s2 and s3 are in very close proximity of each
other so that they undergo fully collective dissipation. (b) The parti-
cle pairs s1− s2 and s1− s3 are closer to each other as compared to
the pair s2 − s3 so that the degree of collectivity for first two pair of
particles is significantly larger than the last pair. In any of these two
cases, there is no direct interaction between pairs of atoms.

comes of our analysis in this case is described in Fig. 6(a),
where one can immediately notice that the anti-synchronous
behavior observed in case of two closely situated atoms (see
Fig. 1) is lost and none of the atom pairs behave in a fully
(anti-)synchronized manner. Additionally, it can be seen that
all three Pearson coefficients Cij eventually settle to a par-
ticular value after a certain evolution time, which indicates
a time-delayed synchronization across all bipartitions of the
three particle system. At this point, we would like to empha-
size that what we observe here for three atoms, undergoing
fully collective dissipation, is in sharp contrast with our find-
ings regarding the two-atom case. Thus, a few very impor-
tant comments are in order. First, merely bringing in a third
particle s3 close to the particles s1 and s2, which are kept
in the same initial state as in the two-atom case, might re-
sult in the loss of full mutual (anti-)synchronization. Second,
in case of having two particle main system, the phenomenon
of time-delayed synchronization manifests only when there is
a certain degree of detuning between the self-energies of the
atoms, and there also exists a non-zero direct exchange inter-
action between them partially compensating their detuning.
However, we can see that this is no longer true when our main
system is composed of three atoms since, despite the fact that
all the three atoms are resonant, expectation values of the local
observables of different atom pairs can still reach a common
pace in time in a delayed manner. Lastly, it can be confirmed
that the kind of time-delayed synchronization here cannot be
compensated through enabling a sufficiently strong direct ex-
change interaction between the atom pairs, which is in fact
what has been observed in the case of having a main system
with two atomic particles as displayed in Fig. 2(a).

Next, we would like to understand how the spatial config-
uration of the atomic particles, i.e., relative distances among
them controlling the collectivity of the dissipation, affects the
dynamics of mutual synchronization between pairs of atoms.
For this reason, we consider the case described in Fig. 5(b).
In particular, we suppose that the atoms are aligned on a line

in such a way that the collectivity parameters between s1− s2
and s1 − s3 are the same as a12 = a13 = 0.8 and a23 = 0.4.
In Fig. 6(b), we demonstrate the time evolution of the expecta-
tion values of the local observables for three atoms along with
the three Pearson coefficients Cij . It is evident that in this
spatial configuration fully (anti-)synchronized behavior is re-
covered between all atomic pairs. Due to the relatively small
separation between them, s1 − s2 and s1 − s3 pairs become
anti-synchronized in time as witnessed by the dynamics of the
Pearson coefficients, that is, C12 → −1 and C13 → −1. In
turn, such anti-synchronized behavior of s1 − s2 and s1 − s3
pairs inevitably induces the emergence of full synchroniza-
tion between the comparatively distant particles s2 and s3 as
detected by the Pearson coefficient C23 → 1. It is quite inter-
esting that a sole adjustment of inter-atomic distances through
the collectivity parameters aij might indeed result in a radical
change in the nature of mutual synchronization for the three-
atom system. Especially, it is notable that although the expec-
tation values of the observables of the atoms tend to always
get anti-synchronized in the resonant two-atom case, here it
becomes possible with the inclusion of the third atom to also
observe the dynamical onset of full mutual synchronization.

Having realized the fundamental role of the spatial config-
uration of the atomic particles for the establishment of mutual
(anti-)synchronization in the three-atom case, we now intend
to explore whether the nature of synchronization depends on
the choice of atomic initial states. At this point, recall that the
initial state of the atom pair turned out to be irrelevant in the
discussion of two-atom synchronization since all non-trivially
evolving initial state pairs give the same qualitative result in
relation to synchronization. Therefore, one may be inclined
to expect the same outcome for the initial state dependence of
three atom case as well. Let us keep the initial states of the
first two atoms s1 and s2 the same but consider, for example,
the following alternative initial state for the third atom s3

|ψ′s3〉 = cos(π/4)|0〉+ e−iπ/8 sin(π/4)|1〉. (8)

For the above given initial state, we once again study the first
configuration shown in Fig. 5(a), where all three atoms are in
very close to each other as previously discussed for the initial
state |ψs3〉 in Fig. 6(a). We present the outcomes of this study
in Fig. 6(c), where we can immediately notice that while full
mutual synchronization emerges for the atom pair s1−s3, the
remaining two atom pairs s1 − s2 and s2 − s3 become dy-
namically anti-synchronized in time. Thus, a straightforward
comparison of our findings in Fig. 6(a) to those in Fig. 6(c)
reveals the crucial dependence of the mutual synchronization
phenomenon on the choice of initial states of the three atoms,
in sharp contrast to the two-atom problem. In fact, we see that
changing only the state of the third atom s3 is sufficient to
alter the dynamics of mutual synchronization across all pairs
of atoms in the full collective dissipation case. On the other
hand, in the results presented in Fig. 6(d), we consider the dy-
namics depicted in Fig. 5(b) with |ψ′s3〉 and observe no quali-
tative difference as compared to Fig. 6(b) in the synchroniza-
tion dynamics of the system; the observables of the atoms that
are closer to each other become anti-synchronized whereas the
distant pair have no option but to fully synchronize.
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FIG. 6. Time evolution of the local expectation values for the resonant atoms s1 (blue line), s2 (light orange line) and s3 (dark green line)
along with the dynamics of the Pearson coefficients C12 (red dash-dotted line), C13 (black dotted line) and C23 (green dashed line) between
three different pairs. As the results shown in the insets (a) and (c) are for the spatial configuration given in Fig. 5(a), the insets (b) and (d)
display our results for the configuration described in Fig. 5(b). The initial state of the first two atoms are set as |ψs1〉 and |ψs2〉 in all insets,
and we fix the initial state of the third atom to be |ψs3〉 in the insets (a) and (b), and to be |ψ′s3〉 in the insets (c) and (d).

In light of the quantitative results we have presented above,
we now would like to comment and discuss some of the in-
teresting aspects of the three atom case. From the previous
section we knew that any bipartite two-level system under
collective dissipation described by the considered dynamics
tends towards anti-synchronization in their local observables.
As also briefly discussed in the beginning of this section, it
is simply impossible to have all bipartitions in the three atom
case to be anti-synchronized under the same fully collective
dynamics. Therefore, as we demonstrate in Figs. 6(a) and (c),
all Pearson coefficients settle to a certain value, however the
value that they tend to is interestingly very sensitive to the ini-
tial states of the three atomic particles. This is due to some
kind of frustration we bring into the system by introducing
the third particle in the way depicted in Fig. 5(a); the impossi-
bility of three atom anti-synchronization leads the system to a
certain time evolution, which is dependent on the initial condi-
tions in a subtle way. Our results for the configuration shown
in Fig. 5(b) further supports this conclusion. Besides the two
initial states we have studied to obtain the results displayed
in Figs. 6(b) and (d), we actually sampled numerous different
random initial states for the three atom system and observed
no qualitative difference from the presented Pearson factors.
This suggests that the (anti)-synchronization phenomenon in
the three-atom case is underpinned by the two-atom dynamics
of the studied open system model. If any pair of atoms has a

higher collectivity parameter than the others, that bipartition is
anti-synchronized and the remaining bipartitions are forced to
arrange themselves accordingly. Nevertheless, as mentioned
above, if all of the collectivity parameters are identical, then
the system becomes frustrated in some sense and the synchro-
nization behavior exhibits strong initial state dependence.

As a final remark, we should mention that we have also
performed a comparative analysis of the emergence of spon-
taneous mutual (anti-)synchronization and the residual quan-
tum coherence contained in the three-atom state (along with
the coherence in its three possible bipartitions) after a certain
time evolution. Unlike the observed relation between the two
concepts in case of the two-atom system, it does not seem pos-
sible to witness such a simple link when we have more than
two atoms in the system because of the strong initial condi-
tion dependence of synchronization behavior due to the above
mentioned geometric effects such as frustration.

IV. CONCLUSIONS

We have analyzed the spontaneous mutual synchronization
phenomenon in the case of two and three two-level atoms
that are subject to dissipation by a thermal photon bath whose
collectivity can be controlled by a number of parameters de-
pendent on the spatial distances of atom pairs. Starting with
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the two atom case, we have identified that collective nature
of the dissipation process leads to an anti-synchronized be-
havior in the dynamics of the expectation values of the lo-
cal observables of the atoms when both atoms have identical
self-energies. While any possible detuning between the en-
ergy levels of the considered atom pair can spoil the onset of
anti-synchronization, we have demonstrated that this can be
compensated by a sufficiently strong direct exchange interac-
tion between them and in this way anti-synchronization can be
restored. In addition, we have observed that increasing tem-
perature in the thermal bath also have a detrimental effect on
the dynamical appearance of anti-synchronization unless the
dynamics of the two-atom system is fully collective, i.e., the
atoms are extremely close to each other.

Extending our main system of interest to three two-level
atoms have dramatically changed the synchronization behav-
ior. Since it is not possible to have all three bipartitions of
the tripartite atomic system to behave in an anti-synchronized
manner, we have observed distinct qualitative outcomes for
mutual synchronization dynamics depending on the spatial
configuration of the atomic particles. In particular, when we
assume no detuning between the energy levels of the atoms
and a zero temperature environment, and supposing that all
three atoms are placed very close to each other so that their
dynamics are fully collective, we see that Pearson coefficients
for each atom pair settle to a single value that is highly depen-
dent on the initial state of the system particles. We argue that
such a sensitivity on the initial conditions has its roots in the
frustration the system experiences. Even though the dynamics
tries to push each pair of atoms to anti-synchronization, due to
its impossibility, they end up having different synchronization
behaviors depending on the initial conditions. Then, we ana-
lyze the case in which the atoms are aligned on a line so that
the one in the middle is equally close to the other two atoms
which are relatively far away from each other. In this case,
we have shown that irrespective of the initial state of the three
atoms, the particle in the middle shows anti-synchronous be-

havior with the ones placed at the edges, and naturally, the
atoms at the edges become fully synchronized in this way.
This proves that the synchronization behavior is in fact dom-
inated by the underlying two-atom dynamics and when the
frustration is removed, the initial state dependence disappears.

On a side note, we would like to very briefly elaborate on
a possible connection between synchronization and emergent
non-stationary states in dissipative dynamics [41–43]. Such
non-stationary states exhibit persistent coherent oscillations
in the long-time limit, in contrast to a stationary steady-state,
and they are signalled by a purely imaginary eigenvalue sub-
space in the Lindbladian spectrum. Even though it is possible
to observe the presence of such states in certain limits of our
model (for example see the dynamics in Fig. 1), this, in gen-
eral, does not imply a direct relationship between the two phe-
nomena. The reason is due to the fact that, in this work, and
most of the quantum synchronization literature, what one is
interested in is the transient synchronization, that is, establish-
ment of synchronous behaviour between the local observables
at a transient time during a decay into a steady-state regard-
less of whether it is stationary or non-stationary. Nevertheless,
in the case of stationary synchronization [9, 30], where the
subsystems stay synchronized in the long-time limit, it may
be interesting to investigate the relationship between the non-
stationary states and synchronization.
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