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Synchronization and non-Markovianity in open quantum systems
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Detuned systems can spontaneously achieve a synchronous dynamics and display robust quantum correlations
in different local and global dissipation regimes. Beyond the Markovian limit, information backflow from the
environment becomes a crucial mechanism whose interplay with spontaneous synchronization is unknown.
Considering a model of two coupled qubits, one of which interacts with a dissipative environment, we show
that non-Markovianity is highly detrimental for the emergence of synchronization, for the latter can be delayed
and hindered because of the presence of information backflow. The results are obtained considering both a master
equation approach and a collision model based on repeated interactions, which represents a very versatile tool to
tailor the desired kind of environment.
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I. INTRODUCTION

Synchronization between different units, due to their in-
teraction, is a paradigmatic phenomenon quite widespread in
nature, e.g., in physical, biological, and social systems [1,2].
It emerges spontaneously, being enabled by several coupling
mechanisms and in the absence of an external driver, differ-
ently from entrainment. While it has been well studied in
the classical domain [3], it has recently become a focus of
research in the quantum regime [4], where both entrainment
[5–12] and spontaneous synchronization [13–26] have been
explored in a variety of systems including spins, and harmonic
and nonlinear oscillators, modeling platforms ranging from
optomechanical systems to trapped ions and superconducting
qubits. The presence of quantum correlations as a signature
of synchronization, as well as the origin of these dynamical
features, has been discussed [10,14,17,18,27]. Signatures of
synchronization have also been recently reported in experi-
ments [28,29].

Dissipation is a key enabling mechanism for spontaneous
synchronization: indeed diffusive couplings (cross-damping
terms) have been considered in classical systems [1], while
dissipation, either global or local, is known to induce syn-
chronization among quantum oscillators and spins, either in
the steady state or in the transient relaxation dynamics [30].
Even if different forms of dissipation and decoherence have
been considered, a common feature of these works is the
assumption of Markovian evolution of the open quantum sys-
tems. Dissipation of quantum systems is mostly described by
neglecting memory effects due to its technical simplicity, but
non-Markovianity is actually the rule rather than the exception
in many realistic settings and there have been several advances
in the last decade on the theoretical framework encompass-
ing memory effects. Indeed, quantum non-Markovianity is

a multifaceted phenomenon whose quantification via vari-
ous techniques has been vastly explored both theoretically
[31–34] and experimentally [35–37]. As memory effects
might enable the open system to recover a certain part of the
information lost in the environment, they are also known to be
relevant in the context of quantum metrology [38], quantum
information processing [39,40], and thermodynamics [41,42].

Given the enabling role of dissipation for spontaneous
synchronization, it is of fundamental and practical interest
to establish the effect of memory and non-Markovianity. Our
main goal in this work is to understand the relationship be-
tween the degree of non-Markovianity in the open-system
dynamics and the onset of spontaneous synchronization con-
sidering different approaches. We consider a pair of coupled
qubits, in a nonsymmetric dissipation configuration in which
only one is in direct contact with the environment. This con-
figuration has been recently shown to allow for probing of
the features of an out-of-equilibrium qubit through measure-
ment of the probe [43] and can be realized, for instance, in
atomic platforms [21]. We address the effect of the environ-
ment through both a Lindblad master equation and a collision
model. The former allows to assess the relation between the
local non-Markovianity of one qubit and its ability to syn-
chronize with the other one. The latter allows to go beyond
Markovian assumptions for the whole qubit pair open-system
dynamics.

One could expect that information backflow on one qubit,
being a manifestation of its interaction with the rest of
the system and environment, would favor the emergence of
synchronization—which is normally enhanced by increas-
ing the coupling (see, for instance, in Refs. [14,17], where
Arnold tonguelike phase diagrams [1] were found). We report
on the failure of this intuition. Using a Lindblad-type mas-
ter equation we show that there exists a trade-off between
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non-Markovianity of the probe qubit and the emergence of
synchronization between the qubit pair. In particular, for a
given intraqubit coupling, memory effects tend to be signif-
icantly larger where synchronization is absent, as can also be
assessed analytically. In accordance, we show that the time re-
quired for the establishment of synchronization is related with
the inverse of the strength of non-Markovianity. Then, using a
collision model, we extend our analysis to a scenario in which
the interaction with the environment also gives rise to non-
Markovianity through the backflow of information from the
environment to the open system, in addition to the intraqubit
coupling. Our simulations demonstrate that the trade-off rela-
tion between synchronization and non-Markovianity is indeed
robust in this more general case as well.

This paper is organized as follows. In Sec. II, we first intro-
duce the physical setting and the master equation describing
the open-system dynamics. Then, presenting the figures of
merit that we use to quantify the degree of non-Markovianity
and synchronization, we report our main results on the trade-
off relation between these two concepts. Section III includes a
more general collisional model approach to the same problem,
where backflow of information from the environment to the
open system is also considered. We conclude in Sec. IV.

II. MASTER EQUATION AND FIGURES OF MERIT

Let us consider a qubit s1 directly interacting with a second
qubit s2, which is immersed in a boson thermal environment.
The total Hamiltonian is H = HS + HB + HI , where

HS = ω1

2
σ z

s1
+ ω2

2
σ z

s2
+ λ(σ+

s1
σ−

s2
+ σ−

s1
σ+

s2
) (1)

describes the free evolution of the two qubits and their direct
interaction, HB = ∑

k �ka†
kak is the bath Hamiltonian, and

HI = ∑
k gk (a†

k + ak )σ x
s2

is the interaction between the sec-
ond qubit and the environment. The dynamics of the density
matrix of the system alone can be analytically calculated, at
least in the limit of weak system-bath interaction, by deriving
the corresponding Born-Markov master equation [44]. As-
suming that the qubit-qubit coupling λ is either larger than
the system-bath interaction strength or smaller than the abso-
lute value of the detuning, |�| = |ω1 − ω2|, the open-system
dynamics can be described employing a full secular approx-
imation [45]. The first step to write such an equation is the
diagonalization of HS , that can be written as HS = E1(η†

1η1 −
1/2) + E2(η†

2η2 − 1/2), where E1 = (ω0 − R)/2 and E2 =
(ω0 + R)/2, with ω0 = ω1 + ω2, R =

√
(ω1 − ω2)2 + 4λ2,

and where ηi (η†
i ) are fermionic annihilation (creation) op-

erators whose definition in terms of the qubit states is given
in Appendix A. The corresponding zero-temperature master
equation reads

dρ(t )

dt
= −i[H, ρ] + 	1 sin2 θL(η1) + 	2 cos2 θL(η2), (2)

where

θ = 1

2
arctan

2λ

ω1 − ω2
, (3)

L(X ) = XρX † − {X †X, ρ}/2, while 	1 and 	2 are given by
the spectral density of the bath, calculated respectively at

energies E1 and E2. For the sake of simplicity in the analytical
discussion, we will assume a flat spectral density leading to
	1 = 	2 ≡ 	.

In order to establish a quantitative relationship between
degree of non-Markovianity and the emergence of spon-
taneous quantum synchronization, we will make use of
the well-known trace distance measure [46] to assess non-
Markovianity. In this approach, if the trace distance between
two arbitrary initial states of the open system decreases
monotonically during the dynamics, we have a memoryless
Markovian process. However, if the trace distance undergoes
a temporary increase in certain time intervals throughout
the evolution, then there exists a backflow of informa-
tion from environment to system that represents a signature
of non-Markovian memory effects. The trace distance be-
tween the two density matrices ρ1 and ρ2 is given by
D(ρ1, ρ2) = 1

2 Tr[(ρ1−ρ2)†(ρ1−ρ2)]1/2. Then, the degree of
non-Markovianity can be quantified via

Nmax = max
ρ1(0),ρ2(0)

∫
Ḋ>0

dD

dt
dt, (4)

where optimization is performed over all possible pairs of
initial spin states. At this point, we should note that we will
also consider an inequivalent non-Markovianity measure in
Appendix B to demonstrate the generality of our results.

Spontaneous quantum synchronization between a pair of
quantum systems can be said to emerge through the establish-
ment of coherent oscillations in the expectation values of their
local observables. While it is generally possible to observe this
behavior by just looking at the dynamics of these expectation
values, one needs to adopt a measure to quantify the degree
of synchronization to be able to make a definite discussion.
To this end, we will adopt the well-known Pearson correlation
coefficient C12, which is a standard tool in statistics for identi-
fying correlations between two data sets, as our figure of merit
for the detection of synchronous behavior, as it has been done
in the majority of the literature on quantum synchronization
[4]. Given two discrete variables x and y, linear correlation
between them can be measured by the Pearson coefficient,
which is given as

Cxy =
∑

t (xt − x̄)(yt − ȳ)√∑
t (xt − x̄)2

√∑
t (yt − ȳ)2

. (5)

Here, x̄ and ȳ denote the averages of x and y over the data
set t . C12 is a bounded function whose range lies in [−1, 1]
and the end points of this range correspond to two extremes
in the synchronization behavior. In particular, C12 = −1 and
C12 = 1 indicate that two variables under consideration are
completely negatively and positively correlated, respectively.
To elaborate more on these extremes, fully negative corre-
lation between the variables means that while one of them
is increasing the other one is decreasing simultaneously, and
fully positive correlation signals that both of them behave in
the same way, i.e., they are increasing or decreasing together.

Translating this to the language of the synchronization phe-
nomenon, as mentioned above, we choose the two variables
that go into the calculation of the Pearson coefficient as the
expectation values of local observables 〈σ x

s1
〉 and 〈σ x

s2
〉. Con-

sequently, based on the definition of the Pearson coefficient
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FIG. 1. (a) Synchronization and (b) normalized non-
Markovianity diagrams in terms of the ratio of the self-energies of s1

and s2, and the strength of the intraqubit interactions. In both cases,
the system-bath coupling is 	 = 0.01, and the region displayed
ensures the validity of the full-secular approximation in Eq. (2). In
the case of synchronization, the Pearson factor is calculated at time
t ∼ 500ω1.

above, completely negative and completely positive corre-
lations imply fully antisynchronized and fully synchronized
behaviors between the local expectation values, respectively.
We also note that, despite our focus on a particular observable
for concreteness, the emergence of spontaneous synchroniza-
tion in our study is robust in the sense that it is indeed
independent of the choice of specific observables. In addition,
we calculate the expectation values of the local observables
〈σ x

s1
〉 and 〈σ x

s2
〉 in our simulations as discrete samples for

the considered time interval. Consequently, as we sample Cxy

given in Eq. (5) over a sliding data window along the total
evolution time, we can obtain a time-dependent Pearson co-
efficient to probe how the oscillations become phase locked
over time. Lastly, to get a smooth behavior in the Pearson
coefficient evolution, we allow the adjacent data windows to
partially overlap for a certain interval.

We start by calculating the non-Markovianity of s1 due to
the direct coupling to s2 and to the indirect coupling to the
environment. To this end, we will prepare both the bath and
s2 in their respective ground states. As established in Ref. [47]
in the case of a single qubit, the optimal pair of initial states
is represented by a couple of pure, orthogonal states. While
in principle one should perform a numerical maximization
over all possible pairs of initial states for any value of the
system parameters, we have verified that with respect to some
given states this only weakly affects the numerical value of the
indicator (4), but not the landscape of the non-Markovianity
dependency of the parameters themselves. So, for the sake of
clarity, let us choose the two density matrices ρ± = |ψ±〉〈ψ±|
with |ψ±〉 = (|0〉 ± |1〉)/

√
2 as the pair for s1. From this point

on, we will utilize the symbol N to label the value of the non-
Markovianity measure calculated for the above-considered
pair of states. In Fig. 1(b), we show the behavior of N̄ (which
is the normalized non-Markovianity obtained by dividing all
data points by the maximum value of N ) as a function of ω1

and λ (hereafter we will fix ω2 = 1 and use it as an energy
scale). In order to deeply understand the behavior of Fig. 1(b),
let us try to estimate analytically the value of N . The two
initial states for s1 evolve as (see Appendix C for details)

ρ
(1)
± (t ) =

(
p(t )/2 ±q(t )/2

±q∗(t )/2 1 − p(t )/2

)
(6)

with q(t ) = cos2 θe−i (R+ω0 )
2 t− 	̃2

2 t + sin2 θe−i (R−ω0 )
2 t− 	̃1

2 t , where
we defined 	̃1 = sin2 θ	1 and 	̃2 = cos2 θ	2. The definition
of the parameter p(t ) is given Appendix C. For these two den-
sity matrices, the trace distance is given by D(ρ+(t ), ρ−(t )) =
|q(t )| = (cos4 θe−	̃1t + sin4 θe−	̃2t + 2 sin2 θ cos2 θe− 	̃1 + 	̃2

2 t

cos Rt )1/2. While it tends to decrease in time, it can experi-
ence partial growths due to the last term within the square
root. Now, N is given by the sum of |q(t )| calculated over
the relative maxima (which can occur at times t = 2kπ/R)
minus the sum calculated over the relative minima [at times
t = (2k − 1)π/R]. Increasing the imbalance between the two
first terms within the square root, which can be achieved by ei-
ther increasing the detuning or decreasing the coupling, there
are two effects: (i) the difference between |q(t = 2kπ/R)|
and |q(t = 2(k − 1)π/R)| is reduced; at the same time, (ii)
the overall envelop of |q(t )| approaches the zero value faster,
so that the number of time intervals that enters the above-
mentioned sum is also reduced. Both effects cause a fall in N ,
which explains the behavior of the non-Markovianity plotted
in Fig. 1(b).

Let us now move to the analysis of transient quantum syn-
chronization. As already detailed in the literature [4,14,17] its
emergence is due to the presence of multiple dissipative time
scales. If one of these modes is much slower than the others,
there is a time window in which the dynamics of all subparties
shows a monochromatic oscillation locked at the frequency
of that slow mode. Let us remark that the emergence of syn-
chronization is strictly dependent on the spectral properties of
the Liouvillian superoperator governing the dynamics, while
it is completely independent on the initial state. In our master
equation in Eq. (2), such a time-scale separation is expected
unless the condition cos2 θ 	1 = sin2 θ 	2 is satisfied. Then,
under the assumption of a flat density of states (	1 = 	2 ≡ 	),
synchronization is expected to be absent along the line ω1 =
ω2. In Fig. 1(a), we plot the Pearson coefficient C12 calculated
at a time long enough to have all the eigenmodes but the last
one decayed out (but also shorter than the thermalization time,
when also the long-lasting eigenmode would have died) and
to observe the emergence of a monochromatic oscillation. The
line ω1 = ω2 separates a synchronized region from an antisyn-
chronized one and a different spectral density would lead to a
transition line out of perfect qubits resonance for increasing
coupling (see Ref. [43]). Furthermore, the ratio between the
two decay rates can be used to estimate the synchronization
time. Moving apart from the case ω1 = ω2, the separation
between the two time scales is a monotonically increasing
function of the detuning for any λ. The difference between
the two rates, 	̃2 − 	̃1, for fixed detuning is proportional to
cos 2θ , which is monotonically decreasing with λ. Then, the
synchronization time results to be a decreasing function of
the detuning and an increasing function of the coupling, be-
ing hindered when the first qubit dynamic is non-Markovian.
Therefore, the information backflow on the first qubit (for
a Markovian global dissipation of the pair of qubits) does
not provide a coupling mechanism beneficial—being actually
detrimental—for the emergence of synchronization.

While the previous analytical arguments strictly apply to
the case of a flat spectral density in Eq. (2), the correlation
between non-Markovianity and synchronization can be traced
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FIG. 2. Left: Pearson coefficient (upper row) and normalized
non-Markovianity measure (lower row) as a function of the ratio
ω1/ω2 and of the coherent coupling in the presence of the hybrid
noise described by the master equation in Eq. (7). The coupling to
the bath causing low-frequency noise is five times bigger than the one
to the Ohmic environment (	LF = 0.05ω1 and 	0 = 0.01ω1). Right:
Same analysis with the parameter 	0 = 0.001ω1. In both cases, the
Pearson factor is calculated at time t ∼ 500ω1.

back beyond such a toy model. Let us consider the more
realistic scenario of a system subject to a hybrid noise coming
from more than one environment, as discussed, for instance,
in Ref. [48] where high-frequency and low-frequency noise
components coexist, which is typical of platforms employing
superconducting qubits [49,50]. Thus, we will now assume
the simultaneous presence of two environments, both directly
affecting the qubit s2. In order to discuss a realistic situation,
we suppose that one of the two baths is Ohmic, that is, it is
described by a spectral density JHF(ω) = 	0ωe−ω/ωc , where
ωc is a (very high) cutoff frequency, which will be neglected
in the following treatment, while the second bath is a low-
frequency one [48]. According to Ref. [49], in the case of
absence of direct tunneling (ε = 0 in the language employed
there), a low-frequency noise causes dephasing in the basis
of the system Hamiltonian. Then, assuming statistical inde-
pendence between the two baths, the master equation given in
Eq. (2) is modified as follows:

dρ(t )

dt
= −i[H, ρ] + 	1 sin2 θL(η1) + 	2 cos2 θL(η2)

+	LF(σ z
s2
ρσ z

s2
− ρ), (7)

where the couplings to the Ohmic bath now are 	i = JHF(Ei ),
and we have introduced a local dissipator for the low-
frequency noise, as its amplitude is normally stronger than the
one of the high-frequency bath (	LF � 	0) [51].

In Fig. 2 we show the phase diagrams of both C12 and N̄
as a function of λ and of ω1/ω2. As we can see, provided that
there is some amount of dissipation (due to the high-frequency
bath), we observe that the general picture is almost indis-
tinguishable with respect to the one shown in Fig. 1, which

FIG. 3. Sketch of the model where a single step involves four
adjacent collisions: (i) s1 and s2 directly interact with each other.
(ii) s2 interacts with the environment particle en. (iii) As s1 and s2

freely evolve, a partial SWAP interaction occurs between en and en+1.
(iv) Finally, en is discarded and s2 is now ready to interact with en+1.

means that the strong correspondence between C12 and N
is kept unchanged. An extreme scenario where such a corre-
spondence is broken takes place considering the limit of very
small or even vanishing coupling to the high-frequency bath.
Indeed, in this extreme case, the non-Markovianity phase
diagram keeps its structure (also the numerical value of N
is mostly independent), while the synchronization one gets
distorted. A possible explanation of this result can be found
in previous analysis about the hindering of synchronization in
the presence of pure dephasing [22,52]. In our case, synchro-
nization does not disappear due to the fact that there is direct
coupling between the qubits, which implies [HS, σ

z
s2

] 	= 0.
Thus, even with 	 = 0, there is a finite amount of dissipation
in the Hamiltonian basis. In the case of 	0 = 0, a Liouvillian
analysis analogous to the one done in Ref. [22] shows that
the slowest decaying mode is always symmetric with respect
to the exchange between ω1 and ω2, which already excludes
the existence of the synchronization-antisynchronization
transition.

III. COLLISION MODEL

An alternative route to describe the dynamics of open
systems is provided by collision models [53–59], which can
be used for an exact derivation of the system dynamics and
also provide a highly controllable way of introducing memory
effects in the environment [60–66]. Using this framework, we
consider a pair of qubits s1 and s2 in direct interaction with
each other. As in the previous setup, while s1 is isolated from
the environment, s2 is an open system due to its coupling to an
environment, which is made out of identical quantum objects
in their ground state. Interactions between the particles occur
as successive collisions, i.e., as pairwise couplings described
by unitary operators. In the following, we present the details
of a single step in the dynamics as summarized in Fig. 3.

The scheme begins with the direct interaction of s1 and
s2 described by the Hamiltonian Hs1s2 = λ

2 (σ x
s1
σ x

s2
+ σ

y
s1σ

y
s2 ).

Then, s2 interacts with the environment particle en through
Hs2en = J

2 (σ x
s2
σ x

en
+ σ

y
s2σ

y
en ). Next, s1 and s2 evolve freely under

Hs1(2) = −ω1(2)

2 σ z
s1(2)

, where ω1 and ω2 are the self-energies of
s1 and s2, respectively. Note that the corresponding evolution
operators are given by U = exp(−iHt ) for each Hamiltonian
term. At the same time, en, which has already interacted with
s2 previously, interacts with the forthcoming particle en+1

with a partial SWAP operation given by Uen+1en = cos(γ )I4 +
i sin(γ )SWAP, where I4 is the 4 × 4 identity operator and γ
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FIG. 4. While the upper panels display synchronization diagrams
for three different intraenvironment interaction strengths in terms of
the ratio ω1/ω2 of the self-energies of s1 and s2 and the strength of
the direct interaction between them, the lower panels show the degree
of non-Markovianity for the same set of parameters. Here, C12 is
computed for a sliding data window of 250 collisions, with partial
overlaps of 200 collisions, for N = 10 000 iterations.

is the strength of the SWAP operation with SWAP = |00〉〈00| +
|01〉〈10| + |10〉〈01| + |11〉〈11|. Lastly, a single cycle is com-
pleted tracing out en and moving to repeat the above procedure
with en+1. In addition to the non-Markovian evolution of
s1 caused by the direct interaction between s1 and s2, the
presence of intraenvironment collisions causes an informa-
tion backflow to the system qubits, thus providing another
source of non-Markovianity. The contribution to the non-
Markovianity by the latter mechanism can be controlled by
the intraenvironment coupling. We set the parameters of our
collision model such that J = 1, ω2 = 1, δts = δts1s2 = 0.2,
and δts2e1 = 0.1. We evaluate C12 taking the initial state of s1s2

as (|0〉 + |1〉) ⊗ (|0〉 − |1〉)/2. Furthermore, similarly to the
master equation description, we calculate N supposing that
s2 is initially in the ground state and the state pair for s1 is
(|0〉 ± |1〉)/

√
2.

In Fig. 4, we present synchronization and first qubit non-
Markovianity diagrams as a function of the ratio ω1/ω2

of the self-energies of s1 and s2, and the strength of their
direct coupling λ, for three different intraenvironment inter-
action strengths γ . As can be observed from the upper left
panel, when there is no interaction between the environment
particles, γ = 0, distinct regions of synchronization and an-
tisynchronization are sharply separated by the resonance line
defined by ω1/ω2 = 1, in full qualitative agreement with the
results obtained considering the Lindblad master equation. Let
us stress here that while the master equation has been derived
in the weak system-bath coupling, the collision model is built
considering a strong coupling, which also shows the robust-
ness of our findings in different regimes. With the second
and third upper panels, we demonstrate that as the intraenvi-
ronment interaction strength γ grows stronger, there occurs
an upward shift in the synchronization-antisynchronization
separation curve. On the other hand, the lower three panels
show the corresponding non-Markovianity diagrams for the
same three values of γ . Comparatively analyzing all six di-
agrams, it is straightforward to see a remarkable trade-off

FIG. 5. As the upper panels show synchronization diagrams for
three different ω1/ω2 values for the qubits s1 and s2 in terms of
the strengths of the intraenvironment and the direct interaction be-
tween them, the lower panels display the degree of normalized
non-Markovianity for the same set of parameters. The Pearson co-
efficient C12 is computed here for a sliding data window of 250
collisions, with partial overlaps of 200 collisions, for N = 10 000
iterations.

between the degree of memory effects and synchronization;
that is, where memory effects become significantly larger,
synchronous behavior cannot emerge. Moreover, as will be
discussed later, non-Markovianity also has an essential impact
on the speed of the establishment of synchronization. Finally,
Fig. 5 provides complementary results for our analysis on the
interplay between the non-Markovianity of the probe qubit s1

and the emergence of the synchronization between the qubit
pair s1 and s2 considering different values of ω1/ω2. The
relationship between the asynchronization line defined by the
presence of intraenvironment collisions and the strength of
memory effects becomes evident also in these plots.

Next, we discuss the effects of the intraenvironment in-
teraction γ and the ratio ω1/ω2 on synchronization and
non-Markovianity. In Fig. 6(a), we show a synchronization
diagram where the coupling strength between s1 and s2 is
fixed as λ = 0.1. On the other hand, in Fig. 6(b), we dis-
play the behavior of N̄ in the dynamics of s1 for the same
parameter set. Comparing Figs. 6(a) and 6(b), we again see a
clear relation between the emergence of synchronous behavior

FIG. 6. (a) Synchronization and (b) normalized non-
Markovianity diagrams in terms of the ratio ω1/ω2 for the
self-energies of s1 and s2, and the strength of the intraenvironment
interactions. In both plots, the coupling strength between the
particles is λ = 0.1.
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FIG. 7. Evolution of (a) Pearson coefficient and (b) the degree
of non-Markovianity as a function of the number of collisions for
three different values of ω1/ω2 between the energies of s1 and s2.
Dynamics of (c) Pearson coefficient and (d) non-Markovianity in
terms of the number of collisions for three different values of intraen-
vironment interaction strength. Here, we evaluate C12 for a sliding
data window of 200 collisions with partial overlaps of 150 collisions.

between s1 and s2, and the degree of non-Markovianity in the
dynamics of s1. Particularly, it can be observed that along
the synchronization-antisynchronization separation curve on
which synchronization cannot manifest, the degree of mem-
ory effects is much larger as compared to the regions where
(anti)synchronization emerges. This conclusion also stands
for a different measure of non-Markovianity, for example, the
entanglement-based measure introduced in Ref. [67] as we
clearly demonstrate in Appendix B.

Lastly, we study the evolution of the Pearson coefficient
and non-Markovianity as a function of the number of col-
lisions. In this way, we can better understand how memory
effects in the dynamics of s1 affect the speed of the onset
of synchronization. In Figs. 7(a) and 7(b), we display the
dynamics of C12 and N for three different values of ω1/ω2

when there exist no intraenvironment interactions, i.e., γ = 0.
In Figs. 7(c) and 7(d), we show the evolution of C12 and N
once again but this time assuming fixed detuning (ω1/ω2 =
1.20) for three different values of intraenvironment interaction
γ . Comparing the behavior of C12 and N , it becomes clear
that increasing degree of memory effects in the open-system
dynamics of s1 slows down the emergence of synchronization.

IV. CONCLUSION

We have provided a comparative analysis of the emergence
of spontaneous quantum synchronization and non-Markovian
memory effects, defined by the backflow of information from
the environment to the open system, and showed that there
exists a robust trade-off relation between these two fundamen-
tal phenomena. The results have been obtained performing
both analytical calculations using a master equation approach
(both in a simple single bath with flat spectrum scenario
and in a hybrid noise modeling superconductor qubits) and
a numerical analysis based on a collision model embedding
further memory effects. These two approaches allow to de-

scribe the dynamics of the open system in different regimes of
the system-bath interaction, which is a further corroboration
of the generality of our results. In particular, our findings point
out that as a consequence of the information backflow from
the environment to the probe qubit, through its coupling with
the open-system qubit, the appearance of synchronization will
be delayed or completely prevented depending on the model
parameters. Indeed, the backflow of information on the first
qubit does not provide a useful coupling mechanism for syn-
chronization, neither in the weak- nor in the strong-coupling
regime with the environment. The conclusion is robust also
considering different non-Markovianity indicators [46,67]. Fi-
nally, our findings also show that synchronization of the qubit
pair in our setting can be used to probe the degree of non-
Markovianity of the open quantum system dynamics.
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APPENDIX A: HAMILTONIAN DIAGONALIZATION

Let us consider the system Hamiltonian introduced in
Eq. (1) of the main text:

HS = ω1

2
σ z

s1
+ ω2

2
σ z

s2
+ λ(σ+

s1
σ−

s2
+ σ−

s1
σ+

s2
). (A1)

Its eigenstates are | ↓↓〉, |θ〉= cos θ | ↑↓〉+ sin θ | ↓↑〉,
|θ⊥〉 = − sin θ | ↑↓〉 + cos θ | ↓↑〉, | ↑↑〉, with respective
energies −ω1+ω2

2 ≡ −ω0/2, sign(ω1 − ω2)R/2, sign(ω2 −
ω1)R/2, ω1+ω2

2 ≡ ω0/2, where R =
√

(ω1−ω2 )2

4 + λ2 and we
have defined

θ = 1

2
arctan

2λ

ω1 − ω2
. (A2)

The Hamiltonian can be put into a quasiparticle form intro-
ducing the operators

η
†
1 = |θ〉〈↓↓ | − | ↑↑〉〈θ⊥|, (A3)

η
†
2 = |θ⊥〉〈↓↓ | + | ↑↑〉〈θ |, (A4)
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and their respective Hermitian conjugates (it can be verified
that such a set of operators obeys fermionic anticommutation
rules {ηi, η j} = 0, {η†

i , η
†
j } = 0, and {ηi, η

†
j } = δi, j).

Using these operators we can rewrite the Hamiltonian as

H = E1(η†
1η1 − 1/2) + E2(η†

2η2 − 1/2), (A5)

where E1 = (ω0 − R)/2 and E2 = (ω0 + R)/2. In terms of
occupation numbers, the eigenstates are

| ↓↓〉 = |00〉,
|θ〉 = |10〉,
|θ⊥〉 = |01〉,
| ↑↑〉 = |11〉.

Let us now put the second qubit s2 in contact with a bath
through HI = ∑

k gk (a†
k + ak )σ x

s2
. The operator σ x

s2
can be de-

composed as

σ x
s2

= cos θ (η†
2 + η2) + sin θ (η†

1 + η1), (A6)

which gives rise to the master equation (2) of the main text,
valid under secular approximation and at zero temperature,
which we rewrite here:

dρ(t )

dt
= −i[H, ρ] + 	1 sin2 θL(η1) + 	2 cos2 θL(η2).

(A7)

APPENDIX B: ENTANGLEMENT-BASED
NON-MARKOVIANITY AND SYNCHRONIZATION

Quite differently from its classical counterpart, the concept
of non-Markovianity is not uniquely defined in the quan-
tum regime. In fact, quantum non-Markovianity is known
to be a multifaceted phenomenon which should be studied
from many different perspectives [32]. In accordance with
this fact, there are now numerous quantifiers in the literature
that have been introduced to measure the degree of memory
effects in the open-system dynamics of quantum systems [31].
It is important to note that almost all of these quantifiers
are actually witnesses for the completely positive divisibility
of quantum dynamical maps describing the time evolution
of open systems. However, many of them have their own
physical motivations which are, for instance, connected with
the dynamics of information flow between the open system
and its surrounding environment. Despite the fact that non-
Markovianity measures might give inequivalent results under
certain conditions (see, for example, Refs. [68–70]), they are
also known to give rise to similar qualitative conclusions in
many cases.

Although we use the first proposed and one of the most
established quantifiers to measure the degree of memory ef-
fects in open-system dynamics in the main text and in other
parts of the Appendixes, namely, the trace distance measure,
here we also present some results on the relation between the
emergence of dynamical memory effects and the spontaneous
quantum synchronization, considering an alternative measure
of non-Markovianity. To this end, we will make use of a
correlation-based measure of non-Markovian memory effects

FIG. 8. (a) Synchronization and (b) normalized entanglement-
based non-Markovianity diagrams in terms of the ratio ω1/ω2 for s1

and s2, and the strength of the intraenvironment interactions. In both
plots, the coupling strength between the particles is λ = 0.1.

[67], which is known to be distinct from the trace distance
measure both in terms of its mathematical construction and its
physical interpretation. In particular, while the trace distance
measure, which is based on the evolution of distinguisha-
bility between a pair of states throughout the open-system
dynamics, can be interpreted to measure the amount of infor-
mation backflow from the environment to the system [46], the
entanglement-based measure is directly connected to the in-
formation dynamics between an open system and its reservoir
through entropic measures [36]. In other words, even though
they might provide similar conclusions in many cases, the two
measures are generally inequivalent [69]. As will be seen, the
results that we obtain using the entanglement-based measure
confirm the generality of our conclusions on the trade-off rela-
tion between the onset of memory effects and the occurrence
of spontaneous synchronization.

The alternative measure we consider in this section is
constructed upon the entanglement dynamics of a bipartite
quantum system that is made up of the principal open-system
qubit and an additional ancillary qubit which is assumed to
be trivially evolving in time without being affected by the
environment. In this approach, it is assumed that we introduce
an ancillary system a1, having the same dimension as the
principal open spin system s1. Then, supposing that the first
spin s1 undergoes decoherence due to its direct coupling with
the second spin s2, and the ancillary spin a1 evolves trivially,
a temporary increase in the entanglement of the bipartite
system a1s1 during the dynamics implies the existence of non-
Markovian memory effects. On the other hand, a monotonic
decrease in the dynamics of the entanglement means that the
open-system evolution is Markovian. As a consequence, the
degree of memory effects in terms of entanglement can be
quantified with the help of the expression [67]

NE = max
ρa1s1 (0)

∫
Ė>0

dE (t )

dt
dt, (B1)

where the optimization must be performed over all possible
initial bipartite states ρa1s1 (0). As it has been shown that the
above quantity is optimized for maximally entangled states
[70], we calculate it assuming that the bipartite state a1s1 is
initially in one of the Bell states. Also note that here we choose
concurrence to quantify entanglement.

In Fig. 8, we display a synchronization [Fig. 8(a)] and
an entanglement-based non-Markovianity [Fig. 8(b)] diagram
in terms of the intraenvironment interaction strength γ and
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the ratio ω1/ω2 of the self-energies of the spins. In fact,
this figure is identical to Fig. 4, except for the fact that
the non-Markovianity diagram here is calculated considering
the entanglement-based non-Markovianity measure NE rather
than the trace distance measure N in the main text. As can be
seen from the comparison of these two figures, the results are
qualitatively very similar. Therefore, one can clearly see that
the demonstrated trade-off relation between the phenomena of
spontaneous quantum synchronization and non-Markovianity
is not limited to a specific choice of non-Markovianity
quantifier, but rather a more general one.

APPENDIX C: TRACE-DISTANCE-BASED
NON-MARKOVIANITY

Let us consider the dynamics of the two initial density ma-
trices ρ± = |ψ±〉〈ψ±|, with |ψ±〉 = (| ↑〉 ± | ↓〉) ⊗ | ↓〉/√2:
in the fermionic basis we have

ρ±(0) = 1

2
(cos θ |10〉 − sin θ |01〉 ± |00〉)(cos θ〈10|

− sinθ〈01| ± 〈00|).
Using the master equation (A7), we can readily calculate the
time evolution of such states, which amounts to

ρ±(t ) = 1

2

{|00〉〈00|[1 + sin2 θ (1 − e−	̃2t )

+ cos2 θ (1 − e−	̃1t )]

+ |01〉〈01| sin2 θe−	̃2t + |10〉〈10| cos2 θe−	̃1t

− cos θ sin θ (|01〉〈10|e−iRt− 	̃1+	̃2
2 t + |10〉〈01|eiRt− 	̃1+	̃2

2 t )

∓ sin θe− 	̃2
2 t (|01〉〈00|e−i (R+ω0 )

2 t + |00〉〈01|ei (R+ω0 )
2 t )

± cos θe− 	̃1
2 t (|10〉〈00|ei (R−ω0 )

2 t + |00〉〈10|e−i (R−ω0 )
2 t )

}
,

where 	̃1 = 	1 sin2 θ and 	̃2 = 	2 cos2 θ . Performing the
trace over the second qubit and moving back to the spin basis,

ρ
(1)
± = 1

2

{| ↓〉〈↓ |[1 + sin2 θ (1 − e−	̃2t ) + cos2 θ (1 − e−	̃1t )]

+ sin2 θe−	̃2t (sin2 θ | ↑〉〈↑ | + cos2 θ | ↓〉〈↓ |)
+ cos2 θe−	̃1t (cos2 θ | ↑〉〈↑ | + sin2 θ | ↓〉〈↓ |)
+ 2 cos2 θ sin2 θ cos Rte− 	̃1+	̃2

2 t (| ↑〉〈↑ | − | ↓〉〈↓ |)
± sin2 θe− 	̃2

2 t (| ↑〉〈↓ |e−i (R+ω0 )
2 t + ei (R+ω0 )

2 t | ↓〉〈↑ |)
± cos2 θe− 	̃1

2 t ( | ↑〉)〈↓ |ei (R−ω0 )
2 t + | ↓〉〈↑ |e−i (R−ω0 )

2 t )
}
,

from which we can identify the coefficients p(t ) and q(t )
given in Eq. (4) of the main text. As the two states only differ
in the sign of the nondiagonal elements, their trace distance is
simply given by D(ρ (1)

+ , ρ
(1)
− ) = |q(t )|.
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Comparative study of non-Markovianity measures in exactly
solvable one- and two-qubit models, Phys. Rev. A 90, 052103
(2014).

[70] A. C. Neto, G. Karpat, and F. F. Fanchini, Inequivalence of
correlation-based measures of non-Markovianity, Phys. Rev. A
94, 032105 (2016).

062217-10

https://doi.org/10.1142/S0219749914610115
https://doi.org/10.1515/qmetro-2017-0007
https://doi.org/10.1103/PhysRevA.87.040103
https://doi.org/10.1103/PhysRevA.89.052120
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1103/PhysRevA.96.032111
https://doi.org/10.1103/PhysRevA.96.022109
https://doi.org/10.1088/1367-2630/aac0cb
https://doi.org/10.1103/PhysRevA.98.012142
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1103/PhysRevA.87.042103
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.94.032105

