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ABSTRACT Laser scanning microscopy (LSM) techniques are of paramount importance at this time for
key domains such as biology, medicine, or materials science. Computer vision methods are instrumental for
boosting the potential of LSM, providing reliable results for important tasks, such as image segmentation,
registration, classification, or retrieval in a fraction of the time that a human expert would require (at
similar or even higher accuracy levels). Image keypoint extraction and description represent essential
building blocks of modern computer vision approaches, and the development of such techniques has gained
massive interest over the past couple of decades. In this paper, we compare side-by-side five popular keypoint
description techniques, scale invariant feature transform (SIFT), speeded-up robust features (SURF), binary
robust invariant scalable keypoints (BRISK), fast retina keypoint (FREAK) and BLOCK, with respect to
their capacity to represent in a reproducible manner image regions contained in LSM data sets acquired under
different acquisition conditions.We evaluate this capacity in terms of descriptormatching performance, using
data sets acquired in a principled manner and a thorough Precision-Recall analysis. We identify which of the
five evaluated techniques is most robust to specific LSM image modifications associated to the laser beam
power, photomultiplier gain, or pixel dwell, and show that certain pre-processing steps have the potential to
enhance keypoint matching.

INDEX TERMS Keypoint descriptors, laser scanning microscopy, scale invariant feature transform (SIFT),
speeded-up robust features (SURF), binary robust invariant scalable keypoints (BRISK), fast retina key-
point (FREAK), BLOCK.

I. INTRODUCTION
The Laser Scanning Microscopy (LSM) family incorporates
a series of investigation techniques that play in current days
essential roles in multiple fields of science. They rely on
illuminating the specimenwith a focused scanning laser beam
(point scanning) and constructing an image pixel-by-pixel
by exploiting various optical phenomena connected to either
intrinsic optical and chemical properties of the sample or to
those of exogenous agents, such as fluorescent dyes. Confo-
cal Laser Scanning Microscopy (CLSM), probably the most
popular LSM technique, took the realms of biology and
medicine by storm soon upon its first physical implemen-
tation as a result of its superb capabilities to produce sharp
optical sections of an investigated specimen. This is achieved
by rejecting optical signals (reflectance or fluorescence)

generated above and below the focal plane by means of a
pinhole positioned in front of the detector [1], [2]. CLSM rep-
resents at this time maybe the most common choice for
studying fluorescent cells [3], [4], and over the past years
it has been demonstrated as well as a very valuable tool
for investigating various tissues in-vivo [5]–[7]. Multiphoton
microscopy (MPM) is likely to become in the near-future
the default tool for probing tissue morphology, functional-
ity and biochemical composition in both ex- and in-vivo
assays; MPM techniques rely on optical configurations sim-
ilar to CLSM - except for the fact that a femtosecond
laser source is used for excitation instead of a con-
tinuous wave laser. Two-Photon Excitation Fluorescence
Microscopy (TPEF) [8] or Second Harmonic Generation
Microscopy (SHG) [9] can be used for probing optical
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properties of tissues with deep implications for resolving
important anatomical and physiological aspects that can be
linked to disease predisposition or progression [10]–[13].
Coherent anti-Stokes Raman scattering (CARS) microscopy,
another prominent LSM technique, can probe the vibrational
signatures of molecules, which is important for understand-
ing how the biochemical composition of tissues is modified
across the progression of various diseases [14], and for iden-
tifying pathologies in very early stages. Besides the tech-
niques that operate at micro-scale, the LSM family includes
as well imaging techniques that can characterize biological
specimens, and also materials, at optical resolutions that lie
beyond the diffraction barrier, such as Stimulated Emission-
Depletion Microscopy [15], Saturated Absorption Compe-
tition Microscopy [16] or Saturated Transient Absorption
Microscopy [17], [18]. Without doubt, not far from now we
will witness new LSM variants and strategies that will further
contribute to expanding our knowledge on the structure and
behavior of biological items and materials.

The power and potential of LSM techniques can be consid-
erably amplified by intertwining their superb imaging capa-
bilities with advanced computer vision methods, the field
of science that combines artificial intelligence and computer
science in the purpose of providing computers the ability to
understand the content of digital images as a (trained) human
being would, or even better [19], [20]. This has already been
demonstrated in various experiments aimed at object seg-
mentation and identification [21], object tracking [22], [23],
image registration [24], image classification [25] and others.
However, the combination of LSM and computer vision is
still at an early stage, and progress in this area is achieved
in a slower pace than desired by microscopy end-users. This
relates to various reasons such as a not very well established
community of bioimage computer vision scientists [26], and
the current low speed by which latest hour computer vision
techniques are transferred to the realm of microscopy. A rea-
son behind this latter situation refers to the fact that computer
vision scientists typically develop their algorithms taking
into account specific properties and content-types found in
natural images, and further on many of these algorithms
are transferred to the realm of microscopy imaging in their
original version. Because microscopy images differ from
natural images in terms of image content specifics, this
approach usually turns out to be less effective than expected.
A solution in this regard might consist in replacing the direct
transfer to microscopy applications of computer vision algo-
rithms developed for natural images with the development of
microscopy oriented algorithms which are designed from the
very beginning by taking into account specific properties and
content types. While very promising, this approach is quite
difficult to implement as computer vision scientists usually
have limited access to microscopy images. Another solution,
which is more realistic (but also very laborious), consists in
a thorough evaluation of computer vision algorithms devel-
oped for natural images with respect to microscopy spe-
cific aspects, before they are transferred and implemented

in applications addressing this field. This essential stage can
enable their optimization and hence consistent performance
enhancements.

Thework presented here is aligned to this latter philosophy,
and deals with a side by side evaluation of five popular feature
descriptors with respect to their robustness to LSM specific
image modifications. The importance of this subject refers to
the diverse roles played by keypoint descriptors in computer
vision. Keypoint descriptors can be used to represent either
keypoints at fixed locations [27] or keypoints identified using
various detection strategies [28], and aim to represent an
image patch in a reproducible manner. This reproducibility
refers to a good similarity in terms of Euclidean distance
(or other distance metrics) between keypoint descriptors
extracted from corresponding locations in images collected
under different acquisition conditions (e.g. scale, perspective,
contrast, brightness, blur, etc). Because of their capacity to
represent images in a very simple and concise manner, key-
point descriptors are now currently used in a wide variety
of computer vision applications such as image retrieval [29],
recognition [30], wide baseline matching [31], image regis-
tration [32], [33], image based localization [34] or image clas-
sification [35]. In these applications, the keypoint descriptors
of one image are matched against the descriptors of others by
means of various strategies, e.g. nearest-neighbor searches.
The matched keypoint descriptors can subsequently be used
to indicate the presence of a specific object, to vote for a
particular image, to establish correspondences for epipolar
geometry estimation, or to classify an image as belonging to
a specific class. To date, keypoint descriptors have also been
successfully used in various microscopy oriented computer
vision applications [36]–[41], but earlier studies highlighted
the fact that their robustness to typical modifications asso-
ciated to microscopy specific acquisition parameters should
be considered, as keypoint descriptors are sensitive in this
regard [42], [43].

With this study we attempt to provide additional insights
over the robustness of five consecrated keypoint description
techniques: scale invariant feature transform (SIFT) [44],
speeded-up robust features (SURF) [45], binary robust
invariant scalable keypoints (BRISK) [46], fast retina key-
point (FREAK) [47] and BLOCK [48] to image modifica-
tions specific to LSM. For this, we evaluate and compare their
matching performance in terms of Precision-Recall when
extracted from fixed-grid locations in LSM images collected
in a principled manner under various laser beam power, pho-
tomultiplier gain and pixel dwell settings.

II. BRIEF SURVEY OF THE FIVE KEYPOINT DESCRIPTORS
USED IN OUR EXPERIMENT
According to the taxonomy presented in [49], feature descrip-
tors can be categorized as local binary descriptors (e.g. LBP,
BRISK, FREAK), spectra descriptors (e.g. SIFT, SURF),
basis space descriptors (e.g. Fourier), and shape descrip-
tors (e.g. MSER, shape context). In this study we selected
four popular local binary and spectra descriptors (BRISK,
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FIGURE 1. Images of a transverse section on human epithelial tissue collected with A) Brightfield microscopy, and B) Confocal
Laser Scanning Microscopy.

FREAK, SIFT and SURF), and one elementary alternative
(BLOCK) as reference.

In SIFT [44], the most popular keypoint description tech-
nique, the descriptor takes the form of a 128-element vector
which is practically a histogram representation that combines
local gradient orientations and magnitudes from a certain
neighborhood around a keypoint. More precisely, the descrip-
tor is in fact a 3D histogram of gradient locations and ori-
entations, where location is quantized into a 4x4 location
grid and the gradient angle is quantized into 8 orientations,
one for each of the cardinal directions. SIFT was designed
to be invariant to brightness, contrast, rotation, scale, affine
transformation, and noise.

The SURF descriptor [45] is built in a similar fashion
to SIFT, but it exceeds SIFT’s speed by exploiting integral
images and Haar wavelets concepts. The SURF descriptor
is assembled by considering a grid around the keypoint and
dividing each grid cell into sub grids. At each sub-grid cell
the gradient is calculated and a histogram with angle cor-
responding bins is constructed. The gradient counts con-
tributing to the histogram are increased by the magnitude
of the gradient, all weighted by a Gaussian corresponding
to the scale of the keypoint. The SURF descriptor, with a
default size of 64 elements, is designed to ensure invariance
to illumination, rotation, scale, and noise.

BRISK [46] is a binary descriptor invariant to brightness,
contrast, rotation and scale. It computes three sets of pixel-
pair binary comparisons over Gaussian smoothed data at
multiple scales, where short pairs are aligned according to
the gradient orientation estimated from long pairs.

FREAK [47] is a another binary descriptor invari-
ant to brightness, contrast, rotation, scale, viewpoint,
and blur, which consists of pixel-pair binary compar-
isons computed over Gaussian smoothed data at multiple
scales.

The simplest descriptor of the five evaluated alternatives is
BLOCK [48], which extracts small neighborhood blocks of
the actual image centered at the keypoint locations.

III. THE BENCHMARKING FRAMEWORK
A. IMAGE ACQUISITION AND CONTENT
The image sets used as support in our experiment have been
collected on epithelial tissue samples stained by Hematoxylin
& Eosin (HE) with a Nikon C2+ Confocal Laser Scanning
Microscope. Images of 512 x 512 pixels were acquired with
a 10x objective (providing a Field of View of 1mm x 1mm),
under a fixed pinhole aperture of 1.2 Airy Units. To gener-
ate the image sets, laser beam power (LB), photomultiplier
gain (PMT) and pixel dwell (PD) have been modified in
a principled manner using the proprietary C2+ acquisition
software package NIS Elements, as discussed further in this
article. For excitation, a 488nm laser beam was used. Under
this illumination wavelength, the collected fluorescent sig-
nals were mainly generated by Eosin, but also by several
endogenous fluorophores present in the human skin such
as melanin, flavins, carotinoids or bilirubin; Eosin is not
typically regarded as a fluorophore, but exhibits nonetheless
high fluorescence emission. The absorption and emission
maxima of Eosin are 527 and 550 nm, respectively, with both
peaks laying in the green light range; however, highly satis-
factory emission intensities have been observed in previous
experiments under excitation with blue light (450-490 nm)
[50], [51]. Fluorescence CLSM images collected on H&E
stained samples using a 488nm laser beam recapitulate
thus part of the features present in brightfield microscopy
images, which are traditionally used in H&E histopathol-
ogy workflows, Fig. 1. At the same time, fluorescence
CLSM images collected on tissue with 488nm recapit-
ulate as well part of the content of MPM images col-
lected on tissues in vivo at typical excitation ranges.
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The results of our experiment are thus relevant also for
MPM imaging, where LB, PMT or PD are also routinely
modified in typical imaging sessions.

The scene that was imaged for generating the test data
sets was selected based on the grounds that it contains areas
with various content densities. This allows a balanced evalu-
ation of the five considered keypoint description techniques,
with respect of their capacity to deal with cluttered image
regions or areas with sparse content. The imaged tissue
region contains a series of cues that are typically taken into
consideration in the frame of histopathology exams aimed
at epithelial tissue characterization. In the top-region of the
brightfield image, three ‘‘doughnut’’ shaped structures can
be observed, which correspond to eccrine sweat glands. The
walls of these channels are made up of simple cuboidal
epithelium without cellular atypia. Next to these, multiple
inflamatory elements are present (mainly chronical). The
upper part of the imaged scene includes also some ele-
ments presenting a form of atypia, represented by cells with
large, hyperchromatic, nuclei and eosinophilic cytoplasm.
The lower part of the imaged scene is mostly occupied by
conjunctive tissue, which incorporates (acidophilic) collagen
fibers and adipocytes. Several endothelial cells of capillaries
(longitudinally sectioned) can be observed as well. In the
CLSM image, the stroma (connective tissue consisting
mainly in collagen fibers) is much better evidentiated com-
pared to the case of the brightfield image. The collagen fibers
in the middle of the image can be well differentiated which
allows a better characterization of the stroma. The basal
membrane of the sweat gland channels, which are barely
noticeable in the brightfield image, are here clearly visible.
Inflammatory elements (lymphocytes and hystiocytes) can-
not be observed, and neither the nuclei of the cells, as these
are labeled with Hematoxylyin which is not fluorescent.

1) DATA AVAILABILITY
The test datasets generated and analysed during the current
study are fully available upon written request to the authors.

2) USE OF HUMAN TISSUE SAMPLES
The use of human tissue samples in this study was carried
out in full compliance with the guidelines provided by the
Ethics Commitees of University Politehnica of Bucharest
and Izmir University of Economics. These samples have
been supplied to the authors by a partner group at the Carol
Davila University of Medicine and Pharmacy in Bucharest
(UMF CD) after having been previously collected from
patients for routine histopathologic examinations, and then
de-identified. Access to the samples was provided in line with
UMF CD’s ocurring policies referring to informed patient
consent.

B. GENERATION OF THE TEST DATA SETS
The purpose of our experiment was to compare side by side
the robustness of SIFT, SURF, BRISK, FREAK and BLOCK,
five popular keypoint descriptors, to image modifications

specific to LSM. The image modifications considered in our
experiment are those introduced by changes of the laser beam
power, photomultiplier gain and pixel dwell time. These three
acquisition parameters are routinely adjusted during LSM
imaging sessions in order to increase the quality and overall
aspect of the scene’s 2D and 3D representations. Increasing
the LB results in an increase of the intensity of the collected
signal, but it can translate to photodamage and phototoxic-
ity. Low LB levels can be compensated by high PMT gain
settings, but using high PMT gain settings can lead to noise
being introduced in the collected image. Longer PD times can
be used to collect a sufficient amount of photons under low
LB and PMT gain settings, but this can result of course in
similar disadvantages as in the case of high LB, while also
raising the image acquisition time which can be problematic
in the case of scenes whose content rapidly evolves with
time. The LB, PMT and PD need to be thus carefully tuned
together so that good quality LSM images are collected,
while avoiding sample alteration. Related aspects referring
to the robustness of SIFT and SURF have been previously
studied in [42] and [43]. It is important to mention that SIFT
and SURF incorporate both a keypoint detection method and
a keypoint description method, and these previous studies
documented an overall effect of LSM image modifications
over the SIFT and SURF algorithms (convoluted effect over
both SIFT/SURF keypoint detection and description stages).
In this current work, we address exclusively the problem of
keypoint description, the locations of the keypoints (a.k.a
interest points) being selected for all evaluated techniques
according to a fixed grid, as explained in the next section.
This approach allows an exact side-by-side assessment of the
effects of specific LSM imagemodifications to the robustness
of the five evaluated keypoint descriptors.

As discussed in the introductory part, keypoint descriptors
(which typically take the form of one-dimensional arrays)
aim to represent image patches in a reproducible manner.
In the case of LSM, a keypoint description technique of high
performance should represent the same image patch collected
at different acquisition settings in a similar way. We compare
thus SIFT, SURF, BRISK, FREAK and BLOCK with respect
to their ability to achieve this for scenes that are acquired at
different LB, PMT and PD settings. For this, we construct
a series of test image sets in grid-like manner similar to the
strategy introduced in [42]. For generating a test subset we
kept all acquisition parameters fixed, except for two that were
modified in a consecutive manner. For example, in the case
of the test data sets generated by gradually modifying the
LB and the PMT gain, under a specific LB setting we have
collected images at all the considered PMT gain levels. In the
next step the LB setting was modified (increased) and then
CLSM images were collected again by sweeping the same
PMT gain range. This led to the acquisition of a test image
set with a grid like architecture, Fig. 2. For each position
in the grid we acquired a z-stack of 11 optical sections.
We performed the same routine for the PD vs. PMT pair. This
strategy has led to the generation of four test data sets:
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FIGURE 2. Architecture of the test data sets. In this example instances of TD#1a are displayed, a data set generated by gradually
adjusting the LB and PMT.

1) TD#1a (LB vs. PMT, central image of the z-stack)
2) TD#1b (LB vs. PMT, maximum intensity projection of

the z-stack)
3) TD#2a (PD vs. PMT, central image of the z-stack)
4) TD#2b (PD vs. PMT, maximum intensity projection of

the z-stack)

For the generation of the TD#1 data sets we used 15 LB
values and 20 PMT values, leading to a total of 300 images for
each of the TD#1a and TD#1b sets. To generate the TD#2 data
sets, we used 5 PD values (all the available values in the
Nikon C2+ acquisition software) and 20 PMT values, which
resulted in 100 images for each of the TD#2a and TD#2b sets.

C. EVALUATION OF THE KEYPOINT DESCRIPTORS
In this study the robustness of keypoint descriptors was eval-
uated in a principled manner by

1) Extraction of SIFT, SURF, BRISK, FREAK and
BLOCK descriptors in all available images at fixed
locations according to a grid,

2) Matching the descriptors of specific image pairs,
3) Quantification of the descriptor matching performance

by Precision-Recall curves,
4) Generation of Area Under Precision Recall Curve

(AUC PR) scores for the considered imaging
parameter.

In the first step of this approach, dense image locations are
generated by taking every ith pixel of the image in 2D, where
i = 5; SIFT, SURF, FREAK, BRISK, and BLOCK descrip-
tors are extracted from each location. Descriptor match-
ing is realized by computing Minkowski distances of order
p = 1 between all the possible pairs of keypoint descriptors
(same type) extracted from two images which are included in
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FIGURE 3. Illustration of correct (green) and incorrect (red) descriptor based keypoint matches between
two images acquired at the same LB (LB1) but with different PMT settings (PMT1 and PMT20).

the comparison. Two keypoint descriptors are considered to
match based on a nearest neighbor ratio test over the distances
computed between the available descriptor pairs. If for a con-
sidered pair of descriptors the nearest neighbor distance ratio
is positioned below a threshold, these descriptors (and conse-
quently, the keypoints they describe) are considered to match.

Say, two images acquired at the same LB (LB1) but with
different PMT settings (PMT1 and PMT5) are to be com-
pared, namely the LB1PMT1 vs. LB1PMT5 images. Their
keypoint descriptors are respectively represented byD1,1 and
D1,5 matrices of size m × n × k , where m and n are the
number of dense keypoint locations in horizontal and vertical
directions and k is the descriptor length. We compute the
Minkowski distance of order p = 1 between all possible pairs
of descriptors of the two images and form the distance matrix
as S1PMT=4m,n = (

∑k
j=1 |D1,1(m, n, j) − D1,5(m, n, j)|p)1/p.

Then for each descriptor location we calculate the nearest
neighbor distance ratio as distance of nearest neighbor

distance of 2nd nearest neighbor . If the xy
coordinates of a descriptor in the 1st image and its nearest
neighbor in the 2nd image are the same, and the ratio is below
a predefined threshold value (α), we assume a correct match
(true positive). Conversely, a match established between two
descriptors extracted from different xy coordinates, repre-
sents an incorrect match (false positive), Fig. 3.
We quantify the matching performance between the two

images by means of Precision (ratio of the number of cor-
rect matches to the total number of matches that qualify
from the nearest neighbor distance ratio test) and Recall
(ratio of the number of correct matches to the total number
of dense keypoints) pairs obtained by varying the thresh-
old (α), and by computing the AUC PR via trapezoidal
approximation. The threshold values are chosen as 20 evenly
distributed points between upper and lower limits, which
are calculated from the matrix of all image pairs compared
across separate and joint variation of the considered imaging
parameters.

TABLE 1. AUC PR scores for TD#1a.

Fig. 4 displays the architecture of the evaluation system for
the scenario of variation in PMT. Similar evaluation frame-
works can be used to investigate the robustness of keypoint
descriptors to additional LSM imaging parameters than those
addressed in our experiment (e.g. sampling size, offset, polar-
ization angle, etc) and also to acquisition parameters specific
to other families of microscopy techniques (e.g. scanning
probe microscopy, electron microscopy, etc.).

IV. RESULTS
A. ROBUSTNESS OF SIFT, SURF, BRISK, FREAK AND
BLOCK DESCRIPTORS EXTRACTED FROM THE TD#1a
AND TD#2a TEST DATA SETS
Average AUC PR scores for individual images of TD#1a and
TD#2a sets are shown in Table 1 and Table 2 respectively,
while the effect of imaging parameters’ modifications on the
AUC PR scores are graphically displayed in Fig. 5 and Fig. 6.
Also in Table 1 and Table 2, we provide the results obtained
for two additional test data sets that represent smoothed ver-
sions of TD#1a and TD#2a. To generate these, every image
in the TD#1a and TD#2a has been processed by 2D Gaussian
smoothing (sigma = 2.6). The reason behind our intention
to investigate the effect of smoothing consists in a previous
study that provided evidence that contrast enhancement detri-
ments feature matching [52]. Hence, in our opinion smooth-
ing, which represents the opposite of contrast enhancement
(while also being of benefit for noise reduction), should boost
up the matching performance.
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FIGURE 4. Architecture of the evaluation system for the scenario of variation in PMT. For each LB value the matching
procedure is performed between keypoint descriptors extracted from dense locations in images collected at increasing PMT
levels. The effect of PMT variation over descriptor matching is assessed using AUC PR scores. High AUC PR reflects good
matching performance, and vice-versa. In the AUC PR vs 1PMT graph, a line is plotted along the average AUC PR scores per
PMT level. To generate the AUC PR vs. 1LB results, we perform the same routine/procedure, by considering LB#PMT# pairs,
from the TD#1a and TD#1b data sets.

TABLE 2. AUC PR scores for TD#2a.

From Table 1 and Table 2 we observe that SIFT, despite
of being the ‘‘oldest’’ description technique of the evaluated
ones, provides the highest average AUC PR score with the
lowest deviation and therefore qualifies as the most robust
descriptor against changes in LB, PMT and PD. BRISK
and SURF (if the target images are previously smoothed)
follow SIFT in robustness, while BLOCK performs the worst,
which was somehow expected due to the simplicity of this
descriptor. Generally, all descriptors perform better when 2D
Gaussian smoothing is applied on the images prior to feature
description. Future work will be important to identify the
most optimal Gaussian convolution kernels for enhancing
descriptor extraction and matching.

Graphical results displayed in Fig. 5 and Fig. 6 provide
a more intuitive perspective of the performed measurements
that underlie the values expressed in Table 1 and Table 2,
providing at the same time additional insights; only the results
obtained for the original, non-smoothed, data sets are pro-
vided in this format. We observe here that SIFT performs
similarly even for large variations in LB, PMT gain and PD.

Generally speaking, the other descriptors are increas-
ingly more affected with larger variations in the imaging
parameters.

B. ROBUSTNESS OF SIFT, SURF, BRISK, FREAK AND
BLOCK DESCRIPTORS EXTRACTED FROM THE TD#1b
AND TD#2b BENCHMARKING DATA SETS
In a second segment of our work, we repeated the experi-
ments presented in the previous section, extracting this time
SIFT, SURF, BRISK, FREAK and BLOCK descriptors from
maximum intensity projected (MIP) versions computed from
z-stacks collected on the same sample area. Table 3 and
Table 4 report the corresponding average AUC PR scores
for TD#1b and TD#2b, respectively, while Fig. 5 and Fig. 6
graphically display the effect of changes in the imaging
parameter on the AUC PR scores.

Similar to the experiments on individual images, we notice
that: 1) SIFT qualifies as the most robust descriptor against
changes in pixel dwell, photomultiplier gain, and laser beam
power; 2) all descriptors generally perform better when
2D Gaussian smoothing is applied on the images prior to
feature description; and 3) in general, descriptors other than
SIFT are increasingly more affected with larger variations
in the imaging parameters. It is interesting to observe that
in the case of the original, non-smoothed images, all five
evaluated descriptors are more robust when extracted from
MIP instances. In the case of the smoothed version the sit-
uation tends to be the same, except for the case of SIFT
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FIGURE 5. AUC PR scores of SIFT, SURF, BRISK, FREAK, BLOCK for TD#1a and TD#1b when laser
beam power (left) and photomultiplier gain (right) are varied.
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FIGURE 6. AUC PR scores of SIFT, SURF, BRISK, FREAK, BLOCK for TD#2a and TD#2b when pixel
dwell (left) and photomultiplier gain (right) are varied.
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TABLE 3. AUC PR scores for TD#1b.

TABLE 4. AUC PR scores for TD#2b.

which is in general slightly less robust when extracted from
MIP instances. Future work will be important to identify
the impact of other more recent LSM image representation
strategies, such as high-dynamic range [53] or smooth 2D
manifold extraction [54], over the robustness of keypoint
descriptors and their matching.

V. CONCLUSIONS
In this work we evaluated side-by-side five popular image
keypoint description techniques: SIFT, SURF, BRISK,
FREAK and BLOCK, with respect to their capacity to rep-
resent in a reproducible manner image regions belonging to
confocal laser scanning microscopy data sets acquired under
different acquisition conditions. We assessed this capacity in
terms of matching performance, by means of an AUC PR
based methodology used to evaluate the robustness of the
five descriptors when dealing with modifications induced by
laser beam power, photomultiplier gain and pixel dwell in
CLSM images collected on a transverse section of human
epithelial tissue. We feel important to emphasize that adapted
versions of the proposed evaluation framework can also be
used to investigate the robustness of keypoint descriptors to
other microscopy imaging parameters (specific to LSM or to
different microscopy families).

Three important conclusions that can be drawn from this
study are: 1) SIFT outperforms the other evaluated keypoint
description techniques; 2) image preprocessing with Gaus-
sian smoothing prior to the descriptor extraction stage yielded
an enhanced descriptor matching performance; 3) In the case
of non-smoothed images, extraction of keypoint descriptors
from MIP instances instead of single optical sections leads
to better matching performance for all five evaluated tech-
niques. The same trend was observed for SURF, BRISK,
FREAK and BLOCK also when dealing with smoothed
images.

Furthermore, we consider the reported results to be impor-
tant for increasing the awareness of both microscopy and
computer vision communities with respect to limitations and
vulnerabilities of keypoint description techniques when deal-
ing with LSM images. At the same time, our work shows

that image acquisition and pre-processing protocols are
instrumental for enhancing keypoint description and match-
ing, which intrinsically translates to a boost in the perfor-
mance of computer vision applications that rely on keypoint
descriptors as building blocks.
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