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ABSTRACT This study presents a novel two-stage solution method designed for sustainable last-mile deliv-
ery systems in urban areas. A proposed hybrid solution methodology includes multi-criteria decision-making
system to select the most efficient logistics providers by considering different performance indicators, and
a mixed-integer linear optimization model for last-mile cargo distributions by drones within metropolitan
areas. We present a multi-objective modeling approach by considering time windows for customer services
and charging operations of drones and outline important characteristics of the mathematical programming
problem to minimize transportation cost (in the meantime carbon dioxide emissions) and total sustainability
score of the system by using epsilon constraint method to find out the Pareto frontiers. The main novelty of the
proposed solution methodology is the inclusion of many performance indicators of last-mile delivery systems
into multi-objective models for design of a sustainable city logistics. Additionally, the proposed model is
applied to an illustrative case by using real-life data of one of the metropolitan in Turkey. The approach is
shown as comparative analysis of proposed method with other two state-of-art solution methodologies for
multi-objective problems, after defining some pre-processing, symmetry breaking steps, valid inequalities,

and logic cuts.

INDEX TERMS Discrete optimization, mixed-integer linear programming, vehicle routing problem.

I. INTRODUCTION

Companies operating in last-mile deliveries search for new
and adaptive systems to survive under harsh competitive
conditions. As a nature of last-mile delivery systems, it is
the movement of cargoes from transportation hubs to final
delivery destinations (mostly individual customers because
of increased e-commerce transactions). However, although
logistics centers are moved from the city centers to rural
areas due to lower real estate costs, more multi-tier dis-
tribution systems are developed and expectation to adapt
for the last-minute changes (especially on-demand services
and urgent delivery requests) or maintenance/break-down
cases leads to excess expenditures, longer delivery duration
and increased rate of unsatisfied customers. Therefore, pro-
posed systems should ensure redesign and preparation of
advanced and dynamic plans for routing problems because
customers expect rapid interactions with their suppliers in
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delivery or return processes. This situation leads to increase
loyalty and satisfaction ratios. Apart from the individual
effect of last-mile delivery operations over citizens, there
is a significant effect over energy consumption and envi-
ronmental issues (such as greenhouse gas emissions, carbon
footprint, etc.). The efficiency of the last-mile operations not
only influences the profitability of retailing but also affects
environmental and social performance criteria such as emis-
sions and traffic congestion in regions. For instance, traffic
caused by urban cargo delivery accounts for about 10-15% of
kilometers travelled in city centers and emits approximately
6% of all transport related greenhouse gas (GHG) emis-
sions [1]. 20-25% of freight vehicle kilometers is related to
goods leaving urban areas, and 40-50% is related to incoming
goods. The remaining percentage relates to internal exchange
(i.e. goods having both their origin and destination within the
city) [2].

Developed models or systems should also consider the
effect of energy usage and pollution reductions in delivery
processes under certain scenarios. One of the innovative
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solutions for this purpose is the usage of drones or unmanned
aerial vehicles in last-mile delivery processes. This concept
is getting more attention and popularity after observing some
real-life cases (such as Amazon Inc., DHL, etc.). Although,
there are many advantages of this new developed system over
management of cost, time and carbon emissions, some critical
points occur when real-life applications are considered. For
example, storage problems of drones at distribution or trans-
shipment centers, bad weather conditions, personal/private
data protection, range and capacity limitations of drones,
etc. However, when comparing heavy/medium trucks in city
centers or at the location of final customers in delivery sys-
tems, drones offer significant operational advantages. For
example, a drone system can deliver goods directly to the
person who ordered it or to pick up the order for cancella-
tion cases in less than 30 minutes and this duration reduces
lead time significantly and eliminates route restrictions and
many other logistics obstacles. Distribution of cargoes in a
combination of both trucks and drones simultaneously is a
very complex problem and needs very extensive studies in
terms of solution methodologies. Although, vehicle routing
problem considering different perspectives (such as; number
of vehicles, variety of vehicles, capacity of the vehicles, time
windows of customers, type of service provided, number
of warehouses, uncertainty in distribution times, etc.) were
studied extensively, inclusion of drones in delivery process is
a very hot topic and there is still serious gap in literature in
terms of modelling and computational side.

Il. LITERATURE REVIEW

The survey of Lin et al. [3] gives and analyses an exhaus-
tive literature review over the vehicle routing problems and
classifies them into different application domains. Accord-
ing to this survey, green vehicle routing problems should
concern energy usage of the systems to reduce fuel con-
sumption that directly affects the greenhouse gas emissions
and increases transportation efficiency. In this perspective,
Bektas and Laporte [4] presents extended version of classical
vehicle routing problem (VRP) by considering the amount of
greenhouse emissions, travel times and total transportation
costs. In their study, they developed a mathematical model
with comprehensive objective functions to indicate the vehi-
cle loads and speeds. In addition, Conrad and Figliozzi [5]
presents a routing problem for electric vehicles to decide on
the locations of charging stations as the Recharging Vehicle
Routing Problem (RVRP). They try to decide on recharging
operations of the electric vehicles during the transportation
operations in which vehicles can be recharged in the locations
of customers instead of dedicated stations. Therefore, there
can be some savings in the total transportation times because
there can be both loading activities and recharging of the
vehicles instead of spending time at the dedicated stations
for recharging. Erdogan and Miller-Hooks [6] introduces the
Green Vehicle Routing Problem (G-VRP) by considering
the recharging of the vehicles with limited fuel capacities.
In G-VRP problem, vehicles are eliminated from the risk of
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running out of fuel and service time of each customer and
maximum service duration restriction is posed on each route.
After this study, Schneider et al. [7] proposes an updated
version of G-VRP by including customer time windows for
the delivery operations in which electric vehicles are used.
Murray and Chu [8] introduces the vehicle routing problem
with drones (VRPD) in which a drone collaborates with a
truck to distribute customer parcels within minimum delivery
time. A mixed integer linear programming (MILP) formula-
tion and a heuristic adopting ‘““Truck First, Drone Second”
idea are proposed and tested on the instances with 10 cus-
tomers. Ponza [9] presents a solution methodology for VRPD
problems by using both MILP model and simulated annealing
algorithm. Ferrandez et al. [10] proposes an optimization
model of a truck-drone system in bicycle delivery networks
by using the K-means algorithms to find the most efficient
launch locations as well as using a genetic algorithm to assign
the truck route between starting nodes. Wang et al. [11] intro-
duces a more general problem considering multiple trucks
and drones with the objective of minimizing the total duration
of the delivery mission. Carlsson and Song [12] general-
izes the VRPD in that two vehicles can meet anywhere,
at not only depot and customers. Dorling et al. [13] proposes
Drone Delivery Problem (DDP) by considering two VRP
based models that are Minimum-Time-DDP (MT-DDP) and
Minimum-Cost-DDP (MC-DDP). Agatz et al. [14] studies
the VRPD with the objective of minimizing total logistics
cost by using route-first, cluster-second heuristics based on
local search and dynamic programming. Wang and Sheu [15]
proposes a MILP model and a branch-and-price algorithm
for VRPD. Different from the classical VRP, there are two
types of vehicles in proposed model: a drone may have
multiple times of flying and landing, each of which may be
associated with a different truck; and a truck may launch and
collect multiple drones at different times and locations. Karak
and Abdelghany [16] develops a methodology that extends
the classic Clarke and Wright algorithm to solve the hybrid
vehicle-drone routing problem. Kitjacharoenchai ez al. [17]
presents a MILP formulation with the objective of minimiz-
ing the arrival time of both trucks and drones at the depot
after completing the deliveries. A new heuristics algorithm
is also developed to solve large sized problems containing
up to a hundred locations. Compared to the existing studies,
the main novelty of this study is the inclusion of large set
of sustainability indicators into model. Most of the existing
studies ( [9]-[17]) deal with only a single objective function
(mostly total transportation cost or time) for vehicle routing
problems by ignoring multi-criteria assessment in a perspec-
tive of multi-objective cases. In addition, multiple truck and
drone combinations are presented in most of the studies, but
none of them may consider re-charging operations of drones
at nodes and they only allow operations of drones under full-
capacity battery conditions that leads to misrepresentation
of drone capabilities in terms of flight ranges. This study
also considers recharging of the drones and traces the battery
levels and positions of individual drones for different logistics
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providers. Most of the existing studies, there is dependency to
fly back to the main hub (depot or truck) after drop operation
is completed. However, this study enables to either fly back
to depot to deliver the next parcels or fly directly to another
customer for pickup based on their charge-levels. In addition,
most of the existing models are solved by using small-scale
illustrative data sets, there is no testing and validation of
proposed models in real-life cases.

Considering a single objective function in getting a feasible
solution set by using exact solution methodologies for such
complicated problems may not be so realistic in real-life
cases. Therefore, usage of the meta-heuristic methodologies
can be alternative solution. Dokeroglu et al. [47] shares an
extensive survey about new generation meta-heuristics algo-
rithms. Apart from classical methodologies, (e.g. the genetic
algorithms, ant colony optimization, particle swarm opti-
mization, simulated annealing techniques), nature-inspired
population-based optimization algorithms are discussed such
as Cuckoo Search [48]; Firefly Algorithm [49]; Grey Wolf
Algorithm [50]; Whale Optimization [51]. If harsh com-
petition conditions are considered, objective of minimizing
total operational cost gets much more importance, but inclu-
sion of sustainability factors (such as; time, GHG emissions,
customer satisfaction rates, etc.) will lead to more realistic
models and solution sets for decision makers. Therefore,
inclusion of other objective functions will convert the prob-
lem into bi- or multi-objective problems. There are several
methodologies to get non-dominated solution sets or Pareto
frontiers for multi-objective problems, which are weighted
sum and epsilon constraint models in general. In this study,
the epsilon-constraint method is used because the weighting
method may sometimes miss some of the efficient solu-
tions in some feasible regions [18]. In the epsilon-constraint
method, one of the objectives is taken as a single objective
function and others are included into a model as constraint.
Therefore, a set of solutions can be found by improving
one objective and worsening others. Several approaches are
proposed in the literature for the epsilon-constraint method.
The augmented epsilon-constraint (AUGMECON) method
by Mavrotas [18], its improved version (AUGMECON?2) by
Mavrotas and Florios [19] proposes solution methods to find
a set of exact solutions in multi-objective problems by adding
slack variables into the objective functions that are taken as
constraints and penalty term into the main objective function.
Fattahi and Turkay [20] presents a novel one-direction search
(ODS) method to find an exact non-dominated frontier of
bi-objective MILPs. Moreover, multi-objective evolutionary
algorithms (MOEAs) are widely used in getting solutions
for large-scale real-life problems. In these algorithms, sev-
eral conflicting objective functions are included in order
to increase the performance of decision-making problems.
Therefore, as given in study of Zhang er al. [52], MOEAs
are classified into three main segments that are;

« algorithms based on Pareto-dominance (e.g. non-

dominated sorting genetic algorithm II (NSGA-II) [45];
strength Pareto evolutionary algorithm 2 (SPEA2) [53];

90282

Pareto envelope-based selection algorithm II (PESA-
IT) [54] and cellular multi-objective genetic algorithm
(cellular MOGA) [55)]);

« algorithms based on specific indicators (Zitzler and
Kunzli [56]);

o algorithms based on decomposition methods (e.g.
the evolutionary algorithm based on decomposition
(MOEA/D) [57]; MOEA/D-DE [58])

If sustainability factors are considered, multi-criteria
decision-making models should be used for pairwise com-
parisons that can allow decision makers to weight coefficients
and compare alternatives with relative ease [21]. Noorizadeh
[22] proposes data envelopment analysis (DEA) to select
green suppliers to reduce carbon emissions. According to
Kannan et al. [23], goal programming (GP) is a useful
method to solve multi-criteria decision-making problems
since it can easily be applied to solve complex problems.
Jolai et al. [24] obtains the efficiency ranks of suppliers
and chooses the higher ranked ones with using a fuzzy
multi-criteria method. Then, they calculate order quantities
of suppliers using a multi-objective mathematical model.
Ku et al. [25] presents an approach combined fuzzy ana-
lytic hierarchy process (FAHP) with fuzzy goal program-
ming (FGP) methods for solving supplier selection problem.
Boran et al. [26] uses a hybrid approach combined intuition-
istic fuzzy sets with Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) to apply a decision-
making problem in supplier selection. Liu and Zhang [27]
proposes a new method that is a combination of entropy
weight and an improved Elimination and Choice Translating
Reality (ELECTRE) III method. Weights of each indicator
are determined based on entropy and all alternative suppliers
are ranked according to their strong abilities. Koksalan and
Ozpeynirci [28] proposes an interactive approach combined
the utilities additives discriminants (UTADIS) method with
approach of Koksalan and Ulu [29] to sort non-reference
and reference alternatives. UTADIS is used for estimating
the additive utility function that uses alternatives assigned
to categories. To prioritize supply chain risks, Prasanna and
Kumanan [30] proposes an approach combining AHP with
Preference Ranking Organization Method for Enrichment
Evaluation (PROMETHEE) for plastic industry. Resat and
Unsal [43] presents a novel two-stage hybrid solution method
designed for sustainable supply chain systems and their
application in packaging industry. This model includes both
analytic hierarchy process (AHP) to manage sustainability
indicators and multi-objective aggregate planning model to
design a sustainable supply chain network. However, this
model highly depends on expert opinions and lacks of data
verification and assessment scale in multi-criteria decision
systems.

In addition, routing problems under real-time conditions
includes many uncertainties due to their dynamic environ-
ments. Therefore, there are many studies to deal with such
uncertainties to design more reliable and risk-free systems.
For example, Meng et al. [37] proposes a novel methodology
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for linear models to deal with reliability conditions robustly
and efficiently. Also, Meng and Keshtegar [38] shares some
approaches to get feasible solution sets for reliability based
design optimization models under some probabilistic cases.
Lee et al. [39]; Gomez et al. [40] and Ehmke et al. [41]
present vehicle routing problems with some uncertain time
windows. Their computational experiments shares some solu-
tion methodologies to deal with probabilistic travel time and
demand distributions for vehicle routing problems. Resat [42]
presents a simulation based optimization model for the risk
management of freight transportation by considering sustain-
ability aspects.
The main novelties of this study are to:

o Design a multi-objective optimization framework in
order to provide alternative solution sets with different
possible routes and schedules;

« Develop a MILP model for drone based routing problem
with time windows for last-mile delivery systems;

« Consider sustainability concept by integrating as much
as possible performance indicators of logistics providers
into proposed model by using TOPSIS method;

o Implement a hybrid methodology into the proposed
model and validate it by using real-life data sets.

o Share a comprehensive analysis of proposed model by
comparing with two state-of-art solution methodologies
for multi-objective problems in terms of different per-
formance metrics.

The rest of the paper is structured as: After this comprehen-
sive literature review and problem definition section, details
of proposed methodology for multi-objective hybrid model
will be given in Section III. Computational details and data
used in the model are given in Section IV. Details of multi-
criteria decision analysis model and developed a MILP model
are shared in Section V. After obtaining outputs of study for
decision makers, some future works and assessment of the
findings will be given in Section VI.

lll. METHODOLOGY

A two-step hybrid approach is proposed in this study to be
able to add the largest number of indicators that can be used
in the mathematical model of sustainable last-mile delivery
processes. The main steps of the methodology are shared
in Figure 1.

The proposed methodology includes mainly three steps:
First one is the collection of relevant data (W) for logistics
provider selection in last-mile delivery systems from final
customers. The main critical point in data collection part
is to assess criteria for logistics provider selection of final
customers in cargo deliveries. Key performance indicators of
the delivery operations affecting customer decisions and used
in the proposed model are indicated in Table 1.

The defined indicators given in Table 1 are obtained by
using semi-structured interview method. The surveys are con-
ducted in both verbal and written forms in a group of 250 cus-
tomers and collected scores of different cargo delivery com-
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Stage 1 — Multi-Criteria Decision Analysis

Comprehensive Wkai | Algorithm 1
Survey (TOPSIS)
Sensitivity
To collect data of Wig; Analysis
1z, Sustainability Scores
K of Logistics Providers
Multi- ’
o fal Cost Pareto
Other objective fio T Threshold
parameters Mixed Integer fa=CO, Emissions . rle;VK]’lP
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Linear Model L3~ Zoren

Susy %
Sy,

iy,

D Seore —

Stage 2 — Discrete Optimization

FIGURE 1. Structure of the proposed methodology.

panies for different performance indicators. Final customers
filled up the surveys and questionnaires in a range of 1-10.
Score 1 indicates the decision of “‘not relevant”, Score
10 indicates “major” impact in supplier selection processes.
After collecting scores for different logistics providers, final
scores of different performance indicators in supplier selec-
tion are taken as an average of all scores obtained from all
surveys under the same criteria. This means that; let assume
that A indicates the set of performance indicators and « is an
element of this set, k shows the one element of set of logistics
providers (K) and i indicates one of the final customers under
the set of 1. Therefore, parameter of Wy,; shows the score
of logistics provider k for performance indicator « given by
customer i. %\yk‘“ gives the score table of each logistics
provider per performance indicator and this table will be the
main input of the TOPSIS system. Then by following Steps 1-
2 in Algorithm 1, normalized decision matrix is constructed.
Decision makers firstly define associated weights () based
on their relevant variances by following Steps 3-5. Then,
by multiplying normalized matrix with associated weights,
weighted normalized decision matrix is created under Step 6.
Final performance scores of the logistics providers (mx) are
searched at the point where it is closest to the positive ideal
point (I';") and as well as furthest position to negative ideal
point (I';). Then, positive and negative ideal points are found
(Step 7) and best feasible solution set is shared with decision
makers by using their relative proximity.

In the second step of proposed model, a complex decision
problem is structured at hierarchical levels and decision alter-
natives are generated to decrease complexity in multi-criteria
problems by using Algorithm 1. Decision makers can reach
alternative solution sets by performing different associated
weights. Algorithm 1 given below gets final scores of differ-
ent last-mile delivery companies under defined performance
indicators [31].

After collecting final performance scores of different com-
panies (7y), final scores of companies are given into math-
ematical model as parameter. Pareto frontier for sustainable
distribution channels in city centers are tried to be obtained.
As indicated in study of Resat [32], green zones should
be created within the city centres in order to achieve more
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TABLE 1. List of key performance indicators of last-mile delivery
operations in customer decisions.

Criteria 1 Unit Price per kg Cargo

Criteria 2 Compliance with Time Windows

Criteria 3 Lead Times of the Deliveries

Criteria 4 Traceability of Cargo

Criteria 5 Safety of Cargo

Criteria 6 Accessibility to the company via Mobile/Web Channels
Criteria 7 Air Pollution Policies

Criteria 8 Noise Pollution Policies

Criteria 9 Technological Infrastructure

Criteria 10
Criteria 11
Criteria 12
Criteria 13
Criteria 14

Proximity of Regional Office
Availability of Pick-up services
Standardized Services

Geographical Range for delivery
Policies over Security of Private Data

Algorithm 1

0:

Identification of alternative logistics providers
(k) and performance indicators (o)

D ier Ykai 2
ComputeNkazl%] , VkeK, VaecA
Nio Vk e K, Ya € A

\/2 ZO(EA Nia '

Calculate variance of weights
—_ 1 * 2 V A

Vo = a1 2kek (Nie = Nika)™, Va €

foro € Ado

Obtain weights xq = ZL

acA Vo’

YowerXa =1, Ya €A
Compute xo. N, Vk € K, Yo € A
Determine ') = maxgek {xa-Ny,} and
Ty = mingek {xa-Ni, ), Vo € A
Suen {xea Ny T}’
ZaeA {X(Y'Nlja_rg}z"'ZaeA {XW'NEa_FJ}Z ’

Compute N}, =

such that

Compute my =
Vk e K

environmental cases. To satisfy this condition, drone and
conventional truck combinations are allowed in the proposed
model and there are many assumptions used to simplify and
reduce the complexity of the operations that are listed as
below.

A. ASSUMPTIONS

Logistics operations start from the distribution centres
(DC) located outside of the city centres, a single type of
medium truck (with capacity of a ton) from distribution
centres to transfer points carries the cargo. When trucks
come to transfer points (7P), there will be transfer from
conventional vehicles to drones;

Standard type of octocopter drone with lithium-based
batteries is used in predefined green zones (highly
crowded and carbon-dense areas) to reduce environmen-
tal effects due to heavy road transportation activities in
order to carry a single parcel from transfer points to final
destination of customers;

Drones can either fly back to transfer points to deliver
the next parcels or fly directly to another customer for
pickup depending on their charge-levels;
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Single type of product (a standard parcel) is considered
for e-commerce transactions under last-mile deliveries
with a dimension of cargo box 42%42*38 cm (Width-
Length-Height) and it should be up to 5 kg due to drone
capacities;

The capacities of drones are also assumed as constant.
Each drone can carry 5 kg cargo with a speed of 30 km/h
in delivery processes. Range of each drone with full
battery is assumed as around 5 miles (app. 8 km);

The degree of extra warehousing requirement for drone
delivery dominates the comparison of drone and truck-
based scenarios, because non-operating drones should
also be stored in some specific warehouses. For servic-
ing an urban area with on-demand delivery, two main
approaches have been proposed. The first is to locate dis-
tribution centers such that all of the service area is within
delivery range of a distribution center. The second is to
establish way-stations such that drones can fly from one
to another and exchange batteries in a series of hops from
distribution center to customer destination [33]. In this
study, way-stations (transfer points) are considered and
drones are stored at these places and delivery operations
start from these stations;

Due to lower battery lives of drones and flight ranges,
there will be some options to recharge these drones
during the routing. In our problem, it is assumed that
each drone can be recharged at only recharging stations.
In addition, there is no limitation in the recharging ratios
that means that drones can be recharged less than the
maximum level. Drone batteries are recharged with con-
stant ratios and each battery has a constant capacity;
Decision makers define associated weights based on
their relevant variances;

All of the customers have to be visited once during a day;
All the routes are started in the transfer points and ends
again in the transfer points (not exactly the same one);
Different logistics providers can use and store their
drones at different transfer points;

The total demands of the customers in the green zones
should not exceed the truck capacities (back order option
is eliminated);

The deliveries should be managed within time windows
of the customers;

Transportation times are directly depending on
Euclidean distances between nodes;

The distances between the routes are taken as symmetric
(djj = dj);

Demands of the customers are known beforehand.

B. MODEL FORMULATION

The main purpose of this study is to create a multi-objective
MILP model to find all possible tours covering all customers
exactly once while minimizing total transportation distance
(cost), as well as minimize total carbon emissions and maxi-
mize total supplier score in terms of sustainability.
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1) SETS

Set of Customers

Set of Transfer Points

Set of Distribution Centres
Set of Logistic Providers

Set of Drones

Set of Performance Indicators

>R =ZT

2) INDICES
i,j Customer (i, j € 1)
n Transfer Point (n € N)

m  Distribution Centre (m € M)
k Logistic Provider (k € K)
v Drone (v € V)
o  Performance Indicator (o € A)
3) SCALARS
Cape'®c  Maximum load capacity of drones
Cap®™  Maximum load capacity of conventional trucks
y Constant charge consumption rate
B Constant recharge rate
max Maximum number of trucks used outside of
the green zones
o Maximum battery capacity
trans Fixed transfer cost in the transfer points
Iny Inventory cost keeping a drone at transfer points
K The pi constant
¢ Overall power efficiency of the drone
n Number of rotors
P The density of air
g The gravitational constant
A The projected area of component
D The diameter of rotors
Mpody The masses of the drone body
Mpar The masses of the drone battery
Meargo The masses of package carried by drone
Va Average speed of air
cp Drag coefficient

4) PARAMETERS

dl.’j Distance between customer i and j within
green zones

dr. Distance between distribution center m and
transfer point n outside of green zones

cnn Unit transportation cost from distribution centre
m to the transfer point n

c; Unit transportation cost between node i and

Jj within green zones

Maximum number of drones per each supplier
k departing from the transfer point n

FC, Fixed cost of opening transfer point n

SY Speed of the drone v

maxin
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gi Demand of node i

e;  Opening time of node i

l;  Closing time of node i

S; Service duration of customer i

. Overall sustainability coefficient of supplier k

5) VARIABLES

Xmn € RT  Carried quantity from distribution centre m to
transfer point n

hy € R*  Arrival time of the drone v of supplier k to
customer i

z), € Rt Remaining charge level of the drone v of

supplier k on arrival to customer i

1, if arc between node i and j is travelled by drone
Wik = v of supplier k

0, otherwise

1, if transfer point n is opened

Yn = .
" 0, otherwise
1, if customer i is served by transfer point n
k= via drone v of logistics provider k

0, otherwise

C. EQUATIONS

=3 ¥ ST

i€l jel,i#j \keK veV

+ Z Z XnGypyConn } + trans { Z men}

meD neN meD neN
+Z {ynFC,,}+Z Z{ maxy, —Z Z 07k }Inv
neN keK neN iel veV
(D

Maxfr=3 > % > Wi )

iel jeJ keK veV

Minfs = Z Z Z Z (mbod) + Mpar + mcargo)g

iel jeJ keK veV 2KD2 ¢Sv
H A 3/2
3PVaCD ]
22— 3)
iel jeJ keK veV ,/—KDZ cSY
Subject to Z Zzw;jk =1, Viel 4)
jel:i#jkeK veV
D 2 Wi D 2 Wi =0
iel;j#ikeK iel;j#ikeK
Viel, VWweV Q)]
ZZW,‘;jk <maxy,, VneN, Vkek
jel veV
(6)
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D> Wy <maxi,, VneN,Vkek (7)

jel veV
l

d!.
0=+ <s—’ +S,~) Wi B (Q =25 = B

Vijel, WeV, VkeK, i#]j (8)
e <h, <l Viel,VWweV,VkeK (9

0=z = e = (vdj)} whe+0(1-wh).

Vijel, VYveV, VkeK,i#j (10)
Zx =0, VneN,VkeK, VeV (11)
Z men > maxCap®"y,, VneN (12)
meM neN
222 waCap™™ =) q (13)
iel neN kekK veV iel
S>3 whi <Ml VkeK. VneN (14)
jel veV
SN D O = Y xwns VnEN  (15)
keK veV iel meM
= Opi + Z (ijk + ank> =1,
JELj#i

Viel, Vne N, VveV,VkekK (16)

lejk € {0, 1}, Vijel, VWweV,Vkek
17)

ya€ {0, 1}, VneN (18)
07, € {0, 1}, Viel, VneNl,

YveV, VkekK (19)
Xyn >0, VmeM, Vne N 20)

The objective function (1) tries to minimize total cost of
the last mile delivery operation and includes five parts. First
and second parts show total transportation cost occurred
inside and outside of the green zones respectively. These
expressions use total distance travelled in/outside of green
zones in determined time duration. Third part ensures total
transfer cost for transfer of cargo from conventional vehicles
to drones, forth part is about total cost of opening transfer
points on the borders of green zones. Last part gives the
total inventory holding cost of unused drones kept in transfer
points. Objective function (2) tries to maximize total sustain-
ability score of the system by using individual sustainability
scores of the logistics providers. Objective function (3) shows
the third objective function by minimizing carbon emissions
of the drone delivery system in green zones. Constraints (4)
ensure that each vertex between customers will be visited
exactly once by each drone, so this constraint enforces the
drones to complete their tours. Constraints (5) ensure that
incoming and outgoing flows has to be equal to guarantee
the elimination of sub tours for each drone. Constraints (6)
indicate that there are at most “max” drones going out from
transfer points and Constraints (7) show at most “‘max”
drones can come into the transfer points. Constraints (8) show
the time balance of arrival of the drones to the nodes. The
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difference between arrival times of the nodes has to be more
than the summation of total travel time and service time
within the node for each drone. Constraints (9) guarantee
that leaving time of nodes should be within the customer
time-windows (the opening and closing time of nodes). Con-
straints (10) ensure the balance of total energy consumption
of the drones while travelling between the nodes and total
energy load of the drones should be until the maximum level
of the battery. Constraints (11) ensure that drones of each
logistics provider start with full loaded batteries initially at
transfer points. Constraints (12) show the distribution of the
cargo from distribution centres to the transfer points and this
constraint forces the model to give a decision about opening
transfer points. Constraints (13) ensure that total carried cargo
has to fulfill the total demand of the customers in the green
zone. Constraints (14) indicate that total number of visits
of supplier k from transfer point n can not exceed the total
number of customers. Constraints (15) ensure the fulfillment
of the demand of the customers by distributions centres via
transfer points. Constraints (16) specify that the customer can
be assigned to transfer point only if there is an arc connecting
the transfer point and customer. Constraints (17) - (20) are the
variables domain.

IV. COMPUTATIONAL EXPERIMENTS

An illustrative example is carried out by using real-life data
obtained from final customers. Aim of this case study is
to represent two-stage hybrid optimization approach and
demonstrate detailed calculations for sustainable delivery
systems. While designing the last-mile delivery system, not
only cost minimization but also environmental and sustain-
ability effects are considered.

A. DATA

In this section, all necessary data for comprehensive analysis
of design and development of proposed sustainable delivery
system in the illustrative example are shared.

Firstly, locations of the customers are obtained from web-
based mapping service of one of the biggest search engine
providers (Google Maps Platform) and given in Table 2. The
real-coordinates of the customers are converted into some
integer values and x- and y-axis of the graph are located at
the nodes where their coordination levels are set at lowest (y-
axis) and on right-hand side (x-axis) of the sample network.
Euclidean distances between distribution centres, transfer
points and customers are calculated by using Constraint (21).

r_ coor
i |t

Secondly, the energy usage and environmental impacts of
drone delivery system depend substantially on the range of
drones and manner of implementation. Some specific param-
eters used for drone services in this study are listed as:
o Standard type of octocopter drone with lithium-based
batteries is used in case studies to carry a single parcel
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TABLE 2. Coordinates of the final customers.

Node x- y- Node x- y- Node x- y-
ID Coord Coord ID Coord Coord ID Coord Coord
460 6,35 26 390 2,50 51 540 5,00
3,85 12,10 27 3,00 2,00 52 5,60 4,25
395 16,60 28 2,80 540 53 535 425
340 12,30 29 2,60 4,60 54 5,65 3,00
2,75 13,00 30 2,60 250 55 5,10 4,00
545 1245 31 2,65 520 56 5,15 1,00
4,15 17,50 32 2,30 570 57 5,15 3,50
4,65 14,50 33 1,50 5,30 58 475 3,90
440 12,35 34 425 550 59 480 3,50
3,90 12,40 35 4,10 590 60 4770 5,30
10 3,85 12,50 36 395 475 6l 495 5,80
11 3,30 15,00 37 350 5,10 62 5,10 6,00
12 2,85 16,50 38 3,70 4,50 63 5,15 5,60
13 2,50 16,00 39 365 375 64 5,80 4,00
14 2,10 18,00 40 290 450 65 535 5,70
15 2,75 16,90 41 2,65 3,775 66 535 1,25
16 325 16,75 42 2,00 4,00 67 5,60 6,20
17 3,80 15,30 43 240 360 68 535 6,10
18 525 12,00 44 1,00 3,60 69 445 3,50
19 4,60 13,00 45 245 1,50 70 525 325
20 485 13,00 46 2,10 6,10 71 5,50 5,50
21 5,15 14,00 47 2,75 630 72 5,75 5,00
22 5,15 12,25 48 285 6,10 73 450 4,50
23 430 11,50 49 2,85 590 74 4,60 2,00
24 5,00 11,50 50 340 6220 75 575 225
25 535 11,60

OO0k WN—O

from transfer points to final destination of customers,
and then returning empty to the transfer points;

o Cargo capacities carried by standard drone systems
can range between 0,3 to 5 kg and their speed range
is between 20 to 120 km/h [34]. Therefore, it is
assumed that each drone can carry 5 kg cargo with a
speed of 30 km/h in delivery processes. Range of each
drone with full battery is assumed as around 5 miles
(app. 8 km);

« Drones are expected to fly up to max. 120 minutes with
full battery capacity and not carrying any payload [33],
therefore it is assumed that their flight capacity can be
max. 100 minutes in the air;

o In the objective of minimization of greenhouse gas
emissions and energy use in the delivery systems by
using, drone energy calculations are included as a one
of the objective functions. The masses of the drone
body, battery, and package, the gravitational constant,
and the total drag force are used in the calculations and
parameters are taken from the study of Stolaroff ez al.
[33].

Thirdly, some operational limitations and scalars are included
into model. Such as; number of available drones per each
logistics provider, warehouse capacities for drones, time win-
dows for each customer, charge consumption and recharge
rates, some cost parameters for direct delivery and transship-
ment operations.

The proposed MILP model for this problem is written in
GAMS modelling environment and solved with IBM ILOG
CPLEX 12,1 [35]. Both models are executed on a computer
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TABLE 3. Average scores of each provider per each performance
indicator.

Weights Performance L1 L2 L3 L4
Indicator

0,05 Unit Price per kg 1 5 9 5

0,09 Time Windows 5 6 9 4

0,20 Lead Times 8 10 1 4

0,10 Traceability 10 5 8 1

0,04 Standardize 4 1 1 6
Services

0,10 Safety of Cargoes 9 9 5 9

0,05 Accessibility 2 3 5 7

0,03 Air Pollution 6 3 7 7

0,10 Security of Private 7 9 5 3
Data

0,05 Geographical 7 2 4 1
Range for Delivery

0,01 Noise Pollution 10 2 9 7

0,05 Technological 3 5 3 5
Infrastructure

0,05 Proximity Center 8 7 5 9

0,08 Pick-up Services 2 2 1 1

TABLE 4. Final sustainability scores of the logistics providers.

Total Sustainability Score

L1 0,61
L2 0,67
L3 0,32
L4 0,26

with Intel Core I5 2520 M CPU with 2,50 GHz dual core
processor, and with 4,00 GB of RAM. An optimality gap
of 1% is set for the solutions.

V. RESULTS

In this section, details of the illustrative example are given and
main concepts and analysis of solution on an illustrative case
are discussed. Case study is started to find final sustainability
scores of four different logistics providers (L1-L2-1.3-L4)
operating in district of Izmir, Turkey. The data collection
methodology is applied more than 250 final customers who
take cargo delivery services from these four suppliers. There-
fore, final score table of each provider per each performance
indicator (Z"%l%“’") are given in Table 3. The scores and
associated weights for defined indicators given in Table 3
are obtained by using semi-structured interview method for
different logistics providers. The most important indicator of
logistics provider selection process in last-mile deliveries is
the delivery duration of the providers after orders are set by
the customers. Safety of cargoes and private data follow this
criteria. Least important ones are related with environmental
conditions such as different types of pollution.

After final score table is created for logistics providers,
data set is given to Algorithm 1 and final scores of the
suppliers (given in Table 4) are obtained for the mathematical
model.

Graphical representation of outputs of the proposed math-
ematical model are given in Figure 2. In the illustrative case,
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FIGURE 2. Graphical representation of the proposed network.
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FIGURE 3. Pareto solution sets for different objective functions.

four distribution centers (DCI1-DC4) are defined at the out-
side of the city centers. Medium trucks are used in delivery
of total cargo between distribution centers and transfer points
(Node 0-Node 7-Node 46-Node 64). After cargoes are arrived
to transfer points, individual delivery of the parcels is man-
aged by using drones.

Details of routes of individual drones of different logistics
providers and their corresponding travelled distances under
illustrative case are shared in Table 5. The distances given in
bold indicate that drones are charged at those routes by using
charging stations. For example, logistics provider #3 follows
path of Node 7 - Node 16 - Node 15 - Node 46 in Green Zone
1. However, total distance of this route is around 14 km that
exceeds the range of drones (8 km), therefore there should be
recharging process (at Node 15) to be successfully delivered
to final customer (Node 46).

In Figure 3, details of Pareto frontiers of three objective
functions are given. Hundred (100) different solution sets
are obtained from proposed model for decision makers and
different strategies can be followed to satisfy requirements of
the customers as given in Table 6.

Table 6 includes four different scenarios. Firstly, feasi-
ble solution sets are shared if the problem considered as
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TABLE 5. Individual routes of the drones per different logistics providers.

Distances [km] Routes
Ll L2 L3 14 L1 L2 L3 L4
44 6,1 1,4 Green 7-5-7 7-6-7 7-21-7
Zone
1
46 44 30 7-22-7 727 7-20-7
43 30 14,0 7-8-7 7-19-7  7-16-
15-46
6,1 5,1 7-17- 7-1-7
10-7
6,5 7-14-7
8,7 7-11-
15-7
89 89 139 94 Green 46-39- 46-3-7 46-4- 46-40-
Zone 27-46 46 45-46
2
42 20 198 5.1 46-40-  46-33-  46-13-  46-49-
46 46 46 0-50-
48-46
32 42 14 1,7 46-31-  46-42-  46-47-  46-37-
29-46 46 46 46
73 55 1,0 46-30- 46-44-  46-28-
46 46 46
16,5 46-43-
27-46
0.4 46-32-
46
10,3 10,6 1,3 10,3 Green 0-24-0 0-25-0 0-35-0 0-23-0
Zone
3
136 42 18 5,1 0-38- 0-36- 0-34-0  0-50-
46-39-  73-0 48-46-
27-0 49-0
79 1,2 37 93 0-73- 0-62-0  0-60- 0-74-
26-0 73-0 64
57 13 0-68- 0-61-0
64-65-
0
0,9 0-63-0
32 31 4,1  Green 064-67- 64-71- 64-70-
Zone O 64 0
4
26 22 2,0 64-52-  64-51- 64-54-
0 64 64
30 1,0 64-69-  64-53-
58-64 64
22 20 64-59-  64-57-
64 55-0
35 6,1 64-75-  64-56-
64 64
5,6 64-66-
64

single objective and corresponding values are obtained for
different objective functions separately. Then, two different
Pareto solution sets are chosen randomly and their compar-
ison are given. If any stakeholder would like to spend much
more money (from 0,15 to 3,68 mil. Euro), they can reduce
their carbon emissions 93,1% and increase total sustainability
score of the system 502,7%.

As given in Table 6, the proposed model shares better
results compared to current status of delivery operations in
Izmir. In terms of the economic assessment, the worst solution
obtained from the proposed model gives around 8% better
solution (from 4,59 to 4,24 mil. Euro) than the current status
and 19% worse status is obtained even if the worst scenario
in terms of the carbon emissions (from 68,9 to 82,1 kg-CO,
e) is considered. The main reason behind these values is the
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TABLE 6. Solution sets of the proposed model in terms of three objective
functions.

f1 [mil. Euro] f2 [unit] f3 [kg-CO2 e]
Current Status 4,59 529.,8 68,9
Single Objective 4,24 5524 2,2
Multi-Objective
Point 1 3,68 509.,9 5,7
Point 2 0,15 84,6 82,1
Nadir Points 4,96 48,23 216,7

TABLE 7. Sensitivity analysis of computational performance unit times
and number of variables and constraints of different cases.

Cases # of # of  Proposed Method
Constraints Variables CPU [s]

Case with 10 11.864 4.825 26,18

Node

Case with 15 35.169 13.625 112,54

Node

Case with 20 70474 26.425 253,71

Node

Case with 25 117.779 43.225 388,67

Node

Case with 50 534.304 187.225 1.976,93

Node

Case with 75  1.250.829 431.425 5.128,39

Node

frequent usage of diesel-engine trucks in last-mile deliveries
currently. The carbon emissions rate of the current status
(case of truck usage) are calculated by using the equation
given in Resat and Turkay [36]. The nadir points are con-
structed from the worst objective values over the efficient set
of a multi-objective optimization problem. In the proposed
multi-objective model, there are three objective functions.
Two of them (total cost and carbon emission rates) are related
with minimization and one of them (total supplier score) is
about maximization, so maximum values of minimization
functions and minimum value of maximization function are
taken as nadir points and are shared in Table 6.

Moreover, there is an experiment to indicate computational
complexity of the proposed model as given in Table 7. In this
experiment, different number of nodes (including transfer
points) are considered and their relevant CPU times are col-
lected. As indicated in Table 7, an order for the growth rate of
computational effort function in terms of number of variables
is around 2 (shows O(n?)). Also, total CPU times in getting
the Pareto set of proposed problem with 75 nodes by using
NSGA-II and GoNDEEF are around 3.145,87 s (39% less than
proposed model) and 7.235,67 s (41% higher than proposed
model), respectively.

Additionally, more sensitivity analysis is made to under-
stand the effect of different associated weights of sustainabil-
ity indicators that are given in Table 3. Therefore, three impor-
tant indicators with highest weights over process according to
answers of more than 250 final customers are chosen which
are lead times, traceability and safety of cargoes. As given
in Figure 4, their associated weights are increased 50%,
100% and 200%, and their impact over cost and total GHG
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FIGURE 4. Sensitivity analysis of several weights.

TABLE 8. Final sustainability scores of the logistics providers under
different weights.

Lead Time Traceability Safety of Cargoes
Weights 0,30 0,40 0,60 0,15 020 040 0,15 0,20 0,40
L1 0,62 0,63 0,63 0,70 084 092 0,64 0,74 0,85
L2 0,76 0,83 092 0,55 037 028 0,69 076 0,86
L3 023 0,16 008 041 055 062 030 023 0,14
L4 021 0,18 0,16 0,21 0,11 0,05 035 0,56 0,73

emissions are shared. While increasing their relative weights,
weights of the other indicators are decreased in a ratio of
their initial weights. For example, if the weight of safety of
cargoes increased from 0,10 to 0,20, this additional 0,10 in
the calculations will be reduced from initial weights of others
by considering their initial weights, such as initial weight of
lead time is 0,20 and after this change occurs in safety of
cargoes, weight of lead time is reduced to 0,175 to satisfy
the summation of all weights to one.

As given in Table 8, when associated weights of the perfor-
mance indicators are increased, final sustainability scores of
the logistics providers change in a ratio of their relevant scores
that are given in Table 3. By using these final sustainability
scores in proposed hybrid model, different Pareto frontiers
are obtained for total cost vs total GHG emissions as given
in Figure 4. The main outcomes of this analysis are that when
companies save some money over their operations, impact of
associated weights of lead time and safety of cargoes indi-
cators will be higher over GHG emissions. Also, if decision
makers focus on same GHG emission rates (such as range
of 150-200 kg-CO2e) for different weight ratios, effect of
indicator of safety of cargoes will be higher compared to other
two indicators. If companies increased the weight of their
safety scores, this leads to much more spending to satisfy the
same level of GHG emissions in their system.

In order to justify the main advantageous of proposed
system, a comparison analysis is made by using other two
well-known solution methods for multi-objective optimiza-
tion problems in terms of different multi-objective perfor-
mance metrics. The main idea behind selection of these two
solution methodologies is that although proposed solution
methodology shares exact solution approach, how Pareto
solution sets will be changed if another exact solution algo-
rithm is used or apart from the exact solution algorithms,

90289



IEEE Access

H. G. Resat: Design and Analysis of Novel Hybrid Multi-Objective Optimization Approach

NSGA-Il Method Convergence Level\

r EEECOEEERK £ o ©
95 __ﬂﬁﬁgﬁ_amﬂfﬁi =
.
90 | qppmEREREEEE
|
&
85 [
— |
= 80
]
o 75 [
-
e L
8 70
L]
[=)]
565
Z
[=]
O 601
55 l
1
50 ]
[
i
45 . . . . )
0 500 1000 1500 2000 2500

# of lterations

FIGURE 5. NSGA-Il Method Convergence Level per different number of
iterations.

if one of the meta heuristics approaches, in which non-
dominated sorting technique is used to provide the solution
as close to the Pareto-optimal solution as possible, is used.
One of these chosen methodologies (GoNDEF) proposes an
exact method to generate all non-dominated points of multi-
objective mixed-integer linear programs that is provided by
Rasmi and Turkay [44]. This method handles multi-objective
problems in a combination of some sub-problems and creates
potential sub-Pareto frontiers by testing some predefined inte-
ger solution sets and eliminating dominated solutions from
non-dominated ones. Final non-dominated Pareto solution set
is obtained by adding these non-dominated facets of the sub-
problems together. Other methodology (NSGA-II) is one of
the state-of-art techniques that shares an evolutionary algo-
rithm for multi-objective problems shared by Deb et al. [45].
However, design of NSGA-II algorithm directly depends
on various parameters that may have different impacts on
its computational effectiveness. Therefore, there are some
assumptions over the numeric values of these control param-
eters in order to minimize perturbation in the design of prob-
lem.

« Population size is set as 100 in order to create more
balanced sample set with other two methodologies

o Number of runs in order to evaluate the problem is
chosen as 1.000 due to the computational efforts of
large-scale problems. In addition, as given in Figure 5,
convergence level of the problem reaches its maturity
level around value of 1.000 and after this level marginal
increase in the convergence ratio may be negligible.

o The mutation probability is taken as 0,000023 (0,023%)
that is obtained from 1/total number of variables in
multi-objective problem.

« Probability of crossover is taken as one of the highest
values which is 0,98 (98%).

Riquelma et al. [46] presents a comprehensive survey

about performance metrics of multi-objective problems and
shares ranking of the most commonly used performance indi-
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objective functions.

cators in comparison studies. Therefore, hypervolume (HV)
and generational distance (GD) in an aspect of accuracy;
spread delta (SD) measure and inverted generational distance
(IGD) from diversity perspective are used in comparison anal-
ysis. Therefore, these four different performance indicators
are investigated and compared by using three methodologies.

Moreover, generational distances (GD) and inverted gen-
erational distances (IGD) between optimal Pareto frontiers
of proposed methodology and other solution methodologies
are obtained separately to calculate the level of convergence.
In the measurement of the GD and IGD, decision makers
should measure the distance between the obtained Pareto set
and a reference one. Due to the complexities in getting true
Pareto set for real-life cases, Pareto set obtained by proposed
model is assumed as true Pareto frontier and it is used in
calculation of GD and IGD. As given in Figure 6, GONDEF
shows poor quality in approximation with higher GD value
in all combinations of bi-objective functions. Lastly, spread
delta metrics are compared with different solution method-
ologies to examine how evenly the solutions are distributed
among the approximation fronts in objective space. NSGA-II
shows generally wide and uniform spread out of the solutions
across the Pareto front due to lower spread value, however
GoNDEF gets better position in a combination of total GHG
emissions and supplier score.

As given in Figure 7, volumes between generated non-
dominated points of the Pareto frontier and nadir points are
compared with each other. GONDEF shows a better coverage
of the region compared to proposed model (blue region),
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TABLE 9. Performance metrics of the models for three-objective
functions.

Performance GD
Metric
True Pareto set obtained
Proposed NSGA-II GoNDEF
Proposed - 0,0079 0,0043
NSGA-II 0,0048 - 0,0049
GoNDEF 0,0022 0,0086 -
Performance Spread Delta
Metric
True Pareto set obtained
Proposed NSGA-II GoNDEF
Proposed - 0,6330 0,5108
NSGA-II 0,6590 - 0,5110
GoNDEF 0,6117 0,6204 -
Performance IGD
Metric
True Pareto set obtained
Proposed NSGA-II GoNDEF
Proposed - 0,0055 0,0023
NSGA-II 0,0102 - 0,0076
GoNDEF 0,0039 0,0051 -
Performance Hypervolume
Metric
Proposed NSGA-II GoNDEF
0,7458 0,7259 0,7513

however proposed model (purple region) slightly dominates
objective space obtained by Pareto approximation set of
NSGA-II (gray region). For example; although proposed
model gets 93,8% of the objective space for the case of min-
imization of total cost and total GHG emissions, GoONDEF
and NSGA-II present 0,95% higher (94,7%) and 2,86% lower
(91,1%) coverage compared to proposed model, respectively.
As given in Table 9, several alternative scenarios are con-
sidered in terms of the true Pareto sets. If the Pareto set of pro-
posed model is considered as true Pareto set, NSGA-II shows
poor quality in approximation with higher GD value, how-
ever, when other two scenarios are considered, quality level of
proposed model in terms of approximation is better than other
two methods with lower GD ratios. However, although pro-
posed model shows more fidelity if solution set of GoONDEF
is considered as reference frontier in a case of IGD parameter
measurement, GONDEF gets better position with lower rates
in other two options. For the case of spread delta, proposed
model show better role compared to GoNDEEF, but worse role
than NSGA-II. Lastly, when volumes between generated non-
dominated points of the Pareto frontier for three objective
functions and relevant nadir points are compared with each
other, GoNDEF shows a slightly better coverage than then
proposed model and NSGA-II is the worst one.
Non-dominated solution sets including 100 different solu-
tions are obtained from these two known methodologies and
are compared with the solution set obtained by using pro-
posed methodology as given in Figure 8. Although, differ-
ence in the obtained Pareto sets from three methodologies
are changing on average maximum 3,1% less in NSGA-II
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FIGURE 8. Hundred different Pareto solutions by using different solution
methodologies.

(—1% in cost; —3,1% in supplier score and —2,1% in GHG
emissions) and 4.6% higher in GoNDEF (2% in cost; 3%
in supplier score and 4,6% in GHG emissions) compared
to proposed methodology, changes in Pareto sets can be
negligible based on these deviations. Then, results obtained
from three different methodologies (under Point 1 in Figure 8)
are compared with each other. For this illustrative example,
proposed model has less total cost and GHG emissions and
higher supplier score than other two methodologies. Also,
although NSGA-II shows better performance in cost and
supplier score functions, GONDEF has better GHG emissions
rate. When details of obtained variables in solution sets are
investigated, such conclusions are observed.

o In the proposed model, solution set includes higher
usage rate of logistics provider 2 (L2) (which has the
highest sustainability score) in overall operations in a
unit of individual transactions (from node i to j), this
ratio is equal to around 31% of all number of transactions
(474) used in the system. This ratio is around 29% in
NSGA-II and 28% in GoNDEF. This situation leads to
higher sustainability score in the system. Usage rates of
L1 in the solution sets are around 21%, 22%, and 21%
in the proposed, NSGA-II and GoNDEEF, respectively.

o In terms of the cost calculations, three critical cases
are observed. One of them is about the distribution of
cargoes from distribution centers (m) to transfer points
(n). In the GoNDEEF, total distance travelled by medium
tracks (around 174,8 km) is 6,4% higher than the pro-
posed model. One of the results of this case is supply of
cargoes from DC1 to Node O (positions are given in Fig-
ure 2). Second important case is about the distances
travelled by drones within the green zones. Although
total number of transactions is the highest in NSGA-II
(513 unit), total travelled distance of all drones are high-
est in GoONDEEF (715 km) (this value is 678 km in pro-
posed model and 699 km in NSGA-II). Thirdly, another
factor affecting cost is number of drones waiting in
warehouses. Surprisingly, although GoNDEF has high-
est total travelled distance of all drones, ratio of waiting
drones at transfer points for all logistics providers is
also highest with ratio of (4,2%). Also, majority of this
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non-operational drones in solution set is from logistics
provider 2.

« Another critical approach is about recharging opera-
tions. In the proposed model, there are 74 charging sta-
tion visits occurred. This solution leads to major benefit
for proposed model that is the elimination of number of
redundant return routes of drones (benefits over distance
travelled and number of transactions) because of range
limitations and masses of cargoes carried by drones from
GHG emissions perspective.

VI. CONCLUSION

As sustainability concept is getting much more importance in
global competition conditions, companies propose innovative
and challenging solutions for daily life operations. Last mile
cargo deliveries occupy one of the highest importance in
logistics activities. Therefore, any improvement or solution
methodology may lead to significant improvements in finan-
cial, environmental as well as social aspects. Drone delivery
systems or drone routing problems are most popular and
highly appreciated concepts in current conditions. This study
focuses on novel solution methodology for hybrid drone vehi-
cle routing problem in an aspect of sustainability. The novelty
of the proposed model is the inclusion of large set of sustain-
ability indicators in the management of city logistics activities
by considering delivery systems via drones. The proposed
model firstly integrates opinions of many stakeholders (final
customers) in the assessment of the logistics providers operat-
ing in last-mile delivery systems. After collecting enough data
for the proposed model, hybrid solution methodology includ-
ing TOPSIS and MILP optimization tools takes and processes
real-life data sets. Apart from the existing studies, proposed
model can satisfy recharging operations of drones throughout
the operations and not specifically dependent to the home
depots or warehouses of the drones. At the end of system,
different Pareto thresholds are obtained for decision makers
and sensitivity analysis of the solutions are shared. One of
the obtained solutions are compared with the current status
of the delivery system in city of Izmir and improvements are
shared in terms of total cost and GHG emissions, as well as
traceability of the individual drones of the different logis-
tics providers can be satisfied. In addition, proposed model
is compared with two well-known solution methodologies
for multi-objective problems and obtained Pareto solution
sets are compared in terms of hypervolumes, generational
distance, spread delta and inverted generational distances.
Although proposed model gets better coverage of objective
region than NSGA-II, GoNDEF covers solution regions more
dominantly. Moreover, proposed model is superior to the
other methods for all performance metrics except IGD.

The decision makers can use this model in a ranking of
the logistics providers in last-mile deliveries by integrating
feedback of the customers under different performance indi-
cators. In addition, obtained Pareto results will enhance the
decision making processes and stakeholders may get some
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initiatives or priorities to support environmental conditions
in city centers.

One of the expected studies in the near future is inclusion
of all characteristics of the drones to create more realis-
tic case and enlargement of the constraints to cover more
operational restrictions (such as; topographical conditions;
climatic conditions (wind, etc.); different type of drone usage;
etc.). Additionally, some more sensitivity analysis over the
variety of associated weights that are used in getting the final
sustainability scores of logistics providers should be done to
analyze how these parameters are important for the cases.
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