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ABSTRACT A novel circular reconfigurable metasurface (MS) based compact ultra-wideband (UWB)
hybrid coupler is developed for Ku-band applications. The coupler is developed using the substrate-integrated
gap waveguide (SIGW) technology. The coupler structure consists of two layers, the bottom layer represents
the artificial magnetic surface of the periodic structures and the ridges in between that guide the wave in
the required direction with minimum dispersion. It involves the coupling section with a centered etched
slot and two additional vias to achieve the basic hybrid coupler properties. This layer is nominated as
the ridge layer. The second layer is a circular shape of a dielectric gap loaded with the top ground. The
top ground is left solid for a non-reconfigurable coupler. Concerning the reconfigurable coupler, this layer
contains an artificial metasurface of Jerusalem cross elements where the copper is etched around. This layer
is nominated as the gap layer. This MS surface is mechanically rotated to offset the magnitude and phase
of the signal going to the through and coupled ports. The findings obtained from the simulations show that
the reconfiguration can be accomplished by rotating the MS around the source coupler’s central axis. The
rotation is tested between 0° to 180° in the counter-clockwise direction. The operating frequency range of the
coupler is between 11.94 to 16.91 GHz, which covers approximately the whole Ku-band. The coupler delivers
continuously adjustable amplitude between 2.6 and 4.8 dB while the phase differences within 77° to 105°
over a fractional bandwidth (FBW) of 34.45%. It is manufactured using PCB technology and measured using
network analyzer. A strong agreement is achieved between simulations and measurements. The proposed
coupler can be used in traditional beam-forming and beam-steering networks by changing the rotation angle
or the operating frequency. The developed coupler can replace the Butler and Bless matrices with their
complication, heavy number of phase shifters, and crossover problems. The current work can be extended to
operate in the mm-Wave band by changing the dimension and the material of the unit cell of the ridge layer
of the coupler.

INDEX TERMS 3 dB hybrid coupler, gap waveguide, MS, tunable coupler, SIGW.

I. INTRODUCTION
Couplers with their numerous functionalities have received
great attention in the development of multi-standard com-
The associate editor coordinating the review of this manuscript and munication systems. The functions of signal isolation, mix-
approving it for publication was Wanchen Yang . ing, and separation, as well as signal amplitude and phase
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acquisition, are vital for 5G and future 6G communication
systems, making directional couplers critical components.
At low-frequency bands, waveguides and microstrip couplers
have achieved remarkable advancements in recent years.
However, microstrip couplers encounter significant dielectric
losses in the millimeter wave frequency region. In addition,
standard metallic waveguide couplers suffer from difficulty in
production, high costs and the ability to integrate with other
networks. The operation at higher frequencies requires a suit-
able waveguide. Thus, gap waveguide (GW) technology has
emerged as a potential replacement that could be employed in
such bands without any of the aforementioned restrictions [1],
[2]. As aresult, many coupler designs have been studied using
GW technology in recent years [3], [4], [S], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. However, none of them
is reconfigurable.

The demands for reconfigurable devices are increasing
because of the great flexibility and simple expansions they
offer for new usage conditions. Moreover, the ability to
reconfigure a wireless communication system has become a
necessity to save costs and provide the best performance for
various applications. Couplers are commonly used to build
a beamforming network and produce the required radiation
beams. A hybrid coupler, acting as a phase shifter, is also
capable of performing a power division function and a phase
shift. It is important to note that a typical coupler-based beam-
forming network can only produce limited beams because
of the standard phase differences such as 90° and 0°/180°.
But, it is typically required to have wide constantly con-
trollable phase differences for greater flexibility. The easiest
approach is to add a phase shifter after the power divider or
the hybrid coupler. However, the following three major issues
arise later: high insertion loss, significant phase change, and
enormous circuit size [17]. The radiation beams can be con-
stantly scanned over a large area if the coupler can give a
reconfigurable phase difference. That is why it is essential
to have a coupler with a broad phase adjustment range.

Reconfigurable couplers have garnered a lot of interest in
microwave integrated circuits with variable power-dividing
ratios [18], [19], [20], [21], and operating-frequency adjust-
ment [22], [23], [24], [25]. Only a few numbers of struc-
tures have been documented in the literature since the
reconfigurability in phase difference is more difficult than
that in frequency or power division ratio [26], [27], [28],
[29]. Varactor-tuned couplers were investigated to complete
the continuously adjustable differential phase at a given fre-
quency in order to increase the phase coverage. Generally,
tuning ranges between 45° and 135° can be provided with the
current phase-reconfigurable couplers. The periodic employ-
ment of varactors as transmission line loads allows control
voltage modification of the equivalent circuit capacitance
which supplies a 30°-150° phase difference [26]. In [27],
a varactor-loaded branch line coupler ensures equal power
division with a configurable phase difference of 45° to 135°.
The implementation of an adjustable phase shifting unit for
the horizontal branch can cause the phase difference to be
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continuously set from 45° to 135° [28]. In [29], a tunable unit
was made up of open and shorted stubs, tunable capacitors,
and two eighth wavelength linked lines which achieved a 0° to
180° phase difference. All the reported phase tunable capac-
itor designs are lumped elements based and their operating
frequencies are mostly below 3 GHz.

In this study, a novel mechanically reconfigurable com-
pact SIGW-based hybrid coupler is presented. A variation of
adjustable amplitudes and phases are achievable by rotating
the MS surface of the top layer.

The paper is arranged as follows: In Section II, the
non-reconfigurable and MS tunable couplers are presented.
In Section III, the performances of both couplers are
discussed based on the experimentally validated results.
Section IV concludes this article.

Il. SIGW COUPLER DESIGN AND FABRICATION

A. SIGW DESIGN

Basically a gap waveguide is developed between two paral-
lel conducting metallic plates, one of which has a textured
surface made of pins or vias to produce a perfect magnetic
conductor (PMC) surface. The other layer has a perfect elec-
tric conductor (PEC) on top of the structure. These two layers
are separated by a gap height that is less than a quarter
wavelength of the PMC plate. As a result, a stop band that
prevents the parallel-plate modes from propagation can be
achieved in the PMC-PEC cut-off zone. Metal ridges are
interspersed between the textured plates to sustain the wave
in a certain direction. The waveguide is created in a small
space between the ridge and the top metallic plate, which
is typically filled with air but in our work it is filled with
a dielectric material which is known as substrate-integrated
waveguides (SIGW). The SIGW has more advantages over
ridge gap waveguide (RGW) with an air gap being replaced
by a dielectric material as it maintains a constant gap height
that minimizes the risk of possibility that this gap collapses
in the presence of stress or impact. The fabrication process is
also simpler (PCB-based). Another disadvantage of the RGW
with an air-filled structure is that it requires very accurate
CNC machining and its performance is unstable. Inside the
gap, a quasi-TEM condition is maintained over the ridge and
an electromagnetic (EM) leakage is stopped [30], [31]. So,
our design is carried out based on SIGW technology.

Based on SIGW technology, the unit cell of the current
design is composed of two parallel layers positioned as a
bottom Rogers RO4350B (¢, = 3.66) and a top Rogers
RO4003C (¢, = 3.55) substrates. In the bottom layer, the
ground and the conductor mushroom patches are connected
by vias. The directing ridge is positioned in the middle of
the unit cells to activate the desired propagating quasi-TEM
mode. Fig. 1 depicts the simulated dispersion diagram of the
unit cell and supercell. The dispersion diagram of the unit cell
covers the frequency range from 8.1 to 22.4 GHz as simulated
by the CST Eigen Mode Solver. The frequency range of
the supercell design is 8.6 to 22.1 GHz, and it is obvious
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FIGURE 1. Dispersion diagram of a) unit cell b) supercell.

TABLE 1. Dimensions of the unit cell and supercell.

Parameters p rl 2 a hl h2 w
Values (mm) | 182 | 04 | 1.6 | 2.6 | 1.524 | 0.203 | 1.6

that the ridge lowers the stopband by approximately 5.6%.
Fig. 2 demonstrates the feeding network of the proposed
SIGW and the surface current distribution for two distinct
frequencies, one is in the band and the other is out of the
band. At 15 GHz, it is evident that the wave is constrained
while leaking occurs at 5 GHz which is out of the band.
Table 1 shows all the dimensions of the unit cell and supercell
structures. It is determined that 1.6 mm is the optimal ridge
width value. In essence, by adapting the strip line impedance
equation, the characteristic impedance of the ridge can be
determined. A small deviation from the results is predicted
because the structure consists of two different substrates with
close ¢, values.

For the measurement of the scattering parameters of the
coupler, a standard RF edge SMA connector should be con-
nected to the ridge which is difficult to be implemented.
A transition shown in Fig.3 is designed for this purpose.
A microstrip line of characteristic impedance of 50 2 con-
nects the ridge line to the SMA connector. The microstrip line
is implemented on the top layer with a thickness of 0.45 mm
and it contacts the upper surface of the ridge as shown in
Fig. 3. Table 2 shows the microstrip transition dimensions.
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(b)

FIGURE 2. SIGW feeding network surface current distribution at (a) 5 GHz
(b) 15 GHz.

TABLE 2. Dimensions of the microstrip-SIGW transition.

Parameters t 1 f g
Values (mm) | 0.8 | 3.7 | 045 | 2.6

FIGURE 3. SIGW microstrip line transition.

TABLE 3. Dimensions of the new mm-Wave unit cell.

Parameters b r3 r4 h3 h4
Values (mm) | 2.5 | 0.4 1 0.504 | 0.203

The bottom layer of the coupler is illustrated in Fig. 4,
it contains four reciprocally coupled printed ridge gap waveg-
uide (PRGW) lines. The coupling section is a circular junc-
tion patch with a 45° elliptical slot in the center of those lines.
In addition, two more vias are added at an orthogonal angle
to the slot axis. This slot and vias are intended for achieving
a better power distribution in 3 dB hybrid coupler. This cou-
pler’s design is comparable to a typical microstrip or bulky
wave couplers. According to the basic design concept [5]
of the hybrid coupler, if two parallel lines have character-
istic impedances of Zy, the other two parallel lines should
have impedances of Zy/~/2. The lengths L1 and L2 are not
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FIGURE 4. Bottom (Ridge) layer of the proposed coupler.
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FIGURE 5. E-field distribution at 13.5 GHz. a) slot is left inclined b) slot is
right inclined.

precisely identical to the Ag/4 value, two correction factors
are provided for designing the SIGW coupler effectively as
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FIGURE 7. Effects of additional vias on the scattering parameters of the
proposed coupler.

given by Egs. 1,2.

L1 = (1+Db)x (Ag/4). )
L2 = (14¢) x (Ag/4). )

where b and c represent two additional correction factors.
The starting values of b and ¢ can be set to zero, but the
final values must be tuned depending on the optimal passband
and the isolation performance. The optimum values for L1
and L2 are 3.1 mm and 5.8 mm, respectively. The elliptical
slot’s location specifies the isolation port to be used. The
isolation is port 2 if the slot is slanted to the left; if it is
inclined to the right, the isolation is port 4. Fig.5 demonstrates
the electric field distribution in terms of elliptical slot
placement. In order to improve the power distribution, two
vias were also placed at the bottom of the circular patch. The
optimized dimensions of the elliptical slot are d1 = 1.8 mm
and d2 = 4.6 mm and the diameter of the circular patch
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FIGURE 9. Proposed MS design a) Unit cell b) Metasurface.

d3 = 7 mm. The scattering parameter variations with the
elliptical slot dimensions d1 and d2 are depicted in Fig. 6.
It can be seen that the center frequency shifts depending
on the size of the slot. The optimized values of d1 and d2
are obtained by changing one parameter while keeping the
second one constant and vice versa. If d1 and d2 decrease,
the center frequency shifts to higher frequencies. If d1 values
increase, the shifting occurs at lower frequencies. An increase
in the d2 does not affect the center frequency. The effects
of additional vias in term of power division are shown in
Fig.7. It is evident that huge losses occur between 14 GHz
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FIGURE 12. Proposed MS-based reconfigurable coupler.

and 15 GHz without vias. Adding two extra vias helps in
the equal power division. It is important to point out that this
structure can be easily extended to operate in the mm-Wave
band for 5G/6G applications. This can be achieved by the
precise design of the unit cell of the ridge layer of the coupler
as depicted in Fig. 8. This dispersion diagram shows that
the artificial magnetic conductor (AMC) vias can generate
a bandstop to accommodate a quasi-TEM mode over two
subbands of mm-Wave applications with a BW more than
18 GHz. The material layer is changed to Rogers RT5880 and
the dimension is changed according to the values in Table 3.
It is considered for the future work of the current structure.
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(© (d)
FIGURE 13. Fabricated coupler (without MS) a) bottom view of ridge layer
b) top view of ridge layer c) bottom view of the gap layer d) top view of
the gap layer.

(d)
FIGURE 14. Fabricated reconfigurable coupler (with MS) at different
rotated angles a) 0° b) 30° c) 45° d) 90°.

(©)

B. METASURFACE DESIGN

Fig. 9 demonstrates the Jerusalem cross-unit cell and the
MS design. The finite size MS is investigated in order to
determine its effective permittivity (e,), permeability (w,),
reflection, transmission and absorption performances. The
plane wave analysis is performed by the CST simulator.
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FIGURE 15. Measurement setup of proposed couplers using ROHDE &
SCHWARZ ZVB20 vector network analyzer a) without reconfiguration b)
reconfigurable coupler.
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FIGURE 16. Scattering parameters of the coupler.
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FIGURE 17. Phase responses of port 3 and port 4.

The basic formulas for the MS’s equivalent impedance Z, the
refractive index n, u,, and €, can be written as [32]:

P (G bt 1
(1=811)%—53

3)
X = 1/[2821(1/8% + S3)]. 4
dhod — x + /1 — X2 (5)

where ko, d are the wave number and MS equivalent thick-

ness, respectively.
€ = Re{n/Z} and u, = Re{nZ}. (6)

The scattering parameters and the normalized absorption
rates are shown in Fig.10. One can see that the MS behaves as
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FIGURE 18. Scattering parameters of reconfigurable coupler at different angles a) 0° b) 30° c) 45° d) 90°.

a reflector over the whole operating frequency range except
between 16 and 17 GHz, it is an absorber. In the frequency
range from 16.4 to 16.7 GHz, the MS is a left-hand meta-
surface with a negative index of refraction n, negative u,,
and negative €, values. It is a right-hand gap absorber from
16.7 up to 17 as shown in Fig. 11.

The proposed reconfigurable coupler design is based on
Jerusalem cross MS as depicted in Fig.12. The top layer of the
SIGW is circularly cut for the MS to be mechanically adjusted
and rotated. The diameter of the rotating surface is 20 mm.

C. FABRICATED COUPLER

This section is devoted to the fabrication of the proposed cou-
pler using PCB technology. Concerning the coupler structure,
it is divided into two main layers. The gap layer includes the
dielectric gap and top ground. The ridge layer comprises the
vias, the ridge and the feeding network including the transi-
tion as depicted in Fig. 13. For the sake of reconfiguration
the top ground of the gap layer includes a separate interior
circular section of the MS structure which can be rotated
for different angles as shown in Fig.14. Fig. 15 illustrates
the measurement setup for measuring the scattering param-
eters of both couplers using network analyzer ROHDE &
SCHWARZ ZVB20.

IIl. RESULTS AND DISCUSSION

Concerning the non-reconfigurable coupler, Fig. 16 depicts
the simulated and measured scattering parameters of the pro-
posed design. One notices that it operates 12.14 to 15.4 GHz
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under -10 dB level. Also, the coupling coefficients at port
3 and port 4 are nearly 3 dB with isolation at port 2.
Fig. 17 shows the phases of the scattering parameters at ports
3 and 4. One can infer that the phase difference between
them is nearly 90°. It is clear that the proposed coupler is a
SIGW-based technology that achieves the hybrid parameters
performance of the conventional couplers. The strong agree-
ment between the measured results and the simulated ones
validates all the new findings of the study.

Concerning the proposed reconfigurable coupler, the top
MS layer is mechanically rotating in counter-clockwise direc-
tions to achieve different scattering parameters at ports 3 and
4. As shown in Fig.18 the reflection coefficient values vary
with rotation keeping a persistent common frequency band.
The widest bandwidth (UBW) occurs between 11.94 GHz
to 16.91 GHz at 150° while the narrowest one is between
13.07 GHz to 16.34 GHz at 30°. The common BW among
the different angles of incidence is approximately 4.2 GHz.
The return loss is almost below -20 dB for all rotation angles.
The isolation is greater than 15 dB for all cases. As can be
observed, the two-output amplitude responses are slightly
changing according to the rotation angle. The output power
remains steady between 2.6 dB and 4.8 dB range in the
middle as shown in Fig 19. However, the power fluctuates
in port 4 at 8 dB at the corner of the operating frequency.
As demonstrated in Fig. 20, one can notice that the phase
variation at ports 3 and 4 cover the range from 180° to -
180° keeping the phase difference between them (£S41- £S31)
tunable in the range from 77° to 105°. The maximum phase
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TABLE 4. Comparison between the proposed coupler and previous studies.

Ref. Technology Freq. (GHz) | FBW(%) | Return loss (dB) Tuning types Phase difference | Additional insertion loss (dB)
[13] GGW 13-15 14.3 <-20 Non-tunable 90+ 1 NA
[14] PRGW 27.5-31.5 13 -23 Non-tunable 90+ 5 NA
[15] RGW 10.36-11.77 13 -34 Non-tunable 84°-94° NA
[22] Microstrip (MS) 2.1-2.45 15.2 <-20 Frequency 0°-10° NA
[26] Microstrip (Varactor) 2.2-2.75 31.6 <-10 Frequency & Phase 30°-150° <14
28] Microstrip (Varactor) 0.9-1.1 20 <-10 Phase 45°-135° <3
[29] Microstrip (Varactor) 2.4 fe 20 <-10 Phase 0°-180° <2.2
This work MS-based SIGW 11.94-16.91 34.45 <-20 Phase 77°-105° <0.2
257 200 -
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FIGURE 19. Response of rotation angle on output ports a) S3; b) S;;.

difference of 105° is attained with the MS at 0° position,
while a rotation of 90° achieves the lowest phase difference
of 77°. Various rotation angles can be employed to produce
different phases in the range from 77° to 105°.

Table 3 provides an extensive comparison of the proposed
design with previously reported tunable couplers. Firstly,
to the best of the authors’ knowledge, our proposed design
is the first adjustable phase coupler in the Ku band/mm band
ranges. That is why we compare our work with reconfigurable
couplers in different frequency ranges. Our work supplies
the widest FBW compared to other studies. For example,
GW-based hybrid couplers reported in [13], [14], and [15]
provide a fixed phase difference. The currently proposed
coupler design can provide a narrower phase tuning range
in comparison to the previously reported ones [26], [28],
[29]. These authors used many varactor diodes to be able
to tune the phase. However, using this type of lumped ele-
ment causes huge losses at high frequencies. The frequency
reconfigurable coupler in [22] employed an MS to adjust
the frequency however the phase difference was kept fixed.
Finally, our obtained results show that the additional insertion
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loss of the proposed coupler is minimum compared to the
other studies. It is maintained within the acceptable range.

IV. CONCLUSION

In this paper, a novel reconfigurable MS-based small UWB
hybrid circular coupler is developed utilizing the SIGW tech-
nology. To the best of the authors’ knowledge, our proposed
design is the first adjustable phase coupler in the Ku band/mm
band ranges. The findings obtained from the simulation show
that phase reconfiguration can be accomplished by rotat-
ing the MS around the source coupler’s central axis. The
proposed design is continuously providing a variable phase
difference over a fractional bandwidth of 34.45% between
77° and 105°. It is manufactured using PCB technology
and measured using a network analyzer. The findings from
simulation and measurement exhibit good agreement. This
novel proposed coupler can be best used as a traditional beam-
forming network. It can also be used for beam steering by
changing the rotating angle or the operating frequency. So,
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it could be a good candidate for radar applications. More-
over, it could also be used for generating the well Grid Of
Beams (GOB) networks. The current design supplies the
widest FBW compared to other studies. It is very important to
point out that our design provides a simple, easy fabrication
and implementation, compact in size, and easy-to-integrate
solution with array antennas etched on the top layer of the
structure as slot antennas without adding extra PCB materials
to construct the antenna array. These novel features are solely
comparing our design with all others mentioned in the litera-
ture. Also, the amplitude variation can be adjusted to change
the beamwidth of the generated beams in the beamforming
network. This work is being extended by changing the unit
cell material and dimensions in the mm-Wave band.
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