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Abstract— Industrial robots are traditionally programmed
by hard-coding the desired motion into them. That approach,
however, costs significant time and effort and shows little to no
promise in transferring human skills to robots. Programming
by demonstration (PbD) is an alternative approach that allows
robots to learn tasks from demonstrations. Because of its several
advantages over the traditional method, PbD is particularly
suited for tasks encountered in assembly operations, the most
typical of which is the peg-in-hole task. A successful PbD
implementation for a peg-in-hole task requires that the peg
should still be inserted into the hole even under situations
that are not encountered during the demonstrations. Previous
research in the field shows that the success rate of a peg-in-hole
task under such cases varies greatly. In this study, we use a
UR5 manipulator to experimentally investigate how the success
rate of a peg-in-hole task changes with respect to the novelty
of the task, quantified in terms of the distance of the hole to its
original position. It is found that the success ratio decreases as
the novelty of the task increases. To increase the performance,
the use of strategies that alter the robot’s motion dynamically
in the run time is suggested for future work.

I. INTRODUCTION

Robots, by their very definition, are reprogrammable to
perform a variety of tasks. Traditionally, this reprogramming
is done by the hard-coding of the desired motion into the
robot. However, the time and effort associated with this
approach have led the field to consider some alternatives.
Programming by Demonstration (PbD) is one such alterna-
tive that attempts to teach the task to the robot by providing
demonstrations of it.

The advantages of PbD over the traditional programming
can be listed as follows [1] [2] [3] [4] [5]:

• PbD takes less time and effort. In an industrial setting,
the reduction in programming time tends to translate
into an increase in productivity and reduction in cost.

• PbD does not require a robotics expert to be performed.
This not only eliminates the need to rely on an expert
but also increases the accessibility of robots by the
general public.

• PbD shows much more promise in transferring human
skills to robots. Traditional programming often fails to
capture the intricate details of a given task.
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Robotic assembly is one of the largest areas of robotics
that can greatly benefit from these advantages. However,
there are still problems to be tackled for a more widespread
adoption of PbD in the industry [5]. For the scope of this
paper, there are two prominent issues that are addressed by
the research in the field.

The first issue is the development and implementation
of overarching frameworks that address the learning of the
whole assembly process from start to finish [4] [6]. Such
frameworks often rely on vision-based systems to decom-
pose a demonstrated assembly operation into a sequence of
smaller tasks. For example, a typical assembly operation
includes many peg-in-hole tasks [5]. These tasks are then
learned using methods such as Gaussian Mixture Mod-
els (GMM), Hidden Markov Models (HMM), or Dynamic
Movement Primitives (DMP). The proposed frameworks, on
the other hand, represent the relationship between the indi-
vidual tasks and the overall process, so that an appropriate
sequence of tasks can be generated when encountered with
a novel assembly operation [4] [7].

The second important issue is the PbD’s need to provide
generalizability, specifically for the tasks that are encountered
during assembly operations. Generalization refers to the idea
that the objective of a task should still be accomplished, even
in novel cases that are not encountered during the demonstra-
tions. For example, a peg-in-hole task is generalized if the
peg can still be inserted into the hole successfully, even if the
hole is at a different position, or its dimensions are slightly
different. To accomplish this, learning methods such as DMP
can generate new trajectories for novel hole and peg poses,
using the data recorded during the demonstrations [4]. Even
though the methods such as DMP can provide some level
of generalization capability, there is no guarantee that all the
generalizations of a task will be successful. For example, the
literature suggests that the success rate for a peg-in-hole task
can be as high as 90% [4], or as low as 50% [8]. Trivially, the
demonstrations themselves can be replayed with a practically
100% success rate. As the similarity of the task to the one
for which the demonstrations are performed decreases, the
success rate is also expected to drop.

This study explicates the relationship between the nov-
elty and the success rate of a peg-in-hole task. To do so,
demonstrations are performed on a UR5 manipulator and the
DMP method is applied to generate trajectories for varying
hole positions. The necessary background information on
this process is discussed in section II. Section III outlines
the methodology used for the experimental evaluation of
the success rate. The results of the experiments are then
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presented in section IV. Finally, section V provides the
conclusions with a discussion on the future work that can
be undertaken to increase the success rate.

II. THEORY

This section outlines the steps of the PbD process and
highlights the aspects that are relevant to this particular study.
The PbD process consists of three stages [1]. The first is the
acquisition of data from the demonstrations. In this step, a
set of variables are recorded as the task is performed by a
teacher. The second step is the encoding and representation
of this data to obtain a model of the demonstrated task. This
is the step at which learning occurs. In the third step, the
task is implemented so that the robot can perform it by
itself. Additionally, some literature also considers a fourth
step: refinement [3] [9]. This last step aims to enhance the
adaptiveness and quality of the execution, generally with the
aid of other learning methods such as Reinforcement Learn-
ing (RL) [3]. Throughout this document, these steps will be
referred to as demonstration, representation, implementation,
and refinement.

A. Demonstration

The demonstration is the step at which the robot observes
the task performed by a human teacher. Decisions about how
and what to observe as a demonstration constitutes the two
main design choices relating to this step. An answer to the
question of how to observe is given by the preferred modality
of the demonstration, whereas what to observe is answered
by the selection of variables to record.

The modality of demonstration describes the means by
which the robot observes the demonstration. For example,
the use of sensors on a human teacher, teleoperation, and
kinesthetic teaching may all be given as examples to dif-
ferent modalities [10]. In this study, the demonstrations are
performed using the kinesthetic teaching modality using the
free-drive functionality of UR5.

The second important decision about the demonstration is
the set of variables to record. This information constitutes
what the robot sees as a demonstration. On a low-level,
either task space or joint space variables can be recorded.
Alternatively, one can record high-level state-action pairs.
However, the definitions of those high-level states, such as
"holding an object", "moving forward", etc. still need to be
defined in terms of low-level variables. This study records
joint space trajectories via ROS, as they are published under
the \joint_states topic by the UR ROS Driver.

B. Representation

The representation step consists of encoding the acquired
data in such a way that a model of the demonstrated task is
constructed. Using this model, the robot can not only mimic
the demonstration but learn the task from it. That is, it gains
the capability to generalize the task for novel situations.

Two main ways in which the representation can be done
are often referred to as the high-level and the low-level
representations [3]. The high-level representation encodes the

demonstrations in a symbolic way, generally as a directed
graph between states. The low-level representation, on the
other hand, works with the trajectories of the recorded
variables. The model is then generated using one of the
following three commonly used methods: Hidden Markov
Models (HMM), Gaussian Mixture Models (GMM), and
Dynamic Movement Primitives (DMP) [1] [3].

HMM and GMM use a statistical approach to create a
model from a given set of demonstrations, whereas DMP
takes a dynamical systems approach. This study employs the
DMP method to learn from the demonstrations.

1) Dynamic Movement Primitives: DMP is a method
that uses the equations of a dynamical system to generate
trajectories [11]. When doing so, it uses the dynamics of a
second-order system due to its well-known convergence and
stability properties. The equation for a mass-spring-damper
system with the equlibrium position y = g can be arranged
in the following way:

ÿ = αy (βy (y − g)− ẏ) (1)

The coefficients αy and βy are generally selected in a way
that makes the system critically damped, which corresponds
to αy = 4βy . This equation could be used to generate
trajectories that converge to any desired goal position y =
g, starting from any initial condition. However, doing so
would also fully determine the velocity with which the
generated trajectory is followed. To provide an adjustable
curve velocity to the solution, a new variable z is defined
to be the original curve velocity multiplied by some time
constant τ of our own choice.

τ ẏ = z (2)

Equation (1) can be re-written using this new variable z.
By substutiting ẏ = z

τ , ÿ = ż
τ and multiplying the whole

equation by τ2 , the following equation is obtained.

τ ż = αz (βz (y − g)− z) (3)

Here, αz = ταy and βz = τβy . The condition to make
the system critically damped is still αz = 4βz . Equations
(2) and (3) define a second-order system using a system of
two first-order differential equations. Any trajectory that is
generated using the dynamics of this system would end up
showing the characteristics of a critically damped second-
order system response. However, the method requires the
capability to express any arbitrary curve so that it can encode
the demonstrations. To do so, deviations from the unforced
system response are necessary. All the effects that correspond
to these deviations can be provided by a forcing term, which
is added to the (3) as follows:

τ ż = αz (βz (y − g)− z) + f (4)

To maintain the stability and convergence characteristics
of the second-order system, we require the forcing term f
to approach zero, as the trajectory approaches the goal. To
express this idea, we use a phase variable x, and express
the driving function as a function of it. A reasonable choice
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for the phase variable would be a quantity that represents
how much of the task is completed so far. That is, the
phase variable is selected to be 1 at the initial condition, and
approach to 0 as the trajectory approaches towards the goal.
An exponential decay function of the form x = e

−αxt
τ has

this characteristic and can conveniently be used as a phase
variable.

τ ẋ = −αxx (5)

Finally, the DMP method defines the following forcing
term as a function of the phase variable [11].

f(x) =

∑
ψiwi∑
ψi

x(g − y) (6)

In this equation, ψi are Gaussian kernels given by the
expression:

ψi(x) = exp(−hi(x− ci)
2) (7)

where ci are the centers of the Gaussian kernels and hi
are arbitrarily selectable coefficients describing their width.

To find the weights wi, we formulate a function approx-
imation problem, first by susbtutiting z = τ ẏ and ż = τ ÿ
into (4) to express the equation only in terms of y, ẏ, ÿ.

τ2ÿ − αz (βz(g − y)− τ ẏ) = f (8)

Given a demonstration ydemo and its derivatives ẏdemo,
ÿdemo, the required driving force to follow that demonstra-
tion can be solved from (8) as follows:

ftarget = τ2ÿdemo − αz (βz(g − ydemo)− τ ẏdemo) (9)

The weights wi is to be selected such that the f(x)
computed using (6) approximates ftarget. The solution to
this problem can be found using locally-weighted regression,
and is given as: [11]

wi =
sTΓiftarget

sTΓis
(10)

where

Γi =


ψi(x1) 0

ψi(x2)
...

0 ψi(xN )



s =


xi
x2
...
xN

 (g − y0) ftarget =


f1
f2
...
fN


where x1, x2, ..., xN denotes the values of the phase

variable x at the times corresponding to each sample of
the recorded demonstration. Similarly, fi denotes the ftarget
calculated using the i-th index of ÿdemo, ẏdemo and ydemo.

Equations (2), (4), and (5) define a system of three first-
order differential equations. Once the weights are known,
this system can be used to generate a trajectory between any
novel initial condition and goal. This is the way in which
the DMP method is used to generalize a task.

There are two implementational details of DMP that can
be discussed in addition to its theory. The first one is the ex-
tension of the formulation presented above to multi-degree-
of-freedom systems. In the case of a robot, the DMP method
can be used simply by applying it separately to individual
joint variables [11]. The second issue is the use of multiple
demonstrations. There exist several ways to incorporate data
coming from multiple demonstrations into this method. For
example, some studies first use the GMM to generate a single
trajectory that is representative of all the demonstrations
and then use DMP to learn it [4]. Alternatively, the DMP
formulation can be used as it is, just by using the average
ftarget in the function approximation problem. To do so, the
ftarget computed using the demonstration trajectories ÿdemo,
ẏdemo and ydemo have to be added index by index. Con-
sidering the fact that the demonstrations do not necessarily
have the same time span, some form of stretching might be
required at this step. Dynamic Time Warping (DTW) is one
of the most commonly used algorithms for this purpose [4].
However, simpler stretching methods also suffice especially
if the demonstration durations do not differ largely.

C. Implementation

After the representation step provides a model, the robot
can start performing the task. To do so often requires the
implementation of one or several types of controllers. For a
low-level representation approach, these controllers take the
form of joint space position and velocity controllers. In this
study, the trajectory generated by the DMP method is sent to
the UR5 via the Joint Trajectory Action interface, provided
by the UR ROS Driver.

D. Refinement

The last step of the PbD process can be taken as the
refinement of a learned model [9]. This can be done ei-
ther by using human feedback on the performance of the
execution or by the use of other machine learning methods
such as RL. This extra step, if incorporated, provides two
main advantages to the PbD process. The first advantage is
the optimization of the task. It is often the case that the
demonstrations are performed in a sub-optimal way by the
human teacher, with respect to some desired metric. The
refinement process can improve the efficiency and quality
of the execution by optimizing that metric. Secondly, the
refinement process with human feedback can be used as
means to gather more demonstrations only as needed. Doing
so reduces the number of demonstrations initially required
to start executing the task.

III. METHODOLOGY

This section outlines the specific procedures and equip-
ment used for each of the steps of the PbD process.
Throughout this study, a hole of 12 mm diameter is used
in conjunction with a peg of 10.2 mm diameter. During the
demonstrations, the hole is maintained at a fixed position in
the workspace of the robot. The initial conditions for each
demonstration are altered without any pattern while keeping
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the goal position the same. Throughout this document, this
position will be referred to as the original hole position. The
peg-in-hole task is then demonstrated by a human teacher on
a UR5 manipulator using kinesthetic teaching modality by
manually inserting the peg into the hole, positioned at the
original hole position. Fig. 1 shows the manner in which the
demonstrations are performed.

The joint space trajectories corresponding to the demon-
strations are recorded into the computer via the UR ROS
Driver. The DMP method is applied to learn from these
trajectories. The resulting dynamical system is used to gen-
erate novel trajectories for varying hole positions. There are
a total of 32 hole positions, selected at increasing distances
from the original position. They are arranged at 4 distance
levels, forming co-centric circles with radii of 30 mm, 60
mm, 90 mm, and 120 mm around the original position. On
each circle, there are 8 holes placed with equal spacing of
45◦. Fig. 2 shows a diagram of the hole positions.

Fig. 1. Demonstrations are performed using a UR5 manipulator

Fig. 2. Hole positions shown as circles, at their corresponding task space
coordinates

For each of the 32 trials, the hole is positioned at the

designated place. The trajectory generated specifically for
that hole position is executed on the robot. In the cases in
which the robot cannot insert the peg into the hole, it goes
into a protective stop due to the reaction forces it experiences.
These cases are taken to be failures. Trials at which the peg
is inserted into the hole without a problem are accepted to
be successful.

IV. RESULTS

Demonstrations are performed according to the methodol-
ogy outlined in the previous section. The joint space trajec-
tories associated with these demonstrations are shown in Fig.
3. Additionally, the corresponding task space trajectories are
computed and provided in Fig. 4. Two important remarks
can be made about these demonstrations.

The first remark is about the final configurations. Even
though the task space trajectories all terminate at the fixed
hole position indicated by the red circle in Fig. 4, the joint
space trajectories do not have exactly the same final values.
That indicates that even though the peg is inserted into the
same hole in all demonstrations, its final orientation and the
depth of penetration into the hole are slightly different at
each time.

Fig. 3. Demonstration data shown in the joint space

A second remark can be made about the shape of the
curves followed by the task space demonstrations. As can
be seen in Fig. 4, they include many maneuvers to adjust
the orientation of the peg and its alignment with the hole.
This results in patterns where the peg approaches the hole
with a long and complicated path, instead of following the
shortest path. In one aspect, this constitutes one of the ways
in which the human demonstrations are imperfect, whereas
on the other hand, this is precisely the type of intricate detail
that the PbD attempts to capture.

The trajectories recorded during the demonstrations are
fed into the DMP method. The resulting dynamical system is
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Fig. 4. Demonstration data shown in the task space, computed using the
forward kinematics

used to generate 32 trajectories, each with a goal correspond-
ing to a different hole position. For the sake of comparison
between them, the initial condition for all these solutions
is taken to be at a location directly above the original hole
position. Fig. 5 shows a task space plot of the hole positions
in black circles and the generated trajectories in red dashed
lines.

The holes are placed at their designated locations and
the trajectories are executed. The corresponding results are
shown in Fig. 6. The hole locations that are highlighted
in green are the ones at which the task is successfully
executed. Similarly, the hole locations that are highlighted
in red indicate the failures. It is worth mentioning that
each individual trial is performed several times. Since the
hole clearance is well above the repeatability of the UR5
manipulator, the success or failure of the task at a specific
hole location remains the same between all repetitions.

Fig. 5. Hole positions (black circles), and the generated trajectories (red
dashed lines)

The hole positions are organized along circles with in-
creasing radii. On each circle, there exist 8 holes, with 45◦

spacing. As can be seen from Fig. 6, the success at any
radius level is not uniform. That is, there are some cases

where the task fails even performed at the same distance
from the original hole position. However, there does not seem
to be a systematic influence of the angular position of the
hole to the failure. This effect of local failure or success at
a specific distance can be explained by the way in which
the generated trajectory approaches the hole. Since DMP
mimics the geometric characteristics of the demonstrations,
the curvature characteristics of the curves shown in Fig. 4
contribute to the success or failure in non-obvious ways. On
the other hand, there exists a clear relationship between the
radius of the circle on which the hole is positioned, and
the success ratio for the trials along that circle. Using the
distance from the original hole position as a metric for the
novelty of the task, it is found that the success ratio of a
peg-in-hole task, learned using the DMP method, decreases
as the novelty of the task increases. This relationship is most
clearly shown in Fig. 7, where the horizontal axis shows the
distance of the hole from the original hole position, and the
vertical axis, the success rate of the trials performed at that
distance.

Fig. 6. Holes at which the task was successfull (green) or not (red)

V. CONCLUSIONS

PbD is an approach to robot programming that has many
benefits over the traditional method. These benefits, such as
human to robot skill transfer, are of great importance to the
field of robotic assembly. Concerning the application of PbD
methods in robotic assembly, one of the most important aims
is the generalization of a learned task. Since a peg-in-hole
type of task is commonly accepted to be the most typical
example of an assembly task, the generalization performance
of a PbD method can be investigated by applying it to novel
peg-in-hole tasks. This study, in particular, experimentally
evaluates the success of novel peg-in-hole tasks learned from
demonstrations using the DMP method.

The novelty of a task is an aspect that is not easy to
quantify. However, for a simple peg-in-hole task, the distance
of the hole position at which the trial is performed to the
position at which the demonstrations were gathered can be
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Fig. 7. Success rate vs the distance from the original hole position

taken as a metric for the novelty of the task. Similarly, the
success ratio of the trials performed at a specific distance
away from the original position can be used as a metric for
the generalization performance.

To obtain an experimental relation between these metrics,
the process of PbD is applied in the following fashion. The
demonstration step is carried out by recording the joint space
trajectories encountered during the execution of a peg-in-hole
task by a human teacher. In the representation step, recorded
demonstrations are used to learn the task using the DMP
method. The dynamical system defined by the DMP method
is then used to generate novel trajectories for 32 different
hole positions. These hole positions lie along 4 co-centric
circles with increasing radii, so that the effect of distance
can be tested. The generated trajectories are executed on a
UR5 manipulator. Cases at which the robot entered into a
protective stop due to high reaction forces are taken to be
failures. The other cases in which the peg is successfully
inserted into the hole are accepted to be successful. The
success at each hole location and the success ratio at different
distances from the original hole position are evaluated.

The results show that the generalization performance of
a peg-in-hole task, performed using the DMP method, de-
creases as the novelty of the task increases. The success ratio
obtained at the holes 30 mm away from the original position
is 62.5%, which agrees with the results previously found in
the literature [8] [4]. As the distance increases, however, the
success ratio rapidly drops. For the hole positions 120 mm
away from the original position, all trials result in a failure.

It is worth mentioning that even though these results
clearly show the relationship between the novelty and the
generalization performance, they are still dependent on the
particularities of the experiment. The success ratio for each
distance level could have been increased by reducing the
required depth of penetration into the hole or increasing
the clearance of the hole. However, it is expected that the
decreasing relationship between the success ratio and the
distance would remain the same, even though the particular

success ratios can change. A similar thing can be said
about the quality of the demonstrations. The quality of the
demonstrations might affect exactly which hole positions fail
or not. It might be possible to find another human teacher
for which some of the failed trials would result in success.
Nevertheless, the relationship shown in this study is still
expected to hold. The specific effects of the characteristics
of demonstrations on the failure and success at particular
positions is a topic for future studies. For example, it can be
speculated that if most of the demonstrations are performed
by approaching the hole position from left, the method may
show more success in generalizing the task successfully for
novel hole positions along that direction.

The future work on the topic includes strategies using
which the success rate can be increased for any hole loca-
tion. The most prominent category of such strategies is the
algorithms that allow the robot to maneuver during the run
time. Importantly, force feedback can be used as a way for
the robot to understand if it is approaching the hole correctly
or not. Novel algorithms that constitute how such a task can
be performed are an important topic for future research.
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