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ABSTRACT

High dynamic range (HDR) imaging enables to immortalize natural
scenes similar to the way that they are perceived by human observers.
With regular low dynamic range (LDR) capture/display devices, sig-
nificant details may not be preserved in images due to the huge dy-
namic range of natural scenes. To minimize the information loss and
produce high quality HDR-like images for LDR screens, this study
proposes an efficient multi-exposure fusion (MEF) approach with a
simple yet effective weight extraction method relying on principal
component analysis, adaptive well-exposedness and saliency maps.
These weight maps are later refined through a guided filter and the fu-
sion is carried out by employing a pyramidal decomposition. Exper-
imental comparisons with existing techniques demonstrate that the
proposed method produces very strong statistical and visual results.

Index Terms— High dynamic range, multi-exposure image fu-
sion, principal component analysis, saliency map, guided filtering

1. INTRODUCTION

High dynamic range (HDR) technology aims at producing high qual-
ity images similar to human perception. However, the dynamic range
gap between high contrast scenes and low dynamic range (LDR) cap-
ture/display devices causes information loss in highlights and shad-
ows [1]. In order to minimize distortions and detail loss, i.e., to cap-
ture and display high quality images, there are three main approaches:
(i) using HDR compatible capture and display devices, (ii) employ-
ing tone-mapping operators to map HDR onto LDR displays, and (iii)
using multi-exposure LDR fusion (MEF) to create HDR-like content
for LDR screens [2]. The user-grade technology manufacturers gen-
erally prefer to use MEF to obtain high quality LDR images, since
MEF has significantly lower cost than hardware-based solutions; and
with MEF, it is also possible to avoid tone-mapping related problems
such as low-subjective contrast and color saturation [3, 4].

MEF mainly aims at keeping the most informative parts of each
exposure image via extracting weight maps, and then it blends them
into a single HDR-like image [1]. There are several MEF studies
present in the literature. In the milestone study of Mertens et al. [1],
a weight map extraction scheme is proposed which is based on con-
trast, saturation and well-exposedness. The fusion of the input stack
is carried out by taking the Gaussian pyramid of weight maps and
the Laplacian pyramid of exposures, which is inspired from Burt and
Kolczynski [5]. In a recent study of Lee et al. [6], a weight map
is formed by employing an adapted version of well-exposedness of
Mertens and a second map is characterized via the gradient informa-
tion in each exposure. Finally, a pyramidal image decomposition is
employed to carry out the fusion process. In Li and Zhang [7] (Li18),
convolutional neural networks (CNNs) are employed for MEF. The
first layer of a pretrained classification network is used for feature
extraction. Then, local visibility and temporal consistency maps are

extracted and adopted for the weighted fusion operation. In Liu and
Leung [8], a method is proposed for both MEF and decolorization.
In this study, the local gradient information of each exposure is ex-
tracted and provided to a CNNs model. The proposed algorithm pro-
duces satisfying results, however it can operate on stacks consisting
of three exposures only. In Hayat and Imran [9], the weight map char-
acterization scheme of Li and Kang [10] is modified with the dense-
SIFT descriptor, and guided filtering is used to eliminate disconti-
nuities and noise in these maps. Finally, image fusion is conducted
via a pyramid decomposition approach. In the study of Li et al. [11]
(Li20), the method of Ma et al. [12] is investigated and improved
by forming adopted weight maps via signal strength, signal structure
and mean intensities. Recursive downsampling and processing are
included into the model and halo effects are significantly reduced. In
a recent study of Ulucan et al. [2], a MEF algorithm is developed
which is based on linear embeddings of images and watershed mask-
ing. Weights maps are first characterized via linear embeddings of
exposure image patch spaces, while preserving local geometry of the
sampled manifold structure. These weight maps are then refined via
watershed masking to highlight most informative parts of each ex-
posure in the input stack. Lastly, the fusion process is performed
through weighted averaging.

As it can be deduced from above studies, each specific algorithm
generally differs in the way of extraction and/or characterization of
weight maps. Therefore, new weight map extraction methods will
enlighten the path leading to a general map formation framework.
To this end, in this paper, a novel MEF method is proposed to fuse
static exposure stacks. The weight map extraction algorithm relies on
principal component analysis (PCA), adaptive well-exposedness and
saliency map features. These maps are later refined by a guided filter,
and then exposure images are fused via a pyramidal decomposition.
The proposed method is compared with well-known MEF algorithms
and it demonstrates very strong outputs both statistically and visually.
To the best of available knowledge, this is the first time that PCA
is used for extracting weights in MEF. Furthermore, this is the first
study that modifies the well-exposedness (i.e., indicating brightness)
feature to be fully adaptive, while existing MEF algorithms employ
a fixed parameter and/or constant for well-exposedness. Finally, it is
worth mentioning here that saliency maps are used in this study to
mimic the human visual system (HVS) and give larger weights to the
“best” parts of images as in the primary visual cortex.

This paper is organized as follows. The proposed MEF tech-
nique is detailed in Sec. 2. Experimental results are presented and
discussed in Sec. 3. Lastly, a brief summary and possible future di-
rections for this study are given in Sec. 4.

2. THE PROPOSED MEF METHOD: PAS-MEF

A simple flowchart of the proposed method is given in Fig. 1. Given
the input exposures, there are three branches for extracting PCA,
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Fig. 1: A flowchart of the proposed MEF method.

adaptive well-exposedness and saliency maps. These maps are later
combined to obtain final fusion weights in order to output a fused
image via a pyramidal decomposition.

Weight extraction via PCA. PCA performs an orthogonal
transformation to obtain linearly uncorrelated variables from possi-
bly correlated data [13]. The correlated data is projected onto the
PCA space by taking advantage of the eigenvectors of the covari-
ance matrix. The first principal component is in the direction of the
highest variance (first eigenvector), while the second principal com-
ponent lies in the subspace perpendicular to the first one and the next
principal components are computed similarly. The representations
of data in the PCA space can be called as scores.

PCA has already been used in image fusion but, to the best of
available knowledge, it has not been employed in MEF studies [14].
Therefore, it is investigated in this study first by vectorizing 𝑁 num-
ber of gray-scale versions of exposure images 𝐼𝑛, 𝑛 = 1…𝑁, into
column vectors of the size 𝑟𝑐 ×1 where 𝑟 and 𝑐 represent the number
of rows and columns of each image, respectively. The obtained 𝑁
column vectors are then stacked into the columns of an 𝑟𝑐 ×𝑁 data
matrix, in which there are 𝑟𝑐 observations with 𝑁 variables each,
for calculating the scores of observations via PCA. Subsequently,
each variable-score vector is linearly normalized to have a range be-
tween [0 1], then reshaped back to an 𝑟 × 𝑐 matrix followed by a
simple smoothing Gaussian filter. Finally, 𝑁 number of PCA weight
maps (𝑃𝑛) are obtained with a sum-to-one normalization applied at
each spatial position. As an example, the extracted PCA maps of the
Venice stack are demonstrated in Fig. 2.

Weight extraction via adaptive well-exposedness. The well-
exposedness feature is initially introduced by Mertens. For a given
exposure image 𝐼𝑛, it is extracted for each red-green-blue channel
separately using a Gaussian curve as 𝑒𝑥𝑝

(

−(𝐼𝑛 − 0.5)2∕2𝜎2
)

where
𝜎 = 0.2. This weight aims at keeping pixel intensities which are
not too close to 0 (under-exposed) or 1 (over-exposed), hence it fa-
vors pixels in well-exposed regions with intensity values close to 0.5.
However, this exposedness feature sometimes can not sufficiently
preserve bright regions of short-exposure images, as well as dark re-
gions of long-exposure images [6]. To overcome this problem, Lee
proposed an adaptive well-exposedness based on the mean of pixel
intensities of exposure images. In this adaptive form, the constant
values of 0.5 and 𝜎 of Mertens are replaced with some functions of
the mean of pixel intensities of 𝐼𝑛 and its neighboring exposure im-
ages 𝐼𝑛−1 and 𝐼𝑛+1. However, there still exists a fixed constant pa-
rameter to calculate the 𝜎 value.

In this study, a fully adaptive weight calculation is proposed for
the well-exposedness scheme in order to allocate large weights for
dark regions when the image is a long-exposure, as well as for bright
regions when the image is a short-exposure. All computations are

Fig. 2: Weights for Venice. (Top-to-bottom) PCA maps, adaptive
well-exposedness weights, saliency maps, final fusion weights.

carried out on the luminance channel 𝑌𝑛 of 𝐼𝑛 as given in Eqn. (1),

𝐴𝑛 = 𝑒𝑥𝑝

⎛

⎜

⎜

⎜

⎝

−

(

𝑌𝑛 − (1 − 𝜇𝑌𝑛 )
)2

2𝜎2𝑌𝑛

⎞

⎟

⎟

⎟

⎠

(1)

where 𝜇𝑌𝑛 and 𝜎𝑌𝑛 represent the mean of pixel intensities and the
standard deviation of 𝑌𝑛, respectively. This finally leads to an adap-
tive algorithm since the Gaussian curve controlling parameters are
extracted via self statistical information of each single exposure, and
larger weights are given to the “best” luminance intensities of the
input. The obtained adaptive well-exposedness weights (𝐴𝑛) of the
Venice stack are illustrated in Fig. 2.

Weight extraction via saliency map. When processed in the
HVS, the attention that objects gather depends on the task at hand
and stimulus-driven factors such as prominent colors [15]. In the
literature, several computational models are proposed to mimic the
HVS; thus to highlight salient regions, increase the visual appeal and
quality of images.

In this study, saliency maps are used for assigning larger weights
to regions which are more attractive to human observers. Since the
design of a salient region detection algorithm is out of context, the
technique introduced by Hou et al. [16] is integrated into the pro-
posed MEF method. This saliency algorithm is based on a descrip-
tor called image signature, which is the sign of the Discrete Cosine
Transform (DCT) coefficients. Briefly, the DCT is first computed for
each red-green-blue channel separately. Then, image reconstruction
is carried out by calculating the inverse DCT of the sign of the DCT
coefficients. The saliency maps (𝑆𝑛) are finally obtained from the
reconstructed image. For detailed information, the reader may refer
to [16]. The saliency maps of the Venice stack are shown in Fig. 2.

Weight refinement and fusion. After all three weight maps are
characterized, they are combined to form a single refined map for
each exposure in the input stack given in Eqn. (2) as follows,

𝑊𝑛 = GuidFilt(𝑃𝑛 × 𝐴𝑛 × 𝑆𝑛), 𝑛 = 1…𝑁, (2)

where GuidFilt is an edge-aware (edge-preserving) smoothing fil-
ter called guided filter [17], which is generally used to eliminate pos-
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Fig. 3: Laurenziana: (Left) Ulucan (0.989), (right) Proposed (0.991).

sible discontinuities and noise in weight maps, e.g., [9]. All these
maps 𝑊𝑛 are finally normalized to satisfy a sum-to-one constraint at
each spatial position to form the final weights for fusion. The ob-
tained final fusion weights of the Venice stack are given in Fig. 2.

A pyramidal decomposition is applied to blend the input stack in
order to further avoid artifacts such as halo effects at sharp texture
and color changeovers [5, 1]. In detail, the Laplacian pyramid (𝐿) is
employed to decompose each input exposure into 𝓁-levels of distinct
resolutions, while the Gaussian pyramid (𝐺) to carry out a similar
operation for final fusion weights. The blending operation is applied
at each pyramidal level, and as a result a fused Laplacian pyramid is
obtained for the fused image given in Eqn. (3) as follows,

𝐿{𝐹 𝓁} =
𝑁
∑

𝑛=1
𝐺{𝑊 𝓁

𝑛 } × 𝐿{𝐼𝓁
𝑛 } (3)

where the fused pyramid 𝐿{𝐹 𝓁} is finally collapsed to acquire the
final fused image 𝐹 .

3. EXPERIMENTAL RESULTS

The proposed MEF algorithm (PAS-MEF) is compared to Mertens [1],
Lee [6], Li18 [7], Liu [8], Hayat [9], Ulucan [2] and Li20 [11] over
13 image stacks obtained from datasets in [18, 19, 20]. All experi-
ments are performed on an AMD Ryzen(TM) 5 3600x CPU @ 3.80
GHz 6-core 16GB RAM machine using MATLAB R2020a. All
competing algorithms are employed with their default settings, in-
cluding the proposed method, without any optimization. A statistical
performance analysis is performed through the multi-scale structural
similarity framework for MEF, i.e., MEF-SSIM [19]. MEF-SSIM is
a perceptual quality assessment metric, which takes both the global
luminance consistency and the local structure preservation into ac-
count to produce statistical results in the range [0 1]. A score closer
to 1 indicates a better perceptual quality.

The obtained statistical scores of all algorithms are reported in
Table 1, in which the bottom three rows present the average accuracy
(avg), standard deviation (std) and average execution time (run-time)
of each method. It can be clearly observed that PAS-MEF produces
highly competitive results (i.e., being in the second best place) and
surpasses six of the competing state-of-the-art MEF approaches on
average. In addition, these statistical results indicate that the standard

Fig. 4: Tower: (Left) Ulucan (0.982), (right) Proposed (0.983).

deviation of PAS-MEF scores is the smallest (together with Li20) and
the computational complexity is very conceivable.

A side-by-side visual comparison of the fusion outputs of PAS-
MEF and Ulucan is given for the Laurenziana stack in Fig. 3. In this
particular example, PAS-MEF reaches the highest MEF-SSIM score
when compared to other competing techniques. It can be clearly seen
that the sky has a more natural color in the output of PAS-MEF. Fur-
thermore, the details on the rooftops are better preserved in the result
of this technique, while the tree in the middle has more vivid colors
in Ulucan. Another visual comparison for the Tower stack is demon-
strated in Fig. 4. The grass and flowers on the foreground are much
better recovered in the proposed PAS-MEF, while clouds are better
preserved and the tower has vivid colors in Ulucan.

In Fig. 5, the fusion results are presented for the Mask stack.
PAS-MEF produces the highest MEF-SSIM score (together with
Hayat) for this exposure sequence. When compared to Li20 which
has lower brightness and less information in several parts in the
fused image, the proposed method clearly preserves the details of
the building and the mask. On the other side, the sky has a more
plausible color in Li20.

In Fig. 6, the fusion outputs of PAS-MEF and Hayat are com-
pared for the Kluki stack. Although PAS-MEF has its lowest MEF-
SSIM score for this exposure sequence among other stacks in the
dataset, the sky has more well-settled colors in blue regions, and the
rooftop of the house and the grass have more vivid colors when com-
pared to Hayat, whose MEF-SSIM is slightly higher.

It can be concluded from Table 1 that PAS-MEF reaches its high-
est MEF-SSIM score for the Chinese Garden stack and some visual
fusion results are presented in Fig. 7. When compared to Lee, the
sky region is more plausible in the proposed technique and overall a
natural-looking image is obtained while avoiding any artifacts. In
addition, it can be observed from Fig. 8 that both PAS-MEF and
Lee output natural-looking images for Venice. However, the sky and
buildings on the left contain more vivid colors in PAS-MEF, which
led to a significantly higher MEF-SSIM score than Lee.

Further fusion examples are illustrated in Fig. 9 and Fig. 10 for
Lighthouse and OldHouse, respectively. The rooftop of the light
house, rocks and trees in the background have more striking colors
in PAS-MEF, while a darker output is generated by Li20. Next in
Fig. 10, Li20 contains very bright regions on the old house. The
building has more well-settled colors in PAS-MEF which has the
highest MEF-SSIM score when compared to other methods.
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Table 1: MEF-SSIM scores for each exposure stack used in experiments. The highest scores are in boldface.

Mertens Lee Li18 Liu Hayat Ulucan Li20 PAS-MEF
Arno 𝟎.𝟗𝟗𝟏 0.987 0.948 0.985 0.985 0.986 0.990 0.989
Chinese Garden 0.989 0.990 0.977 0.988 0.993 0.991 𝟎.𝟗𝟗𝟒 0.993
Church 0.989 𝟎.𝟗𝟗𝟐 0.980 0.977 𝟎.𝟗𝟗𝟐 0.989 𝟎.𝟗𝟗𝟐 0.991
Farmhouse 0.981 0.979 0.974 0.978 0.984 0.978 𝟎.𝟗𝟖𝟔 0.981
Flowers 0.964 0.990 0.972 0.990 𝟎.𝟗𝟗𝟓 0.989 𝟎.𝟗𝟗𝟓 0.990
Kluki 0.980 0.974 0.957 0.973 0.980 0.963 𝟎.𝟗𝟖𝟑 0.979
Laurenziana 0.988 0.987 0.973 0.987 0.989 0.989 0.989 𝟎.𝟗𝟗𝟏
Lighthouse 0.980 0.979 0.962 𝟎.𝟗𝟖𝟓 0.974 0.975 0.978 0.982
Mask 0.987 0.990 0.975 0.985 𝟎.𝟗𝟗𝟐 0.987 0.991 𝟎.𝟗𝟗𝟐
Office 0.985 𝟎.𝟗𝟗𝟏 0.970 0.985 0.987 𝟎.𝟗𝟗𝟏 0.989 0.984
OldHouse 0.974 0.990 0.962 0.988 0.968 0.991 0.990 𝟎.𝟗𝟗𝟐
Tower 0.986 0.987 0.981 0.983 0.987 0.982 𝟎.𝟗𝟖𝟖 0.983
Venice 0.966 0.972 0.947 0.973 0.972 0.978 𝟎.𝟗𝟖𝟒 0.980
avg 0.981 0.985 0.967 0.982 0.984 0.983 𝟎.𝟗𝟖𝟖 0.986
std 0.009 0.007 0.011 0.006 0.009 0.008 𝟎.𝟎𝟎𝟓 𝟎.𝟎𝟎𝟓
run-time (sec) 0.36 0.38 0.93 50.68 0.89 2.91 𝟎.𝟑𝟏 0.66

Fig. 5: Mask: (Left) Li20 (0.991), (right) Proposed (0.992).

Fig. 6: Kluki: (Left) Hayat (0.980), (right) Proposed (0.979).

Fig. 7: Chinese Garden: (Left) Lee (0.990), (right) Proposed (0.993).

4. CONCLUSION

MEF is commonly used for obtaining HDR-like high quality images
and numerous studies are present in this field. In general, the exist-
ing methods differ in the weight map characterization process. In this
study, a novel weight extraction method is introduced which is based
on PCA, adaptive well-exposedness and saliency maps. The obtained
weights are refined via a guided filter and then image fusion is car-
ried out through a pyramidal decomposition. The proposed algo-

Fig. 8: Venice: (Left) Lee (0.972), (right) Proposed (0.980).

Fig. 9: Lighthouse: (Left) Li20 (0.978), (right) Proposed (0.982).

Fig. 10: OldHouse: (Left) Li20 (0.990), (right) Proposed (0.992).

rithm presents very strong results both statistically and visually, and
it outperforms several state-of-the-art MEF techniques. It is worth
noting here that, to the best of available knowledge, this is the first
study which incorporates PCA and fully adaptive well-exposedness
into the MEF problem.

As a future direction, the proposed algorithm will be optimized
for increasing its statistical and visual performance, and for further
reducing the run-time complexity. Moreover, PAS-MEF will be ex-
tended to fuse dynamic scenes in the image stack.
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