
Secure IoT Update Using Blockchain
Melike Kaptan

Computer Engineering
Izmir Institute of Technology

Izmir Turkey
melike.kaptan91@gmail.com

ORCID:0000-0003-0110-9035

Emrah Tomur
Research Area Security

Ericsson Research
Istanbul Turkey

emrah.tomur@ericsson.com
ORCID:0000-0001-8985-4974

Tolga Ayav
Computer Engineering

Izmir Institute of Technology
Izmir Turkey

tolgaayav@iyte.edu.tr
ORCID:0000-0002-5339-5507

Yusuf M. Erten
Computer Engineering

Izmir University of Economics
Izmir Turkey

yusuf.erten@ieu.edu.tr
ORCID:0000-0001-9537-7414

Abstract—In this study a platform is devised to send automatic
remote updates for embedded devices. In this scenario there are
Original Equipment Manufacturers (OEMs), Software suppliers,
blockchain nodes, Gateways and embedded devices. OEMs and
software suppliers are there to keep their software on Inter
Planetary File System (IPFS) and send the meta-data and hashes
of their software to the blockchain nodes in order to keep this
information distributed and ready to be requested and used.
There are also gateways which are the members of the blockchain
and the IPFS network. Gateways are responsible for asking for a
specific update for specific devices from IPFS database using the
meta-data kept on the blockchain, and they will send those hashed
secure updates to the devices. In order to provide a traceable
data keeping platform, gateway update operations are handled
as transactions in a second blockchain network which is the
clockchain of the gateways. The system was implemented as of
the two separate blockchain networks and it has been shown
that, despite the calculation overhead of the member devices, by
separating the functions between the two blockchain networks a
more reliable and secure platform can be achieved.

Keywords—IoT, remote update, blockchain

I. INTRODUCTION

Advances in the connected world requires secure communi-
cation between connected entities and robust servers serving
those connected devices. This increasing communication intro-
duces security and privacy threats. The existing solutions to
update this software rely mostly on centralized servers which
introduce a single point of failure. The decentralized nature
and the proof-of-work calculations which is an integral part
of the blockchains offer a solution to solve these problems for
connected world and its applications, because, the increasing
number of devices and their needs for connection requires
more available servers in decentralized manner. The proof-
of-work mechanism is another key element which makes the
data corruption harder with the calculation overhead trade off.
IoT might benefit from the blockchain networks incorporat-
ing smart contracts or keeping fingerprints of their data in
blockchains which will beat the data compromise. Another key
benefit is having liable history of records when investigations
are required for life threatening scenarios.

In this study we propose a software update architecture for
the connected devices. The proposed work covers most simple
blockchain applications to distribute the updates.

The proposed study has the functionalities listed below:

• We propose to use a blockchain network to distribute
software to the devices either to update them or to make
installations at the production phase.

• A block chain, a consortium blockchain which is only
accessible by authorized users, is used for keeping im-
mutable records of all software producers in an autho-
rized manner. Hence after releasing it to the consortium
blockchain network and storing it in the Interplanetary
File System (IPFS), producers can not deny the ownership
of the software.

• There are also gateway servers which are part of the
consortium blockchain, which also form a separate
blockchain network themselves. Whenever there is an
update for a device that they communicate with, gateway
servers will check the software updates in the consortium
blockchain to decide if their devices need updates, per-
form the update operation if necessary and keep a record
of these activities.

II. BACKGROUND

A. Traditional Update

Updates for embedded devices are often done with physical
connections on the site or with cloud-based methods. In these
techniques software image files are uploaded to the devices
through a cable or air interface. In the former approach a
technician must execute the work and in the latter remote
server performs this update via internet connection. The first
method relies on human factor and the second introduces a
possible single point of failure. Therefore, both methods have
deficiencies. Also in a field like automotive or road side unit
software update, if there is a bug in an automotive software
and needs to be corrected urgently, relying upon a service
technician or one cloud service may have adverse effects on
human lives.

B. Blockchain Based Update in IoT

The most important property of blockchain is being se-
cure without requiring any centralized medium to build trust.
Blockchain and IoT have a good match here. Data which
is needed to be sent from one device to another must have
its integrity, confidentiality and availability protected. When
we think about data shared between two IoT applications
based blockchain environments, it is definitely beneficial for

978-1-6654-0759-5/21/$31.00 ©2021 IEEE

20
21

 2
nd

 In
te

rn
at

io
na

l I
nf

or
m

at
ic

s a
nd

 S
of

tw
ar

e
En

gi
ne

er
in

g
Co

nf
er

en
ce

 (I
IS

EC
) |

 9
78

-1
-6

65
4-

07
59

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IIS

EC
54

23
0.

20
21

.9
67

24
24

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

preserving its integrity, since one cannot change data inside
the blocks except under the one condition that the intruder
has control over most of the nodes of the blockchain network.
Integrity also come to effect as the data is signed by the
owner and beneficial for availability because data resides on a
distributed environment and even if one node is down it is still
accessible. Every node in the blockchain network have an ID,
address, name and corresponding public and private key pairs.
And the network has defined members, and each transaction
broadcast is signed by the private key of the sender.

C. Blockchain Based Update in Automotive

Connected vehicle of near future is expected to be carrying
a greater number of software applications than ever. These
applications are installed onto a special kind of embedded
devices called ECU: Electronic Control Unit. Approximately
30-40 ECUs are present in a mid range auto today where this
number will be increasing much more as vehicles connected to
the Internet will be carrying various applications in the future.
When updates are delivered through the Internet, potential
security problems will require researchers and manufacturers
to apply proper protection mechanisms. One such precaution
proposed in the literature against Denial of Service attacks
is the use of blockchain infrastructure where the code update
sent by the manufacturers is distributed over various nodes of
the blockchain.

Vehicle firmware updates are a special subject as far as
both the academia and the industry are concerned. Since
automotive is a safety critical field, sending remote updates to
the vehicles requires careful attention. Most common update
methods include physical update done by a service technician
as mentioned above. As existing vehicles do not require to be
updated very often in their lifetime, this method has served for
years. With the advances in the connectivity and increasing
importance of the connected vehicles, physical updates are
becoming inefficient and producers are seeking new efficient
methods.

For over-the-air updates, solutions must be designed to
overcome the liability problem. Connections must be traceable
in case of any unwanted situations. Whenever a software is
distributed to the vehicles, updates which may have bugs must
be traceable especially whenever an incident happens like the
case of fatal self-driving car accident 1.

III. RELATED WORK

In the literature, there are several studies proposing the use
of blockchain technology for IoT and automotive-related tasks.
Since the scope of our study is software update mechanisms,
we include only such studies in this section.

The starting point of our proposed design is that there may
be a universal way to update connected devices to overcome
the shortcomings occurring due to lack of confidentiality,
integrity and availability as clearly stated in [1]. Their design is

1https://www.reuters.com/article/us-uber-crash-autonomous/ uber-not-
criminally-liable-in-fatal-2018-arizona-self-/driving- crash-prosecutors-
idUSKCN1QM2O8

one of the first examples which is proposing to use blockchain
to send updates to resource constrained devices. In this work
the authors also designed an additional mechanism for innocu-
ousness check, assigning some of the nodes to some agencies
which are responsible for checking integrity and removing
bugs.

In [2] authors presented a secure platform for smart
home use-case. In their study, authors proposed has a local
blockchain, an immutable ledger in the smart home which
is responsible for collecting all the transactions between sen-
sors, actuators or other smart devices. Rather than having
a proof-of-work concept, the local blockchain keeps all the
transactions handled by the devices. In their following works
[3] authors measured the time, packet overhead and energy
consumption of the design they previously proposed. In their
study they analyse the design and deduce that network and
energy consumption of the blockchain based smart home
application need to be improved. In order to improve the
application, the same authors designed a further study [4] and
they changed the way they applied overlay network outside of
the smart homes, while they kept the same private blockchain
in smart home miners. Rather than having a peer-to- peer and
forked blockchain in the overlay network they adopted a public
blockchain and a trust mechanism. In [5] another design for
the usage of blockchain in smart homes is presented. In this
work the transactions serve for the transfer of the firmware
update processes of the IoT devices.

In [6] authors use a wireless update methodology and
distribute the wireless software updates using blockchain.
Their blockchain-based update distribution model is the same
model as described in [5]. Software created by the suppliers
and manufacturers is propagated through an overlay network
in order to be sent to the vehicles. In their study authors
compare the results of their mechanism to distribute the new
updates and installing them to the vehicles with the wireless
updates given in [7]. Their results show that software distri-
bution process requires remarkably less time than the local
installation to the vehicles. The same authors in [6] designed
another blockchain-based model in [8]. In their study authors
draw attention to the liability attribution for an environment
with autonomous cars and a connected world.

Like the case of Uber, there is a need to find a liability
model for such cases. Authors of [8] emphasize that increased
connectivity requires more complex and untampered liability
attribution model. In order to realize this model, blockchain
based recording mechanism is proposed and improved to pro-
vide a decision making mechanism for insurance companies.

Baza et.al. proposes to use a blockhain network to send and
get updates in [9]. In their study authors think Autonomous
Vehicles (AV) get updates directly from the producer and
they also act as gateway nodes which distribute updates for
other AVs. Two mechanisms provide secure distribution of the
updates, zero knowledge proof and attribute-based encryption.

Our aim here is to propose a model which provides integrity,
confidentiality, availability at the same time supports liability
for the data transferred. Compared with the surveyed literature

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

our model provides a whole picture with a traceable approach
in every key entity of the model.

IV. PROPOSED MODEL

In this study we introduce a secure and anonymous envi-
ronment to distribute software to devices. As described before,
there will be one blockchain which is used by the software
providers of the embedded electronic units and another which
is used by the remote software distribution units, namely
Gateways, for embedded devices. Both chains will be storing
transactions. The roles and the detailed principles of these
components will be presented in the proceeding sections but
before doing so, we will summarize the overall mechanism.

Any software provider or producer who wishes to send
his/her update or first installation to the devices, loads its
image file to any platform which returns a hash value which
can be used to access the image. With this returned hash,
the developer in the company creates a signed transaction
with company’s private key including this hash value and
the additional metadata field and sends it to the blockchain.
Additional field indicates target device types that software will
be installed. This transaction is broadcast to all miners of
the software provider blockchain. Gateways will be informed
whenever a new update transaction is broadcast to the pro-
ducers’ blockchain. Then gateway is authorised to read the
mined version of the transaction. This means that gateways
have rights to read the blockchain data but cannot write.
Having read the transactions inside the blocks of the chain,
a gateway now has the responsibility to distribute the image
file to the corresponding devices. There will be another block
chain among gateways. Blockchain of gateways is storing
all the information regarding the management of the update
transactions. Therefore, there will be signatures of sender
gateways and exact timing of the update operation. In the
following paragraphs we share some definitions for the sake
of completeness.

1) Formal Model: Definitions of some of the terminology
is given below:

Original Equipment Manufacturer (OEMs): Original Equip-
ment Manufacturers are the producer companies of the embed-
ded electronic units and their software.

Software Providers(SP): Software Providers are the stake-
holder companies providing software for some OEMs.

Devices (D): Embedded devices waiting to be updated.
Gateways (GW): Gateways are the server devices responsi-

ble for checking announced updates for devices and sending
them to the devices

deviceNoi =< (ProducerNo,Model,Number) >

Transaction (Tr): Transactions are the information that are
sent to the miners via broadcast messages in order to be put
inside blocks. This way the sender and authorized information
is shared.

Blocks (B): Blocks are like the storage containers to keep
possible number of transaction with the suitable nonce and
timestamp.

Mining: The valid block comprises of a suitable nonce, a
timestamp, bunch of transactions, authorized information and
id. This suitable nonce is formed by a hash calculation using
brute force trials. These trials are performed for ensuring the
validity of the block.

2) Update File Storage: Before creating a transaction,
software image files are kept in a file system. Every file has an
encrypted version pointing to the address of those files which
will be distributed to the blockchain network to be stacked in
a mined block. IPFS is a peer-to-peer distributed file sharing
system [10] which is suitable for this purpose because it is
secure and easy to share files in a censorship-resistant web like
structure. It is like a content based web instead of traditional
location based web and its p2p nature makes it fast and secure.
It uses an overlay network which has members which do not
need to trust each other. IPFS has version control mechanism
supported by the Merkle trees. These functionalities make
IPFS a favourable versioned-file-system like Git.

3) Transaction Handling: In the producer blockchain net-
work each transaction sender has one public and one private
key. Transaction data is sent by the OEMs or Software
providers indirectly. Whenever transaction forming data is
completed and decided to be released through the provider
blockchain, other information is added to the transaction such
as operation time and signature of the sender and public key
of the sender. Then,

TransactionInformation = < (SenderID, Imghash,
deviceNoi) >

turns into a transaction,
Tr = < SenderID, Imghash,modelNo, timestamp,
PublicK, signature, TransactionId >

By the time the transaction is produced, it is ready to be
broadcast to all the producers in the blockchain network for
mining operation. For the Gateway Blockchain all the fields
will be used for the identification of the Gateways. The sender
will be the Gateway and the public key will be the gateways’
public key and the hash of the data will refer to the update
image of the sent update.

4) Mining Servers: Following the broadcasting of the trans-
actions the members of the producer blockchain put the trans-
action into a queue. The mining mechanism will be collecting
the transactions in this queue and place them into a block.
This time block identification fields will be identified. Each
block will be keeping hash of its previous block, its ID and
number of transactions selected to be placed into that block.

In the blockChain of the gateways, blocks will not be keep-
ing transactions data. Gateways are the servers responsible for
updating the devices. They need to be aligned with intended
devices all the time when it is needed to send an update, hence
gateway mining operations must not be taking resources of
the gateway servers. So the block chain of gateways will be
keeping only one hash value related to multiple transactions.
This hash values, generated by the gateways, are the leaves and
the root of the Merkle tree of specified number of transactions
waiting in the queue. In [11] Merkle tree operations are
summarized.

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

5) Update: In the update operation, gateways communicate
with the devices on site. Today, most of the studies use wi-fi
and mobile networks adding extra mechanisms to have secure
sender and receiver in order to realize this. An approach
where distributors and responders have the roles to verify the
operation and repudiate the other side may also be used. But
the distribution of the software to the devices or vehicles are
out of the scope of our study.

6) Scenario: The sequence diagram of proposed model
is given in Figure 1, which shows the general idea of the
execution sequence. Very first operation starts with the OEM
company who is responsible for producing the software for
its devices. The producer wants to keep the newly produced
software file in a secure place as well as conveying it to the
devices which it is produced for, while keeping its integrity.
Then the company puts those in a secure platform like IPFS
and forms a transaction which keeps the hash of the file and
respective timestamp. The software is now authorized to be
used since it is signed with the private key of the producer.
The algorithm for this process is shown in Algorithm 1.

Algorithm 1 Algorithm for Sender
INPUT < SenderId, ImageHash,DeviceData >
if (SenderId)valid
(ImageHash)valid
(DeviceData)valid then
build transaction
TransactionSenderId, ImageHash,
DeviceData, timestamp,
publickey, signature, id

else
discardtransaction

end if

The transaction goes through a network of computers which
are responsible for keeping immutable records of the product
features. And this network provides a robust mechanism to-
wards availability attacks since it is a decentralized network of
computers, each one is keeping the same chain of information.
This chain is formed using Proof Of Work calculations.

After sending updates for devices which need them, gate-
ways must be keeping the records of the updates. This time,
these records must be protected under integrity requirement
to provide proof of liability. Again, these network of devices,
gateways, will be keeping their update transactions in chain
of blocks as well as sending the update transactions whenever
they performed an update for a device. However, since the
number of necessary updates is quite high compared to the
software records, it is not logical to keep all transaction
information in the blocks but keeping a Merkle tree like
structure to preserve integrity is a more viable approach. So a
number of transactions will form a Merkle tree now and the
hashes of the tree will be kept in the blocks.

V. IMPLEMENTATION

The software is implemented in Eclipse IDE and with
Python Socket programming API and run in Python3.6 inter-
preter. All data is shared in Json format between the members
of the blockchain network.
Block Chain Client: Whenever a producer joins the network
this producer will have RSA public/private key pairs and
respective network address. We already noted that whenever
sender sends an update this will be turned into transaction
which is signed with the private key of the sender. The
transaction will have the respective timestamp and will be
signed as depicted below.

S = TransacitonDetails× SenderPrivateKey
S = < (SenderID, Imghash,modelNO) >

×SenderPrivateKey
Tr = < (S, T imestamp, T id) >
where Tid: Transaction id

Consortium Block Chain:
In algorithm 1 it is shown that every transaction, a sample

of which is given in Figure 2, will be broadcast to the network
after it is created. After this broadcast operation the transaction
will be known by its sender and it is verifiable when added
inside a block. Consortium blockchain will have the following
operations:

• Transaction Handler : Transaction Handler is responsible
for listening all the transactions broadcast to the network.

• Network Broadcaster : Network Broadcaster is responsi-
ble for broadcasting the chain length to the block chain
network.

• Status Handler : Status Handler is responsible for request-
ing new blocks mined and chained one after another in
any other miner’s chain data. Status Handler is managing
to gather the blocks which are not in this miner’s chain.
Then it starts adding the missing ones.

• Chain Synchronization : Chain Synchronization stands
for synchronizing any miner’s chain with another miner’s
which has shorter blockchain than this one.

• Network Listener : Network Listener service will be
listening to the broadcast messages from other nodes.
After listening for the updates from other nodes Chain
Synchronization service is called.

• Miner : Miner will be responsible for mining the blocks.
These operations will be running in parallel when a node is

up and running. Transaction Handler listens to the transaction
port and whenever a transaction is received it receives all data
with UDP data packets. Then server puts it inside a queue
which will have transactions waiting to be mined. Miner will
get one item from the queue and do the necessary checks.
After checking the transaction, it will continue to put others
in order to reach the necessary transaction count that must be
in a block for this blockchain network. After it reaches the
defined block size for this network, the miner will be able
to start the mining process. Implementation of the services

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Sequence Diagram which shows all exchanged messages among different parties in the system

Fig. 2. A sample transaction in the Consortium Network -the transaction is
placed in a queue

are adapted from 2 which is a minimum viable blockchain
implementation for a wallet of cryptocurrency.

The necessary checks before selecting a particular transac-
tion includes:

• Checking for signature: Since the public key of the
sender and the signed version of the transaction is inside
the transaction data, server first inspects the signature
performing signing operation itself.

• Checking if the transaction already exists: Since the same
transaction must not exist more than once, a block miner
will check the block that is prepared to be mined at that
time. Miner will also check its existence in the block
chain.

• Checking the existence of the same update document for
the same kind of devices: Miner will be checking if the
same upload for the same device family already exists
in both the block to be mined and the whole chain of
records.

Mining operation will continue as long as there is not a
valid chain listened by Status Handler and asked from the
Chain Synchronization service. If a node in the network have
a chain length which is greater than the length of this chain
of blocks then the node will request the longer chain from
the respective node. It will be asking for that block it does
not own. In order to have a valid chain, each block will be
keeping the hash of the block before the block itself. Hence

2https://github.com/codebox/blockchain

requested block must be in the correct order before they are
added to the requester’s chain.
Gateway Network:

Similar to the Consortium Network, Gateway Network is
also a consortium network. Gateway Network will have both
similar and different kind of operations with the Consortium
network. The operations which are different are listed below.

• Gateway Listener : Gateway Listener will be listening
the consortium block chain status information. Gateway
Listener will be the trigger for the chain synchronization
operation with the block chain network of the producers.
Receiving a new update from the producers will be the
prime cause of the update operation.

• Device Listener : Device Listener is responsible for
listening the status information coming from the devices.
Devices will be sending their device information given
by their producers and the software version they carry at
that time.

• Miner : Miner will be responsible for mining the blocks.

Gateway blockchain network will behave in different ways
than the producer consortium network. Gateway will be listen-
ing to the broadcast status information from consortium net-
work. Since Gateway network will be reading the consortium
chain, nodes will be updating their records of chain length
according to the consortium network. This data is used for
just identifying that there are updates for some devices and
reading those updates.

The idea is to remain updated all the time on the updates
in the consortium network. The process is given in Algorithm
2 for Gateway Listener. The actual gateway operations start
listening to the device information on site and checking for
the new updates for related devices from all the immutable
ledger of updates. Devices will be identified by their device no
parameter. This number will cover respective brand and model
or any other necessary information as well as the number
specific to that device. Whenever a gateway communicates
with a device it will list all updates for this device type,

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

regardless of the exact device number. This is for inspecting
the last update for this device type.

Algorithm 2 Gateway Listener
Require: Listen Consortium network broadcast information.

if nodes from consortium chain have block chain lenght
longer than we read before then

ask for the newly mined blocks
end if

After the gateway sends an update to the device it will send
a transaction for this update operation in order to be mined as
shown in Algorithm 3. But this time, gateway mining will be
different than the consortium network.

Algorithm 3 Gateway Operation
Require: have consortum chain readible
Require: have status info messages from devices m(¡device

no, software version¿)
list all updates historically for this device type
if device software version is not the has update for this
device type then

Connect ipfs to get last update file
for this device
Send last update to this device
Send Transaction(sender gateway address,
hash of the update file, complete device id)

end if

Gateway mining pre-checks and mining operation will be as
follows:Before adding a respective transaction to the unmined
block, miner will be assured that the current unmined block
does not have the same update file for the same device and
the gateway blockchain also does not have the same update
file for the same device. It performs the necessary checks like
in the consortium network.

• Checking for signature: Server first inspect the signature
performing signing operation by itself. But this time the
sender will be a gateway and the transaction to be signed
by the private key of that gateway.

• Checking if the transaction exists : Miner will check its
existence in the block chain and the current block.

• Checking if the same update document for the same
device exists: Miner will be checking if the same upload
for the same device already exists in both the block to
be mined and the whole chain of records. Also, we do
not want the same device to be updated with the same
version of software more than once. But our study does
not cover this condition since there may be more than
one reason for such a case.

VI. CONCLUSION

The main aim of this study is to propose a model to send
remote software updates for embedded devices which we are
becoming more and more dependent everyday. If there is not a
suitable update mechanism to send updates to the devices, with

the enhanced functionalities of these machines, it will create
serious problems for the users and manufacturers. That is, if
there is a future with connected and more capable vehicles,
taking the vehicles to the service shops in order to load new
software will not be practical. Or with the growing production
areas, installing software by hand will not be efficient enough
in the production process.

Beside this, in the future connected world, inspections for
liability will be more complex because there will be various
producers, large number of users and interactions. Case that
need to be verified must be leaning on trust based interaction
records. Here integrity and authentication are necessary in a
trustless environment. Another concern is availability. In order
to serve great number of users, servers must be available all
the time. Single point of failures show us that there may be
life threatening situations.

What we proposed and designed in this study is a sample
model which is suitable for the future use in terms of the
requirements we mentioned above. It is a system which
involves to blockchain networks which cooperate and perform
an update process which helps reduce security issues such
as availability and integrity. The proposed solution has been
implemented and a feasibility study has been performed.
This prototype has to be improved before being applied in
a professional production environment since it does not cover
the confidentiality area especially in the communication from
the gateways to the devices.

REFERENCES

[1] Boudguiga, A., N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey (2017). Towards better availability and ac-
countability for iot updates by means of a blockchain. In 2017 IEEE
European Symposium on Security and Privacy Workshops (EuroS&
PW), pp. 50–58. IEEE.

[2] Dorri, A., S. S. Kanhere, and R. Jurdak (2016). Blockchain in internet
of things: challenges and solutions. arXiv preprint arXiv:1608.05187.

[3] Dorri, A., S. S. Kanhere, and R. Jurdak (2017). Towards an optimized
blockchain for iot. In Proceedings of the Second International Confer-
ence on Internet-of-Things Design and Implementation, pp. 173–178.
ACM.

[4] Dorri, A., S. S. Kanhere, R. Jurdak, and P. Gauravaram (2017).
Blockchain for iot security and privacy: The case study of a smart home.
In 2017 IEEE international conference on pervasive computing and
communications workshops (PerCom workshops), pp. 618–623. IEEE.

[5] Lee, B. and J.-H. Lee (2017). Blockchain-based secure firmware update
for embedded devices in an internet of things environment. The Journal
of Supercomputing 73(3), 1152–1167.

[6] Steger, M., A. Dorri, S. S. Kanhere, K. Römer, R. Jurdak, and M. Karner
(2018). Secure wireless automotive software updates using blockchains:
A proof of concept. In Advanced Microsystems for Automotive Appli-
cations 2017, pp. 137–149. Springer.

[7] Steger, M., C. Boano, M. Karner, J. Hillebrand, W. Rom, and K.
Römer (2016). Secup: secure and efficient wireless software updates
for vehicles. In 2016 Euromicro Conference on Digital System Design
(DSD), pp. 628–636. IEEE.

[8] Oham, C., S. S. Kanhere, R. Jurdak, and S. Jha (2018). A blockchain
based liability attribution framework for autonomous vehicles. arXiv
preprint arXiv:1802.05050.

[9] Baza, M., M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M.
Abdallah (2018),Blockchain-based firmware update scheme tailored for
autonomous vehicles. arXiv preprint arXiv:1811.05905.

[10] Benet, J. (2014). Ipfs-content addressed, versioned, p2p file system.
arXiv preprint arXiv:1407.3561.

[11] Nakamoto, S. et al. (2008). Bitcoin: A peer-to-peer electronic cash
system.

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on August 22,2023 at 12:31:15 UTC from IEEE Xplore. Restrictions apply.

