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Developing a Three- to Six-State EEG-Based
Brain–Computer Interface for a Virtual

Robotic Manipulator Control
Yuriy Mishchenko, Murat Kaya, Erkan Ozbay, and Hilmi Yanar

Abstract—Objective: We develop an electroencephalog-
raphy (EEG)-based noninvasive brain–computer interface
(BCI) system having short training time (15 min) that can
be applied for high-performance control of robotic pros-
thetic systems. Methods: A signal processing system for
detecting user’s mental intent from EEG data based on up to
six-state BCI paradigm is developed and used. Results: We
examine the performance of the developed system on ex-
perimental data collected from 12 healthy participants and
analyzed offline. Out of 12 participants 3 achieve an accu-
racy of six-state communication in 80%–90% range, while
2 participants do not achieve a satisfactory accuracy. We
further implement an online BCI system for control of a vir-
tual 3 degree-of-freedom (dof) prosthetic manipulator and
test it with our three best participants. Two participants
are able to successfully complete 100% of the test tasks,
demonstrating on average the accuracy rate of 80% and
requiring 5–10 s to execute a manipulator move. One par-
ticipant failed to demonstrate a satisfactory performance in
online trials. Conclusion: We show that our offline EEG BCI
system can correctly identify different motor imageries in
EEG data with high accuracy and our online BCI system
can be used for control of a virtual 3 dof prosthetic ma-
nipulator. Significance: Our results prepare foundation for
further development of higher performance EEG BCI-based
robotic assistive systems and demonstrate that EEG-based
BCI may be feasible for robotic control by paralyzed and
immobilized individuals.

Index Terms—Brain machine interfaces, electroen-
cephalography, neural prosthetics.

I. INTRODUCTION

INVASIVE/NONINVASIVE brain–computer interfaces
(BCI) that directly translate neural activity in the cortex into
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a control signal for external devices provide improved com-
munication and control for paralyzed patients [1], [2]. Recent
advances in invasive BCI research including neural control
of robotic manipulators realized in nonhuman primates and
virtual 2D/3D control by paralyzed individuals demonstrated
that invasive BCI have provided important achievements for
control of robotic prosthetic technology with a high degree
of efficiency and accuracy [3]–[10]. Despite these impressive
achievements, intracranial BCI represent significant risks to
their users associated with the necessarily of invasive brain
surgery. Thus, exploring the potential for a high-performance
control of brain-computer interfacing technologies using only
noninvasive brain activity imaging means is of great interest.

Information about users’ motor intent has been shown in the
literature to exist in cortical activity in a variety of frequency
bands and spatial scales from local field potentials (LFP), to
electrocorticography (ECoG), functional Magnetic Resonance
Imaging (fMRI), magnetoencephalography (MEG) and elec-
troencephalography (EEG) scales [11]. In that relation, EEG
represents a point of special interest given the ease with which
EEG data can be acquired, the maturity of the technology, the
portability, versatility and relatively low cost of modern EEG
acquisition devices as contrasted with invasive and other nonin-
vasive brain activity imaging techniques. Therefore, EEG based
BCIs have begun to be widely used. EEG-based BCIs have
been used for control of both 2D/3D virtual objects [12]–[16]
and real objects such as robotic manipulators, quadcopter and
wheelchairs [17]–[19].

In EEG-BCI technology, it is well known that long training
times of BCI decoder and subjects is a significant disadvantage.
If long training times can be reduced without causing significant
loss in performance of the EEG based BCIs, more efficient
EEG-BCIs could be developed. Recently, in EEG-BCI field,
some studies showed that the control of 2D/3D virtual and real
objects have been achieved successfully using short training
(∼20 min) session [12], [18]. In this context we have aimed to
develop a more efficient noninvasive EEG-based BCI system
requiring only a 15-minute training session that can be applied
in the future towards a high performance control of a robotic
manipulator envisioned as a part of an assistive robotic complex
for paralyzed or immobilized patients.

The paper is organized as follows. Section II describes the
process of EEG data collection, pre-processing, and analysis
both for our offline and online BCI applications. In Section III,
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Fig. 1. (Left) Schematic representation of the offline experiments’ procedure with experimental graphical user interface (eGUI). First, action signals
had been presented to participants by indicating one of the motor imagery icons using a red rectangle on computer screen. The EEG signal in
response to the implementation of shown motor imagery was acquired by EEG-1200 system and recorded using Neurofax software. After the
completion of the experiment, the recorded EEG data was saved to Neurofax database as well as exported to an ASCII file for further custom offline
processing. The graphical user interface used in offline experiment consisting of a single Matlab figure with 5 icons representing left hand, right
hand, left leg, right leg, and tongue motor imageries, a passive signal indicated with a circle, a fixation point in the center, and an action signal shown
as a red rectangle around right hand motor imagery icons. (Right) Schematic representation of the online experiments’ procedure with interactive
graphical user interface (iGUI). The participants attempted to control in real time a 3 dof robotic manipulator arm using the EEG BCI by implementing
different motor imageries. The row EEG signal associated with implementation of each imagery was recorded by EEG-1200 system and imported
to Matlab via custom memory-scanning driver software. The EEG data was then processed in a Matlab application and used to provide control
signal for the robot arm. The online experiment’s interactive graphical user interface (iGUI) consisting of a Matlab figure modeling in 3D the motion
of a robot manipulator arm.

the ability of the developed system to discriminate different
mental imagery states is examined on 12 participants using of-
fline analysis of collected EEG data. Certain design choices of
the BCI’s data processing system including that of EEG data
representation, detector window optimization, reference volt-
age choice, frequency filter, etc. are investigated. The results
of interactive application of BCI for online control of a 3D
robotic arm simulated on a computer screen by 3 participants
are also presented. In Section IV, we discuss achieved results
and compare them with the literature. Achieved performance
and venues for potential improvement as well as the perspec-
tives of the BCI’s utilization in assistive robotic settings are
discussed. Conclusions are offered in Section V.

II. MATERIALS AND METHODS

A. Participants

Twelve volunteers including three (3) female and nine (9)
male participated in this study after giving written informed
consent. All participants were healthy and right-handed indi-
viduals. The average age of the female volunteers was 24.3 and
the average age of the male volunteers was 28.5. Volunteers
are selected among the students of the Faculty of Engineering at
Toros University and the Department of Physics and the Depart-
ment of Biophysics at Mersin University, Mersin, Turkey. All
participants took orientation session informing them about the
experiments’ purpose, procedures, and their rights with respect
to the collected information. All experimental procedures of the
study had been reviewed and approved by the ethics committees
of Toros University and Mersin University, Mersin, Turkey.

B. Data Acquisition and Experimental Procedures

The EEG data have been acquired using the medical grade
EEG-1200 EEG recording system with JE-921A acquisition box

(Nihon Kohden, Japan). In all experiments, a standard EEG cap
(Electro-Cap International, USA) with 19 electrodes in the stan-
dard international 10–20 system (see Supplementary Materials
Figure S1) and Electro-gel (Electro-Gel, Elector-Cap Interna-
tional, USA; Elefix Paste for EEG Z-401CE, Nihon Kohden,
USA) have been used.

The participants have been comfortably seated in a recliner
chair and then the EEG cap has been carefully placed onto par-
ticipant’s scalp. The electrodes have been filled with electro-gel.
At the same time, the electrode impedances in the impedance-
check mode of EEG 1200 Neurofax have been controlled and
the impedances have been kept at or below 10 kOhm with
the impedance imbalance at or below 5 kOhm. Once the EEG
recordings preparation has been completed, the computer screen
of the original base computer part of the EEG 1200 system has
been positioned approximately 200 cm in front of the partici-
pants at slightly above the eye level.

The EEG experiments have been conducted in two formats–
offline format and online format.

1) Offline Experiment Format: In the offline experiments,
participants were asked to perform different motor imageries
showed by the experiment’s graphical user interface (eGUI)
consisting of a Matlab figure with 5 icons encoding different
motor imageries (left hand, right hand, left leg, right leg, tongue)
as well as a “passive” icon represented by a circle and a gaze-
fixation point in the center of the figure, see Fig. 1 (Left). Prior
to the beginning of the data acquisition, the participants were
instructed to remain motionless and keep their gaze fixed at the
fixation point at all times during the experiment.

Offline experiments began with a 2.5-minute relaxation pe-
riod, after which three 15-minute sessions followed separated
by 2 minute breaks, for a total duration of approximately 1 hour,
see Fig. 2. During each session, participants performed approx-
imately 300 BCI trials each consisting of one 1-second visual
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Fig. 2. Timeline for the offline and online experiments.

action signal presentation that selected a motor imagery to be
implemented by means of a red rectangle shown around the
corresponding imagery’s icon in eGUI, Fig. 1 (Left). The motor
imageries were selected randomly following a pseudorandom
sequence generated in the beginning of the experiment using a
random number generator. The participants were instructed to
implement the shown imagery for one time during the action
period of 1 s in which the selection frame was visible.

A “passive” action signal was shown using a circle icon.
During the passive signal, the participants were instructed to
remain passive and to not intentionally respond in any way.
A pause of duration varying from 1.5 to 2.5 seconds followed
the presentation of each action signal, thus concluding the trial.
In the during pause period of 1.5–2.5 s, the participants were
remained motionless as they did during the passive signal. Each
trial took on average 3 seconds to complete, Fig. 2.

The EEG signals from 19 EEG electrodes plus two A1–A2
ground electrodes were recorded during the entire duration of
the experiment using Neurofax software (Nihon Kohden, Japan).
The recording settings used were the sampling rate of 200 Hz,
the low frequency cut-off of 0.53 Hz, and the high frequency cut
off 70 Hz. A custom montage including all the electrodes with
system 0 Volt-reference was created in Neurofax and used in the
recordings, archived data, ASCII exported data and imported to
Matlab (convert_nkascii2mat.m function by Timothy Ellmore
available from Beauchamp at OpenWetWare.org).

2) Online Experiment Format: The preparation of experi-
ments and the recording of EEG signals were performed in the
same way as described for the offline experiments. In order to
acquire the EEG data from EEG-1200 in real time, we have de-
veloped a custom driver software using C#. The extracted data
was then forwarded to our main BCI application in Matlab.

In the online experiments, the participants were asked to con-
trol a 3 dof robot manipulator arm simulated on a computer
screen in 3D, using our EEG BCI, Fig. 1 (Right). The robot
manipulator could perform left-right, forward-backward, and
hold-release motions, controlled by up to 6 mental imageries
including left and right hand movement, left and right leg move-
ment, tongue movement, and one passive imagery.

The online experiments followed a protocol essentially sim-
ilar to that used in the offline experiments. Namely, the on-
line experiments were structured as three 15-minutes sessions

Fig. 3. (Left) Schematic representation of the 3-state BCI control
model. Left and right hand movements are used to move the manip-
ulator either left and right or back and forth depending on motion regime
switched by passive imagery implementation. (Right) Schematic repre-
sentation of the 6-state BCI control model. Each motor imagery initiates
one type of motion of the robot arm that continues through passive im-
agery presentation until a second presentation of the same or a new
presentation of another motor imagery.

separated by 2-minute breaks, with a 2.5-minute initial relax-
ation period, Fig. 2. The first 15-minute session was used to train
the BCI decoder. The organization of the training session was
essentially similar to that of the offline experiments described
in Section II-B1. The second 15-minute session was used as
a practice session. During that time, the participants used the
previously trained BCI to try and assume the control of the
manipulator arm in a free exploration manner by implementing
the imagery of their choice in voluntary manner. The third 15-
minute session was used as a test session. During that time, the
participants were given instructions to execute a set of simple
tasks by using the robot arm and the BCI. The tasks consisted
of moving the robot arm to a specified location such as “move
robot arm two steps to the left” or “move robot arm two steps
to the left and two steps forward”. The participants allowed
to spontaneously control the robotic device using his\her own
strategy to all tasks.

3) BCI Control Models: In this work, two BCI control mod-
els were employed, a 3-state control model and a 6-state control
model. In the 3-state control model, only left-right hand and
passive imageries were used. Left and right hand movement
imageries were used to move the manipulator either left and
right or back and forth, depending on the regime that could be
switched among by the user using the passive imagery, left panel
in Fig. 3. For example, a user could move the manipulator left or
right by implementing left or right hand movements first, then,
in order to move the manipulator forward or backward, the user
could stay passive for one round during which the BCI would
switch from left-right to forward-backward motion regime, and
then continue using the left or right hand movements to move
the manipulator forward or backward, respectively. In order to
switch the regime back, the user again could remain passive
for one period. The observation of hand movement imageries
moved the robot one step in the corresponding direction. There-
fore, continuously moving the robot arm required the user to
implement the desired imagery continuously over a sequence of
“on”-signal presentation periods.

In the 6-state control model, each of the five distinct motor
imageries and one passive state were used as a control signal
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for the simulated robot arm. Each motor imagery was bound
to one type of motion of the robot arm: Left and right hand
movement imageries were bound to the motion of robot arm
in left and right direction; leg movement imageries were bound
to the forward and backward motion of the robot arm, tongue
movement imagery was bound to the arm’s grabber hold or
release motion, right panel in Fig. 3. The passive state was used
to continue a previously started movement. Each motor imagery
was used to initiate one motion in corresponding direction, and
the motion continued until a second presentation of the same
imagery or a presentation of a different motor imagery was
encountered. The second observation of the same motor imagery
stopped the motion of the robot arm while the observation of a
different motor imagery stopped the current motion and initiated
the new motion of the arm.

C. Offline Data Analysis

The analysis of collected EEG data in the offline experiments
was performed offline after the conclusion of each experiment.
For that, the EEG data was first exported from Neurofax software
into an ASCII file and imported to Matlab using a custom script,
as described in the previous section. The EEG data thus imported
to Matlab was a matrix of EEG voltage readings, Eit , where t =
1, . . . , T indexed the different time samples and i = 1, . . . , Ne

indexed the EEG channels. A total of Ne = 22 data channels
were imported, with 19 channels corresponding to the EEG
electrodes in the standard 10–20 configuration, two channels
describing the A1–A2 electrodes, and the 22nd channel encoding
the eGUI synchronization-signal on the X3 bipolar input. The
raw EEG data was collected in system 0 Volt-reference (defined
by EEG-1200 manual as the average of the voltage values on C3
and C4 electrodes) and then digitally re-referenced to a given
voltage reference. For different analyses described below in
Section III-B, we considered the system 0V-reference (defined
above), the average A1–A2 reference (defined as the average
of the A1 and A2 voltages), the common average reference
(defined as the average of all electrodes’ voltages), and the
Laplace reference (defined as the average of the voltages on
each electrode’s 4 immediate neighbors). The data in the 22nd

sync-channel was used to establish the onset times of the action
and to bind each action signal in eGUI to a specific onset time.
Other than re-referencing and binding of the action signals, no
other preprocessing was performed on raw EEG data.

The EEG data was partitioned into data frames corresponding
to different presentations of action signal for further process-
ing, by selecting the fragments of EEG data within [t1 , t2 ]-data
frames locked to the action signal onset time. The stack of
such data frames could be represented as a 3-dimensional ar-
ray, Enit , with the indexes i and t having the same meaning
as before (except that t changed from 1 to dt = t2 − t1 - the
length of the frame), and the index n enumerating different tri-
als or action signal presentation episodes. Generally, the first
second of EEG data immediately following the onset of the ac-
tion signal could be used as the data frames for decoding, which
coincided with the time during which the action signal was on
and the participants carried out mental imageries. However, we

further optimized the data-frame selection by considering all
possibilities for the frame onset, t1 ∈ [−0.5, 1.0] sec, and end-
time, t2 ∈ [0.0, 2.0] sec, at 0.1 second intervals. As described
in Results, the decoding data frame choice of t1 = 0 sec and
t2 = 0.85 sec was found to offer the best overall performance
for all subjects and all mental imageries.

After partitioning the EEG recording into data frames, the
decoder for associating data frames with mental imageries was
constructed using SVM or LDA machine learning algorithms.
For that, first, the EEG data from each frame was converted into
a feature-vector representation. We experimented with several
feature representations of EEG signal including Power Spectral
Density (PSD), EEG band power (EEG band), Fourier transform
amplitudes (FTA), and raw time series (TS). Information on how
the features are specifically defined and calculated has been
given in the supplementary material.

After calculating the feature vectors for each trial, SVM and
LDA machine learning algorithms were used to build decoders
classifying each data frame as a specific mental imagery. LDA
and SVM both have been used widely and enjoyed a significant
success in EEG BCI and we do not go further into the details of
these established algorithms here, whereas extensive literature
is available on the subject for interested reader, see [20] and
references therein.

The classifiers were trained and their performance was evalu-
ated using the cross-validation method, standard in the machine
learning literature, using either randomized and sequential hold-
out cross-validation with 70% of data used for training and 30%
used for validation purposes.

D. Online Data Processing

For interactive BCI control, we implemented the EEG data
analysis system and an interactive real-time BCI application
using Matlab. The interactive graphical user interface (iGUI)
that we developed acquired raw EEG data from EEG-1200 in
real time and performed learning of the BCI decoder as well as
applied such decoder to offer a real-time control of a 3D robot
manipulator arm simulated in on computer screen as shown in
Fig. 1.

During the training sessions of the online experiments, the
mentioned application collected a certain number of EEG data
frames exemplifying different user’s motor imageries, as in-
structed by a pseudorandom training program. Typically, 300
motor imagery examples were collected during the training ses-
sion and thus used to build the EEG BCI signal decoder, as
described above. The data frame selection of [0, 0.85] sec, FTA
features in Cartesian form, and multi-class SVM were used for
such a final decoder. After the training session, during the prac-
tice and the test sessions, the EEG data was acquired, data frames
were selected and processed by the decoder online, in order to
estimate the motor imagery class in real time and carry out the
robot arm’s movement guided by the EEG signal according to
a specific BCI control model described above in Section II-B3.
No artifact rejection was performed understanding that learning
to ignore artifacts should be one of the goals of the decoder’s
classifier.
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TABLE I
PARTICIPANTS PERFORMANCE IN 2-STATE BCI DISCRIMINATION TASK

TABLE II
PARTICIPANTS PERFORMANCE IN 3-STATE BCI DISCRIMINATION TASK

III. RESULTS

A. Discrimination of Different Mental Imageries in
Offline EEG BCI

We have determined performance of participants in 2-state
(left and right hand movement imageries), 3-state (left and right
hand movement imageries and passive mental imagery) and 6-
state (left and right hand, left and right leg, tongue movement
imageries, and passive imagery) BCI discrimination tasks via
SVM and LDA-based decoders using FTA Cartesian features,
and listed them in Table I, Table II and Table III respectively.
In addition, standard deviations (STD) have been given in these
tables. All accuracies reported are on per-trial basis. We have
observed in all experiments that both SVM and LDA-based
decoders using FTA Cartesian features showed similar results,
with SVM showing a marginally better performance, on average
outperforming LDA by 3–5% for all experiments.

It can be seen from Tables I, II and III that, we have grouped
participants into high-performing, intermediate-performing and

TABLE III
PARTICIPANTS PERFORMANCE IN 6-STATE BCI DISCRIMINATION TASK

low-performing groups depending on their performance. The
performance of high-performing group were stable across the
experiments. This can be seen by analyzing participants’ worst
and best performance columns, which are the best and the worst
performances among all distinct experiments of each partici-
pant.

The performance of the low-performing group is consid-
ered to be not satisfactory in the context of the end-goals of
this work, which are the development of a model for a more
generally useful BCI control of a robotic manipulator. Specif-
ically, for more general usability of such a BCI, we consider
the rate of BCI classification errors as satisfactory if it allows
completion of robotic arm movements on average in 2× or
less the minimal necessary number of steps (that is, at 100%
control accuracy).

In all experiments, we observed that the mental imagery states
could be inferred from the EEG data with accuracy significantly
above chance. However, the error rates significantly affect the
use of EEG BCI communication paradigm for practical pur-
poses. Specifically, the participants in high performing group
were able to demonstrate 75–90% accuracy in 6-state BCI task,
as compared to the baseline or “chance” performance of only
17%. These individuals’ performance is far above chance and
may be interesting for further investigation. At the same time,
the performance of the other individuals in 6-state BCI task
degraded significantly to 50–60% accuracy. While still signif-
icantly above chance, such rate of errors presents a serious
obstacle on the way of utilizing this EEG BCI communication
paradigm for practical purposes.

On the other hand, it is well known that left and right leg
movements locations are really near each other on motor cortex
therefore it is difficult to discriminate these movements. Despite
this difficulty, it is observed in our experiments that left and
right leg mental states are discriminated. Several examples of
the average ERP curves in some specific EEG channels, showing
that left and right leg mental states can be discriminated have
been given in Fig. S3.
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Fig. 4. Illustration of the trial onset-locked decoding data frame used
to detect different mental imagery states in the EEG BCI signal.

B. Optimization of BCI Decoder

In this section, we consider several optimizations of BCI
decoder parameters and design choices.

We first consider the optimization of the decoder’s data frame
selection. In order to detect different mental imagery states in
EEG BCI data, a trial onset-locked data frames, [t0 , t1], are used
for decoding as illustrated in Fig. 4.

Selection of the parameters of such data frames is important
for optimizing the discrimination ability of the BCI decoder. In
particular, making the decoding frame too large can obscure the
relevant features due to accumulation of irrelevant noise con-
tributed by uninformative EEG signal fragments immediately
prior and immediately thereafter the useful EEG BCI signal.
Likewise, choosing the data frame that is too small can miss
such relevant signal all together.

To select the best such data frame parameters, we scanned
over all possible choices of the initial frame offset, t0 , in the
range from −0.5 sec to +1.0 sec (relative to trial onset signal)
at a 0.1 sec increment. Likewise, we inspected different pos-
sible decoding data frame-length values, dt = t1 − t0 , in the
range between 0.2 and 2.0 sec, again at a 0.1 sec increments.
We performed a complete search on the grid of such points
for best parameters for each participant and each experiment.
Fig. 5 shows the examples of the 2-state BCI discrimination
accuracies for one high-performing individual (HI), one inter-
mediately performing individual (YU), and one low-performing
individual (BA). Several features can be pointed out in that fig-
ure. First, at the top-left corner of the diagrams a region with
chance performance of just about 50% is observed. Upon closer
examination, this region corresponds to the data frames such
that lie entirely prior to the trial onset time. As the information
about the mental imagery cannot possibly be contained in the
decoding frames lying entirely prior to the trial onset signal, the
decoder performance in that part of the diagram is at the simple
chance level.

The decoder’s performance increases sharply once the de-
coding frame begins to overlap with the region past the trial
onset time at approximately 300–500 milliseconds. Indeed, the
highest accuracy is consistently observed in the triangular re-
gion of the diagram defined by the frame initial offset t0 of
−0.5 to 0.3 sec and the frame length 0.2 to 0.9 sec. A rapid
drop in performance is observed when t0 exceeds 0.5 sec limit.
This indicates that the information related to the identification

Fig. 5. Diagrams showing the accuracy of 2-state BCI discrimination
versus the parameters of the decoder’s data frame selection for one
high-performing individual (HI), one intermediately performing individual
(YU), and one low-performing individual (BA).

of mental imagery state is not present in the EEG signal after
approximately 500 milliseconds past trial’s onset signal.

Finally, we observe similar structure of the t0−dt diagrams
in Fig. 5 for each participant, whereas the lower-performing
individuals only exhibit a lower increase in decoder’s accuracy
in the above mentioned best-detection triangle but otherwise the
structure of the diagram remains the same.

All participants demonstrate close to optimal performance
near the choice of the decoding frame parameters t0 = 0–0.2
sec and dt = 0.6–0.9 sec. Thus, it appears possible to adopt a
uniform choice of the decoding frame parameters [t0 , t1] = [0,
0.85] sec as a generally suitable for most participants, although
fine-tuning of the decoding frame’s position can allow moderate
increase in BCI decoder’s performance on individual experiment
basis.

We second consider the issue of selecting the feature repre-
sentation of EEG signal. The selection of feature representation
of EEG signal for BCI decoder can significantly affect the BCI’s
performance. We investigate this effect here by examine the per-
formance of BCI decoders built using EEG band power features,
power spectral density (PSD) features, as well as new Fourier
transform amplitude features. For all the signal power-based
features such as EEG band powers and PSD, we inspect the row
power and the log10 (that is, the Decibel) representation of such
features. The row time-series (TS) features are likewise consid-
ered in this section: The time-series features had been used in
EEG BCI in some past works, but did not find widespread use in
EEG BCI literature. The above features’ definitions have been
briefly recapped in the supplementary material.

We test the performance of LDA and SVM-based BCI de-
coders using all of the above described feature sets for the pur-
pose of optimizing our EEG BCI decoder, Table IV. While we
observe that performance remains well above chance for all
the above choices of EEG signal representation, FTA-Cartesian
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TABLE IV
PERFORMANCE OF DIFFERENT FEATURE REPRESENTATIONS FOR MENTAL

IMAGERY STATE DISCRIMINATION TASK

features perform dramatically better than all of the other feature
sets including EEG band power, PSD, and FTA-polar.

Since FTA-Cartesian features are a simple linear transfor-
mation of the EEG time-series, we can expect that the linear
machine learning classifiers such as SVM and LDA will pro-
duce comparable performance on these feature sets. Indeed, we
observe that in our experiments: both FTA-Cartesian and TS
features provide similar performance for discrimination of up
to 6 mental imagery states. However, as we will see below, FTA
features have the added advantage of a more concise representa-
tion of the EEG signal with respect to frequency decomposition,
which allows for a far smaller subset of FTA features to be used
in the EEG BCI decoder without sacrificing the performance.
While the SVM and LDA classifiers constructed in either time
or frequency domain representations of the EEG signal can be
mathematically shown to be equivalent, the equivalent time-
domain BCI decoder constructed for, for example, a low-pass
filtered EEG signal on frequency range [0, Fc] still requires mul-
tiplying and summing all the time samples xt from the entire
decoding window, whereas an BCI decoder constructed in fre-
quency domain requires using only a small number of Fourier
transform (FT) amplitudes in [0, Fc], in order to evaluate. This
allows dramatically reducing computational costs of evaluat-
ing such frequency domain BCI decoders, which are especially
important for such decoders being deployed in real-time set-
tings. Therefore, we conclude that FTA-Cartesian features are
the better choice for our EEG BCI.

Finally, we consider the issue of the referencing of the EEG
data. When EEG data is acquired by an EEG acquisition device,
it is recorded with respect to a particular voltage reference [21].
Choosing a different voltage reference affects the final represen-
tation of the EEG signal by adding or subtracting a time-varying
common mode component. We inspect the impact of different
choices of such referencing mode on the performance of EEG
BCI decoders. Specifically, we examine the choices including
the system’s 0 Volt reference (in the Nihon Kohden EEG-1200
system), A1–A2 average reference (defined as the average of
the voltages on A1 and A2 electrodes), the common reference
(defined as the average potential of all EEG electrodes), and
the Laplace reference (defined as the average of 4 neighbor
electrodes for each electrode). The results of this analysis are
presented in Table V.

TABLE V
THE IMPACT OF DIFFERENT CHOICES OF VOLTAGE REFERENCE ON THE BCI

STATES DISCRIMINATION ACCURACY

Overall, we observe that the choice of reference voltage can
have a noticeable impact on the EEG BCI performance for EEG
band powers and PSD features. A BCI state detection accuracy
improves up to 5% consistently when such references are used
versus the system 0 Volt. In the case of FTA-Cartesian and TS
features, the differences that can be attributed to the change
of voltage reference are much less pronounced, with Laplace
reference showing marginally better results.

C. The Information Content of EEG Signal by
Frequency Range

Preprocessing of EEG signal by using low-pass filters is a
common practice in EEG BCI [21]–[25]. In this work, we also
observed that applying a low-pass filter to EEG signal can
improve the performance of BCI decoder. In the case of the
frequency-space features such as PSD or FTA, such a filtering
can be implemented simply by rejecting those features that not
fall into the pass-range [0, Fc]. In the case of TS features, we
apply low-pass filter using 8th-order Butterworth low-pass fil-
ter. In either case, the effect of discarding high frequencies from
EEG signal is found to be advantageous for the performance of
EEG BCI. In fact, our experimentation suggests that keeping
only the lowest frequency ranges of 0 to 5–10 Hz can result in
the best overall performance of EEG BCI. The above experi-
mentation suggests that most of useful BCI information in EEG
signal is contained at very low frequencies. To investigate this
issue further, we performed a series of numerical experiments in
which the BCI decoder was constrained to use only the EEG data
coming from a narrow 5 Hz-wide band, chosen in the frequency
range 0–80 Hz.

In other words, we first inspected the BCI decoder using only
the EEG data filtered to the frequency range of 0–5 Hz. Second,
we inspected the BCI decoder using the EEG data filtered in the
frequency band 5–10 Hz, 10–15 Hz and so on. We considered the
EEG BCI decoders for 2, 3, and 6 mental state discrimination.
In all cases, we observed that the ability of EEG BCI decoders
to discriminate mental imageries degraded dramatically as the
higher-frequency bands were selected, reducing to essentially
the chance level after the threshold of approximately 20 Hz,
Fig. 6. We conclude that the information relevant to the task of
discriminating different motor imageries in an EEG BCI resides
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Fig. 6. The performance of EEG BCI decoder constrained to use nar-
row 5 Hz frequency bands in the range 0–80 Hz.

primarily in the low frequency range of 0–15 Hz, with the most
such information residing in the range 0–5 Hz.

It is commonly known that the alpha/mu brain signals
(8–13 Hz also known as sensorimotor rhythms) have been used
to control motor movements in EEG based BCI [26]–[28]. How-
ever, not only sensorimotor rhythms but also low frequency
(0–5 Hz) shifts in the EEG signal (slow potentials) such as
movement related cortical potentials (MRCP) can be used for
controlling motor movements too [24], [29]–[33]. (Several ex-
amples of the average ERP curves showing that salient responses
associated with motor imageries occur on 200–600 ms (or 1–
5 Hz) have been given in Fig. S2.) Unlike SMR-based BCIs that
require longer training periods, slow potentials such as MRCP-
based BCIs require much shorter training [30].

D. Consistency of BCI Performance Across Participants

In our experiments, we observe that the same participants
tended to perform better in all experiments and for all types
of BCI tasks, while the other same participants always tended
to perform worse in all experiments. Table VI illustrates this
observation by pulling together the performance data of different
participants over all inspected BCI tasks and all experiments.
As can be seen in Table VI, the top performing individuals
perform better in all BCI tasks and all experiments. Likewise,
the intermediate-level individuals performed at an intermediate
level in all tasks, while the low-performing individuals always
showed low levels of performance.

E. Online EEG BCI Applications

Our offline experiments indicated that both control strate-
gies in principle could provide a similar average information
throughput rate. However, we found in practice that substan-
tially higher error rate of the 6-state control model proved to
be frustrating for BCI users. Specifically, in our experiments
the detection of the 3 mental imageries employed in the 3-state
control model could be performed on average with 80–90%

TABLE VI
CONSISTENCY OF BCI PERFORMANCE OF DIFFERENT INDIVIDUALS
ACROSS BCI TASKS, ORDERED BY THE PARTICIPANTS’ OVERALL

PERFORMANCE LEVEL

Fig. 7. Online experiments in which the participants have controled a
3 dof-robot manipulator arm using EEG BCI.

accuracy (see Results). At the same time, the detection of 6
mental imageries employed in the 6-state control model could
be done with 50–60% accuracy. While these indicate that ei-
ther 3- or 6-state control model provide similar information
throughput of 1.2–1.5 bit per trial (0.4–0.5 bps), in practice,
experiencing 1 in 2 error rate while attempting to control the 6-
state BCI proved extremely frustrating and demotivating for the
participants, negatively affecting their performance and resolve
to master the control of the BCI. For this reasons we focused on
the 3-state BCI control model in our online experiments.

We implemented an online, interactive EEG BCI system
based on the hardware and the software described in the pre-
vious sections. The implemented system contained a virtual 3
dof-robot manipulator simulated in 3D on computer screen and
capable of lateral motion, longitudinal motions, and hold-and-
release motion. The manipulator could be controlled interac-
tively by users by means of the EEG BCI, Fig. 7.

Three best performing individuals were invited to participate
in the interactive BCI trials. Firstly, these individuals were asked
to complete the training and practice sessions as described in
Section II-B2 by using 3-state BCI control model.

Finally, in the test session the participants were given a series
of task to move manipulator to different positions and attempted
to complete them. The tasks included moving the manipulator
in two (left-right or forward-backward) to four (left-right and
forward-backward) directions for up to 4 steps. The participants
completed in total 7–8 tasks during the 15-minute test sessions.
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TABLE VII
PARTICIPANTS’ PERFORMANCE IN ONLINE BCI EXPERIMENTS

The participants’ performance was evaluated as the percent-
age of the tasks completed successfully, the average time taken
to complete a task, and the average accuracy of the control of
the manipulator. The control accuracy was quantified as the per-
centage of the manipulator moves that were in correct directions
moving the manipulator towards the target. The best participant
(HI) had shown in the interactive trials the average control accu-
racy of 84.6%, and the second best participant (ER) had shown
in the interactive trials the control accuracy of 77.8%, which was
consistent with the results observed for these participants in the
segment of this work’s analyses performed offline. The third
participant (ES) experienced greater difficulties controlling the
BCI, being able to control the BCI with an average accuracy
of only 49.6%, far below the performance levels shown in the
offline experiments. The successful participants required 7 to
10 seconds to implement one manipulator move, on average.
The participant HI spent 6.5 seconds and the participant ER
required 9.3 seconds to implement each manipulator’s move.
Due to the BCI control model here, the BCI could accept on
average one command per a 3 second period, equal to the time
per one “on”-signal’s presentation in the BCI. Together with the
time necessary for switching the regime of motion of the BCI,
this implied on average 4.1 seconds per manipulator move – the
best-case scenario. The best participant, therefore, was able to
control the manipulator with 50% time overhead and 15% error
rate, while the second best participant required approximately
twice the ideal amount of time and made close to 25% errors
controlling the BCI. Due to difficulty controlling the BCI that
the third participant experienced, that participant spent from 13
to 40 seconds per move in successful trials, being able to com-
plete only 40% of assigned tests. The other two subjects were
able to complete 100% of the tasks given to them. The results
of interactive BCI application are summarized in Table VII.

IV. DISCUSSION

In our experiments, we distinguish as many as 6 mental im-
agery states in EEG BCI well above chance level. In our offline
experiments, the group-average BCI performances have been
found as 90% for two tasks, 77% for three tasks, and 64% for
six tasks. These results are consistent and in many cases superior
to similar results reported in the literature [34]–[39].

We study the impact of different choices in the design of
EEG BCI decoder parameters on BCI performance, including
the choice of EEG signal’s feature representation, the choice
of decoder’s detection frame parameters, the choice of voltage
reference, and other choices. We observe that FTA features show
superior performance outperforming by close to 30% all of the

features based on calculating the EEG signal power spectrum,
such as used in the EEG BCI literature conventionally. In this
work, the EEG signal power features are shown to achieve up
to 78% discrimination accuracy on 2-state BCI discrimination
task, average over all participants, whereas FTA features allow
the same discrimination to be performed with greater than 90%
accuracy. For discrimination of 6 mental imageries, the EEG
signal power features allow up to 45% discrimination accuracy,
while the use of FTA features results in 65% accuracy on average
over all participants and up to 85–90% for best individuals. The
use of FTA features in this work, therefore, allows achieving a
significant improvement in the performance of EEG BCI.

Low-pass filtering of EEG signal prior to its processing in BCI
is a common practice in EEG BCI literature. We also observe
that low-pass filtering can help improve the performance of the
decoder in the EEG BCI. Furthermore, we observe that low-pass
filtering the EEG signal to only 5 Hz high-cutoff results in some
of the best performance of the BCI. This suggests that most
useful information about the motor-based mental imagery used
in this work resides at very low frequencies in the EEG signal.

Indeed, similar results – that the useful information in EEG
BCI may be encoded by the lowest EEG frequency bands –
is also indicated in past studies including such of upper limb
movement intentions [24], [40], [41], studies involving field po-
tential [42]–[44], ECoG [45]–[47], and closed-loop studies with
implanted intra-cortical electrodes [48]. On the other hand, tra-
ditionally motor-imagery EEG BCI have used power modulation
in higher frequency bands of EEG signal such as mu (8–13 Hz)
and beta (20–30 Hz) rhythms [26]–[28].

We inspect this situation in greater depth by testing the dis-
criminability of mental motor imageries using the EEG data
filtered to different narrow 5 Hz-bands ranging from 0–5 Hz to
75–80 Hz. We observe that the ability of EEG BCI to distin-
guish such motor imagery states drops rapidly as the frequency
of the EEG filtering band increases past 15–20 Hz. Only 0–5 Hz,
5–10 Hz and 10–15 Hz frequency bands allow the EEG BCI per-
formance that is significantly different from chance, and only
the frequencies of 0–5 Hz and 5–10 Hz show such performance
better than the chance by a meaningful margin. Specifically, in
the case of discriminating the motor imageries of left and right
hand movements, the all-participants average discrimination ac-
curacy observed using the EEG signal in 0–5 Hz band in our
experiments was 80–90%, for 5–10 Hz–65–75%, and for 10–
15 Hz–55–60% - just slightly above the chance level of 50%.
Beyond 15 Hz, the discrimination accuracy for this BCI task was
not different from chance. At the same time, for discriminating
6 mental imagery states, the all-participants average accuracy
was 50–60% when using 0–5 Hz frequency band, 30–35% when
using 5–10 Hz band, and 20–23% for 10–15 Hz band, with the
higher bands again showing no difference from the chance level
of 16%. We conclude that the low frequencies of 0–15 Hz carry
the most significant information related to the different motor
imageries used in EEG BCI, with most of such information
coming from the frequency band of only 0–10 Hz.

In our study, the participants demonstrated consistent per-
formance when grouped into high-performing, intermediate-
performing and low-performing groups. 5 out of 12 participants
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demonstrated high level of performance using our BCI, achiev-
ing in the offline experiments the accuracy on 2-state BCI task
of 95–100%, 3-state BCI task of 85–90%, and 6-state BCI task
of 80–90%. These individuals demonstrated high performance
related to all BCI tasks and consistently in all experiments.
In online BCI trials, these participants showed good ability to
control the BCI in interactive settings demonstrating the ability
to execute motions using a simulated 3D robotic manipulator
arm and the BCI with 80% accuracy at a rate of 6–9 moves
per minute. The ability of these individuals to control the BCI
presents interest for further practical application. 5 out of 12
participants demonstrated intermediate levels of performance
achieving the accuracy of 80–90% in 2-state BCI task, 70–80%
in 3-state BCI task, and 50–70% in 6-state BCI task. 2 out of 12
participants could not achieve a satisfactory BCI control ability,
in the context of the end-goals of this work which are the devel-
opment of a model for a more generally useful BCI control of
a robotic manipulator. While these individuals still showed per-
formance significantly above chance while using our BCI, they
could achieve the BCI control accuracy of only 75% in 2-state
scenario, 50% in 3-state scenario, and 35% in 6-state scenario.

In our online experiments, a single 15-minute session was
used for training the BCI decoder. This was done because the
participants’ intent during the practice and the test sessions
deemed to not be reliably known, given the design choices made
in our experiments. In principle, such design can be seen as
suboptimal, whereas suggestions for decoder learning involving
also the practice and the test sessions have been made in the
literature [49], [50]. One common approach for that can be to
treat the BCI moves consistent with the target pursued by the
user in a test or practice session as correct. On the other hand,
other studies have suggested that learning BCI can be viewed as
a process similar to learning the use of any other tool [12]. Thus,
the process of BCI application can be structured intentionally in
such a way that a moderately successful BCI decoder is offered
to the users first, and then the users adapt to the decoder, which
happens by changing of the users’ neural patterns in the brain,
to better grasp the control of the fixed BCI. In this scenario,
the BCI decoder needs to remain fixed intentionally, in order
to assist the user in that adaptation process [3]. Distinguishing
among these two possibilities is one of the future targets for our
work.

In EEG BCI, high session-to-session variability of the EEG
signal and accompanying need for re-training the BCI is well
known [51]–[53]. While the reasons for that variability are
not well understood, they may include session-to-session vari-
ability in electrode placement, changes in scalp and electrode
impedance due to humidity, temperature, channel motion, sweat,
as well as emotional, hormonal, and pharmacological changes.
Similarly, in our experiments we observe the need for retraining
or re-calibrating the BCI decoder in each experiment. The ne-
cessity to train the decoder for each new application of the BCI
is a disadvantage of existing EEG BCI technology. However, in
this work the training session lasted for only 15 minutes, and
after that the same decoder was used until the end of the exper-
iment. This training time is much shorter than that described in
other BCI studies [54]–[57].

V. CONCLUSIONS

In this work, we study the possibility of implementing an
EEG-based BCI for high-performance control of an assistive
robot manipulator in 3 dimensions. For this purpose, we carry
out an extensive offline study of mental imagery discrimination
using EEG BCI as well as perform online BCI control experi-
ments. We use motor imagery BCI control paradigm successful
in the literature and inspect different design choices of such an
EEG BCI. Our results indicate that the levels of performance
interesting for practical applications can be achieved using EEG
BCI with only noninvasive neural activity imaging modality. In
our experiments, best individuals demonstrated up to 80–90%
control accuracy with up to 6 BCI states in offline settings,
and 80–90% control accuracy using 3 mental imagery states in
interactive, online settings. However, our 6-state online BCI ex-
periments have not been successful for now. We are still working
to develop more fruitful designing approaches for 6-state online
BCI experiments.

On the other hand, we observe in our study that a group
of several individuals demonstrated consistently high BCI per-
formance, while a group of other individuals was not able to
achieve satisfactory performance at all. This observation is con-
sistent with the notion of “BCI literacy” in modern EEG BCI
literature [58]–[60]. Certain inherent, either psychological or
physiological parameters may be responsible for this variability
in the ability of different individuals to control EEG BCI. If so,
focusing on the design of EEG BCI tailored to specific individ-
uals with the ability to control them may be a plausible strategy
for the development of practically applicable EEG BCI.
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