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Channel Attention Networks for Robust MR
Fingerprint Matching
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Abstract—Objective: Magnetic Resonance Fingerprint-
ing (MRF) enables simultaneous mapping of multiple tis-
sue parameters such as T1 and T2 relaxation times. The
working principle of MRF relies on varying acquisition pa-
rameters pseudo-randomly, so that each tissue generates
its unique signal evolution during scanning. Even though
MRF provides faster scanning, it has disadvantages such
as erroneous and slow generation of the corresponding
parametric maps, which needs to be improved. Moreover,
there is a need for explainable architectures for understand-
ing the guiding signals to generate accurate parametric
maps. Methods: In this paper, we addressed both of these
shortcomings by proposing a novel neural network archi-
tecture (CONV-ICA) consisting of a channel-wise attention
module and a fully convolutional network. Another contri-
bution of this study is a new channel selection method:
attention-based channel selection. Furthermore, the effect
of patch size and temporal frames of MRF signal on channel
reduction are analyzed by employing a channel-wise at-
tention. Results: The proposed approach, evaluated over 3
simulated MRF signals, reduces error in the reconstruction
of tissue parameters by 8.88% for T1 and 75.44% for T2
with respect to state-of-the-art methods. Conclusion: It is
demonstrated that channel attention mechanism helps to
focus on informative channels and fully convolutional net-
work extracts spatial information achieve the best recon-
struction performance. Significance: As a consequence of
improvement in fast and accurate manner, presented work
can contribute to make MRF appropriate for clinical use.

Index Terms—Channel attention, deep learning, MR fin-
gerprinting, reconstruction.
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I. INTRODUCTION

MRI is an essential technique to visualize organs and
structures inside the body with applications in basic

and clinical sciences.While MRI is an adaptable and powerful
tool for imaging, its time inefficiency limits its clinical use
for quantitative imaging. In 2013, Ma et al. [1] introduced
Magnetic Resonance Fingerprinting (MRF) as an alternative of
quantitative MRI where signal equations for different types of
MR acquisitions are used to estimate conventional MRI.

The key benefit of MRF is that it provides the opportunity
to acquire and quantify different tissue parameters such as the
longitudinal relaxation time (T1) and the transverse relaxation
time (T2) within a single acquisition, and thus eliminating the
need for multiple acquisitions. Acquisition parameters are varied
pseudo-randomly so that each tissue generates a unique signal
evolution or fingerprint. Mapping generation is conventionally
carried out by applying a dictionary (template) matching algo-
rithm where the acquired signal is matched with the dictionary
signal. However, this technique has some shortcomings that
need to be addressed such as the computational time required
for the dictionary matching algorithm. In dictionary matching,
each acquired signal needs to be compared with the simulated
signals resulting in high computational complexity. As the num-
ber of combinations in the dictionary increases, reconstruction
becomes more expensive with regard to time and storage [2].
In addition and perhaps more importantly, MRF needs to make
a trade-off between accuracy and scanning time, and therefore
relies on high under-sampling in k-space. As a consequence,
dictionary matching may lead to erroneous quantification in the
generated maps [3].

II. RELATED WORKS

In this section we provide an overview of the previous studies
on dictionary matching in MRF, and the neural network tech-
niques that aim to accelerate this process.

A. Dictionary Matching

In the original proposal of MRF [1], a dictionary match-
ing algorithm is used to reconstruct the corresponding tissue
parameters. Pattern recognition was employed to map the T1
and T2 tissue parameters by matching the fingerprints with a
pre-defined dictionary of predicted signal evolutions. Later, dif-
ferent dictionary matching algorithms were proposed to obtain
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faster and more accurate results. McGivney et al. [4] compressed
the dictionary by using singular value decomposition (SVD),
enabling faster computation due to the smaller dictionary size.
Gomez et al. [5] analyzed the spatio-temporal dictionary and
compared it with the temporal MRF dictionary. Besides, some
studies suggested to use iterative techniques. For instance, Cline
et al. [6] proposed a technique called AIR MRF that com-
bines dictionary compression and regularization for accelerated
matching. Additionally, Zhao et al. [7] proposed a statistical
approach that uses maximum likelihood estimation to predict
T1 and T2 tissue parameters.

B. Neural Network based Techniques

Successful applications of neural networks for computer vi-
sion motivated medical imaging community to use them for
accelerating image reconstruction and mapping. Architectures
such as Fully-Connected Neural Networks, Convolutional Neu-
ral Networks (CNN), and Long Short-Term Memory (LSTM)
have demonstrated state-of-the-art performance for dictionary
matching. Cohen et al. [9] proposed a 4-layer fully connected
neural network model with two hidden layers by using mag-
nitude images as input. Chen et al. [10] presented a fully
connected model with 4 layers that performs dimension re-
duction with Principal Component Analysis (PCA) at its first
layer. Oksuz et al. [11] used Recurrent Neural Network (RNN)
to extract temporal frames for the prediction of T1 and T2
values relying on the time series nature of the MRF finger-
print. Likewise, Hoppe et al. [12] compared CNN and RNN
architectures with magnitude and complex-valued inputs, and
suggested to use the RNN model with complex-valued MRF
signal.

Balsiger et al. [13] analyzed both spatial and temporal frames
to reconstruct tissue parameters using a CNN architecture. Cao
et al. [14] applied a multi-layer perceptron with 4 hidden layers
and optimized it to prevent over-fitting. To further increase the
speed of training and testing, architectures with pre-processing
and pre-training for feature extraction and dimension reduction
have been proposed. Since the high dimensionality of the MRF
signal requires more computational power to process and creates
more redundancy, one of the main focuses of the literature is
to reduce signal dimensionality. Thus, a fully connected neural
network based feature extraction (prior to U-Net) is proposed by
Fang et al. [15] to extract important information while reducing
the number of channels. Also, Fang et al. [16] proposed a U-Net
like architecture with residual channel attention blocks to be able
to extract more informative features. PCA followed by a fully
connected convolutional architecture is used by Chen et al. [10].
In order to learn the non-linear relationship between the spatio-
temporal MRF image data and multiple quantitative maps, Pirkl
et al. [17] proposed to use a CNN architecture combined with
relaxation and diffusion-sensitized MRF sequence.

In this study, we propose a channel attention-based CNN
architecture to weight the important channels before feeding
into the CNN architecture. As our proposed method is attention-
based, it uses all channels in a weighted fashion instead of

reducing the channels, and therefore eliminates loss of temporal
frames due to the channel reduction. Furthermore, the use of the
channel attention mechanism allows us to examine the relative
importance of the channels.

Accordingly, there are two major contributions of this work:
� To the authors’ knowledge, this is the first paper that

provides a thorough analysis of attention based methods
for MRF.

� We propose novel CONV-ICA model that consists of Input
Channel Attention (ICA) and a CNN architecture.

� An in-depth analysis of attention-based channel selections
for understanding the significance of each signal in para-
metric map.

III. METHOD

In this section, we will provide the details of our proposed
architecture to estimate the MRF parameters. The proposed
method consists of a CNN-based architecture with the channel-
wise attention module to empower MRF reconstruction capabil-
ity. MRF consists of sequentially acquired signals over time that
is 2D images + time, and we refer to each temporal frames as a
channel, and feed into model accordingly. In channel attention
networks, channels are weighted based on their significance so
that the model can understand which channels of the MRF signal
are more informative to generate the parametric maps.

A. Channel-Wise Attention Module

The suggested channel attention module consists of two pool-
ing layers in parallel, shared fully connected layers, and a sig-
moid activation function. The fully connected layer applies the
sum over multiplication between each input and each weights to
produce output. The output is then passed through the activation
function and the attention scores are produced.
P c
max and P c

avg denote max-pooled and average-pooled fea-
tures per channel C, respectively. These two pooled layers are
fed into shared fully connected layers as shown in Fig. 1, so that
input (I) becomes R1×1×C . In the first fully connected layer,
channel size is reduced to R1×1×C/r. The reduction parameter
r, empirically fixed at 50, is a hyper-parameter that controls
the reduction. In the next fully connected layer, filter size is
up-scaled to the original size R1×1×C . The outputs of the shared
fully connected layers are summed up and fed into a sigmoid ac-
tivation function. After the channel attention scores - also known
as attention maps - are produced, element-wise multiplication is
performed to weight the input I . The formulation of the channel
attention is as follows:

α = σ(fullyconnected(P c
max(I))

+fullyconnected(P c
avg(I))) (1)

where α denotes attention scores and σ refers to the sigmoid
activation function. The fully connected layers are followed by
a Rectified Linear Unit (ReLu) activation function.
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Fig. 1. Channel Attention Module Architecture [8] where weighted input data is produced with attention scores. P c
max denotes max-pooled

features, P c
avg denotes average-pooled features and Mc denotes weighted input data.

Fig. 2. Our proposed CONV-ICA model. The model accepts and produces 4× 4 overlapped patches. The convolution layers that follows the
channel attention module have filter sizes of 32, 64, 128, 64 and kernel size of 3. Output convolutional layer has kernel size of 1 with filter size 2, i.e.
the number of tissue parameters. All layers are followed by ReLu activation function.

M c = I ⊗ α (2)

where M c is the output of attention weighted input I . The input
channels are weighted by element-wise multiplication (⊗) of
input I and attention scores α.

B. Proposed Model: CONV − ICA

In order to calculate the T1 and T2 maps we propose to use a
convolutional network model on ICA. The current literature for
reconstruction of medical images in MRF relies on reducing the
number of temporal frames which are treated as channels in the
network right after the input layer by using a fully connected
layer or convolution layers. However, this reduction causes
loss of temporal frames. To overcome this problem, this study
suggests the use of a channel attention module before reducing
channel size (also known as filter), as channel attention helps to
extract important temporal frames by weighting the channels and
prevents the loss of that information. As illustrated in Fig. 2, our
proposed model consists of a channel attention module and four
convolution layers with filter sizes of 32, 64, 128, and 64, respec-
tively. The output layer is a 2D convolutional layer with a kernel
size of 1× 1 and a filter size of 2 as it predicts tissue parameters
T1 and T2. All layers are followed by the ReLu activation
function. The proposed model predicts overlapped patches as
shown in Fig. 2. The use of overlapped patches is suggested by

Gomez et al. [18] as overlapped patch-wise approach allows to
remove the under-sampling noise and incoherent artefacts by
averaging over patches.

C. Channel Analysis & Attention-based Channel
Selection

In MRF, the data consists of many channels, which is 2000
in this study. For a faster map reconstruction, less informative
channels could be removed. Also, if some channels are redun-
dant, channel reduction might improve map reconstruction per-
formance. Accordingly, analysis of these channels is required to
investigate which channels are most informative and important
for map reconstruction and to eliminate the redundant ones. For
this purpose, Balsiger et al. [13] zero-filled the channels one-by-
one and compared the results to understand the importance of the
zero-filled channel. However, such analysis may not be the best
way to find the importance of channels as the zero-filled channel
could be learned by the network as informative for reconstruc-
tion. To eliminate this issue, we propose to use an attention
mechanism that will attempt to intrinsically assign attention and
score the features of a given feature map by importance. In order
to investigate the importance of each channels by benefiting
from the advantage of the attention mechanism as explained, we
used the channel attention module of Woo et al. [8] as shown in
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Fig. 3. Architecture to produce the attention scores for each channel.
Pooling sizes for Max Pooling and Average Pooling are determined as
4× 4 which is input patch size. The units of shared fully connected layers
are controlled by reduction parameter r and it is altered to find optimum
channel size. After that, in the next fully connected layer, channel size
is up-warded to the input channel length, and attention scores are
produced through sigmoid function.

Fig. 4. The first plot shows the change of flip angle, where Echo
Time (TE) and Repetition Time (TR) were fixed during acquisition, over
the 2000 channels. The second plot is the distribution of correspond-
ing attention scores over the 2000 channels obtained from Channel
Attention Module, which allows to observe the importance of channels
respectively.

Fig. 1. The feature maps are squeezed through pooling layers and
each channel gets scored (or weighted) as the most informative
channels get higher scores (closer to 1) to reconstruct parametric
maps.

Attention scores are produced after the sigmoid activation
function as shown in Fig. 3, and discussed in Section II-A. When
attention scores are obtained for each patch, scores of all patches
are averaged within each individual channel in order to obtain
their distribution over the whole 2000 channels independently.
For attention-based channel selection, n channels with the high-
est attention scores are selected. Following the channel selection
procedure, the model is retrained.

The informative channels for tissue parameter estimation
could be selected through the channel analysis proposed
here (attention− based˜selection), in contrast to the conven-
tional approaches like PCA as used in [10] and random selection.
We hypothesize that selection of the most important n channels
by analyzing the distribution of attention scores over all channels
(Fig. 4) is a better way for channel reduction and elimination of
redundant channels.

As a result, in order to evaluate the performance of the pro-
posed channel selection method empirically, we experimented
with two conventional channel selection schemes, PCA-based
and random, and carried out a performance comparison with our
proposed method.

IV. EXPERIMENTAL RESULTS

We provide details of our experimental setup and results of
our proposed model in comparison to state-of-the-art methods
in this section. Methods of comparisons are trained and tested
by using 3-fold cross-validation. As all methods are evaluated
over 3 subjects, cross-validation is applied by selecting 1 subject
for testing, and the other 2 for training, and continued that
process until each subject is selected for testing. Mean absolute
error (MAE) in percentage (Eq. 3) is used as the evaluation
metric:

MAE =
1

N

N∑

i=1

∣∣∣Pi − P̂i

∣∣∣
max(Pi)

× 100 (3)

where N represents the total number of pixels, P̂i refers to
the estimated value and Pi represents the actual value.

The proposed model is fed by patch-wise input with 4× 4×
˜channels sized patches which were extracted from the MRF
signals. During the training, 85498 patches were split as 30% for
validation corresponding to 25649 patches while the remaining
70% or 59849 patches for training. ADAM optimization with
a learning rate of 15×10−4 was used while training by min-
imizing the mean squared error loss function. Batch size was
experimentally selected as 512 and the model was trained for
100 epochs. We stopped training early if no improvement of
validation loss is observed for 15 consecutive epochs. The Keras
deep learning library with TensorFlow back-end was used in the
Google Colaboratory environment with 25 GB RAM of GPU.

A. Data

The model is trained and tested on a synthetically generated
complex-valued MRF signal which consist of one slice of 2D
images with 2000 temporal frames. Fingerprints were simulated
based on previously acquired T1, T2, M0 (ground truths) and
coil sensitivity maps. The acquisition used Bloch simulations to
synthesize all the MRF contrasts -for every TR- and included
multi-coil and radial undersampling. The simulated data was
reconstructed with a Low Rank Inversion [19]. Extended Phase
Graph (EPG) [20] is used to generate the MRF dictionary for a
range of T1 = [0: 2: 500] [500: 5: 1000] [1000: 10: 2000] [2000:
50 : 4000] ms, and T2 = [0: 1: 100] [100: 2: 500] ms. Relevant
scan parameters, namely balanced steady-state free precession
radial sequence, TE, fixed TR, FOV, in-plane resolution, slice
thickness, bandwidth are selected as described in [21]. Only
1 radial spoke was acquired at each time point resulting in
an acceleration factor of 251 with respect to a fully sampled
radial acquisition. A total of 2000 time points were acquired in
approximately 10s.

B. Model Comparison

In this paper, mainly, state-of-the-art methods in tissue pa-
rameter reconstruction from MRF signals are selected accord-
ing to the assumptions they make on the data as explained in
Section II-B.

Table I shows that proposed approach achieves the best per-
formance for both T1 and T2 parameters as compared to the
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TABLE I
COMPARISONS OF PROPOSED MODEL WITH A VARIETY OF AVAILABLE

TECHNIQUES WHERE ERRORS ARE CALCULATED BETWEEN GROUND TRUTH
IMAGES AND BACKGROUND-MASKED RECONSTRUCTED IMAGES AS SHOWN
IN FIG. 5 BY USING MAE IN PERCENTAGE. *INDICATES THAT SVD IS USED
FOR CHANNEL REDUCTION FROM 2000 TO 100 IN PRE-PROCESSING FOR

DICTIONARY MATCHING. CONV2D ONLY REPRESENTS A MODEL
WITHOUT INPUT CHANNEL ATTENTION

TABLE II
COMPARISON OF NUMBER OF TRAINABLE PARAMETERS (PARAMS) IN
MILLION, TRAINING TIME IN MINUTES AND TEST TIME IN SECONDS

BETWEEN THE PROPOSED MODEL AND VARIOUS AVAILABLE TECHNIQUES
AS WELL AS THE DICTIONARY MATCHING METHOD. *INDICATES THAT SVD

IS USED FOR CHANNEL REDUCTION FROM 2000 TO 100 IN
PRE-PROCESSING FOR DICTIONARY MATCHING

state-of-the-art models. The results suggest that, using a channel
attention mechanism to produce weighted channels leads to a
decrease in the reconstruction error for our data set as weighted
channels help to avoid losing the important temporal frames
while reducing the number of channels. Because of under-
sampling in k-space during MRF acquisition, the dictionary
matching algorithm produces erroneous reconstructions.

Table I also shows the effect of the ICA. The proposed CONV-
ICA model is compared with the CONV2D model without ICA
and the model is represented as CONV2D only in Table I.

Also as shown in Table II, when comparing the number of
trainable parameters, training time and prediction time accord-
ing to the models, it can be seen that our study is faster in
training time compared to studies of Fang et al. [15] and Balsiger
et al. [13] and faster in prediction time compared to studies of
Hoppe et al. [12], Fang et al. [15] as well as dictionary matching
methods.

C. Effect of Patch Size

In this section, various patch sizes are tested in order to
examine the effect of patch size on reconstruction capability.
Table III shows that the use of 8×8 as the patch size achieves
the lowest reconstruction error values for both T1 and T2 tissue
parameters. Patch size 12×12 performs the second-best recon-
struction for both T1 and T2 value. As a result, it is observed
that patch size 8×8 is optimal for the lowest reconstruction error.
However, because of insufficient computational resources, patch
size was selected as 4×4 in this study. For investigation of the
effect of patch size, attention-based channel selection is applied
to reduce channel size from 2000 to 40 by selecting the best

TABLE III
COMPARISON OF VARIOUS PATCH SIZES AND RECONSTRUCTION MAE
VALUES (EQ. 3) IN PERCENTAGE RESPECTIVELY. BECAUSE OF LACK OF
RESOURCES, CHANNELS WERE DECREASED TO INCREASE PATCH SIZE.
AFTER ATTENTION-BASED CHANNEL SELECTION IS PERFORMED WHERE

CHANNEL SIZE IS REDUCED FROM 2000 TO 40, PATCH SIZES ARE
INCREASED AND RECONSTRUCTION ERRORS ARE OBSERVED

TABLE IV
THE COMPARISON OF PIXEL-WISE (1D) AND PATCH-WISE (2D)

APPROACHES FOR PROPOSED MODEL. THE RECONSTRUCTIONS OF
MODELS ARE BACKGROUND-MASKED, AND ERRORS ARE CALCULATED

ACCORDINGLY
USING MAE IN PERCENTAGE

TABLE V
COMPARISON OF CROSS-VALIDATED MAE IN PERCENTAGE FOR EACH

CHANNEL SELECTION METHOD, ATTENTION-BASED SELECTION, REDUCTION
BY PCA AND RANDOM CHANNEL SELECTION WHEN n NUMBER OF

CHANNELS ARE SELECTED FOR BOTH T1 AND T2 VALUES

40 channels with attention-based channel selection explained
in Section III-C. Then, patches are extracted from data with
reduced channels, and trained with the proposed model.

In addition, we compare the pixel-wise version (1D) of pro-
posed model with its initial 2D counterpart as shown in Table IV.
Because the proposed model is structured for 2D data, it has to
be modified such that 1D convolutional layers are used instead
of 2D convolutional layers to test 1D input.

D. Effect of Channel Selection

In this section, the aim is to evaluate the proposed attention
weights with an additional experiment. Fig. 6 shows the true
images, reconstructed images and error images between the
ground truth and reconstructed image. Respectively, Table V
shows MAE in percentage as seen in Eq. 3 for n number of
channels selected by the methods: Attention-based, PCA, and
Random. It is observed in Table V that attention-based channel
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Fig. 5. Proposed model to state-of-the-art methods compared qualitatively by testing on a test subject. T1 and T2 errors are the mean absolute
differences as shown in Eq. (3) between reconstructed parameters and true parameters in ms. Backgrounds of reconstructed images are masked
to highlight interested region and errors in Table I are calculated accordingly. *Indicates that SVD was used for channel reduction from 2000 to 100
in pre-processing for dictionary matching.

TABLE VI
COMPARISON OF TEST TIME AND TRAINING TIME PER EPOCH IN SECOND
FOR DIFFERENT CHANNEL SIZES N. IT IS OBSERVED THAT TESTING AND

TRAINING TAKE MORE TIME AS N INCREASES

reduction results in a decrease in the reconstruction error while
PCA-based and random selection schemes cause to increase the
reconstruction error. The important advantage of attention-based
channel selection is reducing the need of resources and run time
for algorithms.

Table VI shows that test time and train training time increases
significantly as channel size n increases. For instance, as shown
in Table V, while selecting 200 channels with attention-based
channel selection, T1 reconstruction error in MAE percentage
decreases 6%, test time decreases 58.89% and training time
decreases 79.25% with respect to selecting 2000 channels.

E. Segmentation Comparison

Table VII quantitatively, Figs. 7–8 qualitatively express com-
parison of the proposed model and state-of-the-art models for
different brain tissues, namely Skull Stripped, Gray Matter
(GM), White Matter (WM), and Cerebrospinal Fluid (CSF) that
are extracted by automated segmentation. For segmentation, the
Statistical Parametric Mapping (SPM12) [23] is used and errors
due to automated segmentation were ignored. Results demon-
strate that the proposed method achieved the best reconstruction
performance for both parametric maps in all the brain tissues.

The qualitative results presented in Fig. 5 visually demon-
strate the reconstruction performances of the proposed model

Fig. 6. Channel selection methods are compared with true tissue
parameters, T1 and T2 respectively, when channel size is reduced
from 2000 to 100. The rows marked as T1 and T2 (1st and 3rd rows,
respectively), show the reconstructed tissue parameters by the models.
T1 error and T2 error images (2nd and 4th rows, respectively) show the
differences between the reconstructed and true tissue parameters.

and the models in comparison for the T1 and T2 parameters.
The rows marked as T1 and T2 (1st and 3rd rows, respectively),
show the reconstructed tissue parameters by the models. T1
error and T2 error images (2nd and 4th rows, respectively) show
the differences between the reconstructed and the true tissue
parameters. These qualitative results further support that the
proposed model achieves the best performance visually for the
reconstruction of T1 and T2 tissue parameters.

V. DISCUSSION

We proposed a new deep learning architecture to address
the drawbacks of the dictionary matching algorithm whilst ac-
celerating and improving reconstruction of T1 and T2 values.
The proposed method takes advantage of the channel attention
mechanism which focuses on important temporal frames. There-
fore, channel attention mechanism at the beginning of the model
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TABLE VII
PROPOSED MODEL AND STATE-OF-THE-ART METHODS COMPARED QUANTITATIVELY FOR SEGMENTED BRAIN TISSUES, SUCH AS SKULL STRIPPED, GRAY
MATTER (GM), WHITE MATTER (WM), AND CEREBROSPINAL FLUID (CSF). MAE IN PERCENTAGE (EQ. 3) ARE CALCULATED BETWEEN SEGMENTATION OF

GROUND TRUTH AND RECONSTRUCTED IMAGE FOR BOTH T1 AND T2 TISSUE PARAMETERS. *INDICATES THAT SVD-BASED CHANNEL
REDUCTION FROM 2000 TO 100

Fig. 7. Example results for ground truth (true) image, and reconstruc-
tions of proposed, Fang et al. [15] and Hoppe et al. [22] architectures.
Two blocks show the reconstruction capabilities for Gray Matter and
Skull Stripped respectively. Both T1 and T2 tissue parameters and error
maps are visualized for each architecture.

helps to eliminate the loss of temporal frames, while fully con-
volutional network extracts the spatial information from patch-
wise input to reconstruct from MRF signal more accurately than
the previously proposed methods. Qualitative and quantitative
results demonstrate that the use of the channel attention mech-
anism at the beginning of the model, where temporal frames is
mostly lost due to direct channel reduction (e.g. from 2000 to
40), increases reconstruction capability by 8.88% for T1 value
and 75.44% for T2 value.

In a separate setup we suggest a new channel selection
method: attention-based selection in Section IV-D. As MRF data
consists of many channels and thus requires high computational
resources to process, selection of the most informative channels
is needed to decrease the demand of resources such as RAM.

Fig. 8. Example results for ground truth (true) image, and reconstruc-
tions of proposed, Fang et al. [15] and Hoppe et al. [22] architectures.
Two blocks show the reconstruction capabilities for White Matter and
Cerebrospinal Fluid (CSF) respectively.

In Table V, for bSSFP-MRF sequence used in this study, it has
been observed that approximately 200 channels are sufficient
to significantly reduce the need for resources, while maintain-
ing the reconstruction capability. Besides, it helps to acceler-
ate runtime and computational time as data becomes smaller.
Additionally and more importantly, during the acquisition of
the MRF signal, the parameters are continuously varied to get
unique signal evaluations, which may create redundant temporal
frames [11]. Therefore, channel selection in MRF data is crucial
to keep the most informative and the least redundant temporal
frames. Results shows that attention-based selection helps for
the best reconstruction among other channel selection methods
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such as PCA and random selection for the T1 and T2 tissue
parameters. As attention-based channel selection method is deep
learning-based, increasing the amount of data will lead to better
generalization of channel selection in a more reliable manner.

We studied and proposed new deep learning-based tech-
niques, which needs larger dataset to generalize the solution.
One limitation of this study is the lack of in-vivo data, and its
validation. Accordingly, we plan to work on bigger and more
heterogeneous datasets with different pathologies for different
tissues including in-vivo data. In future, the proposed input
channel attention mechanism could be adapted to the U-Net
architecture [24] which has shown promising reconstruction ca-
pabilities recently [25] and other powerful architectures for MRF
tissue reconstruction. MRF signal is originally a complex-valued
data comprising real and imaginary parts. While the magnitude
of the MRF signal is exploited solely in this study (similar to
most of the state-of-the-art), in the future it is worth exploring
the combined use of real and imaginary parts of the signal as
some studies suggest [12], [26], [27].

In conclusion, this study shows that employing channel re-
duction at the beginning of the model causes loss of temporal
frames which is important for accurate reconstruction of T1
and T2 parameters. To overcome this problem, we proposed
deep learning-based input channel attention that can be easily
applied to any model. Additionally, we analyzed the effect
of patch size on reconstruction performance, and furthermore
demonstrated quantitatively and qualitatively that the proposed
attention-based channel selection achieves the best reconstruc-
tion performance.
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