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Abstract—Objective: Despite the proliferation of numer-
ous deep learning methods proposed for generic ECG
classification and arrhythmia detection, compact systems
with the real-time ability and high accuracy for classi-
fying patient-specific ECG are still few. Particularly, the
scarcity of patient-specific data poses an ultimate chal-
lenge to any classifier. Recently, compact 1D Convolutional
Neural Networks (CNNs) have achieved the state-of-the-art
performance level for the accurate classification of ven-
tricular and supraventricular ectopic beats. However, sev-
eral studies have demonstrated the fact that the learning
performance of the conventional CNNs is limited because
they are homogenous networks with a basic (linear) neu-
ron model. In order to address this deficiency and fur-
ther boost the patient-specific ECG classification perfor-
mance, in this study, we propose 1D Self-organized Op-
erational Neural Networks (1D Self-ONNs). Methods: Due
to its self-organization capability, Self-ONNs have the ut-
most advantage and superiority over conventional ONNs
where the prior operator search within the operator set
library to find the best possible set of operators is entirely
avoided. Results: Under AAMI recommendations and with
minimal common training data used, over the entire MIT-
BIH dataset 1D Self-ONNs have achieved 98% and 99.04%
average accuracies, 76.6% and 93.7% average F1 scores on
supra-ventricular and ventricular ectopic beat (VEB) clas-
sifications, respectively, which is the highest performance
level ever reported. Conclusion: As the first study where 1D
Self-ONNs are ever proposed for a classification task, our
results over the MIT-BIH arrhythmia benchmark database
demonstrate that 1D Self-ONNs can surpass 1D CNNs with
a significant margin while having a similar computational
complexity.

Index Terms—Patient-specific ECG classification, Opera-
tional Neural Networks, real-time heart monitoring, genera-
tive neuron.
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I. INTRODUCTION

CARDIAC arrhythmia as being the most common car-
diovascular disease poses the leading cause of mortality

in the World [1]–[3]. In ECG, the sequence of heartbeats in
each cardiac cycle exhibits individual electrical depolarization-
repolarization patterns of the heart. The presence of an arrhyth-
mia can be detected by an expert cardiologist by assessing a
recorded or acquired ECG signal as the anomaly over the heart
rate or rhythm or change in the morphological pattern. This is
usually a tedious, subjective, and labor-intensive task. Numerous
studies proposed several methods for automatic and accurate de-
tection of arrhythmia over ECG signals. Earlier works [5]–[13]
based on traditional signal processing and machine learning
methodologies have not performed well for clinical use. The
main reason behind this is that among different patients or even
for the same patient but under different temporal, psychological,
and physical conditions, significant variations may occur in the
morphological characteristics and temporal/structural dynamics
of ECG signals. During different times and under different cir-
cumstances, even the shape of each ECG beat, the QRS complex,
P waves, and R-R intervals of a healthy individual will not be
the same [4]. Hence such hand-crafted feature extraction may
fail to capture the characteristics of each ECG beat variation for
accurate classification. This is one of the reasons for their unreli-
able performance level for clinical usage, and their performance
level varies significantly in large ECG datasets, [14], [15]. Other
reasons can be the variation in severity of noise, the usage of
different ECG sensors, inter-patient ECG signal variations, and
differences in the prevalence of arrhythmia between databases.

Numerous deep learning-based methods have recently been
proposed for ECG classification [16]–[22]. These methods are
based on deep CNNs with high complexity and require massive
labeled ECG data for training (e.g., > 50K beats). Moreover,
as they require special parallelized hardware for proper func-
tioning, they are not directly implementable on low-power or
mobile devices. Furthermore, such methods are generic (one
classifier for all patients) and thus are not immune from the
aforementioned intra- and inter-patient variations. Moreover,
such deep networks cannot be trained for a single patient due to
the scarcity of the labeled data. Another major problem is the
lack of common practice when a particular method is evaluated
over a benchmark dataset since most of these methods vary the
choice of the train and test data. To address this need, the Associ-
ation for the Advancement of Medical Instrumentation (AAMI)
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recommends certain standards for evaluating the performance
of the arrhythmia detection methods [23]. However, among the
numerous methods proposed in the literature, only a few [13],
[24]–[38] have followed the AAMI standards in their studies
and even fewer have tested over the complete data from the
benchmark MIT-BIH arrhythmia database [59]. This is indeed
a crucial point for a fair and standardized comparison.

To address the aforementioned issues, in this study, we draw
the focus on patient-specific ECG classification where the ob-
jective is to maximize the arrhythmia detection performance
when the data is scarce and the network complexity is min-
imized for a real-time application over any platform. Among
many patient-specific ECG classification systems, [13], [15],
[25]–[38], the landmark study in [27] proposed for the first
time, a compact 1D CNN for real-time ECG classification
and achieved the state-of-the-art performance demonstrated in
MIT-BIH dataset while following the AAMI recommendations,
i.e., for the training of each “patient-specific” classifier, only the
first 5-min section from the beginning of each patient record
together with the 245 beats randomly selected from the train
partition of the MIT-BIH dataset should be used. As stated in
[27], a dedicated 1D CNN can be easily trained for each patient
and as a compact classifier, it can perform arrhythmia detection
and classification task with utmost speed (requiring only a few
hundreds of 1D convolutions). As a result, 1D CNNs were indeed
the best choice especially for real-time advance warning and
ECG monitoring on lightweight devices.

However, recent studies [40]–[46] have pointed out the fact
that CNNs, similar to their predecessors, the Multi-Layer Per-
ceptrons (MLPs), are homogenous networks with the sole linear
neuron model from the 1950s (McCulloch-Pitts) [39]. This
ancient neuron model is a crude model of the biological neurons
or mammalian neural systems, which are highly heterogeneous
and consist of diverse neuron types with specialized electrophys-
iological and biochemical properties [50]–[55]. Accordingly,
MLPs and their popular derivatives, CNNs having such a ho-
mogenous network configuration based on such crude neuron
model are capable of learning for relatively simple and linearly
separable problems; however, they entirely fail to do so when-
ever the solution space of the problem is highly nonlinear and
complex [40]–[46]. Thereafter Operational Neural Networks
(ONNs) [46] have been proposed and like their predecessor
Generalized Operational Perceptrons (GOPs) [40]–[45], they are
heterogeneous networks with a non-linear neuron model which
gives them an elegant diversity level to learn highly complex
and multi-modal functions or spaces with minimal network
complexity and training data. Recent studies [56], [57] have
proposed the latest ONN variants, 2D Self-ONNs1 for various
image processing and regression tasks, and demonstrated that
2D Self-ONNs even with less number of neurons can achieve
a superior learning performance whilst the performance gap
between ONNs and CNNs widens further.

In this study, we propose 1D Self-organized ONNs (Self-
ONNs) with the generative neuron model for patient-specific

1The optimized PyTorch implementation of Self-ONNs is publically shared
in http://selfonn.net/.

ECG classification. Hence, our objective is to achieve a superior
ECG beat classification performance compared to the compact
1D CNNs [27] while keeping a similar network complexity.
As the first study where 1D Self-ONNs have been proposed
for a classification task, we aim to demonstrate the Self-ONNs
potential on ECG classification and arrhythmia detection. 1D
Self-ONNs have crucial advantages over conventional CNNs
and ONNs. As illustrated in Fig. 1, the convolutional and
operational neurons of a CNN and an ONN have fixed nodal
operators (linear and sinusoidal, respectively) in their 1x3 ker-
nels. For 1D Self-ONNs the generated nodal function, Ψ ,
during training for each kernel element can be any arbitrary
function. So, Self-ONNs neither need an operator set library in
advance, nor require any prior search process to find the optimal
nodal operator. We aim to demonstrate that this indeed yields a
superior operational diversity and flexibility and in turn, a higher
classification performance can be achieved using a very compact
network model.

The rest of the paper is organized as follows: Section II
presents 1D Self-ONNs with generative neurons in detail, for-
mulates the forward-propagation (FP), the back-propagation
(BP) training, their computational complexity and introduces
the MIT-BIH dataset. Section III presents the experimental setup
used for testing and evaluation of the proposed patient-specific
ECG classification approach based on 1D Self-ONNs. Then, the
overall results obtained from the ECG classification experiments
are presented and comparative evaluations using the standard
performance metrics against several state-of-the-art techniques
are provided. Section IV makes a detailed discussion on the re-
sults and comparative evaluations. Finally, Section V concludes
the paper and suggests topics for future research. We will briefly
present the conventional (2D) ONNs to clarify the background
and the terminology in Appendix A. In Appendix B, we will
present the distribution of the beat classes and the detailed
classification results per patient using the standard performance
metrics.

II. METHODS AND DATASET

In this section, we will cover the mathematical model of
the proposed 1D Self-ONNs will be presented. To conclude, a
simplification of the generative neuron will be discussed which
can significantly reduce the computational cost by enabling the
use of fast vectorized operations.

A. 1D Self-Organized Operational Neural Networks

Let us start with considering the case of the kth neuron in the
lth layer of a 1D CNN. For the sake of brevity, we assume the
same convolution operation with unit stride and the required
amount of zero paddings. The output of this neuron can be
formulated as follows:

xlk = blk +

Nl−1∑
i=0

xlik (1)

http://selfonn.net/
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Fig. 1. An illustration of the 1D nodal operations with the 1D kernels of the kth CNN (left), ONN (middle), and Self-ONN (right) neurons at layer l.

where blk is the bias associated with this neuron and xlik is
defined as:

xlik = Conv1D
(
wik, y

l−1
i

)
(2)

Here, wik ∈ RK is the kernel connecting the ith neuron
of (l − 1)th layer to the kth neuron of the lth layer, while
xlik ∈ RM is the input map, and yl−1

i ∈ RM are the lth and
(l − 1)th layers’ kth and ith neurons’ outputs, respectively.
By definition, the convolution operation of (2) can be expressed
as,

xlik (m) =

K−1∑
r=0

wlik (r) y
l−1
i (m+ r) (3)

The core idea behind an operational neuron is a generalization
of the above as follows:

xlik (m) = P lk
(
ψlk
(
wlik (r) , y

l−1
i (m+ r)

))K−1

r=0
(4)

where ψkl (·) : RM×K → RK and P lk(·) : RK → R1 are
termed as nodal and pool functions, respectively, and assigned
to the kth neuron of lth layer. In a heterogenous ONN configu-
ration, every neuron has uniquely assigned ψ and P operators.
Owing to this, an ONN network enjoys the flexibility of in-
corporating any non-linear transformation, which is suitable for
the given learning problem. However, hand-crafting a suitable
library of possible operators and searching for an optimal one
for each neuron in a network introduces a significant overhead,
which rises exponentially with increasing network complexity.
Moreover, it is also possible that the ideal operator for the given
learning problem cannot be expressed in terms of well-known
functions. To resolve this key limitation, a composite nodal
function is required that is iteratively created and tuned during
back-propagation. A straightforward choice for accomplishing
this would be to use a weighted combination of all operators in
the operator set library and learning the weights during training.
However, such a formulation would be susceptible to instability

issues because of different dynamic ranges of individual func-
tions. Additionally, it would still rely on the manual selection of
suitable functions to populate the operator set library. Therefore,
to formulate a nodal transformation that does not require any
pre-selection and manual assignment of operators, we make use
of the MacLaurin function approximation.

To formulate a nodal transformation,ψ which does not require
a pre-selection and manual assignment of operators, we use the
MacLaurin based function approximation near the origin (x =
0) as,

ψ (x) =

∞∑
n = 0

ψ(n) (0)

n!
xn (5)

The Qth order truncated approximation, formally known as
the MacLaurin polynomial, takes the form of the following finite
summation:

ψ (x)(Q)

=

Q∑
n = 0

ψ(n) (0)

n!
xn (6)

The above formulation can approximate any function ψ(x)
sufficiently well near 0. When the activation function bounds
the neuron’s input feature maps in the vicinity of 0 (e.g., tanh)
the formulation of (6) can be exploited to form a composite

nodal operator where the power coefficients, ψ
(n)(0)
n! can be the

learned parameters of the network during training. It was shown
in [57] that the nodal operator of the kth generative neuron in the
lth layer can take the following general form:

ψ̃lk

(
w
l(Q)
ik (r) , yl−1

i (m+ r)
)

=

Q∑
q = 1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(7)
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Fig. 2. A visual comparison of different nodal transformation profiles
entailed by the kernel of a convolutional, operational, and the proposed
generative neuron of order Q. The generative neuron model enables
enhanced nonlinearity and heterogeneity within the kernels.

In (7), Q is a hyperparameter which controls the degree of
the MacLaurin series approximation, and wl(Q)

ik is a learnable
kernel of the network. A key difference in (7) as compared

to the convolutional (3) and operational (4) model is that ψ̃lk
is not fixed, rather a distinct operator over each individual
output, yl−1

i , and thus requires Q times more parameters.
Therefore, theK × 1 kernel vector wlik has been replaced by a

K ×Q matrix wl(Q)
ik ∈ RK×Q which is formed by replacing

each element wlik(r) with a Q-dimensional vector wl(Q)
ik (r) =

[w
l(Q)
ik (r, 1), w

l(Q)
ik (r, 2), . . . , w

l(Q)
ik (Q)] . The input map of the

generative neuron, x̃lik can now be expressed as,

x̃lik (m) = P lk

(
Q∑

q = 1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q)K−1

r = 0
(8)

During training, as wl(Q)
ik is iteratively tuned by the back-

propagation (BP), customized nodal transformation functions
will be generated as a result of (8), which would be uniquely
tailored for ikth connection. This enables enhanced flexibility
which provides three key benefits. Firstly, the need for man-
ually defining a list of suitable nodal operators and search-
ing for the optimal operator for each neuron connection is
naturally alleviated. Secondly, the heterogeneity is not lim-
ited to each neuron connection ik but down to each kernel
element as ψ̃kl (w

l(Q)
ik (r), yl−1

i (m+ r)) will be unique ∀r ∈
[0, 1, . . . ,K − 1] . As illustrated in Fig. 2, such diversity is
not achievable even with the flexible operational neuron model
of ONNs. Thirdly, in generative neurons, the heterogeneity is
driven only by the values of the weights wl(Q)

ik and the core
operations (multiplication, summation) are the same for all neu-
rons in a layer, as shown in (8). Owing to this, unlike ONNs, the
generative neurons inside a Self-ONN layer can be parallelized
much more efficiently, which leads to a considerable reduction
in computational complexity and time. Moreover, a special case
of (8) can also be expressed in terms of the widely applicable
convolutional model.

Fig. 3. Reshuffling operation used to convert yl−1
i to Y l−1

i .

B. Representation in Terms of Convolution

If the pooling operator P lk is fixed to summation operator,
x̃lik is then defined as:

x̃lik (m) =

K−1∑
r = 0

Q∑
q = 1

w
l(Q)
ik (r, q)

(
yl−1
i (m+ r)

)q
(9)

Exploiting the commutativity of the summation operations in
(9), we can alternatively write:

x̃lik (m) =

Q∑
q = 1

K−1∑
r = 0

w
l(Q)
ik (r, q − 1) yl−1

i (m+ r)q (10)

Using (1) and (2), the formula in (10) can be further simplified
as follows:

x̃lik =

Q∑
q=1

Conv1D
(
w
l(Q)
ik ,

(
yl−1
i

)q)
(11)

Hence, the formulation can be accomplished by applying Q
1D convolution operations. If Q is set to 1, (11) entails the
convolutional formulation of (3). Therefore, as CNN is a subset
of ONN corresponding to a specific operator set, it is also a
special case of Self-ONN with Q = 1 for all neurons.

C. Vectorized Notation

Expressing explicit loops in terms of matrix and vector ma-
nipulations is a key idea behind vectorization, which is a major
driving factor behind fast implementations of modern-day neural
network implementations. In this section, we first introduce how
the vectorized notation can be used to express the 1D convolution
operation inside a neuron. Afterward, the same key principles
will be exploited to express the generative neuron formulation
of (9) as a single matrix-vector product.

First, an alternate formulation of the operation of (3) is now
presented. We introduce a transformation δ(·,K) which con-
catenates yl−1

i such that values inside each K -dimensional
kernel as rows to form a matrix Y l−1

i ∈ RM ×K . The process
is visually depicted in Fig. 3 for K = 3, and mathematically
expressed in (12), shown at the bottom of the next page.
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Secondly, we construct a matrix W l
ik ∈ RM×K whose rows

are repeated copies of wik ∈ RK .

W l
ik =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wlik (0) w
l
ik (1) · · · wlik (K − 1)

...
... · · · ...

wlik (0) w
l
ik (1) · · · wlik (K − 1)

...
... · · · ...

wlik (0) w
l
ik (1) · · · wlik (K − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

We now consider the Hadamard product of these two matrices,
shown in (14) at the bottom of this page.

Applying the summation operation across rows, we get:

∑(
Y l−1
i ⊗W l

ik

)
(m) =

K−1∑
r = 0

wlik (r) y
l−1
i (m+ r) (15)

which is equivalent to (3). We also note that,∑
Y l−1
i ⊗W l

ik = Y l−1
i wlik (16)

Therefore,

xlik (m) =
(
Y l−1
i wlik

)
(m) (17)

xlik = Y l−1
i wlik (18)

Hence, the 1D convolution operation can be represented in
terms of a single matrix-vector product. This operation lies at
the heart of conventional explicit general matrix multiplications
(GEMM) based convolution implementations and enables ef-
ficient usage of parallel computational resources such as GPU
cores.

D. Forward Propagation Through a 1D Self-ONN Neuron

We showed in (11) how the Self-ONN formulation of (10) can
be represented as a summation of Q individual convolutional
operations. Moreover, from (12), a convolutional operation can
be represented as a matrix-vector product. We now use these two

formulations to represent the transformation of (11) as a single
convolution operation, and consequently a single matrix-vector
product, instead of Q-separate ones.

We start by introducing Y l−1(Q)

i ∈ RM×KQ such that

Y l−1(Q)

i =
[
Y l−1
i

(
Y l−1
i

)◦2 · · · (Y l−1
i

)◦Q ] (19)

where ◦n is the Hadamard exponentiation operator. The mth

row of Y l−1(Q)

i can be expressed as,

Y l−1(Q)

i (m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yl−1
i (m)

...

yl−1
i (m+K − 1)

...

yl−1
i (m)2

...

yl−1
i (m+K − 1)2

...

yl−1
i (m)Q

...

yl−1
i (m+K − 1)Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(20)

Moreover, we constructW l(Q)
ik ∈ RM×KQ by first vectoriz-

ing wl(Q)
ik ∈ RK×Q to

−−−→
w
l(Q)
ik ∈ RKQ and then concatenating

m copies of
−−−→
w
l(Q)
ik . along the row dimension, as expressed in

Y l−1
i = δ

(
yl−1
i ,K

)
=

⎡⎢⎢⎢⎢⎢⎢⎣

yl−1
i (0) yl−1

i (1) · · · yl−1
i (K − 1)

...
... · · · ...

yl−1
i (m) yl−1

i (m+ 1) · · · yl−1
i (m+K − 1)

...
... · · · ...

yl−1
i (M − 1) yl−1

i (M) · · · yl−1
i (M +K − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ (12)

Y l−1
i ⊗ W l

ik =

⎡⎢⎢⎢⎢⎢⎢⎣

yl−1
i (0)wlik (0) · · · yl−1

i (K − 1)wlik (K − 1)
... · · · ...

yl−1
i (m)wlik (0) · · · yl−1

i (m+K − 1)wlik (K − 1)
... · · · ...

yl−1
i (M − 1)wlik (0) · · · yl−1

i (M +K − 1)wlik (K − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ (14)



MALIK et al.: REAL-TIME PATIENT-SPECIFIC ECG CLASSIFICATION BY 1D SELF-OPERATIONAL NEURAL NETWORKS 1793

(21) and (22).

−−−→
w
l(Q)
ik =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
l(Q)
ik (0, 0)

...

w
l(Q)
ik (K − 1, 0)

w
l(Q)
ik (0, 1)

...

w
l(Q)
ik (K − 1, 1)

...

w
l(Q)
ik (0, Q− 1)

...

w
l(Q)
ik (K − 1, Q− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(21)

W
l(Q)
ik (m) =

−−−→
w
l(Q)
ik (22)

Taking the Hadamard Product of Y l−1(Q)

i andW l(Q)
ik , we get

(23), shown at the bottom of this page.
Summation of the above gives us (24), shown at the bottom

of this page.
This is equivalent to (10). So, one can write,(∑(

Y l−1(Q)

i ⊗ W
l(Q)
ik

))
(m) = x̃lik (m) (25)

Also, using (24), we can write,∑(
Y l−1(Q)

i ⊗ W
l(Q)
ik

)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑Q
q = 1

∑K−1
r = 0 y

l−1
i (r)qw

l(Q)
ik (r, q − 1)

...∑Q
q = 1

∑K−1
r = 0 y

l−1
i (m+ r)qw

l(Q)
ik (r, q − 1)

...∑Q
q = 1

∑K−1
r = 0 y

l−1
i (M − 1 + r)qw

l(Q)
ik (r, q − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(26)

Finally, from (25) and (26), we can simply infer that:

x̃lik = Y l−1(Q)

i

( −−−→
w
l(Q)
ik

)
(27)

The formulation of (27) provides a key computational benefit,
as the forward propagation through the generative neuron is ac-
complished using a single matrix-vector multiplication. Hence,
in theory, if the computational cost and memory requirement
of constructing matrices Y l−1(Q)

i and W
l(Q)
ik is considered

negligible, the complexity of a convolutional neuron is approx-
imately the same as that of the generative neuron, as both can
be accomplished by a single matrix-vector product. Finally, to
complete forward propagation, using (1), we can express:

x̃lk = blk +

Nl−1∑
i = 0

x̃lik (28)

E. Back-Propagation

We now proceed to derive the back-propagation formulation
for the generative neuron model of 1D Self-ONN by utilizing

(
Y l−1(Q)

i ⊗ W
l(Q)
ik

)
(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yl−1
i (m)w

l(Q)
ik (0, 0)

...

yl−1
i (m+K − 1)w

l(Q)
ik (K − 1, 0)

...

yl−1
i (m)2w

l(Q)
ik (0, 1)

...

yl−1
i (m+K − 1)2w

l(Q)
ik (K − 1, 1)

...

yl−1
i (m)Qw

l(Q)
ik (0, Q− 1)
...

yl−1
i (m+K − 1)Qw

l(Q)
ik (K − 1, Q− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(23)

(∑(
Y l−1(Q)

i ⊗ W
l(Q)
ik

))
(m)

=

K−1∑
r = 0

yl−1
i (m+ r)w

l(Q)
ik (r, 0) +

K−1∑
r = 0

yl−1
i (m+ r)2w

l(Q)
ik (r, 0) + . . .+

K−1∑
r = 0

yl−1
i (m+ r)Qw

l(Q)
ik (r,Q− 1)

=

Q∑
q = 1

K−1∑
r = 0

yl−1
i (m+ r)qw

l(Q)
ik (r, q − 1) (24)
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the vectorized notation introduced in Section II-D. To back-
propagate the error through the generative neuron, given the

derivative of the loss w.r.t the neuron’s output, dL/dx̃lik , we

aim to define dL/dyl−1
i , dL/dwl(Q)

ik and dL/dblk .

We start by taking the derivative of (27) w.r.t Y l−1(Q)

i as
follows:

dx̃lik (m)

dY l−1(Q)

i (m̄)
=

{ −−−→
w
l(Q)
ik m = m̄
�0 otherwise

(29)

Using (29), we can now apply the chain rule to get:

dL

dY l−1(Q)

i

=
dL

dx̃lik

dx̃lik

dY l−1(Q)

i

(30)

Given dL

dY l−1(Q)

i

, we aim to find the derivative of loss w.r.t to

the previous layer’s output:

dL

dyl−1
i

=
dL

dY l−1
i

dY l−1
i

dyl−1
i

(31)

We know from (19) that Y l−1(Q)

i =

[Y l−1
i (Y l−1

i )
◦2 · · · (Y l−1

i )
◦Q ] . Taking the derivative of

(19) w.r.t Y l−1
i :

dY l−1(Q)

i

dY l−1
i

=
[
1 2
(
Y l−1
i

)◦1 · · · Q(Y l−1
i

)◦Q−1
]

(32)

Using this we can write:

dL

dY l−1
i

=
dL

dY l−1(Q)

i

dY l−1(Q)

i

dY l−1
i

(33)

Finally, we are able now to calculate the derivative of loss
w.r.t yl−1

i as follows:

dL

dyl−1
i (m̄)

=

M−1∑
m = 0

dL

dY l−1
i (m)

dY l−1
i (m)

dyl−1
i (m̄)

=

M−1∑
m = 0

dL

dY l−1
i (m)

[
dyl−1
i (m)

dyl−1
i (m̄)

, . . . ,
dyl−1
i (m+K − 1)

dyl−1
i (m̄)

]
(34)

From (34) and (12), we can notice that (dY
l−1
i (m)

dyl−1
i (m̄)

) will be

equal to 1 only when the condition m ≤ m̄ ≤ (m+K − 1)
is met, and 0, otherwise. Moreover, as there are no repeating

entries in each row of Y l−1
i , only one element of dY

l−1
i (m)

dyl−1
i (m̄)

can

be non-zero and the location of this non-zero element is given
by mod(m̄,K) . Based on these two points, we can infer the
following:

dL

dyl−1
i (m̄)

=
M−1∑
m = 0

{
dL

dY l−1
i

(m,mod (m̄,K)) m ≤ m̄ ≤ (m+K − 1)

0, otherwise

(35)

The only other partial derivative needed for completing the
back-propagation is the of the loss w.r.t the weights of the neuron−−−→
w
l(Q)
ik . By the chain rule, we can write:

dL

d
−−−→
w
l(Q)
ik

(r̄) =
dL

dx̃lik

dx̃lik

d
−−−→
w
l(Q)
ik

(36)

where d˜xl
ik

d
−−−−→
w

l(Q)
ik

can be calculated by taking the derivative of (27)

w.r.t
−−−→
w
l(Q)
ik as follows:

dx̃lik

d
−−−→
w
l(Q)
ik

= Y l−1(Q)

i (37)

For bias, we can use (28) to write:

dL

dblk
=

dL

dx̃lk

dx̃lk
dblk

=

M−1∑
m=0

dL

dx̃lk

(m) (38)

Finally, assuming an SGD-based optimization, the weights
and biases can be updated as follows:

−−−→
w
l(Q)
ik (t+ 1) =

−−−→
w
l(Q)
ik (t)− ∈ (t)

dL

d
−−−→
w
l(Q)
ik

(39)

blk (t+ 1) = blk (t)− ∈ (t)
dL

dblk
(40)

where ∈ (t) is the learning factor at iteration t .

F. Computational Complexity

In this section, we provide the formulation for calculating the
total number of multiply-accumulate operations (MACs) and the
total number of parameters (PARs) of a generative neuron inside
a 1D Self-ONN. To calculate the number of trainable parameters,
we recall that, for each kernel connection, the generative neuron
has Q times more learnable parameters. Cumulatively, the
number of trainable parameters, nlk , of the kth neuron of lth

layer is given by the following formulation:

nlk = Nl−1 ∗Kl
k ∗Qlk (41)

In (41),Nl−1 is the number of neurons in layer l − 1 ,Kl
k is

the kernel size used in the neuron and Qlk is the approximation
order selected for this neuron. Finally, to calculate the total
number of MAC operations, one can note from (26) that to

produce a single element in the output x̃lik , we require Kl
k∗Qlk

MAC operations for each output map yl−1
i of the previous layer.

Generalizing this, we can write the following:

MA Clk = Nl−1 ∗
∣∣∣ x̃lik∣∣∣ ∗ Kl

k ∗Qlk (42)

where | · | is the cardinality operator. For notational conve-
nience, the bias term and the cost of Hadamard exponentiation
are omitted from (42).
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TABLE I
NETWORK MODELS AND THEIR COMPUTATIONAL COMPLEXITIES. THE

AVERAGE TIME CORRESPONDS TO THE TIME FOR CLASSIFYING
A SINGLE BEAT

We implemented the proposed patient-specific 1D ONN clas-
sifier using FastONN [48] and PyTorch machine learning li-
braries. All the experiments reported in this paper were run on a
2.2GHz Intel Core i7-8750H with 8 GB of RAM and NVIDIA
GeForce GTX 1050Ti graphic card. Both training and testing
phases of the classifier were processed by CUDA kernels. For
calculation of inference times, an Intel Core i7-10750H CPU
was used. Along with the average time complexity, using the
formulations in (41) and (42), we provide the overall PARs and
MACs for both network models in Table I.

Another important advantage of the proposed system is its
significantly low computational cost for the ECG beat classifi-
cation. Specifically, for a single CPU implementation, the total
time for a single beat to BP per epoch and to FP to obtain the
class vector is about 54 and 21.2 microseconds for a Q = 7
Self-ONN classifier, respectively. Such an FP time to process a
beat is indeed an insignificant complexity and naturally allows
real-time implementation even on low-power mobile devices.

G. MIT/BIH Arrhythmia Dataset

The MIT/BIH arrhythmia dataset [59] is primarily used for
performance evaluation in this study since it is the benchmark
dataset that was used by all recent patient-specific ECG clas-
sification methods proposed in the literature. MIT/BIH dataset
contains 48 ECG recordings, each with 30-min duration and two-
channel ECG signals. Each record is extracted from the 24-hour
ECG of 47 individuals. Each ECG record is pre-processed by
band-pass filtering at 0.1-100 Hz and then sampled at 360 Hz.
The database contains annotation for both timing information
and beat class information verified by independent experts. To
comply with the AAMI ECAR-1987 recommended practice
[23], in this work, we apply the same data partitioning as in
[26]–[29]. Accordingly, excluding the four which contain paced
heartbeats, the remaining 44 ECG records from the MIT/BIH
arrhythmia database are used for performance evaluation. Those
records with patient IDs in the range of 100 to 124 encapsulating
the common ECG patterns of routine clinical recordings are used
to select the “common” ECG beats for training. Other records
with patient IDs from 200 to 234 include less common but
clinically significant arrhythmias such as ventricular, junctional,
and supraventricular arrhythmias [59]. Overall, 83,648 ECG
beats in those 44 recordings are used for testing and performance

TABLE II
MAPPING THE MIT-BIH ARRHYTHMIA DATABASE HEARTBEAT TYPES TO THE

AAMI HEARTBEAT CLASSES [23]

evaluation. According to the AAMI recommendation (Table II),
we adopt the following five ECG beat categories: normal (N)
beats originating in the sinus mode, supraventricular ectopic (S),
ventricular ectopic (V), fusion (F), and unclassifiable (Q) beats.
The beat detection method is outside the scope of this paper and
there are numerous accurate beat detection algorithms proposed
in the literature [58], [60].

The raw data of each beat is represented by 128 samples via
down-sampling which is the same resolution considered for the
evaluation of the earlier 1D CNN counterpart [27] and previous
works [26], [28], [29]. We also apply the same formation as in
[27] for input ECG signals: to capture the morphological pattern,
each beat is individually fed as the first channel of the network’s
input layer. To capture the temporal characteristics of each beat,
a beat-trio is created from the neighbor beats and fed as the
second channel of the input layer.

The training data for each patient is partitioned into two parts:
global (the common set of 245 beats randomly selected from
the ECG records of the patients with IDs 100-124) and patient-
specific that belongs to the first 5 minutes of each patient’s ECG
record, which is the recommended practice by AAMI for training
[23]. In brief, for each patient’s ECG record there are usually
around 500-700 beats used for training, and the rest (after the
first 5 minutes) of the ECG record is used for the test.

III. RESULTS

This section will first outline the benchmark ECG dataset
used in this study and present the experimental setup used for
testing and evaluation of the proposed patient-specific ECG
classification based on 1D Self-ONNs. An extensive set of ECG
classification experiments and comparative evaluations against
the recent methods over the benchmark MIT-BIH dataset will be
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presented next. Finally, the computational complexity analysis
of the 1D Self-ONNs and 1D CNNs will be formulated in detail.

A. Experimental Setup

We aim to have a fair comparison with the earlier 1D CNN
counterpart [27]. Therefore, in all experiments, we used a com-
pact 1D Self-ONN consisting of only two Self-ONN layers and
two dense (MLP) layers. However, we halved the number of
neurons used in [27], i.e., each 1D Self-ONN used has 16 and 8
neurons on the first and second hidden layers, respectively, and
10 neurons on the hidden MLP layer. The output MLP layer size
is 5 which is the number of ECG classes and the input layer size
is two for single and beat-trio raw data representation. The same
kernel sizes and the sub-sampling factors which are 15 and 6,
respectively in [27] are used. As a result, the sub-sampling factor
for the last Self-ONN layer is set to 5. Once detected, each ECG
beat (single or beat-trio) is resized to 128 samples.

For all experiments, as in [27] a shallow training is employed
by using Stochastic Gradient Descent (SGD), and a two-fold
stopping criterion is used: the maximum number of BP epochs is
50 or minimum (train) classification error level is 3%. Therefore,
training terminates as soon as either of the criteria is met. We
initially set the learning rate, ∈ (0) , as 0.01 and it is globally
adapted during each BP iteration. We performed five individual
BP runs for training over each patient’s data and for comparative
evaluations, report the best classification performance.

B. ECG Classification Performance Evaluation

The experiments are performed over 44 patient records in the
MIT/BIH arrhythmia database, which contains a total of 100,389
ECG beats. We intentionally employed the same patient-specific
training methodology applied in [27]. For training the 1D Self-
ONNs, both global and patient-specific training patterns are
used. The common part of the training data set contains a total
of 245 representative beats, including 75 from each type N, -S,
and -V beats, and all 13 type-F and 7 type-Q beats, randomly
selected from the records with patient IDs from 100 to 124 in
MIT/BIH dataset.

In this study, the following standard metrics are used: classi-
fication accuracy (Acc), sensitivity (Sen), specificity (Spe), pos-
itive predictivity (Ppr), and F1-score (F1). Since there is a large
variation in the number of beats from different classes (class
imbalance) in the training/testing data (i.e., 39465/50354 type-
N, 1277/5716 type-V, and 190/2571 type-S beats), sensitivity,
specificity, positive predictivity and especially, F1-score are all
relevant performance criteria for medical diagnosis applications.

For performance evaluation of the 1D Self-ONN classifier, we
shall consider the two-channel (the single beat and the beat trio)
raw ECG data segments of 128 samples long as the input. For
all 44 records in the MIT/BIH arrhythmia database, the average
ECG beat classification performance of the state-of-the-art 1D
CNN method in [26] and 1D Self-ONN classifier for different
Q values is presented in Table III. In SVEB classification,
Self-ONNs have a significant superiority in all metrics yielding
around 7% F1 gain over the CNN in [27]. In VEB classification,
the gap in F1 still exists but is lower (1.5%). In order to perform a

TABLE III
AVERAGE ECG BEAT CLASSIFICATION PERFORMANCE OF KIRANYAZ ET AL.

[27], AND 1D SELF-ONN CLASSIFIERS FOR DIFFERENT Q VALUES FOR
ALL 44 RECORDS IN THE MIT/BIH ARRHYTHMIA DATABASE

more extensive comparative evaluation, the performance metrics
of the proposed approach is compared with the four existing
algorithms, [13], [25]–[27], and [31] all of which use the same
training and test datasets and comply with the AAMI standards.
However, [21], [61]–[63] do not obey AAMI standards for
patient-specific train set partitioning. Moreover, many of the
recent studies use a large common train data (e.g., [33]–[37],
[61]–[63]) for training and in fact, some even use data from 200
ID patients which should entirely be left for testing.

Following the AAMI recommendations, the problem of VEB
and SVEB detection is considered individually and the results
are summarized in Table IV. As the table details, MIT/BIH
dataset is partitioned into three evaluation datasets: Dataset 1
contains 14 test recordings 11 of which (200, 202, 210, 213, 214,
219, 221, 228, 231, 233, and 234) are used for VEB detection
while for SVEB detection, the remaining records 212, 222, and
232, are also used. Dataset 1 is common for all competing
methods. Dataset 2 contains 24 records with patient IDs 200
and higher. Four competing methods (the proposed, [25], [26],
[27], and [31]) are tested on this dataset. The recent method [31]
indeed follows the AAMI standard and performed the same data
partitioning for train and test sets of each patient. However, this
study performed a dedicated search to select the most suitable
common training data that can represent the beats of each patient,
i.e., [31] performed an iterative search (repeated 200 times) for
this purpose in order to select the best set of S beats whereas
all other methods including the proposed approach randomly
selected the common beats. Despite this advantage which makes
a direct comparison unfair, the proposed method still achieves
a similar or better performance than [31]. Finally, Dataset 3 is
the entire MIT-BIH dataset with 44 records over which three
methods, the proposed, [26] and [27], are compared. Finally,
we present the distribution of beats and classification results per
patient in Appendix B.

IV. DISCUSSION

The results presented in Table IV show that for all three
dataset partitions, sensitivity (recall) and positive predictivity
(precision) rates of SVEB detection are significantly lower
than VEB detection. The main reason is that SVEB class is
under-represented in the training data and hence more S beats
are misclassified as N or V beats. The proposed 1D Self-ONN
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TABLE IV
VEB AND SVEB CLASSIFICATION PERFORMANCES OF THE PROPOSED 1D SELF-ONN WITH Q = 7 AND FIVE COMPETING ALGORITHMS. BEST RESULTS

ARE HIGHLIGHTED

1The comparison results are based on 11 common recordings for VEB detection and 14 common recordings for SVEB detection.
2The VEB and SVEB detection results are compared for 24 common testing records only.
3The VEB and SVEB detection results over all records in the MIT-BIH dataset.

classifier significantly improves both precision and F1-score of
SVEB and VEB detections for all data partitions compared to
[27] and other older competing algorithms. It is also observed
that, for SVEB detection over the entire dataset, while the
sensitivity of the proposed method is slightly lower than [26],
precision is significantly higher (> 20%). This means that false
positives are significantly reduced by 1D Self-ONNs. For the
VEB classification over the entire dataset, the sensitivity of
the proposed method is slightly lower than [27], precision is
significantly higher (> 5%). Therefore, the same conclusion can
be drawn for [27] too.

The superiority of the proposed approach over the landmark
study, [27], is obvious. Among all competing methods, the one
with the closest performance level with the proposed work
is [31]. However, in [31] the authors performed a dedicated
search to select the most suitable common training data that can
represent the beats of each patient, e.g., the authors performed an
iterative search (to be repeated 200 times) for the same purpose
in order to select the best set of S beats. Although this makes it
unfair to compare with the proposed and other methods where
the common beats are randomly selected, we still decided to
include this work in our comparative evaluations. Moreover,
there are some challenging ECG records particularly on the test
dataset, e.g., from the patients with IDs: 201, 202, 209, 222, and
232. For these ECG signals, both the patient-specific data from
the first 5 minutes interval and the common data of 245 beats
extracted randomly from the training dataset do not successfully
characterize the patient’s S and/or V beats. Take for instance the
confusion matrix data resulting for test patient 202 in Table V
using both 1D Self-ONN and 1D CNN classifiers. While in
1D CNN, 258 normal beats are misclassified as S beats and
28 S beats are misclassified as V beats, the proposed classifier

TABLE V
CONFUSION MATRIX FOR THE ECG BEAT CLASSIFICATION OF PATIENT 202.

THE RESULTS FROM [27] ARE SHOWN BETWEEN PARENTHESES

misclassifies 203 normal beats as S beats and 12 S beats as V
beats. On the other hand, the corresponding trade-off is that 20 S
beats are misclassified as normal compared to 11 for the 1D CNN
classifier. The four ECG intervals from the test section of this
patient’s ECG record are shown in Fig. 4. The characteristics
of the ECG beats shown in the plots are quite different from
the ones in the training dataset of this patient and hence such
misclassifications occurred. For instance, the anomalies shown
in the plot in the bottom-left were misclassified as a V beat due to
its morphological variation, and the S beat in the bottom-right
was misclassified as an N beat due to its temporal variation,
which is a clear indication of an S beat.

Overall, the novel and significant contributions of this work
can be enlisted as follows:
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Fig. 4. Four ECG samples from the test section of the patient 202’s ECG record with the ground-truth labels.

Fig. 5. The illustration of the kth neuron of a CNN (left) and an ONN (right) along with the three consecutive convolutional (left) and operational
(right) layers [46].

1) This is the first study that proposes 1D Self-ONNs over a
1D signal (ECG) repository. This is also the first study that
proposes 1D Self-ONNs for a biomedical application.

2) We derive 1D vectorized formulations of Self-ONNs for
forward- and back-propagation (BP) which lead to an
efficient parallelization on dedicated hardware resources
such as GPUs.

3) This is the first study that proposes and evaluates Self-
ONNs for a classification task where a dense layer is used
after the operational layers.

4) Finally, the proposed approach with the proposed 1D Self-
ONN classifier significantly outperformed the state-of-
the-art approach in the landmark study in [27] without a
significant increase in the computational complexity.

The optimized PyTorch implementation of 1D Self-ONNs is
publicly shared in [64].

V. CONCLUSION

In this work, we proposed 1D Self-ONNs for patient-specific
ECG classification and arrhythmia detection. Our objective is
to push the frontier set by the landmark study [27] based on 1D
CNNs by achieving a new state-of-the-art ECG classification
performance with a superior computational efficiency. A Self-
ONN is basically composed of generative neurons each of which
is capable of optimizing the nodal operator function of each ker-
nel operating over the individual output map of the previous layer
neuron. This is indeed a neuron-level heterogeneity that maxi-
mizes the network diversity and thus the learning performance.
Besides, Self-ONNs present other important advantages over
conventional ONNs. First and foremost, its “self-organizing”
capability voids the need for prior operator search. Moreover, in
a Self-ONN, the nodal operator of each neuron of each output
layer neuron, i.e., the most crucial neuron in the network in
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TABLE VI
THE DISTRIBUTION OF BEATS PER CLASS AND CLASSIFICATION RESULTS PER PATIENT

which the loss (fitness) is computed, can be optimized. Finally,
due to the “on-the-fly” generation of the non-linear nodal op-
erator, the network can create the best possible basis functions
such that when operated with the normal and arrhythmic ECG
signal, one can get the highest discrimination. Overall, in this
new-generation machine learning paradigm, traditional weight
optimization of conventional CNNs is entirely turned into an
operator optimization process. Nevertheless, as demonstrated in
this study, Self-ONNs can still be implemented by only 1D con-
volutions and in a parallelized implementation, a Self-ONN and
a CNN with the same configuration have similar computational
complexity.

An extensive set of comparative evaluations over the bench-
mark MIT/BIH arrhythmia database shows that for all test parti-
tions, 1D Self-ONNs surpass 1D CNNs in both VEB and SVEB

detection even with less number of learning units (half the num-
ber of neurons used in [27]). In particular, thanks to its improved
learning performance, a significant improvement in precision
and F1-score metrics of SVEB detection is achieved. This clearly
shows that especially for low-power, mobile platforms, such as
Holter devices, and when labeled data is scarce, the proposed
approach can conveniently be used as a patient-specific ECG
monitoring in real-time.

APPENDIX A
OPERATIONAL NEURAL NETWORKS

ONNs are derived from the Generalized Operational Percep-
trons (GOPs) in the same way CNNs are derived from MLPs
with two restrictions: limited connectivity and weight sharing.
GOPs have been proposed in [40], [41] to replace the basic
(linear) neuron model from the 1950s (McCulloch-Pitts) [39]
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aiming to address the well-known limitations and drawbacks of
MLPs. Recently, GOPs have outperformed not only MLPs but
even the latest variants of Extreme Learning Machines (ELMs)
in [42]–[45]. Derived directly from GOPs, ONNs [46]–[49] are
heterogeneous networks encapsulating neurons with linear and
non-linear operators hence carrying a closer link to biological
systems. In brief, ONNs extend the sole usage of linear con-
volutions in the convolutional neurons by the nodal and pool
operators. Conventional 2D CNNs and ONNs are illustrated in
Fig. 5 where the right side illustrates a three operational layer
ONN with a 3x3 kernel in each neuron. As illustrated in the
figure, the input map of the kth neuron at the current layer, xlk , is
obtained by pooling the final output maps, yl−1

i of the previous
layer neurons operated with its corresponding kernels, wlki , as
follows:

xlk = blk +
Nl−1∑
i=1

oper2D(wlki, y
l−1
i , ′NoZeroPad′)

xlk (m,n)
∣∣(M−1,N−1)

(0,0)
= blk

+
Nl−1∑
i=1

(
P lk

[
Ψlki

(
wlki (0, 0) , y

l−1
i (m,n)

)
, . . . ,

Ψlki
(
wlki (r, t) , y

l−1
i (m+ r, n+ t) , . . .

)
, . . .

])
(43)

A close look at Eq. (43) reveals the fact that when the pool
operator is “summation”, P lk = Σ , and the nodal operator is
“linear”, Ψlki (y

l−1
i (m,n), wlki(r, t)) = wlki (r, t)y

l−1
i (m,n) ,

for all neurons, then the resulting homogenous ONN will be
identical to a CNN (illustrated on the left side of the figure).
Hence, ONNs are indeed a superset of CNNs as the GOPs
are a superset of MLPs. The ultimate question one would ask
over a heterogeneous network is how to determine the synaptic
connections of each neuron, that is the assignment of the “right”
operator set(s) for each neuron/layer. This is not a problem
for a CNN simply because all neurons are linear, and one can
only learn to alter the kernel weights. In [46], Greedy Iterative
Search (GIS) has been proposed to find the best operator set
per layer; however, GIS is computationally demanding and as a
local search method, it may fail to find the global optimal sets.
Moreover, ONNs with GIS-assigned operator sets will still be
homogenous, layer-wise, since the same operator set is used for
all neurons in each layer and its heterogeneity is further limited
due to the finite number of operators in the operator set library.
The latter can particularly cause performance degradation if the
right operator set for the problem at hand is missing from the
library. APPENDIX B

In this appendix, we present the distribution of beats and
classification results per patient in Table VI.

REFERENCES

[1] World Health Organization, “Cardiovascular diseases (CVDs) fact sheet,”
Accessed: May 20, 2018. [Online]. Available: http://www.who.int/en/
news-room/fact-sheets/detail/cardiovascular-diseases

[2] Y. Xia et al., “Influence of beat-to-beat blood pressure variability on
vascular elasticity in hypertensive population,” Sci. Rep., vol. 7, no. 1,
Aug. 2017, Art. no. 8394.

[3] Y. Xia et al., “Association between beat-to-beat blood pressure variability
and vascular elasticity in normal young adults during the cold pressor test,”
Medicine, vol. 96, no. 8, Feb. 2017, Art. no. 17.

[4] R. Hoekema, G. J. H. Uijen, and A. v. Oosterom, “Geometrical aspects of
the interindividual variability of multilead ECG recordings,” IEEE Trans.
Biomed. Eng., vol. 48, no. 5, pp. 551–559, May 2001.

[5] K. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination
of ventricular tachyarrhythmia with Fourier-transform neural network,”
IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 179–185, Feb. 1999.

[6] O. T. Inan, L. Giovangrandi, and G. T. A. Kovacs, “Robust neural-network
based classification of PVCs using wavelet transform and timing interval
features,” IEEE Trans. Biomed. Eng., vol. 53, no. 12, pp. 2507–2515,
Dec. 2006.

[7] X. Alfonso and T. Q. Nguyen, “ECG beat detection using filter banks,”
IEEE Trans. Biomed. Eng., vol. 46, no. 2, pp. 192–202, Feb. 1999.

[8] J. L. Willems and E. Lesaffre, “Comparison of multigroup logistic and lin-
ear discriminant ECG and VCG classification,” J. Electrocardiol., vol. 20,
pp. 83–92, 1987.

[9] J. L. Talmon, Pattern Recognition of the ECG. Berlin, Germany:
Akademisch Proefscrift, 1983.

[10] D. A. Coast et al., “An approach to cardiac arrhythmia analysis using
hidden markov models,” IEEE Trans. Biomed. Eng., vol. 37, no. 9,
pp. 826–836, Sep. 1990.

[11] S. Osowski, L. T. Hoai, and T. Markiewicz, “Support vector machine based
expert system for reliable heartbeat recognition,” IEEE Trans. Biomed.
Eng., vol. 51, no. 4, pp. 582–589, Apr. 2004.

[12] Y. H. Hu et al., “Applications of artificial neural networks for ECG signal
detection and classification,” J. Electrocardiol., pp. 66–73, 1994.

[13] Y. Hu, S. Palreddy, and W. J. Tompkins, “A patient-adaptable ECG beat
classifier using a mixture of experts approach,” IEEE Trans. Biomed. Eng.,
vol. 44, no. 9, pp. 891–900, Sep. 1997.

[14] S. C. Lee, “Using a translation-invariant neural network to diagnose heart
arrhythmia,” in Proc. IEEE Conf. Neural Inf. Process. Syst., Nov. 1989,
pp. 2025–2026.

[15] P. de Chazal and R. B. Reilly, “A patient-adapting heartbeat classifier using
ECG morphology and heartbeat interval features,” IEEE Trans. Biomed.
Eng., vol. 53, no. 12, pp. 2535–2543, Dec. 2006.

[16] U. R. Acharya et al., “Automated detection of arrhythmias using dif-
ferent intervals of tachycardia ECG segments with convolutional neural
network,” Inf. Sci., vol. 405, pp. 81–90, 2017.

[17] U. R. Acharya et al., “A deep convolutional neural network model to
classify heartbeats,” Comput. Biol. Med., vol. 89, pp. 389–396, 2017.

[18] M. Zubair, J. Kim, and C. Yoon, “An automated ECG beat classification
system using convolutional neural networks,” in Proc. 6th Int. Conf. IT
Convergence Secur., 2016, pp. 1–5.

[19] S. S. Xu, M. Mak, and C. Cheung, “Towards end-to-end ECG classification
with raw signal extraction and deep neural networks,” IEEE J. Biomed.
Health Inform., vol. 23, no. 4, pp. 1574–1584, Jul. 2019.

[20] Y. Xia and Y. Xie, “A novel wearable electrocardiogram classification
system using convolutional neural networks and active learning,” IEEE
Access, vol. 7, pp. 7989–8001, 2019.

[21] L. Guo, G. Sim, and B. Matuszewski, “Inter-patient ECG classifica-
tion with convolutional and recurrent neural networks,” Biocybernetics
Biomed. Eng., vol. 39, no. 3, pp. 868–879, 2019, [Online]. Available:
https://doi.org/10.1016/j.bbe.2019.06.001

[22] X. Xu and H. Liu, “Ecg heartbeat classification using convolutional neural
networks,” IEEE Access, vol. 8, pp. 8614–8619, 2020.

[23] Association for the Advancement of Medical Instrumentation, Recom-
mended Practice for Testing and Reporting Performance Results of Ven-
tricular Arrhythmia Detection Algorithms. Arlington, VA, USA: Assoc.
for the Advancement of Med. Instrum., 1987.

[24] P. de Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic classification of
heartbeats using ECG morphology and heartbeat interval features,” IEEE
Trans. Biomed. Eng., vol. 51, no. 7, pp. 1196–1206, Jul. 2004.

[25] W. Jiang and S. G. Kong, “Block-based neural networks for personalized
ECG signal classification,” IEEE Trans. Neural Netw., vol. 18, no. 6,
pp. 1750–1761, Nov. 2007.

[26] T. Ince, S. Kiranyaz, and M. Gabbouj, “A generic and robust system
for automated Patient-specific classification of electrocardiogram signals,”
IEEE Trans. Biomed. Eng., vol. 56, no. 5, pp. 1415–1426, May 2009.

[27] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-time patient-specific ECG
classification by 1D convolutional neural networks,” IEEE Trans. Biomed.
Eng., vol. 63, no. 3, pp. 664–675, Mar. 2016.

[28] S. Kiranyaz et al., “Convolutional neural networks for patient-specific
ECG classification,” in Proc. 37th IEEE Eng. Med. Biol. Soc. Conf.,
Milano, Italy, Aug. 2015, pp. 2608–2611.

[29] S. Kiranyaz, T. Ince, and M. Gabbouj, “Personalized monitoring and
advance warning system for cardiac arrhythmias,” Sci. Rep. - Nature, vol. 7,

http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases
http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases
https://doi.org/10.1016/j.bbe.2019.06.001


MALIK et al.: REAL-TIME PATIENT-SPECIFIC ECG CLASSIFICATION BY 1D SELF-OPERATIONAL NEURAL NETWORKS 1801

Aug. 2017, Art. no. 9270, doi: 10.1038/s41598-017-09544-z, [Online].
Available: http://rdcu.be/vfYE

[30] S. Kiranyaz, T. Ince, and M. Gabbouj, Multi-dimensional Particle Swarm
Optimization for Machine Learning and Pattern Recognition. Berlin,
Germany: Springer, 2013, p. 383.

[31] X. Zhai and C. Tin, “Automated ECG classification using dual heartbeat
coupling based on convolutional neural network,” IEEE Access, vol. 6,
pp. 27465–27472, 2018, doi: 10.1109/ACCESS.2018.2833841.

[32] J. Wu et al., “Patient-Specific ECG classification with integrated long
short-term memory and convolutional neural networks,” IEICE Trans. Inf.
Syst., vol. E103.D, no. 5, 2020, pp. 1153–1163. [Online]. Available: https:
//doi.org/10.1587/transinf.2019EDP7282

[33] Y. Li et al., “Patient-specific ECG classification by deeper CNN from
generic to dedicated,” Neurocomputing, vol. 2018, 2018, Art. no. 314,
doi: 10.1016/j.neucom.2018.06.068.

[34] K. Luo et al., “Patient-specific deep architectural model for ECG clas-
sification,” J. Healthcare Eng., vol. 2017, May 2017, Art. no. 4108720,
doi: 10.1155/2017/4108720.

[35] S. S. Xu, M. Mak, and C. Cheung, “Patient-specific heartbeat classification
based on I-vector adapted deep neural networks,” in Proc. IEEE Int. Conf.
Bioinf. Biomed., 2018, pp. 784–787, doi: 10.1109/BIBM.2018.8621475.

[36] E. Jing et al., “ECG heartbeat classification based on an improved resnet-
18 model,” Comput. Math. Methods Med., vol. 2021, pp. 1–13, 2021,
doi: 10.1155/2021/6649970.

[37] S. Saadatnejad, M. Oveisi, and M. Hashemi, “LSTM-based ECG classifi-
cation for continuous monitoring on personal wearable devices,” IEEE
J. Biomed. Health Inform., vol. 24, no. 2, pp. 515–523, Feb. 2020,
doi: 10.1109/JBHI.2019.2911367.

[38] M. Llamedo and J. P. Martinez, “An automatic patient-adapted ECG
heartbeat classifier allowing expert assistance,” IEEE Trans. Biomed. Eng.,
vol. 59, no. 8, pp. 2312–2320, Aug. 2012.

[39] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[40] S. Kiranyaz et al., “Generalized model of biological neural networks:
Progressive operational perceptrons,” in Proc. Int. Joint Conf. Neural
Netw., 2017, pp. 2477–2485.

[41] S. Kiranyaz et al., “Progressive operational perceptrons,” Neurocomput-
ing, vol. 224, pp. 142–154, 2017.

[42] D. T. Tran et al., “Progressive operational perceptron with memory,”
Neurocomputing, vol. 379, pp. 172–181, 2020.

[43] D. T. Tran and A. Iosifidis, “Learning to rank: A progressive neural
network learning approach,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Brighton, U.K., 2019, pp. 8355–8359.

[44] D. T. Tran et al., “Heterogeneous multilayer generalized operational
perceptron,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 3,
pp. 710–724, Mar. 2020, doi: 10.1109/TNNLS.2019.2914082.

[45] D. T. Tran et al., “Knowledge transfer for face verification using hetero-
geneous generalized operational perceptrons,” in Proc. IEEE Int. Conf.
Image Process., Taipei, Taiwan, 2019, pp. 1168–1172.

[46] S. Kiranyaz et al., “Operational neural networks,” in Neural Computing
and Applications, Basingstoke, U. K.: Springer, Mar. 2020. [Online].
Available: https://doi.org/10.1007/s00521-020-04780-3

[47] S. Kiranyaz et al., “Exploiting heterogeneity in operational neural net-
works by synaptic plasticity,” in Neural Computing and Applications.
Basingstoke, U. K.: Springer, Jan. 2021, pp. 1–19, [Online]. Available:
https://doi.org/10.1007/s00521-020-05543-w

[48] J. Malik, S. Kiranyaz, and M. Gabbouj, “FastONN–Python based
open-source GPU implementation for operational neural networks,”
Mar. 2020.arXiv:2006.02267.

[49] J. Malik, S. Kiranyaz, and M. Gabbouj, “Operational vs con-
volutional neural networks for image denoising,” Sep. 2020.
arXiv:2009.00612.

[50] T. Klausberger and P. Somogyi, “Neuronal diversity and temporal gener-
atives: The unity of hippocampal circuit operations,” Science, vol. 321,
pp. 53–57, 2008.

[51] Z. Nusser, “Variability in the subcellular distribution of ion channels
increases neuronal diversity,” Trends Neurosci., vol. 32, pp. 267–274,
May 2009.

[52] E. Marder and J. M. Goaillard, “Variability, compensation and homeostasis
in neuron and network function,” Nature Rev. Neurosci., vol.7, no. 7,
pp. 563–574, 2006.

[53] R. H. Masland, “Neuronal diversity in the retina,” Curr. Opin. Neurobiol.,
vol. 11, pp. 431–436, 2001.

[54] C. I. Moore et al., “Neocortical interneurons: From diversity, strength,”
Cell, vol. 142, pp. 189–193, 2010.

[55] I. Soltesz, Diversity in the Neuronal Machine: Order and Variability
in Interneuronal Microcircuits. USA: Oxford Univ. Press, May. 2009,
pp. 1–238.

[56] S. Kiranyaz et al., “Self-organized operational neural networks with gen-
erative neurons,” 2020, arXiv:2004.11778.

[57] J. Malik, S. Kiranyaz, and M. Gabbouj, “Self-organized operational neural
networks for severe image restoration problems,” Neural Netw., vol. 135,
pp. 201–211, Jan. 2021, [Online]. Available: https://doi.org/10.1016/j.
neunet.2020.12.014

[58] C. Li, C. X. Zheng, and C. F. Tai, “Detection of ECG characteristic points
using wavelet transforms,” IEEE Trans. Biomed. Eng., vol. 42, no. 1,
pp. 21–28, Jan. 1995.

[59] R. Mark and G. Moody, “MIT-BIH arrhythmia database directory,” [On-
line]. Available: http://ecg.mit.edu/dbinfo.html

[60] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE
Trans. Biomed. Eng., vol. 32, no. 3, pp. 230–236, Mar. 1985.

[61] J. P. Allam, S. Samantray, and S. Ari, “SpEC: A system for patient
specific ECG beat classification using deep residual network,” Biocyber-
netics Biomed. Eng., vol. 40, pp. 1446–1457, 2020, [Online]. Available:
https://doi.org/10.1016/j.bbe.2020.08.001

[62] C. Zhang et al., “Patient-specific ECG classification based on recurrent
neural networks and clustering technique,” in Proc. 13th IASTED Int. Conf.
Biomed. Eng., 2017, pp. 63–67, doi: 10.2316/P.2017.852-029.

[63] E. Jing et al., “ECG heartbeat classification based on an improved resnet-
18 model,” Comput. Math. Methods Med., vol. 2021, pp. 1–13, 2021,
doi: 10.1155/2021/6649970.

[64] Self-Operational Neural Networks, Dec. 2021. [Online]. Available: http:
//selfonn.net/

https://dx.doi.org/10.1038/s41598-017-09544-z
http://rdcu.be/vfYE
https://dx.doi.org/10.1109/ACCESS.2018.2833841
https://doi.org/10.1587/transinf.2019EDP7282
https://doi.org/10.1587/transinf.2019EDP7282
https://dx.doi.org/10.1016/j.neucom.2018.06.068.
https://dx.doi.org/10.1155/2017/4108720.
https://dx.doi.org/10.1109/BIBM.2018.8621475
https://dx.doi.org/10.1155/2021/6649970
https://dx.doi.org/10.1109/JBHI.2019.2911367
https://dx.doi.org/10.1109/TNNLS.2019.2914082
https://doi.org/10.1007/s00521-020-04780-3
https://doi.org/10.1007/s00521-020-05543-w
https://doi.org/10.1016/j.neunet.2020.12.014
https://doi.org/10.1016/j.neunet.2020.12.014
http://ecg.mit.edu/dbinfo.html
https://doi.org/10.1016/j.bbe.2020.08.001
https://dx.doi.org/10.2316/P.2017.852-029
https://dx.doi.org/10.1155/2021/6649970
http://selfonn.net/
http://selfonn.net/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


