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In this study, we consider the container storage problem of a transit container yard at 

a container terminal. There are various important decisions in container terminal 

management operations, many of which are interrelated. Container storage problem 

involves one of these decisions, which has implications on the total transportation 

cost of containers in the yard. We assume that the berth allocations for the incoming 

and outgoing vessels are fixed, and the arrival and departure times are 

predetermined. The objective of the problem is to minimize the total transportation 

cost of the transit containers from the vessels to storage locations, and from the 

storage locations to outgoing vessels. Two types of movements are of concern: 

vertical and horizontal. The vertical transportation cost involves the reshuffling of 

the containers by cranes; the associated cost is proportional to the number of 

containers to be removed to reach the target container in a container stack. On the 

other hand, the horizontal cost is related with ground transportation by trucks or 

trailers. We propose three mathematical models with differing sets of assumptions, 
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which reduce this three-dimensional storage problem into a two-dimensional 

problem. We provide computational results for exact solution of the problem by 

CPLEX and also consider a Lagrangean relaxation-based approach. Two heuristics 

are developed and presented to come up with quick handy solutions for especially 

large problem instances. The results are discussed and analyzed, together with future 

research directions. 

 

 

Keywords: Container Storage Problem, Mathematical Modeling, Lagrangean 

Relaxation, Heuristics. 
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ÖZ 
 

  
LİMANLARDA KONTEYNER DEPOLAMA PROBLEMİ 

 

 

Çelik, Burcu 

 

 

Akıllı Mühendislik Sistemleri Yüksek Lisans Programı 

Fen Bilimleri Enstitüsü 

 

 

Tez Danışmanı: Doç. Dr. Deniz Türsel Eliiyi  

Ortak Tez Danışmanı: Yard. Doç. Dr. Zeynep Sargut 

 

 

Ekim 2013, 105 sayfa  

 

 

Bu çalışmada konteyner terminallerindeki transit konteyner depolama problemi ele 

alınmaktadır. Konteyner terminal yönetim sistemlerinde birbirleriyle ilişkili birçok 

problem bulunmaktadır. Konteyner depolama problemi liman depolama alanındaki 

toplam depolama maliyetini etkileyen önemli problemlerden birisidir. Çalışmamızda 

limana giriş çıkış yapan gemiler için rıhtım yerleştirmesinin bilindiği 

varsayılmaktadır. Aynı zamanda gemilerin limana varış ve ayrılma zamanları da 

önceden bilinmektedir. Tezde ele alınan konteyner depolama problemi, rıhtımda 

depolanan transit konteynerlerin gemiden depolama alanına ve depolama alanından 

gemiye ulaşımındaki toplam taşıma maliyetini enazlamayı amaçlar. Dikey taşıma 

maliyeti yeniden elleçleme maliyetini içermektedir. Yeniden elleçme bir istifteki 

belirli bir konteynere ulaşmak için yapılan dikey hareketlerdir. Yatay maliyet ise tır 

veya römork vasıtasıyla yapılan terminal içi taşıma maliyetlerini kapsar. Çalışmada 

farklı varsayımlar ile bu üç boyutlu depolama problemini iki boyutlu probleme 

indirgeyecek üç farklı matematiksel model önerilmiştir. Problemlerin optimal çözüm 
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sonuçları için CPLEX kullanılmıştır. Bu modeller için aynı zamanda Lagrengean 

gevşetme yöntemine dayalı bir yaklaşım denenmiştir. Yeni geliştirilen sezgisel 

yaklaşımlar ile problemin çözümüne daha kısa sürede ulaşmak hedeflenmiştir. 

Sonuçlar ve gelecek çalışma önerileri analiz edilerek tartışılmıştır. 

 

 

Anahtar Kelimeler: Konteyner Depolama Problemi, Matematiksel Modelleme, 

Lagrange Gevşetme, Sezgisel Yaklaşımlar.  
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CHAPTER - 1  

 

 

INTRODUCTION  

 

 

 

An international container service between the US East Coast and several 

points in the Caribbean, Central and South America has begun around 1961 as a 

regular sea container service (Steenken et al., 2004).  A container is a standard-sized 

metal box that can be easily transferred between different modes of transportation, 

such as ships, trains and trucks. Transportation via containers quickly received 

considerable investments in special ship designs, suitable equipment and purchase of 

containers. The economic efficiency and market share started to grow through a large 

number of container transshipments. Transfer or change from one conveyance to 

another with a temporarily limited storage on the container yard is described as 

transshipment in this context.  

 

The twenty-foot equivalent unit (TEU) is a unit that defines the capacity of 

containers, container ships and container terminals. According to this measure, the 

volume of a standard twenty-foot-long (6.1 m) container is referred to as 1 TEU, and 

the volume of a forty-feet-long one is 2 TEU. 

 

The transportation between economically strong and stable countries has been 

containerized up to 100%, and over 60% of the world’s deep-sea general cargo is 

transferred via containers. According to an international containerization market 

analysis, in 1995 9.2 million TEU were in circulation. During these 10 years the 
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container fleet had almost doubled from a size of 4.9 million TEU (Steenken et al., 

2004).  In addition to, the number of containers transported by vessel is 77.8 million 

TEU in 2002 and 139 million TEU in 2010. The forecast for the number of 

containers in 2015 is equal to 177.6 million TEU. The number of handling at ports is 

much more than the number of containers transported by vessel. The worldwide 

container traffic is 560 million TEU in 2010 according to container market analyst 

Alphaliner. (Alphaliner, 2012) 

 

A report by Global Industry Analysts Inc. in 2012 forecasted that world 

container throughput could attain more than 730 million TEUs by 2017. (Global 

Industry Analysts, 2012) 

 

Maritime transport is the most preferred form of transport due to the ability to 

load large amounts at a time, reliability and its minimal cost (about 14 times cheaper 

than airline transportation, about 7 times cheaper than road, and 3.5 times cheaper 

than rail) (Eliiyi et al., 2008). According to the reports of World Trade Organization, 

in 2007, more than 90% in 2006, part of the import and export loads are transported 

by sea.  Also the volume of international trade carried by sea is increasing. (WTO, 

2007) For near future, the maritime container throughput posts positive growth 

patterns with respect to report by Global Industry Analysts in 2012. The growth on 

containerization backed largely by increasing use of containerization for shipping 

bulk cargo, use of cutting edge technology such as automated handling system and 

satellite tracking system for speed and efficiency in operation in the port. The 

growing awareness of energy efficient and environment friendly products among the 

shippers and consumers are set to generate more opportunities in the market. That’s 

why incremental advancements in technologies governing alternative fuels, and 

pollution control systems immensely support the growth of maritime transport. 

(Global Industry Analysts, 2012) 

 

Due to the high growth of the number of container shipments and maritime 

transportation, higher demands on the seaport container terminals, management 

concerns, and also technical equipment requirements have emerged. This 

development resulted in an increased competition between geographically close 
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container terminals. It is now crucial to operate container terminals in an efficient 

and effective manner. In Turkey’s State Planning Organization’s 9th Development 

plan (2007-2013) “developing our important ports as logistic centers” was stated as 

one of the priorities of Turkey, which is in parallel with global trends. Therefore, 

operating container terminals more efficiently is critical for the near future of our 

country. In this thesis, we consider the container storage allocation problem, which 

has applications not just in Turkey but at container terminals all over the world.  

 

The scope of our study is limited to transit containers, which arrive to the 

container terminal via a vessel, and depart via another. The reason why transit (or 

transshipment) containers are considered is that, the arrival/departure times of export/ 

import containers, which are transferred through railway or road are seldom known 

with any certainty. Due to traffic and other external factors, estimating the retrieval 

time of a container from the terminal by a vehicle (usually truck in our country) is 

very hard. On the other hand, as transit containers arrive and depart by ships, their 

times can be estimated more precisely, which simplifies storage decisions. Besides 

this technical point, according to the report of the Ministry of Transport in year 2009, 

transit containers comprise about 22% of the total containers handled in Turkey. For 

example, at Marport, the largest container port in Turkey with 1.6 million TEUs in a 

year of container capacity, transit containers comprise nearly half of the operational 

volume. This is mainly due to the fact that ports of Turkey are located on a strategic 

junction of the Eastern Mediterranean and Black Sea routes and international 

transport corridors in the East-West and North-South directions. Through this 

advantageous location, our container terminals can attract transit shipments. 

However, Turkish ports must reduce operating costs of the terminals to be able to 

compete in the highly competitive international markets (Gürgenç, 2010). This is 

another motivation for our study. 

 

Decisions in the container storage problem are interrelated; each storage 

decision has implications on the total transportation cost of the containers in the yard. 

In this study, we assume that the arriving bookings are directly placed over the 

containers currently staying at the storage area. This assumption will be explained in 

detail in the following chapters. As a result, we reduce the three-dimensional storage 
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space into two-dimensions. We propose mathematical models for the problem. The 

first mixed integer programming (MIP) model assumes that the capacity at the yard 

at any time is sufficient for the incoming container, that is, no infeasibility due to 

capacity constraint occurs during the planning horizon. The second and third models 

relax this assumption by incorporating the usage of a temporary storage space for 

excess containers that violate the capacity constraint. The usage of this temporary 

space is penalized in the objective function. GAMS 23.9.4 with CPLEX solver is 

used for the exact solutions, and to evaluate the performance of the Lagrangean 

Relaxation approach designed for the three models.  

 

The remainder of this thesis is organized as follows. Chapter 2 provides a 

review of the literature on related previous work. Chapter 3 is devoted to explain the 

important concepts of container terminals, our problem definition and our first 

mathematical model. Chapter 4 introduces two mathematical models with temporary 

storage space. Solution methods; namely Lagrangean Relaxation approaches with 

subgradient optimization and heuristics for the Container Storage problem are 

discussed in Chapter 5. Experimental design and computational results are presented 

in Chapter 6. Conclusions are discussed in Chapter 7 along with future research 

directions.  
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CHAPTER - 2  

Equation Chapter 2 Section 0 

 

LITERATURE REVIEW 

 

 

 

At a container terminal, there are operations pertaining to the storage yard for 

the containers. These include the assignment of the incoming containers to their 

storage locations, handling and placement, storage until departure time, and the 

removal of the containers from the storage locations at the time of shipment. The 

handling of a container during its placement or removal can significantly affect the 

efficiency and cost at a container terminal, as it involves the removal of several 

containers from the top of the stack to reach the target container below. In literature, 

these unproductive moves of the handling equipment are called as reshuffling or 

rehandling, and there are many papers on the minimization of the number of 

reshuffles (i.e., the number of containers that have to be moved to place/reach the 

target container) during handling operations. In this thesis, the problem involving all 

the above operations is called as the container storage problem (CSP). We 

summarize the relevant literature in this chapter. 

 

Container terminal management operations have various important decisions 

and many of them are interrelated. Vis and the Koster (2003) and Steenken et al. 

(2004) point out that, for efficient management of container terminals, the integrated 

problem of all operational activities should be considered, if possible. However, such 

an approach has never been pursued in practice, mainly because of the intractable 

size of the integrated problem. In literature, the operational activities at a container 
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port are mostly handled separately; though some rare examples combining two or 

more operational activities are available. CSP is one of such problems studied 

separately.  

 

In previous studies, two types of operations that cause reshuffling are defined 

within the context of CSP. The first operation is named as relocation, which involves 

changes in the location of the existing containers at the storage yard in order to 

assign and place the incoming container to a convenient location. The second 

operation is the relocation of the containers from the top of stack for the removal of a 

target container from the storage yard. The studies in literature mainly aim to 

minimize reshuffling caused by these two operations. The models in this thesis try to 

minimize reshuffling caused by the removal operations. Relocation is not considered, 

as will be explained in the following chapter. 

 

Many studies in literature consider CSP under simplifying assumptions. Kim 

(1997) is one of the first researches to study CSP. In their research, a mathematical 

model was proposed to estimate the expected number of rehandles to pick up an 

arbitrary container and the total number of rehandles to pick up all the containers in a 

bay for a given initial stacking configuration. They assumed that every rehandle 

container could be moved within the same storage bay. In other words, their analysis 

of rehandles was restricted to a single bay (row) of containers, which simplified the 

computations a great deal. This assumption is not used in our study for a more 

realistic representation of the problem. 

 

Kim et al. (2000) proposed a dynamic programming model to determine the 

storage location of an arriving export container. In their research, the incoming 

containers were separated into three groups according to their weight as a 

simplifying rule. Zhang et al. (2003) studied to balance workloads among container 

blocks (i.e., the total number of containers in each block) for even distribution of 

containers at the yard to minimize total transportation cost. The research was based 

on the structure and the constraints of the container terminal in Hong Kong, which 

had limited storage space and a large amount of reshuffling. The container terminals 

in Turkey have similar structures, as well.  
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Kim and Hong (2006) also studied the problem of minimizing the number of 

reshuffles in block stacking systems. A branch-and-bound algorithm and a heuristic 

rule were suggested in their study. Nishimura et al. (2009) studied storage problems 

encountered in a container terminal that only provided service to mega-

containerships. As the mega-containerships have priority at the terminal, the 

containers from these ships are stowed onto a smaller feeder ship without even 

entering the port. Hence, their storage problem had a different structure from other 

CSP studies. As the container terminals in our country cannot accommodate mega-

containerships due to technical restrictions, we do not consider mega-containerships 

in our study.  

 

A mathematical model was developed by Park and Seo (2009) to minimize the 

number of obstructive object moves. Their paper utilized a genetic algorithm to solve 

the corresponding NP-hard problem. In their study, it was assumed that the top 

containers removed from a stack to reach the containers below were placed back to 

their location again after removing the target containers. This assumption is in line 

with ours, as will be explained in the following chapter. Lee and Lee (2010) also 

studied the problem of retrieving containers from a yard. Unlike other studies, their 

optimization goal was to minimize the number of container movements as well as the 

crane’s working time. They suggested a three-phase heuristic that aimed to solve 

these two mixed integer problems through the phases. 

 

In this thesis, we model CSP using an interval scheduling-based approach. For 

this reason, we provide a brief literature review of the relevant studies, as well. 

Interval Scheduling (IS) is a scheduling problem that is commonly used in the service 

and manufacturing sectors. In this problem, jobs (tasks) having predetermined ready 

times and deadlines are to be processed by parallel machines (resources). The 

problem is typical for reservation systems and has many real-life applications such as 

resource allocation, classroom scheduling, transportation systems, etc. The problem 

can be analyzed in two categories as Fixed Job Scheduling (FJS) and Variable Job 

Scheduling (VJS). In FJS, the processing time of each job is exactly equal to the 

difference between its ready time and deadline, which means each task should start 

processing just as it arrives, or else it leaves the system without being processing. In 
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VJS, which is also referred to as parallel machine scheduling with time windows, the 

processing time is smaller than the difference between predetermined ready time and 

a deadline. Therefore, the scheduler has some flexibility on determining the start 

time of an arriving job, while ensuring that each job should start processing before its 

latest start time. Each of these two IS problems has two variants based on their 

objective functions. In tactical IS, the minimization of the total cost of the resources 

to process all jobs is of concern. Alternatively, operational IS assumes a fixed 

number of resources and tries to select a subset of jobs for processing in order to 

maximize the total profit/number of the processed jobs. We provide some examples 

from the literature below to each of these variants on many different contexts. 

 

Fischetti et al. (1987) studied on the Tactical Fixed Job Scheduling (TFJS) 

problem. Their problem was defined as a bus driver scheduling problem and they 

aimed to find a proper set of driver duties at minimum cost. TFJS was also studied by 

Eliiyi et. al. (2009a) for a real-life vehicle scheduling problem. The authors 

considered the minimum-cost scheduling of different vehicle types on a 

predetermined set of one-way trips. In another application, Kroon (1990) utilized the 

TFJS problem as the core model in capacity planning of aircraft maintenance 

personnel for an airline company.  

 

A later study by Kroon et al. (1995) dealt with the operational variant of this 

problem with a given number of maintenance engineers and priorities defined for the 

maintenance activities. The Operational Fixed Job Scheduling (OFJS) was also 

studied by Wolfe and Sorensen (2000) to model the problem of scheduling earth-

observing satellites. OFJS was applied to another real-life application in classroom 

scheduling by Kolen and Kroon (1991).  

 

Eliiyi and Azizoglu (2006, 2010, and 2011) considered the OFJS problem on 

identical machines with operating time constraints for the machines, where the 

objective was to maximize the total weight of the processed job subset. They proved 

that the problems with different forms of time constraints were strongly NP-hard, and 

investigated several special polynomially solvable cases. They proposed branch and 

bound algorithms that returned optimal solutions for small and medium-sized 
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problem instances in reasonable solution times, and developed efficient heuristic 

approaches for considerably large problem instances. In a later study, machine 

eligibility was taken into consideration for the OFJS problem (Eliiyi and Azizoğlu, 

2008). In this study, the jobs had machine- dependent weights, where each job 

yielded a different profit depending on the processing machine, and a negative profit 

meant that the corresponding machine was not eligible to process the job. Bekki and 

Azizoglu (2008) addressed an OFJS problem on uniform parallel machines having 

different processing speeds, and proposed a branch and bound algorithm. Two survey 

papers have been published by Kovalyov et al. (2007) and Kolen et al. (2007) on 

FJS. Kovalyov et al. suggested a general formulation of the problem, reviewed 

known models and algorithms whereas the study by Kolen et al. (2007) presented the 

complexity of various FJS problems and suggested appropriate solution algorithms. 

The interested reader is referred to these nice survey papers for insight on the FJS 

problem.  

 

Rojanasoonthon et al. (2003) studied Operational Variable Job Scheduling 

(OVJS) in the context of data relay satellite system. Two efficient algorithms were 

proposed in their study. Eliiyi et al. (2009b) studied another real-life application on 

optimal berth allocation at seaports, which involved the assignment of vessels 

arriving at the port to appropriate berths within their time windows, while 

maximizing the total profit from the served vessels. This OVJS problem was 

considered with machine-dependent weight definitions for handling eligibility, as the 

ships differed in size and draft. An integer programming model was developed for 

the NP-hard problem and a constraint-graph-based construction algorithm was 

developed for generating near optimal solutions. The authors also used genetic 

algorithm and other improvement algorithms to enhance the solution. 

 

We model CSP as a TFJS problem, which is especially suitable for transit 

containers, as the arrival and departure times of the incoming ships can be taken as 

predetermined fixed parameters. In this manner, the dwell time of a container at the 

terminal can be defined as a predetermined time interval. As to the best of our 

knowledge, ours is the first study to model CSP as a TFJS problem. While TFJS is 

polynomially solvable in its basic form, the model for CSP has additional decision 
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variables and constraints that complicate the problem. For this reason, besides 

attempting exact solutions, we have tried Lagrangean Relaxation (LR) approach and 

new heuristics as possible solution procedures, which will be explained in detail in 

Chapter 5.  

 

The LR method is widely used in integer and mixed integer problems. Through 

LR approach, many hard problems can be modeled as relatively easy problems. 

Many hard problems are composed of “nice” and “complicating” constraints. The 

aim of the LR approach is to relax the complicating constraints of the original 

problem so that relaxed model is an easy-to-solve one. The method multiplies these 

constraints with corresponding penalty costs (Lagrangean multipliers) and carries 

them into the objective function. By dualizing those constraints, a hopefully easy 

problem is obtained, whose optimal value gives an upper bound (lower bound) on the 

optimal value of the original maximization (minimization) problem.  

 

Held and Karp (1970) used LR for the traveling salesman problem, but 

Geoffrion (1974) firstly used the name Lagrangean Relaxation for this approach and 

used it for obtaining bounds on the optimal objective function value in integer 

programming. Fisher (1981) mentioned subgradient optimization method which is 

used to update lagrangean multipliers for solving the lagrangean dual problem. LR is 

widely used for solving assignment, scheduling and sequencing problems in 

literature.  

 

As the structure of our models also resembles the transportation problem with 

side constraints, we also provide a brief review of the problem together with some 

previous studies.   

 

Network flow programing has several special cases that are transportation, 

assignment and transshipment problems. The transportation problem is one of the 

early applications of linear programming. The famous type of transportation problem 

first described by Hitchcock (1941) obtains the minimum cost flow through a special 

type of network where a number of suppliers (sources) are to provide a number of 

demand points (sinks) with a commodity. Unit costs are incurred for supplying the 



LITERATURE REVIEW | 11 

  

  

commodity from each source to each sink, and the objective is to determine a 

shipping plan that satisfies the supply and demand constraints at minimum cost. 

Koopman (1947) is one of the pioneer researchers to study transportation problems 

in economics.    

 

The transshipment problem is the generalization of the transportation problem. 

In this problem, it is possible to distribute the commodity through intermediate 

sources and intermediate sinks, as well as from the sources to the sinks. The 

assignment problem is a special case of the transportation problem. We can regard 

that it is a problem with m sources and n sinks, all with unit supply and demand. The 

algorithms designed for special cases are more efficient than more general ones. 

Figure-1 shows the relationships between these network flow models; as we move to 

the right in the figure, the problems become more special. All the problems to the 

right of the generalized minimum cost flow problem can be solved with an algorithm 

designed for this generalized problem.   

 

 

Figure 1 Related Network Flow Problems 

  

 

Ahuja et al.(1993), Glover et al (1992), Kennington and Helgason (1980) and 

Murty (1992) developed efficient solution algorithms for the traditional 

transportation problem and network problems. The basic transportation problem can 

be solved efficiently. One special case of the transportation problem is named as the 

time-minimizing transportation problem, in which a time is associated with each 

shipping route. The objective of this problem is to minimize the maximum time to 

transport all supply to the destinations. Hammer (1969) firstly studied the problem 

and proposed an algorithm. The threshold algorithm for the problem is then 

developed by Garfinkel and Roa (1971). Merrill and Tobin (1969) consider the 

problem in which the total supply exceeds the total demand and propose an algorithm 

Minimum cost 
flow problem 

Transshipment 
problem 

Transportation 
problem 

Assignment 
problem 
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for this problem. They generate a sequence of improving lower bounds on the 

maximum time. Sharma and Swarup (1978) are other authors to study the basic 

transportation problem. Laura (1964) studied on theoretical aspects of the problem, 

as Balas and Hammaer (1964) did. 

 

Although the basic version is easy, many variants of the transportation problem 

are considerably harder. A more complex version of the transportation problem, 

namely, the generalized transportation problem, can be formulated as follows:  

 

1 1

   
m n

ij ij

i j

Minimize c x
 

   (2.1) 

 

Subject to  

 

1

n

ij i

j

x a


  
 i    (2.2) 

1

m

ij ij j

i

p x b


  
 j  (2.3) 

0ijx 
  ,i j  (2.4) 

 

where  

xij : the amount of items moved from source i to sink j 

cij : the cost of moving one item from source i to sink j 

pij : positive constraint rather than unity  

ai : the supply available at each source i 

bj : the demand at each sink j 

m : total number of sources 

n : total number of sinks. 

 

Klingman and Russel (1975), Chen and Saigal (1977), Glover and Klingman 

(1985) discussed similar network problems with linear side constraints. Special 

techniques have been developed to solve these models in these studies. Many storage 

problems can be modeled as transportation problem with exclusionary side 
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constraints (TPESC) when the items from some pairs of sources cannot be stored 

simultaneously in the same warehouse. The TPESC was formulated by Sun (2002) as 

a binary mixed integer programming model. In their study, two branch and bound 

algorithms were developed and implemented. The TPESC can be formulated as 

follows.  

 

1 1

   
m n

ij ij

i i

Minimize c x
 

    (2.5) 

 

Subject to 

  

1

m

ij j

i

x C


   j    (2.6) 

1

n

ij i

j

x a


   i  (2.7) 

1ij kjy y 
    ,   jfor i k B and j   (2.8) 

0ij ij ijx M y 
  ,i j  (2.9) 

 0,1ijy 
            ,i j  (2.10) 

0ijx 
  

,i j
 (2.11) 

 

where  

cij: the cost of the moving one item from source (supplier) i to sink 

(warehouse) j  

xij : the amount of items moved from source i to sink j 

Cj : the demand (capacity) at sink (warehouse) j 

ai : the supply available at each source i 

m : total number of sources 

n : total number of sinks 

Bj : {{i,k}| items from sources i and k cannot be simultaneously shipped to 

destination j}. 
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In our study, containers from different sources can be assigned at the same 

location, but the objective function can penalize some assignments of such, as they 

may create extra reshuffling. 

 

Sun (1998) developed a nonlinear mixed binary integer programming 

formulation for the storage yard space assignment problem at a container terminal, 

which can mathematically be expressed as a transportation problem with 

exclusionary nonlinear side constraints. Cao (1992) also proposed a nonlinear 

programming formulation. Cao and Uebe (1995) studied on a transportation problem 

with nonlinear side constraints. The difficulty of the problem increased extremely in 

the presence of these constraints. They develop a Tabu Search approach to solve the 

problem. Their model, having the same notation as the above model, is expressed 

below:  

 

1 1

   
m n

ij ij

i i

Minimize c x
 

   (2.12) 

 

Subject to 

  

1

m

ij j

i

x C


   j    (2.13) 

1

n

ij i

j

x a


   i  (2.14) 

0ij kjx x 
    ,   jfor i k B and j       (2.15)    

0ijx 
 

 ,i j   (2.16) 

  

 

Cao (1992) developed a special-purpose branch and bound algorithm for this 

problem, and the commercial package CPLEX was used to solve some small test 

problems. The solutions of these problems have shown the complexity of the 

transportation problem with exclusionary side constraints. 

 

Another type of transportation problem includes stochastic demand and can be 

named as stochastic transportation problem, which was discussed by Williams (1963) 
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with penalties for not satisfying the demand. The objective is to minimize total 

transportation costs plus the penalty cost. In this thesis, we incur a penalty cost when 

a temporary storage space is used for the incoming containers (over supply). We deal 

with this case in our models for the Container Storage Problem with Excess 

Containers in Chapter 4.  

 

Kuno and Utsunomiya (2000) studied on a production-transportation problem 

with a nonlinear, concave and nondecreasing production cost. They formulated their 

problem as follows. 

 

1 1 1

   ( )
m n m

ij ij i i

i i i

Minimize c x f y
  

     (2.17) 

 

Subject to 

  

1

m

ij i

i

x y


   0 ,  Mi iy u i      (2.18) 

1

n

ij j

j

x b


  
 j N  (2.19) 

0ijx 
  

( , )i j A
 (2.20) 

 

where  

xij : the amount of items moved from source i to sink j 

yi : units of production 

bj : the demand at sink j 

cij : the cost of shipping unit by route (i, j) ∈ A 

fi(yi): the cost of producing yi   

ui: production capacity 

M : total number of sources 

N : total number of sinks 

A : the set of transportation routes. 

 

They proposed a branch and bound algorithm for solving the minimum cost 

production-transportation problem. The bounding operation is implemented through 
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two stages: the first stage based on a linear programming relaxation and the second 

stage based on a Lagrangean relaxation. 

 

Romeijn and Sargut (2011) studied on stochastic transportation problems with 

single-sourcing constraints. They proposed a branch and price algorithm to solve this 

problem which account for both uncertainty in the demands and nonlinear cost 

structures. The branch-and-price algorithm is based on a set partitioning formulation 

of the problem. Besides, they study the corresponding pricing problem which turns 

out to be a knapsack problem with variable item sizes and concave costs. 

 

Our models include a bi-partite summation as in the above model, where one 

part is nonlinear. The next chapter defines the problem, and presents the first 

mathematical model for the CSP. The resemblance to a nonlinear transportation 

problem with side constraints will be explained clearly, as well.   
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CHAPTER - 3  

 

Equation Chapter (Next) Section 0 

CONTAINER STORAGE PROBLEM 

  

 

 

Maritime transport often does not carry the freight from the point of origin to 

the destination. Transportation movement involving more than one mode is called 

intermodal transportation. 

 

In intermodal transportation systems, container terminals are facilities that 

allow the change on types of transport, maritime, road and railroad transportation or 

transfer from one ship to another. An important function of the container terminals is 

transshipment of the containers safely, rightly and on time. In container terminals 

provide temporary storage for the containers in order to transfer containers between a 

large-scale maritime transportation and medium-scale rail or small-scale road 

transportation. There are five main operations which affect the competitiveness of a 

container terminal (Yeo et al., 2008): 

 

1. Ship entrance and berthing 

2. Loading/unloading or loading/discharging 

3. In -port container operations 

4. Storage and stowage 

5. Intermodal handling operation 

 

The competitiveness of a container terminal is related with utilization of 
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operations in these systems. The following Figure-2 shows that these systems and 

decision problems in the operational level of these systems. 

 

 

Figure 2 Decision Problems in Container Terminals 

  

Our problem belongs to storage and stowage category.  In the rest of this 

section, the details of our problem and the terms used in the problem will be 

discussed.  

 

Container terminals are transit areas and storage areas for containers during 

transport from one point to another. The different operational problems are occurred 

in the container storage area. It is difficult to handle the combinations of these 

problems. There are few papers which handle more than one category. We will also 

handle only storage operations in our study. 

 

Berth is an area which ships are docked and containers are discharged from or 

loaded to the ship. In berth, there are quay crane for unloading and loading 

operations. There are two types of terminal layout. The containerships are serviced at 

berth in line type or in the indented type which are shown in Figure-3. At the linear 

type, loading and unloading operations can be made only one side, while these 

operations can be appropriate for two side of ship at intended type. (Imai et al., 

2007). 

 

1.Ship entrance 
and berthing 

• Assignment of 
Berth 

• Acceptance of 
Ship 
Scheduling 

2.Loading/ 
Unloading  

• Assignment of 
Crane 

• Loading/ 
Unloading 
Scheduling 

3. In -port container 
operations 

• Selection of 
Vehicle 

•  Vehicle-Container 
Assignment 

• Vehicle Routing 

4. Storage and 
stowage 

• Placement of 
Storage 
Location 

5. Intermodal 
handling operation 

• Assignmnet of 
Transferring 
Vehicle 

• Scheduling  of 
Transfers 
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Figure 3 Berth in line and in the indented type 

 

Containers are transported from these berths to temporary container storage 

area. Storage area is a place where containers wait their next transport vehicle. 

Containers are transported to the storage area after getting off the ship. Container 

storage problem decide where to place each container in storage area. Position of the 

storage area is 3-D structure.  Row and column numbers determine horizontal 

position, but position of container cannot be defined only with two numbers. We also 

need to indicate the vertical distance in terms of number of containers. It is shown 

that there is three-dimensional stacking area in a storage location in Figure-4. Every 

container is placed to appropriate storage location with column, row and stack 

number. The maximum height of stack is equal to capacity of this stack. 

 

 

Figure 4 Stack in storage location 

 

Figure-5 gives the side view of a column. After containers are carried to the 

column in horizontal plane, they are placed with the crane to its location. 

Transportation of containers from in their berth to their storage location or from 
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storage location to the berth and the placement of containers in the stack are known 

as container movements. These movements can be classified into two categories. 

 

 

Figure 5 Side cross-section of the container a column 
 

There are two movements of containers in the terminals.  

 

1. Horizontal Movement 

 

a. After unloaded from the inbound vessel, incoming containers are carried to 

their allocated stack in the storage area by truck.    

b. Outgoing containers are carried by trucks from storage area to the outbound 

vessel. 

 

These operations are known as ground transportation in the terminal containers. 

 

2. Vertical Movement 

 

a. Incoming containers are placed with crane in a predetermined location. 

b. Outgoing containers are removed with crane from their position in the 

storage area, but the containers above of removal containers in the same 

stack should be removed and placed another or same location. This 

operation can be named as reshuffling or rehandling. 

 

Ports of Turkey are located in a strategic location in the East-West and North-

South direction is at the intersection of international transport corridors. To be able to 

compete in international markets, ports must reduce the costs of the port. Reshuffling 

is not profit, but also it is high cost operation for terminal containers. For this reason, 

it is important to minimize the number of reshuffling. 
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Four types of containers are stored in the port area. They are import, export, 

and transit and cabotage containers. Import containers come to the port from abroad 

by seaway and leave the port by road. Export containers come to the port by road and 

leave by seaway. Cabotage containers are defined as the containers that are 

transferred from one of the Turkey ports to the other one. Transit containers arrive 

with a vessel and depart with another vessel. In many container terminals, storage 

area is divided into three areas as import, export and transit areas. Another approach 

that is used in Hong Kong (one of the busiest Ports in the world) is dividing the 

storage area in stack level (not in block level). Therefore, there is only one type of 

container in each stack. After the stack is being empty, this stack may be dedicated to 

the different type of container (Zhang et al., 2003). 

 

An important concept used in the project is booking. A booking, belongs to a 

single customer, represents a set of containers. This is a set of containers cannot be 

separated and must be carried on the same ship together, and a single bill of lading is 

held every booking. Containers of a booking can be stored at different points in the 

storage area.   

 

The size of the problem depends on the number of docks that vessels can berth 

the number of stacks that are dedicated to the transfer bookings, the number of 

bookings that are taken into account along the planning period. We will encounter a 

large problem in busy ports because of the number of bookings. 

 

In the container terminals, there are two factors which effects total cost. One of 

the factors is transportation cost, which includes the transport cost of transit 

containers unloaded from ship to the storage point and storage location to the loaded 

to their ship. This cost is directly related with the distances between the storage point 

and unloading/loading points. This is can be named as horizontal cost.  

 

Other factor that affects total cost in storage area is related to the vertical 

position in the stack. In storage area of container terminals, containers are usually 

stored like four or five blocks in a stack.  The position of containers in the stack 
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directly affects reshuffling cost, because the number of vertical movements 

(reshuffling number) of the crane is determined by the number of other containers on 

the container which we want to reach. Therefore, a second factor relates to the 

vertical movement and cost of container within the port area. The horizontal 

movement of the crane is required to reach a container in the block, but the cost of 

vertical movement is much higher. 

 

The aim of the Container Storage Problem (CSP), inputs, and outputs of the 

constraints are given in Figure-6.  

 

 

Figure 6 Container Storage Problem 

 

 

 

 

Inputs: 

 Berth structure (the 

coordinates of unloading 

points) 

 Structure of container 

storage (the coordinate 

of stacks, column and 

row) 

 The distance between 

each berth and column of 

storage area. 

 Occupancy of storage 

area (The number of 

container s at each  stack 

and  the departure ship 

of containers)  

 Arriving and departure 

time of ships through the 

planning period  

 Booking data (The 

number of containers, 

their arrival and 

departure ship) 

 The assigned berth for 

each ship 

Container Storage 

Problem       

Constraints: 

 Each container must be 

assigned to stacks 

 The number of Containers in a 

stack must be equal or less 

than stack capacity 

Outputs: 

 Stack  number 

for each 

booking  

 

 Total number of 

reshuffling  

 

 The total 

travelled 

distance of 

containers 

during planning 

period  

Objective: 

Minimization: 

 The number of reshuffling  

 The distances between berth and storage location or total 

transportation cost 
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Notations: 

 

B: number of bookings 

K: number of storage locations represented by a pair of row and bay numbers 

b: index for bookings,  b = 1,…,B 

k: index for storage locations represented by a pair of row and bay numbers, k  = 

1,…,K 

ab: the arrival time of booking b to the container terminal (storage location) 

db: the departure time of booking b from the container terminal (storage location)  

nb: number of container in booking b 

t: index for time intervals, t = 1,…,|T|-1  

tp: length of the planning horizon 

T: the set of time points defined by the sorted set of arrival and departure time of 

bookings, with duplicates removed. That is, T is the following set with elements 

sorted in non-decreasing order.  

 

  ,b b

b B

T a d


  (3.1) 

 

No booking arrives or departs during time interval (Tt, Tt+1) for all t. In this 

way, we create intervals of no event. Time intervals are shown in Figure-7. 

 

 

 

Figure 7 Time interval 

 

E(b): the set of bookings that arrive after booking b and that will leave after booking 

b. That is, 

 

    : |  and j b jE b j j b a d d    (3.2) 
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If two bookings b and j ϵ E(b) arrive at the same time, if they are placed in the 

stacks in the order of their departure times, some unnecessary reshuffling moves can 

be avoided. That is, if ab=aj and db < dj, the containers of booking j should be placed 

below the ones of booking b, if they are placed in the same stack.  

 

Ebi: the indicator of reshuffling 

 
1,   if  ( )

0,   otherwise
bi

i E b
E


 


 (3.3) 

 

E’(i): the set of bookings that b may cause reshuffling. That is,  

 

  '( ) : | ( )E i b i E b  (3.4) 

 

B(t): the set of bookings that will stay in the storage area during time interval t. The 

set is algebraically defined as follows: 

 

  1( ) : | t b t bB t b T a andT d   (3.5) 

 

Ibt: the indicator for booking and time pair.  

 

 
1,   if ( )

0,   otherwise
bt

b B t
I


 


 (3.6) 

 

Ck: maximum height of storage location k (maximum number of containers in stack k 

of the container storage area. 

R: the unit cost function of reshuffling  

cbk: horizontal transportation cost of booking if it is stored at storage location k. 

 

Horizontal transportation cost has four components: ground transportation 

from the inbound vessel to the storage area, crane movement in the stack area to the 

storage position, crane movement in the stack area from the storage position, and 

ground transportation from storage area to the outbound vessel. 
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Assumptions of the model  

 

Many of these assumptions that are made in this section will be used 

throughout this paper.  

 

 An inbound booking is instantaneously transported from the berth to the 

storage location. Since the arrival and departure times are usually defined in 

days in a container terminal, and the storage of the container is made within a 

day, this is not an unrealistic assumption. 

 Similar to the first assumption, an outbound booking is instantaneously 

transported from the storage location to the outbound vessel. 

 For two bookings b1 and b2 if db1 = ab2 then b1 is removed first and then b2 is 

placed. 

 If there are multiple bookings arriving at the same time, the bookings are 

placed in the storage area in non-increasing order of their departure times. (e.g. 

if ab1= ab2 then db1> db2 then b1 is stored before b2) 

 Reshuffling cost is proportional to the number of containers to be removed to 

reach the target container in a stack. This number is equal to the number of 

containers on top of the target container that are not due at the time of the 

target container's departure. 

 Reshuffling cost does not include the removal of the containers that are due at 

the same time interval. In such a case, all containers will be removed from the 

stack, so no additional cost is assumed. 

 Arriving bookings are placed over the containers currently staying at the 

storage area. We define this storage rule as blanket storage. That is, no 

shuffling is done for arriving containers.  

 Moved containers are put back to their original slots, i.e. storage locations after 

the removal of the departing containers.  

 We assume one size containers (1 TEU or 2 TEU). 

 We consider only the transit containers. 

 Covering assumption: The three-dimensional stacking area will be reduced to 

two-dimensional stacking area which facilitates solution of the problem. Every 

incoming container will be placed to the appropriate storage location (at the top 
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of the stack). The other containers which are located lower levels are not 

removed from their positions. In this case, all containers which should be 

substituted for booking are placed at the top storage place of the stacks; it is 

assumed that these current stacks have covered. When the departure time of 

one of the bottom container comes, crane unloads the containers which are at 

the top, and then the target container is removed and the top containers 

replaced to the stack. This assumption considerably simplifies modeling. With 

this assumption, three-dimensional space (row, column, and stack) of the 

problem decreases to two-dimensional space (row, column). This situation is 

illustrated in below Figure-8. Every row and column, a single stack number is 

specified. A stack height at any given instant is equal to the number of 

containers storing in the current stack. 

 
Figure 8 Storage Area under the “covering assumption” 

 

The literature reveals that Container Storage Problem can be modeled as a 

Fixed Job Scheduling which is special case of IS. This model seems to be very 

convenient, especially for transit containers, since the port arrival and departure 

times of ships are already known in advance. (Road and rail connections, arrival and 

departure times will be unknown). Hence, the time that a container (or a booking) in 

storage location stays in port are also known. The model based on FJS is presented 

next. We have two sets of decision variables.  

 

xbk: the number of containers of booking b to be placed into storage location k. 

yk(x1k , x2k , …, xbk): the number of reshuffles at location k, this a function of 

both x1k, x2k,…,xBk and sets E(b) for all b. 
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Our objective is to minimize the total cost of transportation during a planning 

horizon. The total cost is composed of ground transportation and crane movements in 

the storage area. We can now formulate our mixed integer programming model as 

below.  

 

1 2Minimize  ( , ,..., )k k k bk bk bk

k k b

Ry x x x c x   (3.7) 

 

bt bk k

b

I x C   ,k t   (3.8) 

bk b

k

x n   b  (3.9) 

0,  integerbkx 
  

,b k
 (3.10)  

 

The first part of the objective function calculates the reshuffling (vertical 

crane movements) cost at all locations and the second part calculates the total 

horizontal transportation cost. Constraint set (3.8) assures that at any time interval t, 

at most Ck containers are assigned at each location k. Constraint set (3.9) assures that 

all containers in booking b are assigned to storage locations. Constraint sets (3.10) 

assure that if xik is nonnegative and integer. 

 

This is a transportation problem with selective arcs and nonlinear cost function, 

which depends on all bookings assigned to a location. The (k, t) pairs are the 

suppliers and the bookings are the demand. Let us define xbkt as quantity put from 

booking b on stack k at time period t. This amount is equal xbk if booking b stays 

during time period t. In other words, 

 

 max                 , ,bk t bktx x b k t   (3.11) 

 

We also define Tb as the set of time periods that booking b covers. 
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Minimize   (y (x)) bk
k bkt

k k b t b

c
R x

T
   (3.12) 

 

 

bkt k

b

x C   ,k t   (3.13) 

,

bkt b b

k t

x n T   b  (3.14) 

0bktx 
  

, , bb k t T 
 (3.15)  

1 2bkt bktx x
 1 2 1 2, , , , bb k t t t t T  

 (3.16)  

  

This is a transportation problem with side constraints (3.16) and extra cost 

function that depends on the assigned bookings and their quantities for each location. 

The side constraints ensure that if some containers are assigned to a location, it will 

stay there during its visit at the port. 

 

It is hard to represent the number of reshuffles yk in terms of xbk variables. yk is 

equal to 0  for each b = 1,…,B. If xbk is greater than 0, then add following term to yk. 

 

 bi ik

i B

E x


  (3.17) 

 

This is a nonlinear function. Let us define binary variable wbk, takes value 1 if 

some containers of booking b are assigned to location k, xbk > 0. We can write the 

nonlinear objective function as below while adding the constraint set where xbk 

≤nbwbk. 

 

 k bi bk ik

b B i B

y E w x
 

  (3.18) 

 

To linearize the objective function, we define two new decision variables to 

calculate the number of reshuffles. 
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ybik: the number of reshuffles necessary for booking b at location k because of 

booking i. 

 zbik: takes the value 1 if booking i creates reshuffling at location k for booking 

b, otherwise it takes 0. 

 

The expression below computes the number of containers on the top of the 

containers from booking b at storage location (stack) k at the departure time of 

booking b.  

 

 
( )

bik

i E b

y


  (3.19) 

 

This is expression is equivalent to number of containers to be moved in order 

to reach to the containers of booking b at storage location k.  

 

R is vertical transportation cost of each container or unit cost of reshuffling, the 

model can be stated as below. 

 

Our objective is to minimize the total cost of transportation during a planning 

horizon. The total cost is composed of ground transportation and crane movements in 

the storage area. We can now formulate our mixed integer programming model as 

below. 

 

( )

Minimize  bik bk bk

k b i E b k b

R y c x


    (3.20) 

 

  

Subject to 
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bk k

b B t

x C


   ,k t   (3.21) 

bk b

k
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 b      (3.22) 

(1 )ik bik i bikx y n z  
  

, , ( )b k i E b 
 (3.23) 
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bk b bikx n z
  

, , ( )b k i E b 
 (3.24) 

0,  integerbkx 
  

,b k
  (3.25)  

0biky 
  

, , ( )b k i E b 
 (3.26) 

 0,1bikz 
  

, , ( )b k i E b 
 (3.27) 

 

The first part of the objective function counts the number of reshuffles 

(vertical crane movements) for each booking at each location and the second part 

calculates the total horizontal transportation cost. Constraint set (3.21) assures that at 

any time interval t, at most Ck containers are assigned to location k . Constraint set 

(3.22) assures that all containers in booking b are assigned to storage locations. 

Constraint sets (3.23) and  (3.24) assure that if xik and xbk are positive and i∈E(b) then 

ybik = xik, else ybik = 0. In other words, if there are some containers from booking b at 

location k then each container put in location k from a booking i in set E(b) is 

counted as reshuffling. 

 

We will denote the total number of containers arrive on time period t as N, the 

total number of available location by C. 

 

 
( )

b

b B t

N n


   (3.28) 

 

 k

k K

C C


  (3.29) 

 

According to equations (3.28) and(3.29), we can check the feasibility of 

problem as follow:  

 

 F N C   (3.30) 

 

The problem is feasible if only if F ≥ 0 and we assume this to be satisfied for 

CSP model.  
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CHAPTER - 4  

 

Equation Chapter (Next) Section 0 

CONTAINER STORAGE PROBLEM WITH 

EXCESS CONTAINERS 

 

 

 

At any time period, total capacity of storage area can be less than sum of total 

number of incoming containers and total number of stored containers at before this 

time period. For our model, if there is not enough capacity at any time period for 

number of incoming containers, we get the infeasible solution. In real world 

problems, incoming containers can temporarily wait outside the storage area. The 

longer the containers wait on board, the longer the vessel has to stay at the port, this 

means higher cost for the vessel and the port has to wait a little while longer before 

serving another vessel. 

 

For avoiding infeasible solution and adapting the real world problems, our 

model should contain dummy location in where incoming containers are placed until 

they leave container terminal. 
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4.1. Mathematical Model with No Restriction  
 

 

New decision variable is added as a dummy variable in the model. New model, 

which is named as CSPX-1, can choose to place incoming containers into the dummy 

location. We do not need separate dummy storage location with columns and rows 

like storage location. Therefore dummy storage location is used to like as only one 

location.  

 

sb: the number of containers placed in dummy location of booking b. 

  

Our additional objective is to minimize the number of containers placed in 

dummy location during a planning horizon.  

 

If a container is placed in the dummy location, it should be charged with higher 

penalty cost. We use the symbol Pb to denote the penalty cost of assigning booking b 

to dummy location. This penalty cost depends on the arrival time of booking.   

  

 max( 1 ,0)b p bP t a    (4.1) 

 

If ab is greater than planning horizon, the penalty cost is equal to 1. With this 

equation, we give the priority to bookings, which arrive in the storage location 

earlier. 

 

Our mathematical model with no restriction is formulated as below. 
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( )

Minimize   bik bk bk b b

k b i E b k b b

R y c x P s


       (4.2) 

 

Subject to 

 

Constraint sets 3.21, 3.23, 3.24, 3.25, 3.26 and 3.27  

 

bk b b

k

x s n    b  (4.3) 

0bs    b  (4.4) 

 

The last part of the objective function calculates the penalty cost of assigning 

containers to the dummy location.  Constraint set (4.3) also assures that all containers 

in booking k are assigned to storage locations or dummy storage location. Constraint 

set (4.4) assures that slack variable is equal or greater than 0. We can now formulate 

our mixed integer programming model as below. 

 

 

4.2.  Mathematical Model with First-Come First-

Served Restriction  

 

 

In the previous model (CSPX-1), incoming containers can be placed in the 

dummy location while there still are empty places in storage location. This is an 

expected result, as placing early containers to rather than later containers to the 

dummy location may decrease the total number of reshuffling. For this reason CSPX-

1 only aims to minimize the reshuffling cost. 

 

In real world problem however, incoming containers must be placed in the 

storage location if there is sufficient space. They do not wait outside because of the 
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containers arriving later on. Therefore, first-come first-served (FCFS) rule should 

apply for the incoming containers. If containers come into storage location from 

berth, they firstly are placed in the storage location irrespective of comparing the 

number of reshuffling of posterior containers. This new model (CSPX-2) makes 

reshuffling comparison only between the containers which arrive at the same period.  

We define an inventory type new decision variable.  

 

vt: the number of containers in storage area during period t. 

 

The expression below computes the total number of containers times the 

number of periods in the storage location during the planning horizon.  

 

 t

t T

v


  (4.5) 

 

This expression with a negative coefficient in the objective function helps to 

maximize the total number of containers in the storage location.  

 

V: the unit benefit of placing a container in the storage location for a time period  

 

IB(t): the set of bookings that will come in the storage area at the beginning of time 

interval t. The set is algebraically defined as follows: 

 

  ( ) : | b tIB t b a T  (4.6) 

 

OB(t): the set of bookings that will go from the storage area at the beginning of time 

interval t. The set is algebraically defined as follows: 

 

  ( ) : | b tOB t b d T  (4.7) 
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According to all new set of definitions, the mathematical model, CSPX-2, is 

formulated as below. 

 

( )

Minimize     bik bk bk b b t

k b i E b k b b t

R y c x P s V v


        (4.8) 

 

Subject to 

 

Constraint sets 3.21, 3.23, 3.24, 3.25, 3.26, 3.27 and 4.3 

 

1

( ) ( )

( ) ( )t t b b b b

b IB t b OB t

v v n s n s

 

        t  (4.9) 

0tv    t  (4.10) 

0bs 
  b  (4.11) 

 

This model is named as CSPX-2 can be modeled with new constraints(4.9). 

Constraint set (4.9) assures inventory conditions. It can be also named as inventory 

balance equation. 

 

The constraint that says that the amount of containers in the next time period 

must equal the current container inventory plus what is arrived minus what is left the 

storage location. The language used is for the inventory control in the production 

scheduling problem, but this has become a standard system of equations that appears 

in many mathematical programs. Thus, the meaning of the variables can be very 

different. In this mathematical model, we use the constraint for avoiding placing the 

arrived containers to the dummy location. 

 

In addition, negative coefficient of decision variable vt in objective function 

force to increase the number of containers in storage area during period t. 

 

http://glossary.computing.society.informs.org/second.php?page=P.html#Production_scheduling_problem
http://glossary.computing.society.informs.org/second.php?page=P.html#Production_scheduling_problem
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CHAPTER - 5  

 

Equation Chapter (Next) Section 0 

SOLUTION METHODS 

 

 

 

As we mentioned previous chapters, very huge numbers of containers are 

transported in ports. Moreover, it is known that the size of CSP depends on the input 

of problem as number of containers, the number of locations. When the number of 

containers is increased, the mathematical model is able to solve only small instances 

of the problem. We will encounter a large problem in busy ports. The problem with 

large instances can be solved in a long time or cannot be solved because of resource 

limits.   

  

When a decision for determining the locations of containers must be made in 

real time, optimal solution procedure may not be appropriate in practice. This section 

proposes three heuristic rules that can be used in real time. These heuristics methods 

can be used to obtain approximate solutions for the CSP. 

 

The solution methods for container storage location problem will be discussed 

in this chapter. We present each heuristic in detail.  
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5.1. Lagrangean Relaxation-based Approach 
 

 

Lagrangean relaxation has been successfully employed by numerous 

researchers for integer mixed integer programming applications. In Lagrangean 

Relaxation method the complicating constraints are multiplied by the Lagrangean 

multipliers and added to objective function. We considered LR technique for 

obtaining lower bounds (minimization problem) on the optimal solution. Through LR 

approach, many hard problems can be modeled as relatively easy problems. 

 

Two relaxations are derived for our problem. The first relaxation considers 

both complicating constraints  (3.23) and (3.24) with two lagrangean multipliers. 

This approach is named as Lagrangean Relaxation for Two Constraints (LRTC). The 

second one considers only single constraint set (3.23). It is also named as Lagrangean 

Relaxation for a Single Constraint (LRSC). 

 

5.1.1. Lagrangean Relaxation for Two 

Constraints 
 

 

 

We now discuss the application of LR approach for problem in detail. Our 

solution method is based on the LR of the constraints  (3.23) and (3.24). As we 

mentioned above, the first approach is named as LRTC.  

 

We define the dual variable λ for the constraint set (3.23) and β for the 

constraint set (3.24).  The formulation of relaxed problem is as follows: 

 

( )

( , ) min  bik bk bk

k b i E b k b

L R y c x 
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( ) ( )

( ) ( )bik ik bik i i bik bik bk b bik

k b i E b k b i E b

x y n n z x n z 
 

          (5.1) 

 

Subject to  

 

( )

bk k

b B t

x C


   ,k t  (5.2) 

bk b

k

x n   b  (5.3) 

0,  integerbkx 
  

,b k
 (5.4) 

0 bik iky x 
  

, , ( )b k i E b 
 (5.5) 

 0,1bikz 
  

, , ( )b k i E b 
 (5.6) 

  

When we reorganize the new objective function(5.1), we obtain the following 

mathematical model.  

 

'( ) ( )

( , ) min ( )bk jbk bik bk

k b j E i i E b

L c x   
 

      

 
( ) ( ) ( )

( ) ( )i bik b bik bik bik bik bik i

k b i E b k b i E b k b i E b

n n z R y n   
  

           (5.7) 

 

Subject to 

 

( )

bk k

b B t

x C


   ,k t  (5.8) 

bk b

k

x n   b  (5.9) 

(1 )ik bik i bikx y n z  
  

, , ( )b k i E b 
 (5.10) 

0,integerbkx 
  

,b k
 (5.11) 

0biky 
  

, , ( )b k i E b 
 (5.12) 
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The Lagrangean problem is decomposed into three subproblems (for each 

decision variables). Equation (5.7) has four terms, the first term is a function xbk
’
s 

and second term is a function of zbik’s and third term is a function of ybik’s. Last part 

includes only step size parameter term, can be considered with first term of this 

equation. This structure leads to the following three independent subproblems 1, 2 

and 3. 

 

Subproblem 1: 

 

'

1( , ) min bk bk

b k

L c x      (5.13) 

 

Subject to 

  

( )

bk k

b B t

x C


   ,k t  (5.14) 

bk b

k

x n   b  (5.15) 

0,  integerbkx 
                      

,b k
 (5.16) 

 

Where 

 

'

'

( )( )

bk bk jbk bik

i E bj E i

c c  


     (5.17) 

 

 

Subproblem 2: 

 

Let us denote the optimal zbik
 
values of Subproblem 2 with zbik

*
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2

( )

( , ) min ( )i bik b bik bik

k b i E b

L n n z   


    (5.18) 

 

Subject to 

 

 0,1bikz    , , ( )b k i E b   (5.19) 

 

The solution of the Subproblem 2 is trivial. If niλbik - nbβbik < 0, then zbik
* 

= 1, 

otherwise zbik
* 
=0.  

 

Subproblem 3: 

 

We add a bound on ybik to obtain a solution to the original problem. This bound 

is a valid inequality in the original problem. We also define the optimal ybik value of 

Subproblem 3 as ybik
* 

 

3

( ) ( )

( , ) min ( )bik bik bik i

k b i E b k b i E b

L R y n   
 

       
(5.20)

 

 

Subject to 

 

*0 bik iky x    , , ( )b k i E b   (5.21) 

 

The solution of Subproblem 3 is trivial. If  λbik ≤ R, ybik
*
= 0, else if xik

*
 > 0 and 

xbk
*
 > 0 then ybik

*
= xik

*
 

 

We find a lower bound for the original problem LB
t
 = L1(λ,β)+ L2(λ,β)+ 

L3(λ,β), then best lower bound can be found as: 

 

  , 1 2 3max ( , ) ( , ) ( , )L L L          (5.22) 
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 , 0    (5.23) 

 

We use a subgradient optimization procedure to update the Lagrangean 

multipliers to obtain a good lower bound. It is widely known that subgradient 

optimization has satisfactory performance on many combinatorial optimization 

problems.  

 

The subgradient method starts with initial values of λ
0
 and β

0
. We generate a 

sequence of Lagrangean multipliers λ
t
 and β

t 
through the addition of direction vector. 

Hence, the updating of Lagrangean multipliers of the constraints (3.23) and (3.24) 

are done according to the equation. 

 

  t+1

bik max 0, ( )
bik bik

t t t t t

bik ik i is x y n n z       (5.24) 

 

  t+1

bik max 0, ( )
bk bik

t t t t

bik bs x n z     (5.25) 

 

This direction vectors are multiplied by step size sλ
t
 and sβ

t
. Step sizes are 

positive scalar. The step sizes are updated at each iteration t using the following 

equation:  

 

 
 

2

, , ( )

     
( )

t t

t

ik bik i i bikb k i E b

bestUB LB
s

x y n n z









  
 (5.26) 

 

 
 

2

, , ( )

     
( )

t t

t

bk b bikb k i E b

bestUB LB
s

x n z










 (5.27) 

 

 

Where the best upper bound (bestUB) is the objective value of the best-known 

feasible solution and LB
t
 is objective value of the LR problem with multipliers λt and 
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βt which are greater than 0. The initial values for Lagreangean multipliers are set to 

0.  

 

The step sizes depend on the parameter αt
 which is scalar between 0 and 2.  In 

our subgradient method, initial value of step size parameter sets to 0.5.  

 

There are two stopping criteria for our subgradient method. Stopping rules are 

discussed below: 

 

1. When BestUB and LB
t
 is equal, the method returns optimal solution,  

2. When iteration limit is reached,  

 

The upper bound UB is obtained by applying a heuristic method.   

 

Upper Bounding Scheme: 

 

Let us denote the optimal ybik values for upper bound with biky . If xik
* 

> 0,  xbk
* 

> 0 , then we set biky = xik
*
, else we set biky = 0. 

 

Notations: 

 

The notations which are used in subgradient optimization algorithm as like 

following:   

 

bestUB  : Current best upper bound 

bestLB  : Current best upper bound 

M  : Large integer 

T  : iteration index 

iteLimit : Maximum number of iterations 
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sλ
t
  : stepsize for λ at iteration t 

sβ
t
  : stepsize for β at iteration t 

αt  
: stepsize parameter at step t 

optimal : indicator for optimal solution  

noImpCount : number of iteration for which bestLB does not improves 

noImpLimit : limit for number of iterations with no improvements in bestLB 

UB
t 

: upperbound at iteration t  

LB
t  

: lowerbound at iteration t 

λbik
t  

: lagrangean multiplier λbik at iteration t 

βbik
t  

: lagrangean multiplier βbik at iteration t  

multiplier : constant to update  t
 

 

Lagrangean Algorithm 

 

Step 1. Initialization  

The initial values for Lagrangean multipliers (λ0 , β0), step sizes (sλ
t 
, sβ

t
) are set to 0. 

The step size parameter (αt
) is equal to 0.5.  

bestUB = M and bestLB = 0 

t=1, iteLimit = 50 and 100 

sλ
t
 = 0 and sβ

t
 = 0 

αt = 0.5, multiplier = 0.5 and optimal = 0 

noImpCount = 0 and noImpLimit = 10 or 5  

 

Step 2.  Begin to Subgradient Optimization  

Subgradient optimization is used to update the Lagrangean multipliers to obtain a 

better lower bound until the stopping conditions are satisfied.  

while ( t ≤ iteLimit and bestLB bestUB       ) 

{ 

Step 2.1.   Compute Lower Bound and Upper Bound 

Solve subproblem 1 using CPLEX, find L1(λ, β) and  xbk
*
values 



SOLUTION METHODS| 44 

  

  

Solve subproblem 2 using CPLEX, find L2(λ, β) and  zbik
*
values 

Solve subproblem 3 using CPLEX, find L3(λ, β) and  ybik
*
values 

If (xik
*
 > 0 and xbk

* 
> 0) 

 
*

bik y ikx  

Compute Upper Bound  

' *

bik yt

bk bk

k b b i k

UB c x    

If (UB
t
 < bestUB) 

bestUB=UB
t 

Compute Lower Bound  

LB
t 
 = L1(λ, β)+ L2(λ, β)+ L3(λ, β) 

If (LB
t 
> bestLB) 

bestLB = LB
t 

else 

 noImpLimit++ 

if ( bestUB bestLB       ) 

{ 

  optimal = 1; 

  break while; 

  } 

 

Step 2.2. Continue to Subgradient Optimization 

          Calculate stepsize for λ and β 

 

 

2

, , ( )

2

, , ( )

     
( )

     
( )

t t

t

ik bik i i bikb k i E b

t t

t

bk b bikb k i E b

bestUB LB
s

x y n n z

bestUB LB
s

x n z
















  










 

          Update λ and β 
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t+1

bik

t+1

bik

max 0, ( )

max 0, ( )

bik bik

bk bik

t t t t t

bik ik i i

t t t t

bik b

s x y n n z

s x n z





 

 

    

  
 

If (noImpCount = noImpLimit) 

{ 

  α
t
 = α

t
 * multiplier; 

noImpCont = 0; 

} 

}//end while 

 

Step 3. Print Solution  

If (optimal > 0) 

Print optimal solution 

Else 

Print approximate solution 

 

5.1.2. Lagrangean Relaxation for Single 

Constraint 
 

 

The second relaxation method based on relaxed the only single constraint set 

(3.23). Now, we define the dual variable λ to multiply the constraint set (3.23).  

 

   
'( ) ( )

min bik bik bk bik bk

k b i E b k b i E b

L R y c x  
 

 
     

 
     

( ) ( )

bik i bik bik i

k b i E b k b i E b

n z n 
 

      (5.28) 

 

In this chapter, two independent subproblems are considered for our model. 

Subproblem 1 includes the constraint set (3.24) which is not relaxed in this approach. 

The objective function of Subproblem 1 represents as: 
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'

1

( )( )

( ) min bk bik bk i bik bik

k b k b i E bi E b

L c x n z  


 
    

 
     (5.29) 

 

While Subproblem 2 is same with LRTC approach’ Subproblem 2, Subproblem 

1 has constraints set following: 

 

bk b bikx n z   , , ( )b k i E b   (5.30) 

 0,1bikz    , , ( )b k i E b   (5.31) 

 

The subgradient method for LRSC needs only a single lagrangean multiplier λ
0
 

which is used for constraint(3.23).  Lagrangean multiplier is updated at each iteration 

t according to the following equation. 

 

  t+1

bik max 0, ( )
bik bik

t t t t t

bik ik i is x y n n z       (5.32) 

 

The step size, which is positive scalar, is updated at each iteration t using the 

following equation:  

 

 
 

2

, , ( )

     
( )

t t

t

ik bik i i bikb k i E b

bestUB LB
s

x y n n z









  
 (5.33) 

 

The step sizes depend on the parameter αt
 which is scalar between 0 and 2.  In 

our subgradient method, initial value of step size parameter sets to 0.5.  

  

The upper bound UB is obtained by applying a heuristic method as LRTC. 

 



SOLUTION METHODS| 47 

  

  

5.1.3. Lagrangean Relaxation with Single 

Lagrangean Multiplier 
 

 

For improving the lower bound value, we discuss a modification of our LR 

approach, i.e. lagrangean relaxation with single lagrangean multiplier (LRSLM). 

Subproblem1 always gives a solution that satisfies the capacity restrictions of the 

locations. Also, the values of the decision variables zbik are related with the values of 

ybik in our model. If ybik assumes a positive value, zbik should be equal to 1. However, 

when we decompose the problem into sub-problems, zbik behaves independent of ybik. 

Based on this observation, we apply another relaxation to the model. Namely, we 

relax only constraint set(3.23), and ignore constraint set (3.24) defining a single 

lagrangean multiplier set λbik for constraint set(3.23).  

  

Thus, the problem is decomposed into two subproblems. While new 

Subproblem 1 is same with Subproblem 1 of LRTC approach, the solution of 

Subproblem 2 is different. In this subproblem, we add a bound on ybik to obtain a 

feasible solution to the original problem. This bound is a valid inequality in the 

original problem. So Subproblem 2 becomes: 

 

2

( ) ( )

( ) min ( )bik bik bik i

k b i E b k b i E b

L R y n  
 

       (5.34) 

 

Subject to 

 

*0 bik iky x              , , ( )b k i E b   (5.35) 

  

The solution of Subproblem 2 is trivial. When λbik ≤ R, ybik = 0, else if xik
*
>0 

and xbk
*
>0 then ybik

*
=xik

*
. The values for zbik

* 
are then determined depending on the 

optimal values for ybik, i.e., ybik. Namely, we set zbik = 1 if ybik
*
>0, else we let zbik = 0. 
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5.2. Heuristics 
 

 

The first heuristic approach (H1) consists of three phases; executed one after 

the other, namely the initial phase that generates a feasible placement for containers 

at the storage location with a simple mathematical model, the selection of the 

container that determines which containers should be relocated, the movement phase 

that determines new feasible location for selected containers.  The heuristic 

terminates when the iteration reaches the iteration limit, determined by us. 

 

The initial feasible solution of our first heuristic, H1 aims to minimize the 

horizontal cost on the port. In addition, this solution is found by avoiding the vertical 

cost. The following problem is solved to find the storage location of each container 

in the port. In other words, we can find the initial feasible xbk values with this 

mathematical model as subproblem1 for CSPX-1 of Lagrangean Relaxation method 

with small variants on the objective function.  

 

min  bk bk b b

b k b

c x P s   (5.36) 

 

Subject to 5.18, 5.19 and 5.20  

  

After finding the storage location of all containers, the reshuffling for each 

stored container can be found. If xik
* 

> 0 and xbk
* 

> 0, we can find the reshuffling 

amount for the initial solution.  

 

Containers are placed according to their horizontal cost and H1 is implemented 

to reduce total transportation cost. In other words, we attempt to find a better feasible 

solution for CSP with this improvement heuristic. In this section, the steps of H1 will 

be explained with details.  
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To minimize the number of reshuffles, we must swap containers into the 

storage area or relocate containers to empty locations, which are available location 

during the process time of these containers.  

  

The implementation of proposed selection and movement rules of the container 

for H1 is represented in this section. We select the container caused the highest 

reshuffling in order to be swapped with other containers / relocate them different 

from their initial location. The rule for the selection of booking on storage area is 

determined according to the numbers of reshuffles. The initial solution for the 

heuristic provides a feasible placement. According to initial feasible placement, the 

numbers of reshuffles (ybim) are calculated and sorted in descending order. This 

descending list provides which locations have maximum reshuffling values. After 

that, we can start by selecting the container from this list. 

 

We can demonstrate this selection rule with a simple example: Let’s say that 

the initial solution puts booking b and i at the same location m. If these bookings 

caused the number of reshuffles (ybim) at location m and the amount of reshuffling is 

the highest one in descending list, we randomly select one of booking number. After 

that this selected container is used to relocated/removed from location m to different 

location. With this method, we aim to reduce the number of reshufflings at location 

m. In order words, this method is carried out to find out feasible solutions with 

minimum number of reshuffles 

 

It is necessary here to clarify exactly what is meant by the symbol b
m
. It 

denotes a container; belong to booking b, in location m.   

 

Suppose that ybim and ygjk have same value in descending list, we randomly 

select the booking among b
m
, i

m
, j

k
,g

k 
 booking numbers. This detail will be discussed 

with an example later.  
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The other rule is for movement type of containers that cause higher number of 

reshuffling. There are two movement types for containers: 

 

1. To remove the containers to a location, if this location is empty during the 

process time of removed container.  This movement is illustrated in Figure-

9. 

 

Figure 9 Relocate the container 

 

2. To swap containers, if the process time of them is suitable to swap their 

location. Exchanged pair can be shown as (b
k
, j

m
 ). It means that a container 

of booking b at k location and a container of booking j at m location will be 

swapped, if the arrival and departure times of swapped containers don’t 

affect the other containers in these locations. It is not allowed swapping 

containers at different locations, if they belong to same booking number. 

This movement is illustrated in Figure-10. 
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Figure 10 Swap the containers 

 

We demonstrate the heuristic with simple example shown in Figure-11 and 

Figure-12. Suppose that there are four different bookings; b, i, j and g and two 

different locations; k and m in container storage area. According to bookings’ arrival 

and departure times, time interval can be defined in the following Figure-11. 

 

 

Figure 11 Time interval for sample case 

 

In the following Figure-12 we suppose that incoming containers at each period 

are placed to the k or m location with respect to horizontal cost. 
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Figure 12 Placement at each period for small case  

 

We further elaborate this process with a simple example. According to this 

placement, the total number of reshuffles for all locations is equal to 6. (ybim=2, 

ybjm=0, yijm=2 and ygjk= 2). When the values of reshuffling are sorted in descending 

order, the list provides the maximum reshuffling values, which are ybim, yijm and ygjk. 

To reduce the amount of reshuffling, the booking can be randomly chosen between 

b
m
, j

m
,j

k
 i

m
, g

m
,g

k
. These booking numbers are associated with their location. If we 

start with booking j at location m, there are only three movements that can be 

considered; swapped with other container (j
m
-j

k
) and (j

m
-g

k
) or relocated to new 

location. Firstly, there is no empty location during the time between arrival time and 

departure time of booking j. For this reason, the container j cannot be relocated to 

b b g 

g 

g 
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another location. Next, we forbid swapping the containers on locations m and k if 

they belong to the same booking.  Besides, there are no possible swapping 

movements from m to k for booking j, because of capacity constraint for swapping 

pair j
m
-g

k
, so the number of containers of a location at each period must be at most 4.  

 

If container of booking i at location m is randomly selected rather than booking 

j, there are again two pairs (i
m
-g

k
) and (i

m
-j

k
), but no relocated movement. Suppose 

that this container is selected among containers which cause higher number of 

reshuffling.  For swapping pairs (i
m
-g

k
), there will be no improvement for the number 

of reshuffles or total cost, because the total amount of reshuffling is increased from 6 

to 8 (ybgm=1, ybim=1, ygjm=2, yijm=2 and ygjk= 1, yijk= 1).  When booking i at location m 

is selected by heuristics, there is another pair (i
m
,j

k
). It can be also taken in 

consideration. When the booking i at location m and  booking j at location k  are 

swapped with each other, the total amount of reshuffling is decreased from 6 to 4 

(ybim=1, yijm=3). That is to say the initial feasible solution can be improved with 

reducing the cost of reshuffling.  

 

These steps are explained to understand the selection and movements types of 

containers in our heuristic. If the movements is acceptable for feasible solution, new 

container will be selected from new placement of storage location. After the 

iteration, these feasible solutions are listed. As mentioned earlier, the heuristic 

terminates when the iteration reaches the iteration limit, determined by us. 

 

Notations: 

 

The notations which are used in H1 as like following:   

 

Si   : initial feasible solution 

St   : solution found in iteration t 

Smin  : minimum value of solution form List_S 



SOLUTION METHODS| 54 

  

  

SH1_best  : best solution of Heuristic1. 

T  : iteration index 

b
k
t  : a container of booking number b in k location at t period 

List_S  : feasible solution list 

List_R  : number of reshuffling ordered in descending order. This list contains 

the reshuffles number and related booking number and location number.  

iteLimit : maximum number of iterations 

 

All steps of heuristics method H1 are given below.   

 

Step 1. Find the initial feasible solution Si 

Minimize horizontal cost at the storage location and obtain xbk
*
values 

SH1_best=Si 

no improvement = false 

 

Step 2.   

While(T < iteLimit and no improvement is true) 

{ 

Find initial values and initial step for search algorithm 

Step 2.1. For each  b∈B, i∈E(b) and k∈K 

If (xik
*
 > 0 and xbk

* 
> 0) 

*

bik y ikx  

Step 2.2. Create List_R and choose b
k
t booking number and its location which 

has highest value of List_R at iteration t. 

 

Step 3. Determine next feasible locations for selected container b
k
t 

Step 3.1. Relocate movement 

If (feasible location for b
k
t to relocate) 

Relocate it,  

Then Step 3.4.  
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Else  

Go to Step 3.2. 

Step 3.2. Swap movement 

Randomly choose the other location and the containers is located in 

that (i
m

t) 

If (Swapping pair (b
k
t ,i

m
t) is feasible) 

Swap them  

Then Step 3.4. 

Else 

Go to Step 3.3. 

Step 3.3. 

 If (no feasible movement for b
k
t) 

Then it is placed to dummy location  

Step 3.4. Try to find new location at the storage location for one container in 

the dummy location 

 

Step 4. Calculate new feasible solutions St and add in the list of solutions List_S 

}//end while 

 

Step 5. Evaluate all solution in the List_S . Find minimum value Smin  

SH1_best=Smin 

 

Step 6. Print best solutions SH1_best   

 

The initial feasible solution of H1 is based on minimizing horizontal cost. We 

develop the initial feasible solution with new procedure. This procedure can be used 

for adapting the real world problem.  For this purpose, we place them into the storage 

location with respect to their arrival time, and attempt to hold containers of same 

customer or booking set together in same stacks. The horizontal transport cost is not 

very expensive, so this procedure can be used for a real world problem of a container 
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terminal. When there are empty places at the arrival time, the container is placed 

together with its container set without calculating the horizontal cost. It is an 

important point that the containers belonging to same booking stay together when 

they arrived to the storage location. Thus, the number of reshuffles may be decreased 

for some instances. The other important point is that new arrivals are attempted to be 

placed empty stacks. They aren’t placed above the other bookings until all locations 

have at least one container. 

 

Figure-13 illustrates the initial feasible solution of variant heuristic, named as 

H2. 

 

 

 

 
Figure 13 Placement behavior of initial condition  
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Cont. Figure 13 Placement behavior of initial condition 

 

The second heuristic (H2) is a variation of H1. It is only different while finding 

the initial solution. An example of initial placement is presented in Figure-13. This 

example will be explained in next paragraph in detail.   

 

When time period t is equal to 0, booking set 1 is arrived to the storage location 

and five bookings are placed in two locations. Four of them are located same location 

and last one is located in the other location because of capacity of a stack. At time 

period 1, second booking set is arrived with two containers. These containers are 

placed at a different location than the location of booking 1, even though there is 

empty location on the container of booking 1. This procedure is applied until all 

location has a container at least.  After that, arrived containers can be placed on the 

other containers belonging different container sets. If there is not enough capacity at 

any time period, the containers can be placed dummy location. Besides, this method 

carry out to applied first come first served rule.    

 

With this initial procedure, Step 1 of H1 algorithm is changed. In addition, H2 

is occurred with this small variation. As mentioned above, we designed a new 

heuristic H2 for adapting CSP to the real world problem. By ignoring the horizontal 

cost, the container is placed together with its container set. The horizontal cost is not 
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very expensive in real world, so the container sets are placed with avoiding this cost.  

To placed containers with their container sets may decrease the number of reshuffles. 
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CHAPTER - 6  

 

Equation Chapter (Next) Section 0

COMPUTATIONAL RESULTS 

 

 

 

In this section, we report the results of our computational experiments. We first 

explain our experimental design, and then provide computational results. 

 

 

6.1.  Experiment Design 
 

 

We have tested our model on various problem parameter settings. We have 

determined levels for the following parameters.    

 

 Number of bookings, B 

 Number of storage locations, K 

 The initial occupancy of the storage area, D: For adapting the real world 

problem, we consider the initial condition of the storage yard and the 

planning horizon. Moreover, the initial condition is related with the 

containers in the storage area at the beginning of planning horizon. 

Normally, the container storage area cannot be empty. Before starting the 

planning horizon, there should be the containers in the storage area. The 
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amount of initial containers is set to 25 or 50% of the capacity of storage 

area.  

 

We generated 10 instances for problem parameters which are the number of 

bookings, the number of locations and the occupancy of storage locations at the 

beginning of time period. 

 

The settings are given in Table-1. Numbers of bookings are decided regarding 

the volume of largest container port in Turkey. 

 

Parameters Values used Total  

(Number of bookings- 

Number of locations) 

(10-5), (10-10),  (20-10), (20-20), (30-15), (30-

30), (40-20), (40-40), (50-25), (50-50), (100-50), 

(100-100) 

12 

Occupancy 0.25 , 0.50 2 

   

Table 1 Experimental Design 

 

A series of computational experiments was carried out on a PC with 1.70 GHz 

Intel ® Core ™ i5-3317U processor and 4GB RAM. These problems are generated 

with same stream for using common random numbers. All parameters decided by 

uniform distribution use different seeds. Ten instances are randomly generated for 

each combination of B, K and D. For each problem combination which is represented 

in Table-1, we generate 10 instances.  

 

The input data for CSP is generated in C programming language on the same 

computer configuration according to the following procedure:   

 

 Length of the planning horizon is equal to 20. 

 The unit reshuffling cost is an important parameter in the model. R is taken 

constant. 
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 The number of containers in a booking, arrival and departure time of 

booking sets are determined by using this input generator.  The number of 

bookings is uniformly distributed between 1 and 10. This means there are at 

most 10 containers in a booking.  

 The arrival time for initial containers, that provide us initial condition for 

the problem, should equal to 0.  In addition, the arrival time can be assigned 

from 0 to 25 for other container sets. The arrival time of each booking is 

generated uniformly during the planning horizon.  

 The departure time is calculated by adding a process time to the arrival time.  

The process time is generated uniformly between 5 and 15.  

 We generate the arrival berth and departure berth and coordinates of each 

berth, to calculate the horizontal distances. 

 

The performance of the procedure is evaluated using various problem sizes and 

problem parameters, which are the number of bookings, the number of locations, and 

occupancy of the storage area at the beginning of the horizon, which is given as the 

fraction of the locations occupied. Initial occupancy can take the values 0.25 and 

0.50. While the arrival time of initial bookings is set to 0, the departure time and the 

amount of containers of these booking set are created as random.  

 

The objective function coefficient of the decision variable ybik, R is another 

significant parameter for our problem since it can change the importance of 

reshuffling moves as compared to the transportation cost.  

 

 

6.2. Exact Solutions  
 

 

The optimal solution to the mathematical models developed in Chapter 4 was 

solved using GAMS 23.9.4 CPLEX solver on a PC with 1.70 GHz Intel ® Core ™ 
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i5-3317U processor and 4GB RAM. The optimal solution were possible for all 

problem instances with B=10. Besides, CPLEX is able to solve some of problem 

instances of size B = 20, 30, 40, 50 and K= 25, 50. For having higher number of 

bookings, it was not possible even to find a starting feasible solution within the given 

time limit. It was not able to solve all instances for B=100, K=50, 100 and B= 200, 

K= 100, 200 within 1-h CPU time limit. For instances with more number of 

bookings, it was not possible to obtain solutions within reasonable times. During our 

preliminary runs, it is also observed that the optimal solution times are insensitive to 

the number of bookings, although the arrival and departure time of bookings which 

causes the reshuffling are directly related with optimal solution time. Therefore, the 

optimal solutions for all instances were obtained with time limit.  

 

In the following Table-2 for CSPX-1 and Table-3 for CSPX-2, we represent 

the solution for CPLEX, for all parameters calculation, average CPU (in seconds) 

under Running Time and number of reshuffles in the solution. The running time is 

reported in seconds and time limit is set to as ten minutes for all instances set.  

 

The last column in these tables represent relative gap between the best integer 

solution and the best bound. For all instances, we set relative gap as 0 which is 

named as OptCR in CPLEX. The OptCR option asks to CPLEX to stop when  

 

 ( ) / (1.0 10 )BP BF e BF OptCR     (6.1) 

 

Where BF is objective value of current best integer solution and BP is best 

possible solution integer solution. 

 

The results for optimal solution of CSPX-1 are presented in Table-2. The 

average CPU time is reported as 364.25 minutes. 
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We first investigate that instances belonging to five problem sets cannot be 

solved within time limit, so the numbers of reshuffles of these instance sets are 

higher than the other instances sets. Table-2 reports that 20% of the parameter 

combination is run till time limit.  

 

B K D 

Running 

time 

Optimal 

solution 

(seconds) 

Number of 

reshuffles 

Optimal 

solution  

Best 

Feasible 

Solution 

Relative 

Gap  

10 5 25 2.00 1 3558770.80 0.00 

10 5 50 2.00 2.5 5181542.20 0.00 

10 10 25 300.00 0 1019060.80 0.55 

10 10 50 128.00 1 846023.30 0.67 

20 10 25 401.80 3.1 4889366.40 2.28 

20 10 50 499.30 6.2 4390109.90 4.49 

20 20 25 182.50 0 12840.50 0.01 

20 20 50 121.80 0.2 13817.00 2.65 

30 15 25 420.60 3.7 5246894.20 0.21 

30 15 50 480.00 5.1 4700607.00 0.15 

30 30 25 181.70 0 20002.70 0.01 

30 30 50 61.80 0 19692.40 0.00 

40 20 25 540.20 5 5879172.90 0.15 

40 20 50 480.40 7.4 5374284.20 0.54 

40 40 25 420.60 0 25751.20 0.04 

40 40 50 241.20 0 25928.30 0.00 

50 25 25 600.00 14 6476067.20 0.87 

50 25 50 600.00 19 5567915.40 1.47 

50 50 25 300.00 2 32289.40 0.01 

50 50 50 438.00 7 31131.50 1.26 

100 50 25 600.00 74.4 7957947.80 4.21 

100 50 50 600.00 82.5 10672603.20 2.59 

100 100 25 600.00 50 185443.40 42.91 

100 100 50 540.00 59.5 135166.00 41.02 

Average 364.25 14.32 3010934.49 4.42 

Table 2 CPLEX solution for CSPX-1 
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We observe that the number of reshuffles is higher when the initial occupancy 

is 50 percent. (Figure-14)  Here we list the problem settings just based on B and K.  

 

 

Figure 14 Number of reshuffles based on the occupancy for CSPX-1 

 

 

In Figure-15, number of reshuffles is illustrated based on problem parameter. 

From this figure it can be seen that the number of reshuffles is changed regarding the 

number of location (K and 2K) for same instances sets. When the number of location 

will be increased from K to 2K, the amount of reshuffles will be dramatically 

decreased. For all instances sets, the amount of reshuffles for lower capacity of 

storage location is less than for higher capacity. 
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Figure 15 Number of Reshuffling based on Instances’ Parameters for CSPX-1 

 

To have more flexible storage area and less reshuffles numbers at container 

terminal we must point out the number of location and occupancy of location. Thus 

initial occupancy of problem and location number is directly related with the number 

of reshuffles. 

 

In Table-3, we summarize the average measures of the CPLEX solution for 

CSPX-2. The feasible solution is computed for CSPX-1 with average Relative Gap 

4.42% at an average of 364.25 seconds of CPU time, while CSPX-2 is solved with 

Relative Gap 4.47% and 368.53 seconds. As can be seen form Table-3, the instances 

belonging five problem combinations cannot be solved within time limit.  
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B K D 

Running 

time 

Optimal 

solution 

(seconds) 

Number of 

reshuffles 

Optimal 

solution  

Best 

Feasible 

Solution 

Relative 

Gap  

10 5 25 2.90 3.8 3048356.40 0.04 

10 5 50 2.90 5.1 4880947.00 0.08 

10 10 25 307.00 2.3 543842.40 0.61 

10 10 50 128.90 2.2 242796.40 0.68 

20 10 25 408.80 4.1 4050149.20 2.34 

20 10 50 504.30 7.2 3451387.40 4.57 

20 20 25 187.50 0 -1153347.20 0.09 

20 20 50 128.80 1.2 -1550481.00 2.71 

30 15 25 425.60 3.5 3739513.40 0.22 

30 15 50 485.00 5.1 3012058.60 0.17 

30 30 25 188.70 0 -2021375.40 0.03 

30 30 50 66.80 0 -2267474.20 0.01 

40 20 25 547.20 7 4447931.20 0.23 

40 20 50 485.40 9.4 3464316.00 0.62 

40 40 25 427.60 1 2662773.60 0.08 

40 40 50 248.20 1 3103579.80 0.07 

50 25 25 600.00 17 4817470.00 0.95 

50 25 50 600.00 22 2353516.20 1.54 

50 50 25 307.00 3 -3554338.00 0.05 

50 50 50 445.00 10 -4115862.80 1.29 

100 50 25 600.00 77.4 1549065.60 4.27 

100 50 50 600.00 83.5 3798743.60 2.63 

100 100 25 600.00 51 -7388342.20 42.94 

100 100 50 547.00 60.5 -8763276.00 41.03 

Average  368.53 15.72 764664.58 4.47 

Table 3 CPLEX solution for CSPX-2 

 

It is observed that the gaps of CSPX-1 and CSPX-2 are almost the same. The 

running times do not differ for both models. Also, to obtain the number of reshuffles 

of each instance Figure-16 is given in the following graph. It shows that the 

inventory balance equation on CSPX-2 does not add much complexity to the 

problem, whereas the number of reshuffles in the solution of CSPX-2 is higher than 

the number of reshuffles in the solution of CSPX-1.  
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Figure 16 Number of reshuffles for each problem set 

 

 

6.3.  Computational Results  
 

 

6.3.1. Results on Lagrangean Relaxation 
 

 

In this section, we report the results of our computational experiments with 

Lagrangean Relaxation methods. The preliminary problems are solved with different 

performance parameters. The limit on the number of iterations for updating value of 

the step size parameter noImpLimit, and the limit on the total number of iterations 

iteLimit are significant performance parameters to evaluate the Subgradient 

Optimization. The objective function coefficient of the decision variable ybik, R is 

another significant parameter for our problem since it changes the importance of 

reshuffling moves as compared to the transportation cost. The different values of 

these parameters are used in our experiments. We evaluate the performances of 

lagrangean methods with using these parameters. 
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To test the effect of the noImpLimit on the best lower bound value, the value of 

noImpLimit is decreased from 10 to 5 and new runs are made. Decreasing the 

noImpLimit from 10 to 5 does not help improving the lower bound value after the 

first iteration.  

  

On the other hand, the upper bound values increase with the smaller 

noImpLimit. As a result, this causes an increase in gap values. This parameter cannot 

positively affect the value of lower and upper bound for all instances. We observe 

that the initial lower bound values obtained in the first iteration stay the same 

throughout the remaining iterations. The behavior of the lower bound value would be 

investigated in the further below. 

 

As the number of iterations increase, the bestUB values for Lagrangean 

methods become better for some instances. Regarding to our experiments, we decide 

to run the LR methods for 50 and 100 iterations. 

 

This section describes our computational experiment designed to evaluate the 

performance of our heuristic algorithms. All instances are solved by using CPLEX 

12.2 via Concert Technology on the same computer configuration. The tables given 

in this chapter represent the summary results of LRTC, LRSC and LRSLM with the 

Subgradient Optimization procedure for all instances. In particular, we report the 

percentage of lower bound and upper bound improvement that represent the 

improvement on first lower/upper bound (LB
1

, UB
1
) and best lower/upper bound 

(bestLB, bestUB). Moreover, Gap 1 value that represents the percentage gaps 

between the best lower bound and the best upper bound. They are computed as 

below. 

 

 Gap 1 100
bestUB bestLB

bestUB


   (6.2) 
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The utilization represents the usage of storage area rather than dummy location. 

In each period, the utilization is computed the ratio of total capacity in percentage. 

We also report the running times in seconds, but we give the time limit as ten 

minutes. The number of reshuffles in the upper bounding scheme is obtained in the 

table. We report the average results for each number of bookings (B), number of 

locations (K), and occupancy of the storage area (D), for each lagrangean relaxation 

method solution (LRTC, LRSC, LRSLM) and for given number of iterations.  

 

Table-4 depicts the computational results the summary of LRTC for CSPX-1 

model for 50 iterations, respectively.  We observe that the initial lower bound values 

obtained in the first iteration stay the same throughout the remaining iterations. This 

result is investigated further below. While the lower bound remains the same for all 

instances, the upper bound improves through the iterations. LRTC approach cannot 

generate a sufficiently powerful lower bound. 

 

The usage of area directly affects the number of reshuffles. In other words, the 

number of reshuffles increases, when utilization for lower capacity of storage 

location increases. 

 

Upper bound for this lagrangean approaches is based on vertical cost. If the 

solutions of subproblem causes lower reshuffling number, better improvement on the 

upper bound is expected. If the Table-4 examined in detail, it appears that upper 

bound improvement is directly related with number of reshuffling for all categories. 
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B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

Utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 14.62 5.09 69.42 1.00 4.66 

10 5 50 0.00 13.74 6.68 69.97 1.00 5.70 

10 10 25 0.00 24.08 6.65 53.25 1.00 3.10 

10 10 50 0.00 24.47 12.51 63.14 1.00 3.30 

20 10 25 0.00 10.38 16.48 72.55 1.80 7.10 

20 10 50 0.00 4.40 10.03 77.92 1.95 13.20 

20 20 25 0.00 53.22 74.25 48.42 2.90 4.90 

20 20 50 0.00 47.57 74.74 48.25 3.35 6.70 

30 15 25 0.00 1.12 2.56 76.31 3.50 16.10 

30 15 50 0.00 1.26 2.97 83.05 3.80 24.40 

30 30 25 0.00 46.50 76.87 49.39 6.40 11.30 

30 30 50 0.00 45.52 75.69 54.20 8.50 11.70 

40 20 25 0.00 5.59 10.02 78.13 7.10 30.40 

40 20 50 0.00 3.86 16.81 83.67 7.70 38.80 

40 40 25 0.00 31.71 63.90 48.01 15.90 18.60 

40 40 50 0.00 38.38 66.19 54.85 18.30 21.80 

50 25 25 0.00 2.70 4.67 81.63 12.70 43.40 

50 25 50 0.00 7.27 14.73 88.21 14.00 54.40 

50 50 25 0.00 36.50 62.13 49.24 27.30 21.70 

50 50 50 0.00 28.84 72.76 57.08 34.50 40.30 

100 50 25 0.00 2.27 7.03 84.21 113.30 132.40 

100 50 50 0.00 2.27 7.03 84.21 129.20 157.30 

100 100 25 0.00 27.77 72.74 50.07 229.00 70.20 

100 100 50 0.00 27.55 77.37 59.09 643.40 94.80 

Average 0.00 20.90 35.00 66.01 53.69 34.84 

Table 4 Summary of LRTC for CSPX-1, number of iterations = 50 

 

The results for the same setting for 100 iterations are given in the Table-5. 

Lower bound values do not improve with the increasing number of iterations.  At the 

moment, it can be observed that increasing the number of iterations does not provide 

better UB value, as can be seen from the Table-5. 
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B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

Utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 14.62 5.09 69.42 1.56 4.66 

10 5 50 0.00 13.74 6.68 69.97 1.70 5.70 

10 10 25 0.00 24.08 6.65 53.25 2.10 3.10 

10 10 50 0.00 24.47 12.51 63.14 2.20 3.30 

20 10 25 0.00 11.38 17.48 72.55 3.60 7.10 

20 10 50 0.00 4.42 10.03 77.92 3.90 13.20 

20 20 25 0.00 54.22 75.25 48.42 5.80 4.90 

20 20 50 0.00 48.57 75.74 48.25 6.70 6.70 

30 15 25 0.00 1.38 2.56 76.23 6.90 11.40 

30 15 50 0.00 1.33 2.95 83.05 7.40 23.40 

30 30 25 0.00 48.94 76.87 49.39 13.40 10.30 

30 30 50 0.00 46.50 75.69 54.20 17.00 11.30 

40 20 25 0.00 5.70 9.91 78.13 14.00 29.50 

40 20 50 0.00 3.88 16.80 83.67 15.50 38.50 

40 40 25 0.00 31.71 63.90 48.01 29.40 18.60 

40 40 50 0.00 39.00 65.95 54.85 38.50 21.40 

50 25 25 0.00 2.70 4.67 81.63 25.40 43.40 

50 25 50 0.00 7.27 14.73 88.21 28.00 54.40 

50 50 25 0.00 36.50 62.13 49.24 54.60 21.70 

50 50 50 0.00 28.84 72.76 57.08 73.00 40.30 

100 50 25 0.00 2.27 7.03 84.21 225.30 132.40 

100 50 50 0.00 1.87 5.66 90.48 273.80 157.30 

100 100 25 0.00 27.77 72.74 50.07 480.30 70.20 

100 100 50 0.00 27.55 77.37 59.09 113.40 94.80 

Average 0.00 21.20 35.05 66.27 60.14 34.48 

Table 5 Summary of LRTC for CSPX-1, number of iterations = 100 

 

Table-6 and Table-7 represent that the computational results the summary of 

LRSC for CSPX-1 model for 50 and 100 iterations. The average improvement on 

first upper bound value is seen as 20.90% for LRTC in Table-4, while the 

improvement on upper bounding procedure through iteration is at average 18.18% in 

Table-6. While the upper bounding procedure for LRSC yields average deviations of 

37.30 % from the lower bound, the average deviation from the lower bound for 

LRTC approach is 35.00%.  When we observe UB improvement of upper bound and 

Gap1, there is no significant difference between LRSC and LRTC approaches. Our 

heuristics seem not to generate quite powerful upper and lower bounds.   
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The total CPU time used by LRSC to solve the 10 problems in one category is 

4 times of that used by LRTC for some instances. 

  

While the number of reshuffles of LRSC from Table-6 is at an average 32.96, 

the number of reshuffles of LRTC is seen as 34.84 in Table-4. It can be seen that 

LRTC has an advantage over LRSC regarding the number of reshuffles.  

 

B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 4.56 4.90 69.79 1.90 4.30 

10 5 50 0.00 4.78 16.03 69.97 2.50 6.20 

10 10 25 0.00 21.98 20.65 53.34 2.50 3.10 

10 10 50 0.00 12.43 32.33 63.14 3.10 3.80 

20 10 25 0.00 8.87 14.26 72.24 11.00 7.80 

20 10 50 0.00 4.57 8.78 77.92 6.10 13.10 

20 20 25 0.00 40.16 60.15 48.42 15.90 6.90 

20 20 50 0.00 36.99 65.42 60.31 17.60 8.90 

30 15 25 0.00 1.24 2.64 76.31 12.20 1.24 

30 15 50 0.00 1.47 3.10 83.07 15.00 1.47 

30 30 25 0.00 42.97 78.08 49.39 25.60 11.50 

30 30 50 0.00 40.26 78.68 54.20 28.90 11.90 

40 20 25 0.00 6.18 12.76 78.14 33.20 29.50 

40 20 50 0.00 3.81 9.63 83.68 35.10 39.50 

40 40 25 0.00 42.88 78.43 48.01 63.50 14.00 

40 40 50 0.00 33.21 81.67 54.85 58.80 22.60 

50 25 25 0.00 2.96 4.56 81.63 46.70 41.60 

50 25 50 0.00 8.57 14.38 88.21 142.30 55.70 

50 50 25 0.00 35.88 64.34 49.24 103.30 20.80 

50 50 50 0.00 25.51 76.37 57.08 138.40 35.30 

100 50 25 0.00 2.40 7.08 168.42 311.30 130.60 

100 50 50 0.00 1.78 5.96 180.86 323.70 160.20 

100 100 25 0.00 27.68 73.92 200.29 660.11 68.00 

100 100 50 0.00 25.22 81.12 236.35 908.80 93.00 

Average 0.00 18.18 37.30 87.70 123.65 32.96 

Table 6 Summary of LRSC for CSPX-1, number of iterations = 50 

 

 

To get a visual impression of how each Lagrangean method performs over the 

number of reshuffles, Figure-17 is depicted. It is seen that there is no significant 

difference between the amounts of reshuffling for all instances. 
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Figure 17 Number of Reshuffles Comparison for LRTC and LRSC 

 

LRSC cannot provide better solution in order to reduce number of 

reshuffles. The average running time for each instances are denoted for 

Lagrangean approaches LRTC and LRSC in Figure-18. It is clearly seen that 

LRSC takes more time to compute solution rather than LRTC approach.  

 

 

Figure 18 Running Time Comparison for LRTC and LRSC 
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As mentioned before, for the same setting of Table-6 is computed for 100 

iterations and the results are given in the Table-7.  There is no improvement when 

number of iteration is increased.    

 

B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 4.56 7.67 69.79 3.80 4.30 

10 5 50 0.00 4.78 17.64 69.97 6.00 6.20 

10 10 25 0.00 21.98 21.98 53.34 6.00 3.10 

10 10 50 0.00 12.43 12.43 63.14 6.20 3.80 

20 10 25 0.00 8.87 14.26 72.24 20.00 7.80 

20 10 50 0.00 4.57 8.78 77.92 11.20 13.10 

20 20 25 0.00 40.16 60.15 48.42 30.40 6.90 

20 20 50 0.00 36.99 65.42 60.31 32.00 8.90 

30 15 25 0.00 1.24 2.64 76.31 22.50 1.24 

30 15 50 0.00 1.47 3.10 83.07 24.00 1.47 

30 30 25 0.00 42.97 78.08 49.39 49.00 11.50 

30 30 50 0.00 40.26 78.68 54.20 54.50 11.90 

40 20 25 0.00 6.18 12.76 78.14 65.40 29.50 

40 20 50 0.00 3.81 9.63 83.68 70.00 39.50 

40 40 25 0.00 42.88 78.43 48.01 117.00 14.00 

40 40 50 0.00 33.21 81.67 54.85 114.30 22.60 

50 25 25 0.00 2.96 4.56 81.63 93.40 41.60 

50 25 50 0.00 8.57 14.38 88.21 280.60 55.70 

50 50 25 0.00 35.88 64.34 49.24 200.60 20.80 

50 50 50 0.00 25.51 76.37 57.08 270.80 35.30 

100 50 25 0.00 2.40 7.08 168.42 620.60 130.60 

100 50 50 0.00 1.78 5.96 180.86 640.40 160.20 

100 100 25 0.00 27.68 73.92 200.29 980.23 68.00 

100 100 50 0.00 25.22 81.12 236.35 1298.60 93.00 

Average 0.00 18.18 36.71 87.70 209.06 32.96 

Table 7 Summary of LRSC for CSPX-1, Number of iterations = 100 

 

The computational results the summary of LRSLM for CSPX-1 model for 50 

and 100 iterations are depicted in Table-8 and Table-9. There is a significant 

difference between LRTC and LRSLM approaches for percentage of UB 

improvement, if the improvements on upper bound for these approaches are 

compared. The average improvement on first upper bounding procedure is seen as 

20.90% for LRTC in Table-4, while it is at average 9.47% in Table-8. It can be seen 
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that the percentage gap between best lower and upper bound is 37.15% in Table-8, 

while the percentage gap is reported as 35% for LRTC approach in Table-4.   

 

The number of reshuffles of LRTC is seen as 34.84 in Table-4, while the 

number of reshuffles of LRSC from Table-8 is at an average 41.13. Therefore we can 

say that LRTC also has an advantage over LRSC because of the number of 

reshuffles. Moreover, it can be easily noticed that CPU time used by LRTC is better 

than the time used by LRSLM for all instances.  Hence, we can say that LRTC 

outperforms to LRSLM.  

 

B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 0.01 7.54 69.79 1.00 7.80 

10 5 50 0.00 0.00 17.24 69.97 1.00 9.30 

10 10 25 0.00 3.22 28.74 53.25 1.50 8.50 

10 10 50 0.00 0.21 33.38 63.14 1.50 7.80 

20 10 25 0.00 2.42 16.81 72.55 1.65 15.30 

20 10 50 0.00 0.09 9.94 77.92 1.75 21.30 

20 20 25 0.00 15.72 69.01 48.42 2.45 12.70 

20 20 50 0.00 18.71 70.35 60.31 2.95 13.80 

30 15 25 0.00 0.40 2.17 76.28 3.00 22.60 

30 15 50 0.00 0.49 2.48 83.03 3.50 34.20 

30 30 25 0.00 24.88 67.17 49.39 5.60 18.70 

30 30 50 0.00 12.34 72.30 54.20 7.00 22.70 

40 20 25 0.00 2.94 10.86 78.12 6.00 33.10 

40 20 50 0.00 3.83 7.23 83.67 6.00 39.20 

40 40 25 0.00 21.32 70.17 48.01 12.00 25.40 

40 40 50 0.00 18.71 74.58 54.85 15.35 32.10 

50 25 25 0.00 1.90 5.43 81.67 11.20 54.10 

50 25 50 0.00 6.06 19.38 88.78 12.13 59.88 

50 50 25 0.00 26.10 64.96 49.24 21.55 25.00 

50 50 50 0.00 22.76 74.52 57.08 28.35 38.20 

100 50 25 0.00 1.86 7.42 84.21 75.00 136.10 

100 50 50 0.00 1.73 5.80 90.42 90.00 165.80 

100 100 25 0.00 22.12 74.62 50.07 145.00 77.30 

100 100 50 0.00 19.38 79.42 59.09 190.00 106.20 

Average 0,00 9,47 37,15 66,81 59,36 41,13 

Table 8 Summary of LRSLM for CSPX-1. Number of iterations = 50 
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For the same setting of Table-8 is computed for 100 iterations and the results 

are given in the Table-9.  

 

B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 0.01 7.54 69.79 1.60 7.80 

10 5 50 0.00 0.00 17.24 69.97 1.70 9.30 

10 10 25 0.00 3.22 28.74 53.25 2.20 8.50 

10 10 50 0.00 0.21 33.38 63.14 2.40 7.80 

20 10 25 0.00 2.42 16.81 72.55 3.30 15.30 

20 10 50 0.00 0.09 9.94 77.92 3.50 21.30 

20 20 25 0.00 15.72 69.01 48.42 4.90 12.70 

20 20 50 0.00 18.71 70.35 60.31 5.90 13.80 

30 15 25 0.00 0.40 2.17 76.28 6.10 22.60 

30 15 50 0.00 0.49 2.48 83.03 7.20 34.20 

30 30 25 0.00 24.88 67.17 49.39 11.20 18.70 

30 30 50 0.00 12.34 72.30 54.20 14.70 22.70 

40 20 25 0.00 2.94 10.86 78.12 13.20 33.10 

40 20 50 0.00 3.83 7.23 83.67 12.90 39.20 

40 40 25 0.00 21.32 70.17 48.01 24.60 25.40 

40 40 50 0.00 18.71 74.58 54.85 30.70 32.10 

50 25 25 0.00 1.90 5.43 81.67 22.40 54.10 

50 25 50 0.00 6.06 19.38 88.78 24.25 59.88 

50 50 25 0.00 26.10 64.96 49.24 43.10 25.00 

50 50 50 0.00 22.76 74.52 57.08 56.70 38.20 

100 50 25 0.00 1.86 7.42 84.21 171.70 136.10 

100 50 50 0.00 1.73 5.80 90.42 197.00 165.80 

100 100 25 0.00 22.12 74.62 50.07 331.80 77.30 

100 100 50 0.00 19.38 79.42 59.09 431.70 106.20 

Average 0.00 9.47 37.15 66.81 26.89 41.13 

Table 9 Summary of LRSLM for CSPX-1. Number of iterations = 100 

 

Regarding previous experiments for CSPX-1, we decide to observe the 

computational results of LRTC for CSPX-2. The initial lower bound values cannot 

change throughout all iterations. While the lower bound remains the same for all 

instances, the upper bound improves through the iterations. Improvement on upper 

bound is affected regarding to the number of reshuffles. 
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B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

Utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 1.00 1.42 69.79 2.00 4.90 

10 5 50 0.00 1.60 0.71 70.18 1.00 5.90 

10 10 25 0.00 5.97 3.60 53.36 2.10 4.10 

10 10 50 0.00 45.74 4.73 63.67 2.40 3.60 

20 10 25 0.00 2.66 1.56 72.68 2.55 7.30 

20 10 50 0.00 2.43 1.67 78.12 2.65 12.60 

20 20 25 0.00 2.69 0.99 48.42 4.15 4.80 

20 20 50 0.00 2.52 1.04 60.31 5.45 6.70 

30 15 25 0.00 5.32 5.75 76.60 5.15 16.00 

30 15 50 0.00 4.50 3.87 83.15 5.45 24.10 

30 30 25 0.00 2.61 1.18 50.18 8.30 9.20 

30 30 50 0.00 1.84 1.32 54.20 10.65 12.10 

40 20 25 0.00 3.49 5.64 78.46 9.45 28.50 

40 20 50 0.00 3.23 8.44 84.33 10.55 41.40 

40 40 25 0.00 1.60 1.66 48.01 21.05 17.60 

40 40 50 0.00 1.74 1.63 54.85 23.15 20.60 

50 25 25 0.00 23.25 11.47 82.16 16.00 44.80 

50 25 50 0.00 2.66 5.19 88.62 20.20 59.30 

50 50 25 0.00 1.50 1.61 49.24 31.55 22.40 

50 50 50 0.00 1.27 2.13 57.08 41.90 34.30 

100 50 25 0.00 18.84 51.72 84.44 120.00 136.70 

100 50 50 0.00 10.44 19.35 90.86 134.35 159.30 

100 100 25 0.00 1.43 2.35 50.07 240.65 68.50 

100 100 50 0.00 1.37 2.63 59.09 357.85 91.70 

Average 0.00 6.24 5.90 66.99 44.94 34.85 

Table 10 Summary of LRTC for CSPX-2. Number of iterations = 50 

 

During planning horizon, the usage of storage area for CSPX-2 is higher than 

utilization ratio for CSPX-1. Because that we force arrival bookings to place in the 

storage are regarding to structure of CSPX-2. The results of LRTC for CSPX-2 are 

shown in Table-10 and Table-11. It can be seen that the percentage of utilization is 

higher than utilization for CPSX-1 for some instances sets. The utilization values for 

all instances set are shown in Figure-19. There is a significant difference between the 

utilization of CSPX-1 and CSPX-2 only for one instances set. We can say that there 

is no significant difference between utilization of these two models for other 

instances sets, but it can be seen that CSPX-2 always guarantee more usage of 

storage area rather than dummy location. For big problem instances, it will be more 

suitable to provide better usage of storage area.        
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B K D 
% LB 

improvement  

% UB 

improvement 
Gap1 

% 

Utilization  

Running 

time 

(seconds) 

Number of 

reshuffles  

10 5 25 0.00 1.00 1.42 69.79 3.00 4.90 

10 5 50 0.00 1.60 0.71 70.18 2.90 5.90 

10 10 25 0.00 5.97 3.60 53.36 3.20 4.10 

10 10 50 0.00 45.74 4.73 63.67 3.10 3.60 

20 10 25 0.00 2.66 1.56 72.68 5.10 7.30 

20 10 50 0.00 2.43 1.67 78.12 5.30 12.60 

20 20 25 0.00 2.69 0.99 48.42 8.30 4.80 

20 20 50 0.00 2.52 1.04 60.31 10.90 6.70 

30 15 25 0.00 5.32 5.75 76.60 10.30 16.00 

30 15 50 0.00 4.50 3.87 83.15 10.90 24.10 

30 30 25 0.00 2.61 1.18 50.18 16.60 9.20 

30 30 50 0.00 1.84 1.32 54.20 21.30 12.10 

40 20 25 0.00 3.49 5.64 78.46 18.90 28.50 

40 20 50 0.00 3.23 8.44 84.33 21.10 41.40 

40 40 25 0.00 1.60 1.66 48.01 42.10 17.60 

40 40 50 0.00 1.74 1.63 54.85 46.30 20.60 

50 25 25 0.00 23.25 11.47 82.16 32.00 44.80 

50 25 50 0.00 2.66 5.19 88.62 40.40 59.30 

50 50 25 0.00 1.50 1.61 49.24 63.10 22.40 

50 50 50 0.00 1.27 2.13 57.08 83.80 34.30 

100 50 25 0.00 18.84 51.72 84.44 255.70 136.70 

100 50 50 0.00 10.44 19.35 90.86 284.70 159.30 

100 100 25 0.00 1.43 2.35 50.07 519.30 68.50 

100 100 50 0.00 1.37 2.63 59.09 715.70 91.70 

Average 0.00 6.24 5.90 66.99 92.67 34.85 

Table 11 Summary of LRTC for CSPX-2. Number of iterations =100 

 
Figure 19 Comparison of Utilization Values for CSPX-1 and CPSX-2 
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For CSPX-1, we show the cost value of upper bound heuristic by given LR in 

Table-12 for 50 iterations and in Table-13 for 100 iterations. The upper bound 

vertical cost denotes the average reshuffling cost of best feasible solutions for each 

instances set.  

 

In most case, there is no difference for running 50 iterations or 100 iterations. 

We found the same results for cost value of the best upper bound. Thus, we observe 

that upper bound value cannot improve through the number of iteration. 

  

B K D 

UB 

number of 

reshuffles 

Utilization 
UB cost of 

reshuffles  

UB vertical 

cost  

Vertical 

and 

Horizontal 

Cost   

10 5 25 4.66 69.42 11650.00 4566.44 16216.44 

10 5 50 5.70 69.97 14250.00 4047.60 18297.60 

10 10 25 3.10 53.25 7750.00 6500.80 14250.80 

10 10 50 3.30 63.14 8250.00 7027.00 15277.00 

20 10 25 7.10 72.55 17750.00 9146.40 26896.40 

20 10 50 13.20 77.92 33000.00 9551.40 42551.40 

20 20 25 4.90 48.42 12250.00 12852.80 25102.80 

20 20 50 6.70 48.25 16750.00 13322.80 30072.80 

30 15 25 16.10 76.31 40250.00 15133.60 55383.60 

30 15 50 24.40 83.05 61000.00 15284.60 76284.60 

30 30 25 11.30 49.39 28250.00 27860.60 56110.60 

30 30 50 11.70 54.20 29250.00 19696.40 48946.40 

40 20 25 30.40 78.13 76000.00 21545.60 97545.60 

40 20 50 38.80 83.67 97000.00 20871.80 117871.80 

40 40 25 18.60 48.01 46500.00 25133.60 71633.60 

40 40 50 21.80 54.85 54500.00 25921.20 80421.20 

50 25 25 43.40 81.63 108500.00 28199.00 136699.00 

50 25 50 54.40 88.21 136000.00 27827.60 163827.60 

50 50 25 21.70 49.24 54250.00 31764.00 86014.00 

50 50 50 40.30 57.08 100750.00 31137.80 131887.80 

100 50 25 132.40 84.21 331000.00 57117.80 388117.80 

100 50 50 157.30 84.21 393250.00 56780.80 450030.80 

100 100 25 70.20 50.07 175500.00 64698.80 240198.80 

100 100 50 94.80 59.09 237000.00 56780.80 293780.80 

Average 34.84 66.01 87110.42 24698.72 111809.14 

Table 12 Cost Value given by LRTC for CSPX-1. Number of iterations =50 

 

 

 

 



COMPUTATIONAL RESULTS| 80 

  

  

Table-13 denotes that the number of reshuffles, the utilization, vertical and 

horizontal cost given by LRTC for 100 iterations.  

 

B K D 

UB 

number of 

reshuffles 

Utilization 
UB cost of 

reshuffles  

UB vertical 

cost  

Vertical 

and 

Horizontal 

Cost   

10 5 25 4.66 69.42 11650.00 4566.44 16216.44 

10 5 50 5.70 69.97 14250.00 4047.60 18297.60 

10 10 25 3.10 53.25 7750.00 6500.80 14250.80 

10 10 50 3.30 63.14 8250.00 7027.00 15277.00 

20 10 25 7.10 72.55 17750.00 9146.40 26896.40 

20 10 50 13.20 77.92 33000.00 9551.40 42551.40 

20 20 25 4.90 48.42 12250.00 12852.80 25102.80 

20 20 50 6.70 48.25 16750.00 13322.80 30072.80 

30 15 25 11.40 76.23 28500.00 15136.00 43636.00 

30 15 50 23.40 83.05 58500.00 15284.60 73784.60 

30 30 25 10.30 49.39 25750.00 27862.00 53612.00 

30 30 50 11.30 54.20 28250.00 19689.80 47939.80 

40 20 25 29.50 78.13 73750.00 21545.80 95295.80 

40 20 50 38.50 83.67 96250.00 20867.80 117117.80 

40 40 25 18.60 48.01 46500.00 25133.60 71633.60 

40 40 50 21.40 54.85 53500.00 25921.20 79421.20 

50 25 25 43.40 81.63 108500.00 28199.00 136699.00 

50 25 50 54.40 88.21 136000.00 27827.60 163827.60 

50 50 25 21.70 49.24 54250.00 31764.00 86014.00 

50 50 50 40.30 57.08 100750.00 31137.80 131887.80 

100 50 25 132.40 84.21 331000.00 57117.80 388117.80 

100 50 50 157.30 90.48 393250.00 56780.80 450030.80 

100 100 25 70.20 50.07 175500.00 64698.80 240198.80 

100 100 50 94.80 59.09 237000.00 56780.80 293780.80 

Average 34.48 66.27 86204.17 24698.44 110902.61 

Table 13 Cost Value given by LRTC for CSPX-1. Number of iterations =100 
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In Tables-14 and Table-15, we observe the same conclusion like above table 

for CSPX-1. CSPX-2 is solved by LRTC and the following tables represent the value 

of all cost given by upper bound approach of LR for 50 iterations and for 100 

iterations. Generally, there is no improvement when we apply 100 iterations.  

 

B K D 

UB 

number of 

reshuffles 

Utilization 
UB cost of 

reshuffles  

UB vertical 

cost 

Vertical 

and 

Horizontal 

Cost   

10 5 25 4.90 69.79 12250.00 4463.40 16713.40 

10 5 50 5.90 70.18 14750.00 4055.80 18805.80 

10 10 25 4.10 53.36 10250.00 6497.40 16747.40 

10 10 50 3.60 63.67 9000.00 7090.80 16090.80 

20 10 25 7.30 72.68 18250.00 9199.20 27449.20 

20 10 50 12.60 78.12 31500.00 9587.40 41087.40 

20 20 25 4.80 48.42 12000.00 12852.80 24852.80 

20 20 50 6.70 60.31 16750.00 26019.00 42769.00 

30 15 25 16.00 76.60 40000.00 15256.00 55256.00 

30 15 50 24.10 83.15 60250.00 15374.80 75624.80 

30 30 25 9.20 50.18 23000.00 20024.60 43024.60 

30 30 50 12.10 54.20 30250.00 19694.60 49944.60 

40 20 25 28.50 78.46 71250.00 19694.60 90944.60 

40 20 50 41.40 84.33 103500.00 21740.40 125240.40 

40 40 25 17.60 48.01 44000.00 21238.20 65238.20 

40 40 50 20.60 54.85 51500.00 25136.40 76636.40 

50 25 25 44.80 82.16 112000.00 28547.60 140547.60 

50 25 50 59.30 88.62 148250.00 28116.20 176366.20 

50 50 25 22.40 49.24 56000.00 31762.00 87762.00 

50 50 50 34.30 57.08 85750.00 31137.20 116887.20 

100 50 25 136.70 84.44 341750.00 57765.60 399515.60 

100 50 50 159.30 90.86 398250.00 57293.60 455543.60 

100 100 25 68.50 50.07 171250.00 64707.80 235957.80 

100 100 50 91.70 59.09 229250.00 66874.00 296124.00 

Average 34.85 66.99 87125.00 25172.06 112297.06 

Table 14 Cost Value given by LRTC for CSPX-2. Number of iterations =50 
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B K D 
UB number 

of reshuffles 
Utilization 

UB cost of 

reshuffles  

UB vertical 

cost 

Vertical 

and 

Horizontal 

Cost   

10 5 25 4.90 69.79 12250.00 4463.40 16713.40 

10 5 50 5.90 70.18 14750.00 4055.80 18805.80 

10 10 25 4.10 53.36 10250.00 6497.40 16747.40 

10 10 50 3.60 63.67 9000.00 7090.80 16090.80 

20 10 25 7.30 72.68 18250.00 9199.20 27449.20 

20 10 50 12.60 78.12 31500.00 9587.40 41087.40 

20 20 25 4.80 48.42 12000.00 12852.80 24852.80 

20 20 50 6.70 60.31 16750.00 26019.00 42769.00 

30 15 25 16.00 76.60 40000.00 15256.00 55256.00 

30 15 50 24.10 83.15 60250.00 15374.80 75624.80 

30 30 25 9.20 50.18 23000.00 20024.60 43024.60 

30 30 50 12.10 54.20 30250.00 19694.60 49944.60 

40 20 25 28.50 78.46 71250.00 19694.60 90944.60 

40 20 50 41.40 84.33 103500.00 21740.40 125240.40 

40 40 25 17.60 48.01 44000.00 21238.20 65238.20 

40 40 50 20.60 54.85 51500.00 25136.40 76636.40 

50 25 25 44.80 82.16 112000.00 28547.60 140547.60 

50 25 50 59.30 88.62 148250.00 28116.20 176366.20 

50 50 25 22.40 49.24 56000.00 31762.00 87762.00 

50 50 50 34.30 57.08 85750.00 31137.20 116887.20 

100 50 25 136.70 84.44 341750.00 57117.80 398867.80 

100 50 50 159.30 90.86 398250.00 56780.80 455030.80 

100 100 25 68.50 50.07 171250.00 64698.80 235948.80 

100 100 50 91.70 59.09 229250.00 66872.80 296122.80 

Average 34,85 66,99 87125,00 25123,28 112248,28 

Table 15 Cost Value given by LRTC for CSPX-2. Number of iterations = 100 

 

 

Gap 2 value represents the percentage gaps between the best upper bound and 

the feasible solution from CPLEX solution. BPcplex. 

 

 Gap 2 100
cplex

cplex

bestUB BP

BP


   (6.3) 

 

The running time, number of reshuffling, total transportation cost from feasible 

solution by given CPLEX and LRTC are represented in Table-16 and Table-17. Thus 

we can compare the solution of CPLEX and LRTC approach for CSPX- 1 and 

CSPX-2. For all instances, number of reshuffling from LRTC is higher than the 
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number from feasible CPLEX. Total cost values of Lagrangean solution, illustrated 

in Table-16 and Table-17, are high value because of higher number of reshuffles.  

On the other hand, running time of LRTC is better than running time of CPLEX 

solution. 

 

B K D Gap2 
Running 

Time (LR) 

Running 

Time 

(GAMS)  

Number of 

reshuffles  

(LR) 

Number of 

reshuffles 

(GAMS) 

Total Cost  (LR)  
Total Cost 

(GAMS) 

10 5 25 7.28 1.56 2.00 4.66 1.00 3560528.00 3558770.80 

10 5 50 4.77 1.70 2.00 5.70 2.50 5183297.60 5181542.20 

10 10 25 10.30 2.10 300.00 3.10 0.00 1019250.80 1019060.80 

10 10 50 27.90 2.20 128.00 3.30 1.00 850277.00 846023.30 

20 10 25 23.54 3.60 401.80 7.10 3.10 4899396.40 4889366.40 

20 10 50 15.70 3.90 499.30 13.20 6.20 4407551.40 4390109.90 

20 20 25 90.72 5.80 182.50 4.90 0.00 25102.80 12840.50 

20 20 50 115.50 6.70 121.80 6.70 0.20 30072.80 13817.00 

30 15 25 1.00 6.90 420.60 11.40 3.70 5274136.00 5246894.20 

30 15 50 1.45 7.40 480.00 23.40 5.10 4746284.60 4700607.00 

30 30 25 129.92 13.40 181.70 10.30 0.00 45863.20 20002.70 

30 30 50 144.44 17.00 61.80 11.30 0.00 47939.80 19692.40 

40 20 25 30.83 14.00 540.20 29.50 5.00 5942795.80 5879172.90 

40 20 50 10.72 15.50 480.40 38.50 7.40 5449617.80 5374284.20 

40 40 25 181.33 29.40 420.60 18.60 0.00 71633.60 25751.20 

40 40 50 207.78 38.50 241.20 21.40 0.00 79421.20 25928.30 

50 25 25 4.16 25.40 600.00 43.40 14.00 6564199.00 6476067.20 

50 25 50 26.77 28.00 600.00 54.40 19.00 5668827.60 5567915.40 

50 50 25 170.41 54.60 300.00 21.70 2.00 86014.00 32289.40 

50 50 50 278.89 73.00 438.00 40.30 7.00 117387.80 31131.50 

100 50 25 3.23 225.30 600.00 132.40 84.40 8078117.80 7957947.80 

100 50 50 2.96 273.80 600.00 157.30 82.50 10857530.80 10672603.20 

100 100 25 120.90 480.30 600.00 70.20 50.00 240198.80 185443.40 

100 100 50 160.08 113.40 540.00 94.80 59.50 303872.80 135166.00 

Average 73.77 60.14 364.25 34.48 14.73 3064554.89 3010934.49 

Table 16 Comparison of LRTC with optimal solution for CSPX-1. Number of iterations =100 

  



COMPUTATIONAL RESULTS| 84 

  

  

 

B K D Gap2 
Running 

Time (LR) 

Running 

Time 

(GAMS)  

Number of 

reshuffles  

(LR) 

Number of 

reshuffles 

(GAMS) 

Total Cost  (LR)  
Total Cost 

(GAMS) 

10 5 25 8.28 2.00 2.90 4.90 3.80 3051113.40 3048356.40 

10 5 50 5.77 1.00 2.90 5.90 5.10 4883205.80 4880947.00 

10 10 25 13.30 2.10 307.00 4.10 2.30 548347.40 543842.40 

10 10 50 30.90 2.40 128.90 3.60 2.20 246290.80 242796.40 

20 10 25 26.54 2.55 408.80 7.30 4.10 4058149.20 4050149.20 

20 10 50 16.70 2.65 504.30 12.60 7.20 3464887.40 3451387.40 

20 20 25 91.72 4.15 187.50 4.80 0.00 -1141347.20 -1153347.20 

20 20 50 118.50 5.45 128.80 6.70 1.20 -1536731.00 -1550481.00 

30 15 25 2.00 5.15 425.60 16.00 3.50 3769956.00 3739513.40 

30 15 50 2.45 5.45 485.00 24.10 5.10 3059524.80 3012058.60 

30 30 25 132.92 8.30 188.70 9.20 0.00 -1998375.40 -2021375.40 

30 30 50 145.44 10.65 66.80 12.10 0.00 -2237255.40 -2267474.20 

40 20 25 33.83 9.45 547.20 28.50 7.00 4484629.60 4447931.20 

40 20 50 11.72 10.55 485.40 41.40 9.40 3522556.20 3464316.00 

40 40 25 184.33 21.05 427.60 17.60 1.00 2704263.60 2662773.60 

40 40 50 210.78 23.15 248.20 20.60 1.00 3152579.80 3103579.80 

50 25 25 5.16 16.00 600.00 44.80 17.00 4887470.00 4817470.00 

50 25 50 27.77 20.20 600.00 59.30 22.00 2446766.20 2353516.20 

50 50 25 173.41 31.55 307.00 22.40 3.00 -3505838.00 -3554338.00 

50 50 50 281.89 41.90 445.00 34.30 10.00 -4055112.80 -4115862.80 

100 50 25 4.23 120.00 600.00 136.70 87.40 1672315.60 1549065.60 

100 50 50 3.96 134.35 600.00 159.30 83.50 3988243.60 3798743.60 

100 100 25 123.90 240.65 600.00 68.50 51.00 -7344592.20 -7388342.20 

100 100 50 163.08 357.85 547.00 91.70 60.50 -8685276.00 -8763276.00 

Average 75.77 44.94 368.53 34.85 16.14 809823.81 764664.58 

Table 17 Comparison of LRTC with optimal solution for CSPX-2. Number of iterations =100 

 

The bestLB bound is always identical with the lower bound found in the first 

iteration. None of the approaches could improve this lower bound value. Next, we 

concentrate on this behavior of the lower bound. 

 

Firstly, LRTC approach is analyzed in detail with different value of 

noImpLimit. In the following, Figure-20 indicates the variation on the lower bound 

value of an instance. This fifth instance in our input list includes 100 bookings and 

50 locations.  
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Figure 20 The behavior of Lower Bound on Each Iteration - LRTC 

 

After the first iteration, the lower bound value dramatically decreases in the 

second iteration for all instances. For all instances solved by LRTC and LRSC show 

a gradual increase in lower bound values between second and third iteration. After 

third iteration, the lower bound converges to the value of first iteration. We can 

consider why the values of bestLB for each instance are not affected by increasing 

the number of iterations or applying new approaches or using new parameter like 

noImpLimit. When we analyze the lower bounds from output file, BestLB is always 

equal to lower bound found by first iteration. At the first iteration, λbik
0
 and βbik

0
 

values are equal to 0. When and they are equal to 0. The objective values of 

Subproblem2 and Subproblem3 for LRTC are represented as: 
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The solution of Subproblem2 is trivial. To minimize the objective value, zbik
*
 

 is always equal to 0. 

 

0 0

3

( )

( , ) min v bik

k b i E b

L c y 


    (6.6) 

 

subject to 

  
*0 bik iky x    , , ( )b k i E b   (6.7) 

 

The Subproblem3 at the first iteration is solved like Subproblem2.  We find the 

lower bound at the first iteration for the original problem as the summation of

1( ) 0 0L     and then best lower bound is equal to the objective value of 

Subproblem1.  

 

Hence a better solution cannot be found at further iterations. When lambda and 

beta parameters receive nonzero values, the value of objective function will decrease 

and it cannot be better than the lower bound at previous iteration. So, the value of the 

objective function of Subproblem2 and Subproblem3 should give negative values. 

The solution methods for these subproblems are therefore not effective. 

 

For these reasons, we applied another method LRSLM for our CSP, lower 

bound value which is not changing with iterations. After first iteration, LB value is 

not dramatically decreased. When we compare these graphics with previous ones, 

overall, these graphs show that LRSLM approach prevent the lower bound value 

from sudden decline at the second iteration. On the other hand, there no noticeable 

variation on lower bound value. 
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The behavior of the upper bound and lower bound for all instances are 

examined. As we said before, the value of the lower bound at the first iteration is 

bestLB. There is no compliance between the upper and lower bound. The variation 

on the lower bound value does not affect the upper bound value. 

 

6.3.2. Results of Heuristics 

 

Three different approaches for solving these models were developed. We 

applied Subgradient Optimization Method in order to solve lagrangean dual. Our 

algorithm was solved with subgradient heuristic for both small and large instances, 

but it does not provide a good quality solution. Furthermore, there was no 

improvement on the lower bound when we compute Lagrangean Relaxation. 

Subproblem1 can be solved in very small computation times. After first solution, this 

solution can be obtained as the lower bound, and upper bound heuristic can be 

improved with this solution. It may be a considerable advantage when quick 

solutions are preferred to a guarantee of optimality.  

 

In order to verify the validity of the heuristics methods, we carried out several 

experiments. The summary results of new heuristics H1 and H2 are presented in this 

section.  These approaches are applied for all mentioned instances set. 

 

Table-18 represents the computational results the summary of H1 with 

mathematical model of initial solution based on CSPX-1 model. In Table-18, we 

present the vertical and horizontal cost value and running time (seconds) of H1.  
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B K D 
Running 

time (H1) 

Number of 

reshuffling 

(H1) 

Cost of 

reshuffling 

(H1)  

Vertical 

cost (H1) 

Vertical 

and 

Horizontal 

Cost (H1)  

Total Cost  

(H1) 

10 5 25 1.20 4.56 11388.89 4251.56 15640.44 3559952.00 

10 5 50 1.20 3.78 9444.44 5900.67 15345.11 5181545.11 

10 10 25 1.68 2.83 7083.33 6579.67 13663.00 1019663.00 

10 10 50 3.80 3.86 9642.86 9198.57 18841.43 853841.43 

20 10 25 3.18 6.70 16750.00 10579.80 27329.80 4899829.80 

20 10 50 3.09 13.38 33437.50 12938.75 46376.25 4411376.25 

20 20 25 4.68 1.96 4900.00 11852.80 16752.80 16752.80 

20 20 50 5.65 1.68 4200.00 13222.80 17422.80 17422.80 

30 15 25 14.31 4.56 11400.00 14136.00 25536.00 5256036.00 

30 15 50 15.34 9.36 23400.00 15384.60 38784.60 4711284.60 

30 30 25 11.72 4.12 10300.00 17862.00 28162.00 33162.00 

30 30 50 12.72 4.52 11300.00 20689.80 31989.80 31989.80 

40 20 25 21.16 11.80 29500.00 21205.80 50705.80 5898205.80 

40 20 50 22.48 15.40 38500.00 20867.80 59367.80 5383767.80 

40 40 25 45.34 7.44 18600.00 23133.60 41733.60 41733.60 

40 40 50 52.94 6.56 16400.00 24086.20 40486.20 40486.20 

50 25 25 38.58 17.36 43400.00 2765.00 46165.00 6473665.00 

50 25 50 42.32 21.76 54400.00 27607.60 82007.60 5587007.60 

50 50 25 88.62 8.68 21700.00 30764.00 52464.00 52464.00 

50 50 50 152.42 16.12 40300.00 31122.80 71422.80 96422.80 

100 50 25 320.05 72.96 182400.00 56027.80 238427.80 7928427.80 

100 50 50 384.67 82.92 207300.00 55689.80 262989.80 10670489.80 

100 100 25 576.43 68.08 170200.00 64698.80 234898.80 234898.80 

100 100 50 137.88 64.92 162300.00 56210.80 218510.80 228602.80 

Average 81.73 18.97 47426.96 23199.04 70626.00 3027042.82 

Table 18 Cost Value given by H1 heuristics 

 

The horizontal and vertical cost, running time and number of reshuffles for H2 

are denoted in Table-19. The computational results are presented as the summary of 

H2. When we compare the running times, it can be seen H1 is solved faster than H2. 

While average running time from Table-18 is 81.73 seconds, average running time of 

H2 is seen as 88.70 seconds in Table-19. Therefore, movement types of container in 

our heuristics algorithm are more suitable for H1.  
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After choosing the container from storage location, we have no flexibility over 

choice of storage location to relocate or swap them. Therefore containers are placed 

at a dummy location because of initial solution of H2. Regarding the initial solution, 

it can be seen that our goal of collecting together containers belonging to the same 

bookings has no positive effect on the number of reshuffles in limited time and 

iteration. 

 

B K D 
Running 

time (H2) 

Number of 

reshuffling 

(H2) 

Cost of 

reshuffling 

(H2)  

Vertical 

cost (H2) 

Vertical 

and 

Horizontal 

Cost (H2)  

Total Cost  

(H2) 

10 5 25 1.33 5.47 13666.67 4251.56 17918.22 3567229.78 

10 5 50 1.40 4.53 11333.33 5900.67 17234.00 5182234.00 

10 10 25 1.78 3.40 8500.00 6579.67 15079.67 1100079.67 

10 10 50 4.80 4.63 11571.43 9198.57 20770.00 847770.00 

20 10 25 4.45 8.04 20100.00 10579.80 30679.80 4890679.80 

20 10 50 6.09 16.05 40125.00 12938.75 53063.75 4403063.75 

20 20 25 8.43 2.35 5880.00 11852.80 17732.80 17732.80 

20 20 50 9.48 2.02 5040.00 13222.80 18262.80 18262.80 

30 15 25 16.08 5.47 13680.00 14136.00 27816.00 5258316.00 

30 15 50 28.64 11.23 28080.00 15384.60 43464.60 4715964.60 

30 30 25 12.98 4.94 12360.00 17862.00 30222.00 42722.00 

30 30 50 14.27 5.42 13560.00 20689.80 34249.80 34249.80 

40 20 25 22.45 14.16 35400.00 21205.80 56605.80 5904105.80 

40 20 50 23.16 18.48 46200.00 20867.80 67067.80 5391467.80 

40 40 25 48.36 8.93 22320.00 23133.60 45453.60 45453.60 

40 40 50 55.43 7.87 19680.00 24086.20 43766.20 43766.20 

50 25 25 59.76 20.83 52080.00 2765.00 54845.00 6482345.00 

50 25 50 65.32 26.11 65280.00 27607.60 92887.60 5597887.60 

50 50 25 91.62 10.42 26040.00 30764.00 56804.00 56804.00 

50 50 50 156.42 19.34 48360.00 31122.80 79482.80 104482.80 

100 50 25 344.55 87.55 218880.00 56027.80 274907.80 7964907.80 

100 50 50 401.72 99.50 248760.00 55689.80 304449.80 10711949.80 

100 100 25 598.38 81.70 204240.00 64698.80 268938.80 268938.80 

100 100 50 151.98 77.90 194760.00 56210.80 250970.80 261062.80 

Average 88.70 22.76 56912.35 23199.04 80111.39 3037978.21 

Table 19 Cost Value given by H2 heuristics 
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Gap 3 value represents the percentage gaps between the best value from H1 

and the feasible solution from CPLEX solution. BPcplex 

 

 
1_

1_

Gap 3 100
H best cplex

H best

S BP

S


   (6.8) 

 

Table-20 denotes the running time, number of reshuffles, total transportation 

cost from feasible solution by given CPLEX and H1. Thus we can compare the 

solution of CPLEX and H1 heuristics.  

 

B K D Gap3 
Running 

Time 

(H1) 

Running 

Time 

(GAMS)  

Number of 

reshuffling 

(H1) 

Number of 

reshuffling 

(GAMS) 

Total Cost  (H1) 
Total Cost 

(GAMS) 

10 5 25 2.71 1.20 2.00 4.56 1.00 3559952.00 3558770.80 

10 5 50 2.3 1.20 2.00 3.78 2.50 5181545.11 5181542.20 

10 10 25 1.32 1.68 300.00 2.83 0.00 1019663.00 1019060.80 

10 10 50 1.2 3.80 128.00 3.86 1.00 853841.43 846023.30 

20 10 25 3.66 3.18 401.80 6.70 3.10 4899829.80 4889366.40 

20 10 50 4.15 3.09 499.30 13.38 6.20 4411376.25 4390109.90 

20 20 25 25.98 4.68 182.50 1.96 0.00 16752.80 12840.50 

20 20 50 24.7 5.65 121.80 1.68 0.20 17422.80 13817.00 

30 15 25 1.28 14.31 420.60 4.56 3.70 5256036.00 5246894.20 

30 15 50 1.02 15.34 480.00 9.36 5.10 4711284.60 4700607.00 

30 30 25 42.85 11.72 181.70 4.12 0.00 33162.00 20002.70 

30 30 50 39.37 12.72 61.80 4.52 0.00 31989.80 19692.40 

40 20 25 10.48 21.16 540.20 11.80 5.00 5898205.80 5879172.90 

40 20 50 4.45 22.48 480.40 15.40 7.40 5383767.80 5374284.20 

40 40 25 41.2 45.34 420.60 7.44 0.00 41733.60 25751.20 

40 40 50 46.82 52.94 241.20 6.56 0.00 40486.20 25928.30 

50 25 25 1.27 38.58 600.00 17.36 14.00 6477665.00 6476067.20 

50 25 50 5.16 42.32 600.00 21.76 19.00 5587007.60 5567915.40 

50 50 25 46.44 88.62 300.00 8.68 2.00 52464.00 32289.40 

50 50 50 71.97 152.42 438.00 16.12 7.00 96422.80 31131.50 

100 50 25 2.6 320.05 600.00 72.96 84.40 7969427.80 7957947.80 

100 50 50 1.8 384.67 600.00 82.92 82.50 10680489.80 10672603.20 

100 100 25 25.29 576.43 600.00 68.08 50.00 234898.80 185443.40 

100 100 50 44.11 137.88 540.00 64.92 59.50 228602.80 135166.00 

Average 18.84 81.73 364.25 18.97 14.73 3029334.48 3010934.49 

Table 20 Comparison of H1 with optimal solution 



COMPUTATIONAL RESULTS| 91 

  

  

 

For all instances, number of reshuffles from H1 is higher than the number from 

feasible CPLEX.  The average number of reshuffles is 18.97 for H1 while the 

average value for GAMS is 14.73.The running time of H1 is also better than running 

time of CPLEX solution, we get better solution form CPLEX solution. In addition, 

the average gap is 32.26.  

 

The number of reshuffles for three different solution methods, LR, H1 and 

GAMS, are presented in Figure-21. It is seen that number of reshuffles is fewer for 

H1 when compared with LR. This also positively affects the total cost value, because 

the cost of reshuffling is very high and has an important role in the structure of our 

problem.  

 

 

Figure 21 Number of reshuffles for LR, H1 and GAMS 

 

The comparison of running time, number of reshuffles and total cost of H2 and 

CPLEX solutions is depicted in Table-21. The average number of reshuffles for H2 

is greater than average value for CPLEX. The lower value for the average number of 
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reshuffles can be obtained from the above tables. This difference is directly related to 

the total cost of H2, which is higher than CPLEX solutions.   

 

Gap 4 is denoted in following table as the percentage gaps between the best 

value from H1 and the feasible solution from CPLEX solution. BPcplex. 

 

 
2_

2_

Gap 4 100
H best cplex

H best

S BP

S


   (6.9) 

 

 

B K D Gap4 
Running 

Time 

(H2) 

Running 

Time 

(GAMS)  

Number of 

reshuffling 

(H2) 

Number of 

reshuffling 

(GAMS) 

Total Cost (H2) 
Total Cost 

(GAMS) 

10 5 25 1.78 1.33 2.00 5.47 1.00 3567229.78 3558770.80 

10 5 50 2.56 1.40 2.00 4.53 2.50 5182234.00 5181542.20 

10 10 25 1.20 1.78 300.00 3.40 0.00 1100079.67 1019060.80 

10 10 50 1.77 4.80 128.00 4.63 1.00 847770.00 846023.30 

20 10 25 4.33 4.45 401.80 8.04 3.10 4890679.80 4889366.40 

20 10 50 5.98 6.09 499.30 16.05 6.20 4403063.75 4390109.90 

20 20 25 27.29 8.43 182.50 2.35 0.00 17732.80 12840.50 

20 20 50 26.41 9.48 121.80 2.02 0.20 18262.80 13817.00 

30 15 25 1.30 16.08 420.60 5.47 3.70 5258316.00 5246894.20 

30 15 50 1.61 28.64 480.00 11.23 5.10 4715964.60 4700607.00 

30 30 25 54.52 12.98 181.70 4.94 0.00 42722.00 20002.70 

30 30 50 43.49 14.27 61.80 5.42 0.00 34249.80 19692.40 

40 20 25 11.57 22.45 540.20 14.16 5.00 5904105.80 5879172.90 

40 20 50 5.18 23.16 480.40 18.48 7.40 5391467.80 5374284.20 

40 40 25 45.64 48.36 420.60 8.93 0.00 45453.60 25751.20 

40 40 50 48.51 55.43 241.20 7.87 0.00 43766.20 25928.30 

50 25 25 3.18 59.76 600.00 20.83 14.00 6482345.00 6476067.20 

50 25 50 7.50 65.32 600.00 26.11 19.00 5597887.60 5567915.40 

50 50 25 47.58 91.62 300.00 10.42 2.00 56804.00 32289.40 

50 50 50 78.55 156.42 438.00 19.34 7.00 104482.80 31131.50 

100 50 25 3.14 344.55 600.00 87.55 84.40 7964907.80 7957947.80 

100 50 50 3.41 401.72 600.00 99.50 82.50 10711949.80 10672603.20 

100 100 25 58.86 598.38 600.00 81.70 50.00 268938.80 185443.40 

100 100 50 53.72 151.98 540.00 77.90 59.50 261062.80 135166.00 

Average 22.46 88.70 364.25 22.76 14.73 3037978.21 3010934.49 

Table 21 Comparison of H2 with optimal solution 
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The number of reshuffles given by LR, H1, H2 and GAMS are shown in 

Figure-22. The number of reshuffles is lower than that of LR.  

 

 
Figure 22 Number of reshuffles for LR, H1, H2 and GAMS 

 

Figure-23 demonstrates total transport cost for all heuristics methods.  

 

 
Figure 23 Transport cost for LR, H1 and H2 
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Another point worth noting is that number of reshuffles can be reduced using 

our proposed heuristic methods H1 and H2. These two heuristics clearly outperform 

LR. This is important because reducing the number of reshuffles affects 

transportation costs at storage location.  

 

As can be seen from Figure-23, the transportation cost given by LR is not 

acceptable for some instance sets. In other words, we can say that LR approach 

cannot generate a sufficiently powerful upper bound. When we observe how the 

upper bound value of LR varies with respect to lower bound, it can be seen that there 

is no compliance between the upper and lower bound. The variation in the lower 

bound value does not affect the upper bound value. Therefore, we can say that LR is 

not a suitable method for our model. Figure-24 also denotes the behavior of lower, 

upper bounds and optimal solution for one solution, revealing that Subgradient 

Optimization Method is not effective on this problem.  

 

 

Figure 24 The behavior of bounds of all iteration (LTRC) 
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bound of Lagrangean Relaxation in an attempt to improve this solution with the 

newly proposed heuristics. These heuristics, H1 and H2, seem to generate quite 

powerful upper bounds, and no significant performance difference is observed 

between the two; however, it can be stated that H1 has a (small) advantage over H2.  
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CHAPTER - 7  

 

Equation Chapter (Next) Section 0 

CONCLUSION 

Equation Chapter (Next) Section 1 

 

 

In this study, we considered the mixed integer programming model for 

container storage problem (CSP). The objective of the problem is to minimize the 

total transportation cost at the container terminal. Two types of movements are of 

concern: vertical and horizontal.  

 

We propose three mathematical models with differing sets of assumptions, 

which reduce this three-dimensional storage problem to two-dimensions. To avoid 

infeasibility, we improved first mathematical model CSP, and formulated CSPX-1 

and CSPX-2.   

 

We also developed Lagrangean Relaxation-based heuristic algorithm. Our 

mathematical models are designed to provide an optimal solution using CPLEX. 

Some instances could not be solved for large inputs within the 1 hour CPU time 

limit. We used CPLEX solution, which was employed as a benchmark in order to 

measure the performance of Lagrangean Relaxation Algorithm. Three different 

approaches to solving these models were developed. In this process, we applied 
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subgradient optimization method in order to solve lagrangean dual. Our algorithm 

was solved with subgradient heuristic for both small and large instances.  

 

We observe that Lagrangean relaxation for the last constraints does not 

provide good quality solutions, i.e. there was no improvement in the lower bound 

during the iterations. The developed LRTC procedure generates the solution for first 

iteration in very small computation times.  After first iteration, we were able to 

achieve the solution as lower bound, and this solution enabled upper bound heuristic 

to be improved. 

 

To generate a more effective solution in a shorter time, we proposed a new 

upper bound heuristics approach. The most important aspect is that heuristic 

approach, H1 uses our LR-based bounding procedures only for iteration. In other 

words, the initial phase of H1 generates a feasible placement for containers at the 

storage location with Subproblem 1 only for iteration. The initial feasible solution of 

our first heuristic, H1 aims to minimize the horizontal cost at the port. We designed a 

new technique for initial feasible solution. This heuristic, named as H2, has a new 

initial solution, which has small variants in initial feasible solution. The container is 

placed together with its container set without considering horizontal cost. This new 

heuristics was found to be appropriate for adapting CSP to the real world problem. 

 

The proposed approach, LR was tested on different instances and proved to be 

successful in regard to timing. Unfortunately, however, it can be seen that there is no 

compliance between the upper and lower bounds. Another issue is that the variation 

on the lower bound value does not affect the upper bound value.  None of the results 

of LR obtained indicate that this approach can generate powerful upper bound. In 

contrast, our proposed heuristics, H1 and H2 seem to generate quite powerful upper 

bounds. It has been demonstrated that no significant performance difference is 

observed between the two heuristics. Although it can be seen that H1 has a (slight) 

advantage over H2 regarding the performance of the upper bound. Another point 
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worth noting is that number of reshuffles can be reduced using our proposed heuristic 

methods H1 and H2. Reducing the number of reshuffles positively affects 

transportation cost on storage location. This study has clearly shown these heuristics 

methods are significantly superior to LR in terms of performance.  

 

As the CPU times are very small for all heuristics (LR, H1 and H2), they are 

suitable method for solving extremely large instances for large-capacities storage 

locations. We evaluated the performance of our heuristics using GAP values for all 

instances, and found that for the ten instance set, the GAP was not acceptable. For all 

instances set, H1 was computed with GAP 18.84% at an average of 81.73 seconds of 

CPU time, while H2 is computed with GAP 22.46% and 88.70 seconds. The gap 

value of H1 is lower than that of H2 for the five instance set. It can therefore be 

concluded that H1 outperforms H2 regarding GAP values. Thus, for any problem 

instance, it is advisable to use all heuristics and select the best solution, as the 

computation times are very small and no heuristic seems to consistently outperform 

the others. 

 

From the study that has been conducted, it is possible to conclude that H1 

generally outperforms H2 and LR approaches.  

 

Based on the results, it can be concluded that this research into minimizing the 

number of reshuffles has been successful. The proposed method H1 can be readily 

used in practice. However further study of the issue is still required. In our future 

research we intend to concentrate on different container types and sizes to place to 

the storage location. For example, import and export containers have differences. 

Future research should consider special container types, including open top, and 

refrigerated containers. Further study of the issue in terms of the usage of dummy 

location would also be of interest. In the real world, arriving containers can be placed 

to a temporary location. When the storage location becomes available, they can be 

moved from the temporary area. However, they cannot be stored in the temporary 
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storage location until they leave the berth with their ship.  During this time period, 

the model can allow for the containers to move from the dummy location to the 

storage location. 

 

On the basis of the positive findings presented in this study, work on the 

related issues is continuing and will be presented in future papers. 
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