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Abstract—Content-based multimedia retrieval (CBMR) has
been an active research domain since the mid 1990s. In medicine
visual retrieval started later and has mostly remained a research
instrument and less a clinical tool. The limited size of data sets
due to privacy constraints is often mentioned as reason for these
limitations. Nevertheless, much work has been done in CBMR,
including the availability of increasingly large data sets and
scientific challenges. Annotated data sets and clinical data for
images have now become available and can be combined for multi-
modal retrieval. Much has been learned on user behavior and
application scenarios. This text is motivated by the advances in
medical image analysis and the availability of public large data
sets that often include clinical data. It is a systematic review of
recent work (concentrating on the period 2011–2017) on multi-
modal CBMR and image understanding in the medical domain,
where image understanding includes techniques such as detection,
localization, and classification for leveraging visual content. With
the objective of summarizing the current state of research for
multimedia researchers outside the medical field, the text provides
ways to get data sets and identifies current limitations and
promising research directions. The text highlights advances in
the past six years and a trend to use larger scale training data
and deep learning approaches that can replace/complement hand-
crafted features. Using images alone will likely only work in limited
domains but combining multiple sources of data for multi-modal
retrieval has the biggest chances of success, particularly for clinical
impact.

Index Terms—Big data, content–based image retrieval, deep
learning, large scale datasets, medical images, multi–modality.

I. INTRODUCTION

THE medical domain is one of the biggest producers of data.
In [1] it is estimated that 30% of world storage was occu-

pied by medical images in 2011, showing the extremely large
and often underestimated amount of data produced in medical
institutions. Currently, these images are mainly used for the
treatment of a single patient and only in limited form across
groups of patients [2] or for teaching [3]. Such secondary use
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of the data [2] can have many benefits, and content extracted
directly from the images is complementary to structured clini-
cal data and free text that are more commonly used in medical
decision support.

Content–based medical multimedia retrieval has been active
for over 20 years and several review articles have summarized
the contributions over the years. In [4], the first systems for
visual similarity retrieval are being presented with a relatively
small number of references and used techniques. [5] describes
the status of research in 2004 with a strong evolution and hun-
dreds of examples of research prototypes and application do-
mains. A more recent overview is [6], published in 2011 and
giving an update on new approaches and shortcomings. To our
knowledge the latest review article in the field is [7] that was
published in 2013 but mainly collects the advances until 2011
and gives a very good overview. Still, approaches like deep
learning were not common at the time, even though a few ap-
proaches using neural networks have always existed. The data
sets have also been much smaller than in the past few years and
multimodal retrieval was even less common. Very few user tests
have been done with such systems and even fewer systems are
really evaluated in clinical practice. A few examples for such
user tests do exist [8], [9] that can show an important benefit in
clinical practice. In general, many techniques are similar com-
pared to general content–based retrieval [10], [11]. However,
the development has been slower and also large data sets are
much harder to obtain and annotate [12].

An important part when reviewing the literature is the precise
wording of the techniques to be analyzed (included or excluded).
The term retrieval is most frequently used when the data set does
not contain any specific classes or class labels. This is often
associated to information search as well, where a user has an
information need to be fulfilled with documents being relevant or
not to the information need. Such a relevance definition is often
user– and situation–dependent, thus it changes over time and
between persons. Measures for the evaluation are then usually
precision and recall. In contrast, the term classification implies
that the data set can be grouped into a finite set of classes
and most often each element is member of a single class. It
is also possible to have elements that can belong to several
classes, for example when the presence of objects in images
is to be classified. The performance measure is most often the
classification accuracy in this case, as it is important to know
how often a correct label is attached. Precision and recall or
the weighted mean of the two are also commonly used. Both
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Fig. 1. Example of a radiologist’s work flow in a clinical environment.

approaches can use similar techniques, from visual features to
machine learning approaches, but with a different scenario and
evaluation. The term localization is used when inside an image a
specific concept or region is to be localized. Region–of–interest
detection or simply detection are often used in a similar way.

In a medical scenario Computer Aided Diagnosis (CADx)
and Computer Aided Detection (CADe) [13] are used and in
this case both can refer to retrieval, classification or detection
systems that are integrated into the clinical work flow. The more
general term of clinical decision–support or computer–based
decision support can also be used for many of the tools described
here. As inclusion criteria we specifically analyze these terms
and thus take retrieval in a larger sense.

Image understanding is in this case a term the covers tech-
niques for detection, localization and classification, and it inte-
grates with retrieval as well. The idea is that higher level content
is extracted from the image to help understand the global content
of a medical image or a volume. This can be detecting and local-
izing specific lesions or classifying texture in areas such as the
lung tissue into classes that are meaningful for a clinician. Im-
age retrieval is then an interactive way of image understanding
as a clinician can query with a case or an image region and find
visually similar cases or images with visually similar regions.
The found cases are then used for better image understanding.
The place of such tools in the clinical work flow is explained
in Fig. 1.

A. Domain–Specific Difficulties

The medical domain is like many other specific domains for
multimedia analysis. Most of the basic techniques are very simi-
lar but there are several details that can totally change a scenario
and the way a system can be approached. In medical multimedia
analysis in a clinical scenario, images always have a context and
some meta data such as why the image was taken, the anam-
nesis of the patients and in general a text report describing the

findings from the image. Medical images are taken under fairly
standardized conditions with very similar fields of view and a
limited number of standard protocols. Computed Tomography
even has a calibration, so a fixed value for its gray levels, cal-
ibrated with respect to density of water and air. On the other
hand, anatomical differences between humans (small, tall, thin,
wide, children, adults, etc.) can be very important and make a
fully automated analysis sometimes hard. Diseases change the
results seen in images in several interacting ways, depending
on predispositions, and there are complex links between the
different phenomena.

Even scanners (CT – Computer Tomography, MRI – Mag-
netic Resonance Imaging, etc.) of the same type can produce
different images of the same patient based on the exact model or
producer. Medical images are not acquired like in digital cam-
eras with direct sensors that detect light but image quality is
linked to many factors. Images are reconstructed from complex
raw data (a sensor rotating around the patient) with the use of
noise reduction and several other algorithms that can strongly
change the images produced and thus also the way to extract
information. Many of the main imaging modalities are tomo-
graphic, so producing volumetric data that is most often stored
in series of slices. Multi–modality imaging, for example com-
bining CT and PET (Positron Emission Tomography) is com-
mon, as different aspects of an organ can be imaged in this way
(function for PET, anatomy for CT). This produces very large
amounts of data and usually requires registration/alignment of
the volumes, as the patient might have moved between data ac-
quisitions. Other difficulties are that the imaging process takes
time, sometimes in the range of several minutes, so movement
artifacts are common from a patient moving but also from heart
or lung motion that can not easily be suppressed. There are other
types of information available that are linked to images, such as
reports, physiological signals, videos of ultrasound or Doppler
sequences, etc. This can be even more complex in a surgical con-
text where instrument locations or surgery videos are tracked in
3D. All this can be taken into account for multi–modal analysis
and retrieval using varied data sources.

The biggest problem with medical data is its availability for
data analysis because of privacy constraints. Whereas the use
for a single patient is fine, its use in a research scenario always
requires to make an ethics request (IRB — Internal Review
Board) that can add restrictions on data use or patient selection.
In [14], [15], various constraints are described when using data
from several hospitals in a study, which is necessary when rare
conditions are analyzed that are rare in single hospitals. The
privacy constraints mean that data are often not shared, even
though this is seen as beneficial [12]. If privacy constraints are
overcome, intelligent retrieval systems can result in improved
tele–healthcare by allowing medical experts to access diagnosed
images of similar cases at distant sites [16].

Scientific challenges to measure progress have emerged
in many research fields, from information retrieval in the
1960s [17] to medical image retrieval in the early 2000s [18].
The first challenge of the medical image analysis conference
MICCAI (Medical Image Computing and Computer Assisted
Interventions) started in 2007 [19]. Since then, a web page for
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MÜLLER AND UNAY: RETRIEVAL FROM AND UNDERSTANDING OF LARGE-SCALE MULTI-MODAL MEDICAL DATASETS: A REVIEW 2095

challenges in biomedical image analysis was created.1 More
recent benchmarks like those of the VISCERAL project made
available large data sets [20] and volume retrieval of thousands
of patients [21]. More on scientific challenges is discussed in
Section III-D.

Other aspects of medical image data are the often high di-
mensionality with for example thousands of tomographic slides
for a single patient. The data are usually varied with many
protocols existing and many types of laboratory analyses or
other clinical data types. Integrating these data can be complex
and requires multidisciplinary knowledge. Linked to the ethical
questions and the high cost to have manual annotations of med-
ical experts, there are often little training data available, further
complicating the analysis.

B. Motivations for This Article

This article is motivated by the fact that the last more or
less systematic review of medical multimedia retrieval reports
on articles already six years old and many developments have
changed the research domain of large–scale multi–modal re-
trieval. Deep learning has been a development of only the last
3–4 years that has totally changed the techniques most com-
monly employed in scientific challenges and that obtains very
good results in many competitions. In combination with GPUs
(Graphical Processing Units) larger training data sets and data
augmentation techniques have become possible. Scientific chal-
lenges allowed to create large data sets by sharing efforts of an-
notation. Such challenges allow comparing different techniques
based on the same grounds. Many funding organizations such as
the American NIH (National Institutes of Health) now require
the data of funded research to become available for the commu-
nity and this will likely change future research, as large–scale
research on medical image data becomes available.

By reviewing existing work and missing parts the text should
give multimedia researchers several possibilities to work on
available medical data and to respond to current research chal-
lenges. It is clear that most medical data sets used are not really
large scale but data production in medical institutions is ex-
tremely is high. Also the multimodal nature of medical data is
often not fully exploited, but possibilities are enormous when
the full available data are used.

II. METHODOLOGY

To find candidate articles for this review we concentrated on
conferences and journal articles from 2011–2017, so with little
overhead compared to previous review articles. A few older
articles were also added, as they were still seen as important
with a strong influence on the current work, but they are only
used in limited form in the technical sections.

For the articles selected in this survey we systematically ana-
lyzed conferences in the field of medical image analysis, without
being exhaustive, namely:

1) MICCAI;
2) IPMI (Information Processing in Medical Imaging);

1[Online]. Available: https://grand-challenge.org/

3) ISBI (International Symposium in Biomedical Imaging);
4) SPIE Medical Imaging.
In terms of scientific journals we concentrated on the follow-

ing journals but also searched in the PubMed2 literature database
to complete the initial set of papers:

1) Medical Image Analysis;
2) IEEE Transactions on Medical Imaging;
3) Computerized Medical Imaging and Graphics;
4) Journal of Digital Imaging;
5) ACM Transactions on Multimedia;
6) Radiology;
7) Magnetic Resonance Imaging;
8) Magnetic Resonance in Medicine;
9) Neuroimage.
These sources were manually checked for the past six years

and extended by other publications that we were aware of
in other sources. The publications are scattered around an
extremely large number of sources, as this is a very multi–
disciplinary domain. The search terms employed were “content–
based medical retrieval”, “medical image retrieval”, “medical
visual information retrieval”, “deep learning”, “convolutional
learning”, “large scale medical retrieval”, “medical big data re-
trieval”, and the like.

The choices for a more detailed analysis can only be a start-
ing point for the references of a complete review. In general
we tried to have diversity in sources and contents. Very similar
articles of the same authors are discarded. In this case journal
articles are preferred over conference papers and more recent
articles over older texts. The found references are structured
into several categories, starting with the data sets used, clinical
application scenarios, techniques used and specific aspects re-
lated to scalability of the approaches.

III. DATA AND GROUND TRUTH AVAILABLE

This section starts with the foundation of databases that have
been used for retrieval and then extends to the scientific chal-
lenges, ground truth generation, crowdsourcing efforts and clin-
ical scenarios in the field.

Categorization of the found references are roughly done by
the scale (small: < 1000 data items, medium, or large: > 10000),
and the type of the databases used (uni–modal comprising 2D
and 3D images from single or multiple image modalities, and
multi–modal combining images with textual information or
other data types). Table I presents a summary of the references
respecting this categorization, while Fig. 2 shows a scatter plot
of the found references by size and type of the database and
publication year. The graphic shows that we have more publi-
cations in 2015 and 2016 and larger data sets are mainly used
in the last two years, with a focus on 2016. There are many
datasets and a majority is still unimodal, but increasingly data
types are being mixed for research. Still, the size of the used
data sets remains relatively small for retrieval, whereas for other
applications larger data sets have been employed.

2[Online]. Available: http://www.pubmed.gov/
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TABLE I
STUDIES GROUPED BY DATABASE

Type of database Data type Scale of database Studies

small general jpegs: [22]; microscopy: [23].
2D medium mammograms: [24]; x–rays: [25], [26]; microscopy: [27]–[29]; mixed: [30].

Uni-modal large mammograms: [31], [32]; x–rays: [33]–[36].
small CT: [37]–[40]; MRI: [41]; PET: [42]; MRI+PET: [43], [44].

3D medium CT: [45]; CT+PET: [46], [47]; endoscopic video: [48], [49].
large microscopy: [50].
small x-rays: [51].

2D + text/demographics medium mammograms: [52]; retinal images: [52].
Multi-modal large general jpegs: [53]; mixed: [54].

3D + text/topic word small CT: [55], [56]; MRI: [57]; MRI+PET: [56].

Fig. 2. Scatter plot of database size versus publication year for medical CBIR.

A. Small–Scale-Uni-modal/Cue (Traditional) Databases

A variety of medical image repositories have been made avail-
able free of charge for research and education purposes. IRMA
(Image Retrieval in Medical Applications),3 NCIA (National
Cancer Imaging Archive),4 ADNI (Alzheimer’s Disease Neu-
roimaging Initiative),5 OASIS (Open Access Series of Imaging
Studies),6 and ImageCLEF (Multimedia Retrieval in CLEF)7

are a few examples. ImageCLEF has created at least 20 medical
data sets of varying size.

As for retrieval of medical images, several of these reposito-
ries have been used by researchers (sometimes only subsets).
Recently, [39] employed 50 cases of liver CT images from
ImageCLEF for retrieval, while [42] used 331 cases of PET
images, [43] and [44] respectively utilized 331 and 805 cases
of PET+MR data from ADNI, and [41] MR data of 50 patients
from the publicly available PROstate Mr Image SEgmentation
(PROMISE) challenge.8 Using standard databases, even when
small, can help to make research reproducible. Unfortunately,
sometimes only a subset of the data is being used, which reduces
the reproducibility.

3[Online]. Available: https://ganymed.imib.rwth-aachen.de/irma/
4[Online]. Available: https://imaging.nci.nih.gov/ncia/
5[Online]. Available: http://adni.loni.usc.edu/
6[Online]. Available: http://www.oasis-brains.org/
7[Online]. Available: http://www.imageclef.org/
8[Online]. Available: https://promise12.grand-challenge.org/

Besides these databases several other 2D (Jpeg: [22], mi-
croscopy: [23]) and 3D (CT: [37], [38], [40]) image collections,
mostly in–house acquired, have been used for medical retrieval.
[22] utilized 500 Jpeg’s to realize anatomical categorization
from similar cases, while [23] validated retrieval–based breast
cancer detection over 120 microscopy images. [37], [38], [40]
performed categorization of around 700 chest CT volumes. Be-
sides being small, the data sets can often not be shared and thus
research performance can not be judged and is not reproducible.

B. Medium–Large-Scale Uni-modal/Cue Databases

Several retrieval studies have employed medium– to large–
scale subsets of uni–modal/cue image repositories that are avail-
able on the web. Among the found references [24], [31], [32]
exploited mammogram ROIs for breast cancer detection from
the Digital Database for Screening Mammography (DDSM)
repository9; [26], [33]–[36] utilized X–rays from the IRMA
repository; [25] used X–rays from the second National Health
and Nutrition Examination Survey (NHANES–II) repository10

to diagnose vertebrae irregularity; and [45] employed CTs from
the Lung Image Database Consortium (LIDC) collection11 for
pulmonary nodule retrieval.

Other studies mostly used in–house databases at medium–
scale. [27], [28] realized breast cancer detection and [29]
carried out diagnosis of blood (lymphoma) and nerve tissue
(neuroblastoma) cancers from 2D microscopy images, while
[46], [47] realized case retrieval from thoracic PET–CT data,
[48], [49] executed similar video retrieval of endoscopic videos,
and [30] performed fracture categorization using images of mul-
tiple modalities (with X–rays dominating). An exception is the
work of [50], where a large–scale database of 3D microscopy
images (17,107 images) is used for neuron morphology retrieval.
The studies show a tendency to have a larger variety of image
sources. In previous surveys the focus of medical image retrieval
was strongly on radiology, whereas now many other image types
have become available digitally.

9[Online]. Available: http://marathon.csee.usf.edu/Mammography/Database.
html

10[Online]. Available: https://www.cdc.gov/nchs/nhanes/nhanesii.htm
11[Online]. Available: https://imaging.cancer.gov/programsandresources/

informationsystems/lidc/
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C. Medium–Large-Scale Multi-modal/Cue Databases

The plethora of non–imaging data present in various forms
(health records including radiology reports, audio, unstructured
text, books, journals, taxonomies, ontologies, etc.) bring in
valuable information complementary to visual content in im-
ages/videos.

Accordingly, several efforts have been made to exploit this
complementary information for improved medical retrieval. [51]
employed deep learning features extracted from X–rays of 443
cases with demographic information for chest pathology re-
trieval. [52] used demographics and medical history of patients
with image features for diabetic retinopathy diagnosis of 1112
cases from an in-house collected database and for mammogra-
phy screening of 2277 cases from the DDSM repository. [57]
augmented image features from 60 MRIs of ADNI and OASIS
with contextual information (demographics, medical history, lab
results, and ontologies) for detection of Alzheimer’s and demen-
tia. [55] combined textual information from radiology reports
with image features from 265 chest volumes for detection of
interstitial lung disease subtypes. [56] used topic words with
image features extracted from 379 CT volumes of the I–ELCAP
(International Early Lung Cancer Action Program) collection12

and 331 PET+MRI data of the ADNI collection for detection of
lung disease and Alzheimer’s, respectively.

Two large–scale (ImageCLEF) studies complementing image
features with textual information extracted from articles have
been proposed recently [58]. [53] exploited term suggestions
from a medical thesaurus for case-based retrieval in a database of
over 300,000 images with associated texts, while [54] benefited
from text of articles for modality classification that is also often
used to limit the search space for visual retrieval.

D. Scientific Challenges

As mentioned beforehand, practically all medical imaging
conferences now organize scientific challenges where partici-
pants can compare their approaches on a single data set and
with a clear and given evaluation scenario. This allows to really
compare all the techniques on the same grounds, which is a ma-
jor change in this field. Such data papers often generate many
citations [59] and can thus have a strong impact. One of the
first medical multimedia retrieval challenges was ImageCLEF
that started with a medical task in 2004 [60]. Since then, many
medical and non–medical challenges were held in the context
of ImageCLEF. Other non–medical retrieval challenges include
TrecVid [61] and MultimediaEval [62].

The Web page on Grand Challenges in Medical Imaging has
a list of past and currently active challenges in medical image
analysis. Professional platforms such as Kaggle13 and
TopCoder14 also provide a platform for data providers to share
challenges and data with the community and obtain results from
many researchers. This is done in a professional way with price
money and it does not always include publications of the results.

12[Online]. Available: http://www.via.cornell.edu/databases/lungdb.html
13[Online]. Available: http://www.kaggle.com/
14[Online]. Available: http://www.topcoder.com/

To just name a few challenges, the MICCAI liver segmenta-
tion competition in 2007 had 10 liver volumes and 14 partici-
pants [19] that had to segment the data in three hours on site.
This might not seem much, but at the time it was more than
most other data sets used for the task and it made results really
comparable. ImageCLEF has developed multi–modal collec-
tions between 600 images in 2004 and 300,000 images in 2013,
all with associated text data. A more recent one is the BRATS
(Brain Tumor Segmentation) 2014 challenge [63] that allowed
comparing algorithms on various parts of tumors. Camelyon1615

and Tupac (Tumor proliferation and assessment challenge)16 are
two recent challenges on whole slide histopathology images.
The 2017 Camelyon challenge distributes over 2 TB of im-
age data, but these are classifications and not directly retrieval
challenges.

Basically all major scientific conferences in data analysis now
offer challenges and thus a platform to work towards a common
task on the same data and compare results. This will likely
improve scientific work and foster collaborations.

The VISCERAL project developed challenges based on the
concept of moving the algorithms to the data [64] by running
challenges in the cloud [65]. This avoids shipping data and al-
lows to test executable code in the exact same environment. It
allows creating a silver corpus by label fusion of results of exist-
ing tools that are run on non–annotated data [66]. The concept of
Evaluation–as–a–Service (EaaS) [67] is a logical consequence
of this and several other medical challenges are now run in
a similar way, avoiding physical distribution of data to par-
ticipants. The Mammography Dream Challenge17 for example
makes 640,000 mammographies of 86,000 patients accessible.
The data can be used for analysis but cannot be viewed or down-
loaded by the participants.

E. Ground Truth Generation and Crowd Sourcing

As the manual annotation of images is expensive there are
several possibilities to limit the manual or paid effort. The
LabelMe18 game worked on general images and allowed shared
annotations of stock photography. While for general objects
laypersons can easily be used, for medical data annotation most
often trained specialists are needed that makes the problem even
harder. If precise tasks are picked, then users can be trained to la-
bel also very specific medical images when strict quality control
is used [68]. Crowdsourcing [69] has mainly been used for non-
medical data annotation, but several projects also on medical
data exist with good success [68], [70]. Another option is to use
outputs of several systems and then employ label fusion [66].
This is similar to weak labels often used from web data and
unsupervised approaches for data enrichment that can work if
sufficient amounts of data are available.

15[Online]. Available: https://camelyon16.grand-challenge.org/
16[Online]. Available: http://tupac.tue-image.nl/
17[Online]. Available: https://www.synapse.org/#!Synapse:syn4224222/

wiki/401743
18[Online]. Available: http://labelme.csail.mit.edu/Release3.0/
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Fig. 3. Screen shot of Open-I to search figures of the biomedical literature.

Fig. 4. Screen shot of the Khresmoi radiology search system.

F. Clinical Scenarios and Applications

In a clinical scenario, following a medical doctor’s order for
imaging, the radiologist performs a detailed quality check and
analysis of the acquired image and generates a report with the
findings (Fig. 1). Medical image retrieval and related techniques
can play various roles at different steps of this work flow from
image reading to report writing.

Most available multi–modal medical image retrieval systems
have so far used large data sets from the medical literature as
these images are available in large quantities and can be used
relatively easily. Fig. 3 shows an example interface for retrieval
of images from the literature developed by the National Library
of medicine in the USA. The interface allows keyword search
and filtering by image type as well as visual similarity search in
the data.

A different interface, shown in Fig. 4, aims at retrieval of sim-
ilar volumes from tomographic images in radiology [71]. The
system is similar to a radiology viewing station and concentrates
on a single screen, showing the volume to be diagnosed and a
selection of volumes that contain similar regions of interest and
the related radiology reports for multi–modal retrieval enriched
by semantics.

Table II presents the retrieval publications analyzed between
2011 and 2017. The table shows that there is a large variety
of different medical areas that are in the focus of the retrieval.
Breast cancer analysis and interstitial lung diseases are two
areas where much research has been done in the past and
where several data sets are available. This is well represented
in the table with several papers. The largest databases are from

the biomedical literature and not concentrated on a single med-
ical problem, namely the ImageCLEF databases. ADNI [72]
has also made available large data sets, and several subsets are
being used for retrieval in Alzheimer’s patients. In recent years
an increasing number of endoscopy videos have been used for
retrieval, and also microscopy images such as histopathology
have been utilized for retrieval several times [73].

IV. TECHNIQUES USED

This section details our analysis of the found references with
respect to the techniques used, particularly by the image/video
and non–image features utilized and the machine learning and
deep learning approaches employed. The section is completed
with a brief presentation on the efforts in industry, as this is also
important.

A. Image/Video Features

Similar to [74], we group image/video descriptors into three
operational categories: general, mixed, and specialized. Fig. 5
presents the articles based on this categorization.

General descriptors are common in all CBIR systems like
color, texture, histograms, shape, etc. These descriptors can
be extracted globally over the entire image or locally. Gen-
eral descriptors employed are pixel intensities [22], [26], [29],
[30], histograms [24], [25], Haralick’s gray level co–occurrence
matrix–based features [24]–[26], [29], wavelets [24], [25], [30],
[37], scale invariant feature transform (SIFT) [23], [26]–[28],
[30]–[32], [38], GIST [27], [32], histogram of oriented gradients
(HOG) [27], local binary patterns (LBP) [33], [36], [38], [75],
and Fourier descriptors [25]. Some of these studies represented
general descriptors in a bag of visual words model as well [28],
[30]–[32], [37].

Mixed descriptors exploit text input or annotations with gen-
eral descriptors. To augment image information with text, [54]
employed text extracted from scientific articles and [55] used
text from radiology reports. The multi–modal retrieval system
in [53] supports medical information discovery by fusion of
general descriptors from images with term suggestions from a
medical thesaurus over the text from scientific papers [76]. In
order to overcome the subtle visual variations between anatomi-
cal structures and obtain better results, [56] used latent semantic
topic description with SIFT image features. [51] employed aug-
mented deep learning features with age and gender information
of the patients for improved chest pathology retrieval. [57] used
shape representation of lateral ventricles with contextual infor-
mation of demographics, medical history, clinical results and
semantic ontologies. [52] employed contextual information like
demographics and medical history of the patient with wavelet
features extracted from images to improve diabetic retinopathy
diagnosis and mammography screening.

Specialized descriptors are defined in [74] as exploiting in-
terrelations between features through incorporation of domain
knowledge. We extend this definition and include studies that
employ new feature extraction techniques such as features de-
rived from deep learning [34], [35], [38], [41], [42], [51]. Fig. 5
shows that general features are the large majority of image de-
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TABLE II
MAIN CHARACTERISTICS OF MEDICAL CBIR SYSTEMS

Ref. Descriptors Similarity measure Segmentation RF Modality DB size Medical problem

[37] General Vector distance - No CT 675 Chest disease diagnosis
[38] Specialized Vector distance - No CT 443 Chest disease diagnosis

Classifier based
[33] General Classifier based - No X-ray 14410 Anatomical categorization
[26] General Vector distance - No X-ray 2600 Anatomical categorization

Classifier based
[24] General Vector distance - No Mammogram 2919 ROIs Breast cancer diagnosis

Perceptual similarity
[25] General Vector distance Automatic No X-ray 2220 Vertebrae irregularity diagnosis
[40] General Classifier based - No CT 746 ROIs Lung cancer diagnosis
[28] General Vector distance - No Microscopy 3121 Breast cancer diagnosis
[27] General Vector distance - No Microscopy 3121 Breast cancer diagnosis

Classifier based
[42] Specialized Classifier based - No PET 331 Alzheimer diagnosis
[22] General Vector distance - Yes Jpeg 500 Anatomical categorization
[31] General Vector distance - No Mammogram 10553 ROIs Breast cancer diagnosis
[32] General Vector distance Automatic No Mammogram 11533 ROIs Breast cancer diagnosis
[55] Mixed Vector distance Automatic Yes CT 265 Interstitial lung disease diagnosis
[39] General Vector distance - No CT 50 Semantic annotation

Classifier based
[54] Mixed Classifier based - No Mixed 306539 Modality classification
[43] General Vector distance Automatic No MRI + PET 331 Alzheimer diagnosis
[44] General Classifier based - No MRI + PET 805 Alzheimer diagnosis
[56] Mixed Vector distance Interactive No CT, MRI + PET 379, 331 Lung cancer, Alzheimer diagnosis
[23] General Graph based - No Microscopy 120 Breast cancer diagnosis
[48] General Vector distance - No Endoscopic video 1276 Quick access to similar videos
[49] General Vector distance - No Endoscopic video 1276 Quick access to similar videos
[45] General Vector distance Interactive No CT 2003 Pulmonary nodule retrieval
[53] Mixed Vector distance - No Jpeg 300000 Biomedical literature search
[50] General Vector distance - No Microscopy 17107 Morphological retrieval of neurons
[29] General Classifier based - No Microscopy 1666 Blood, nerve tissue cancer diagnosis
[30] General Vector distance - No Mixed 2690 Fracture categorization
[57] Mixed Vector distance Automatic Yes MRI 60 Alzheimer/Dementia diagnosis
[51] Specialized Vector distance - No X-ray 443 Chest pathology retrieval

Classifier based
[34] Specialized Vector distance - No X-ray 14410 Anatomical categorization
[41] Specialized Vector distance - No MRI 50 Prostate cancer diagnosis
[35] Specialized Vector distance - No X-ray 10902 Anatomical categorization
[36] General Vector distance - No X-ray 14410 Anatomical categorization
[52] Mixed Classifier based - No Retinal image, Mammogram 1112, 2277 Diabetic retinopathy, Breast cancer
[46] General Classifier based Automatic No PET + CT 1134 Lung cancer diagnosis
[47] General Classifier based Automatic No PET + CT 1134 Lung cancer diagnosis

RF: relevance feedback. CT: computed tomography; MRI: magnetic resonance imaging; PET: positron emission tomography.

Fig. 5. Descriptors used in the medical CBIR systems.

scriptors used for retrieval. Recent years have seen more mixed
descriptors and a few based on deep learning but both areas are
likely to increase quickly over the coming years.

B. Non–image Features

In the scope of multi–modal medical retrieval, studies that
exploit non–image features such as text typically make use of
natural language processing techniques to mine relevant infor-
mation from radiology reports or scientific articles. While a few
used standard approaches like term frequency and inverse doc-
ument frequency (tf.idf) analysis [54], [55], others employed
more advanced approaches like interactive query expansion us-
ing medical thesauri [53]. Some researchers consider images
as visual words and applied semantic analysis to evaluate each
word’s discriminative power [56].

Besides the text based features mentioned above, the ref-
erences generally employed non–image features that carry
information on the patient and the pathology at hand. Typically,
these features are expressed in qualitative, semi–quantitative
or quantitative scales that need to be converted to numerical
values for processing. For example, demographic information
such as age, gender, and socio–economic status of subjects is an
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Fig. 6. Machine learning techniques used in the medical CBIR systems.

informative feature often used [51], [52], [57]. Family medical
history and clinical features like disease symptoms, examination
results, etc. are used as well [52], [57]. In order to improve re-
trieval performance, [57] benefited from structured representa-
tion of anatomical and disease information stored in ontologies
such as the Human Disease ontology19 and the Foundational
Model of Anatomy ontology.20

C. Machine Learning

Machine learning is grouped by the nature of learning signals
available as unsupervised (unlabeled data), semi–supervised
(partially labeled data), and supervised (fully labeled data).
Here, we present the found references that employ machine
learning in accordance with this grouping. Fig. 6 shows that a
large majority used supervised learning but that a few semi–
or unsupervised approaches have started in the past year in the
medical field.

Among studies employing unsupervised learning, [26] ben-
efited from sparse dictionary learning via the use of k–
singular value decomposition, while [23] used graph–based
ranking. Despite most real–world scenarios being semi–
supervised, this learning approach is the least frequently used
in medical CBIR systems. The only example found is the
work of [44] where adaptive ensemble manifold learning is
exploited.

On the other hand, supervised learning such as the nearest
neighbor algorithm [29], [42], support vector machines [29],
[33], [38], [39], [51], [54], discriminative models (differential
scatter discriminant criterion) [40] and others like joint kernel
based supervised hashing [27] are most commonly used.

D. Deep Learning

Deep learning has become one of the major hype topics in
machine learning [77] and it has had major success in many sci-
entific challenges, from the ImageNet challenges [78] to many
other machine learning challenges held. In the medical field it

19[Online]. Available: http://www.obofoundry.org/ontology/doid.html
20[Online]. Available: http://si.washington.edu/projects/fma

has been employed for detection, segmentation and other deci-
sion support tasks [79]–[82]. Our review seems to indicate that
for medical image retrieval the use of deep learning has only re-
cently started and is likely to increase strongly over the coming
years. In histopathology two reviews highlight the use of deep
learning for several tasks [83], [84].

When analyzing the literature we did not find a single article
using deep learning directly for medical image retrieval. How-
ever several studies made use of deep learning techniques in a
retrieval framework for extracting image features. [42] exploited
deep learning features for PET retrieval based Alzheimer’s di-
agnosis, while [38], [51] employed it for pathology retrieval of
chest X–rays. [34], [35] used deep learning features for anatom-
ical categorization of X–rays and [41] for prostate cancer diag-
nosis using MRI retrieval.

Given the extremely high popularity of deep learning in aca-
demic research and industry, we expect an influx of literature
exploring performance of different deep learning strategies for
large–scale retrieval of medical data sets in the coming years.

E. Efforts of the Industry

The increasing amount and distributed nature of medical data
produced, require efficient and intelligent solutions that can
transform healthcare [85]. Recognizing this, the industry has
started developing and providing dedicated solutions.

IBM Watson Health21 is a modular system designed around
DeepQA, a software architecture for deep content analysis and
evidence-based reasoning. It aims at translating medical infor-
mation into knowledge for more informed decision–making in
healthcare by analyzing and interpreting data in various forms
(unstructured text, images, audio, and video), providing person-
alized recommendations, learning from past experiences with
the use of machine learning, and allowing interaction via chat
bots that engage in dialog.

SAP Medical Research Insights22 is a web application dedi-
cated to cancer research aiming at easier and more efficient infor-
mation search for oncologists. The goal is to provide physicians
access to every single piece of information (images, patient
records, laboratory results, reports, etc., so multimodal data)
about cancer patients stored in separated data sources possibly
at different physical locations.

Siemens Theseus–Medico23 was a large–scale national
project in Germany across several industries and Siemens led the
medical part of the project. The objective was to foster semantic
technologies for the extraction and interpretation of knowledge
from free text, signals and image data. Many decision support
tools for automatic data annotation and report generation were
created as prototypes in this project, including semantic retrieval
systems.

21[Online]. Available: http://www.ibm.com/watson/health/
22[Online]. Available: https://icn.sap.com/projects/sap-medical-research-

insights.html
23[Online]. Available: http://www.digitale-technologien.de/DT/Redaktion/

EN/Downloads/Publikation/theseus-forschungsprogramm-broschuere-
en.pdf?__blob=publicationFile&v=2
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V. SCALABILITY ASPECTS OF THE APPROACHES

The analysis of the presented approaches shows that most
published articles still use relatively small data sets even though
much larger data are becoming available. Moreover, scalability
of the presented approaches does not seem a major concern.
Among the studies analyzed only a small subset addressed scal-
ability through the use of hash–based algorithms [27], [28], [32]
and asymmetric binary coding [50].

Broader research infrastructures may need to become avail-
able for data analysis on much larger resources. The genomics
domain has shown how such a creation of large-scale comput-
ing infrastructures can modify a field. Maybe the combination
of genomics with imaging, RadioGenomics [86], can also help
the imaging field to address challenges on larger data and of a
more multi–modal nature.

Hospitals will require large computing infrastructures for pre-
cision medicine and this can also lead to approaches similar to
EaaS, where the code is moved towards the data and not the
data to the code. This can strongly help with data confidential-
ity challenges and potentially allow to run scientific challenges
fully inside medical institutions.

VI. DISCUSSION

This review has limitations and the number of analyzed texts
from 2011 to 2017 is limited to only six years. The difficulty
with the domain is that publications are scattered around many
different research fields and thus it is hard to be systematic and
complete. Some publications are in small workshops that can
easily be missed and are thus not considered in the analysis. Still,
a few trends become visible and other trends can be expected
for the coming years. This text shows several shortcomings of
the medical domain compared to more general content–based
multimedia retrieval, such as small data sets and often the limited
use of multi–modal data.

A. Scalability

Even though the databases in medical multimedia analysis
have increased in size over the past years there is still an alarm-
ingly strong use of small data sets that leads to problems with
variety and interpretability of outcomes [87]. It is important to
make sure that publications use standard data of sufficient size
in the future, so meaningful results are obtained. This will create
a need to work on scalability and efficient algorithms for data
analysis, at least for the online phase.

B. Security and Privacy

As big data transforms healthcare, governance questions such
as ownership, privacy, security, and standards emerge [88]–[90].
An appropriate balance between public health and data privacy
needs to be ensured [91] to allow exploiting data for the good of
society and still protect individual person’s privacy. Models that
move the algorithms towards the data can help with protection,
as only algorithms can access data and not persons. Physically
having the data may in fact become unnecessary when data sets
become extremely large. Cloud computing (public or private)

may in this case be a driver behind research in medical visual
information retrieval.

C. Clinical Benefits

We are in the age of big data which is characterized by big vol-
ume, large data variety, high velocity of data generation/update
and high veracity (the four V’s) leading to big value [92], [93].
Accordingly, the large amount of heterogeneous data generated
by healthcare and government agencies needs to be exploited
via proper big data analysis methods in order to improve per-
sonalized care, detection, treatment, prognosis and follow–up of
various diseases. Service quality of healthcare centers, health-
care education, and even unemployment can be influenced by
this [94].

Clinical benefits will likely require use of multi–modal data,
as the influence of many factors (such as age [95]). Using im-
ages outside of their context seems like a task that is potentially
too hard to be solved. Radiomics [96] allows extracting clinical
markers from image data and the combination of this with ge-
netic information can potentially lead to new and non–invasive
methods, where benefits can become visible quickly.

VII. OUTLOOK

Medical CBIR seems to be slower than retrieval in non–
medical fields on several levels. Data sets have remained rela-
tively small and annotated training examples are often available
only in small amounts. This clearly creates many research op-
portunities. Generating shared, large data sets with annotations
and running scientific challenges on them has much potential
for real impact in identifying techniques that work in a stable
way on varied data. It also seems important to use multi–modal
data wherever possible as without the data that have an influence
on the images it seems impossible to interpret the visual data.
Thus, fusion techniques and ways to combine information from
very different sources will be required in the future. This can
help to analyze influences between data sources on the visual
image data. For example, age influences visual information in
medical images and specific diseases change patterns in other
image parts.

The limited clinical use is another problem to be tackled.
Maybe retrieval per se is not the most useful application and
likely it needs to be integrated with applications of detection
and classification to become useful in clinical practice and have
a practical impact. The domain needs to be seen larger and
include a detailed analysis of user requirements in specific clin-
ical situations and for specific diseases such as cancer, instead
of broad and general retrieval applications. With genomic, pro-
teomic and metabolomic data and many other markers becoming
available, the data integration challenge will increase in all fields
of medicine and decision support tools that include visual data
are required. Similar case retrieval is maybe more suited than
similar image retrieval, meaning that again all data need to be
integrated to understand what “similarity” in a specific situation
actually means.

A current trend is the use of analysis and retrieval beyond
radiology. Radiology data were the first to become digitally
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available in large quantities. Histopathology is starting to be-
come digital and has many other challenges, with extremely
large image sizes and a multi-scale analysis being usually nec-
essary and with data driven approaches leading to extremely
good results. Videos of endoscopy and ultrasound can likely
have impact in clinical applications. Image and signal data have
become available in many fields and need to be fully included
into decision support.

One tendency that was found in this article is that less su-
pervised approaches are being developed, which can leverage
large amounts of weakly annotated data or even data without
annotations. These can likely be extracted automatically from
hospital records and used for training algorithms but the limited
veracity of the data need to be taken into account. Active learn-
ing can help to limit the annotation effort and concentrate on the
most informative examples for manual annotation. Physicians
can potentially be replaced in very focused tasks by laypersons
using crowdsourcing but strict quality control is needed. We
only found a few retrieval systems using features from deep
learning and this will also likely explode in the coming years,
as it did on other related areas of computer vision.

Rapid advances and developments in mobile health technolo-
gies require the adaptation of retrieval applications, which will
allow access to clinical data and search functions in mobile
scenarios [97]. This needs to be more integrated with global
strategies [98] on the acquisition, storage and access to large
scale distributed data sets. The socio–economic impact of these
approaches should be evaluated better to really show the advan-
tages and risks, and leverage on these.

The latter is linked to creating a real infrastructure for medical
research data analysis and retrieval, potentially based on cloud
techniques. Such an infrastructure could have all data remain
at the producer’s (i.e. hospital’s) side and allow research to ac-
cess the data for algorithm development and evaluation. This
removes the barrier of data access, allows large–scale data anal-
ysis but requires data storage and computing infrastructures to
be at the same place. EaaS is one concept in this area that could
help the research community but solutions need to be developed
for multi–institutional data analysis, where computation tasks
carried out in different institutions can be combined in a central
location.

All these tendencies and opportunities allow much research
and the potential is high for real impact if integrated well with
clinical applications that change quickly. Digital medicine is
a reality and it is now important to develop quality tools for
clinical impact of data integration that include visual data.

REFERENCES

[1] “Riding the wave: How Europe can gain from the rising tide of sci-
entific data,” submission to the European Commission, Oct. 2010.
[Online]. Available: http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/
hlg-sdi-report.pdf

[2] C. Safran et al., “Toward a national framework for the secondary use of
health data: An American medical informatics association white paper,”
J. Amer. Med. Informat. Assoc., vol. 14, pp. 1–9, 2007.

[3] A. Rosset, O. Ratib, A. Geissbuhler, and J.-P. Vallée, “Integration of a
multimedia teaching and reference database in a PACS environment,”
Radiographics, vol. 22, no. 6, pp. 1567–1577, Dec. 2002.

[4] L. H. Y. Tang, R. Hanka, and H. H. S. Ip, “A review of intelligent content-
based indexing and browsing of medical images,” Health Informat. J.,
vol. 5, pp. 40–49, 1999.

[5] H. Müller, N. Michoux, D. Bandon, and A. Geissbuhler, “A review of
content-based image retrieval systems in medicine-clinical benefits and
future directions,” Int. J. Med. Informat., vol. 73, no. 1, pp. 1–23, 2004.

[6] C. Akgül et al., “Content-based image retrieval in radiology: Current status
and future directions,” J. Digit. Imag., vol. 24, no. 2, pp. 208–222, 2011.

[7] A. Kumar, J. Kim, W. Cai, M. Fulham, and D. Feng, “Content-based
medical image retrieval: A survey of applications to multidimensional
and multimodality data,” J. Digit. Imag., vol. 26, no. 6, pp. 1025–1039,
2013.

[8] A. M. Aisen et al., “Automated storage and retrieval of thin-section CT im-
ages to assist diagnosis: System description and preliminary assessment,”
Radiology, vol. 228, no. 1, pp. 265–270, Jul. 2003.

[9] D. Markonis et al., “User-oriented evaluation of a medical image retrieval
system for radiologists,” Int. J. Med. Informat., vol. 84, pp. 774–783, 2015.

[10] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-based image retrieval at the end of the early years,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 12, pp. 1349–1380, Dec.
2000.

[11] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas, influences,
and trends of the new age,” ACM Comput. Surveys, vol. 40, no. 2, pp. 1–60,
Apr. 2008.

[12] M. W. Vannier and R. M. Summers, “Sharing images,” Radiology, vol. 228,
pp. 23–25, 2003.

[13] K. Doi, “Computer-aided diagnosis in medical imaging: Historical review,
current status and future potential,” Comput. Med. Imag. Graph., vol. 31,
no. 4–5, pp. 198–211, Mar. 2007.

[14] B. Elger et al., “Strategies for health data exchange for secondary, cross-
institutional clinical research,” Comput. Methods Programs Biomed.,
vol. 99, no. 3, pp. 230–251, Sep. 2010.

[15] J. Hughes, D. Hunter, M. Sheehan, S. Wilkinson, and A. Wrigley, Eu-
ropean Textbook on Ethics in Research. Luxembourg City, Luxembourg:
Publ. Office Eur. Union, 2010.

[16] D. Unay and A. Ekin, “Medical image search and retrieval for improved
tele-healthcare,” in Telehealthcare Computing and Engineering, F. Hu,
Ed. Boca Raton, FL, USA: CRC Press, 2013, ch. 22.

[17] C. W. Cleverdon, “Report on the testing and analysis of an investigation
into the comparative efficiency of indexing systems,” Aslib Cranfield Res.
Project, Cranfield, U.K., Tech. Rep., Sep. 1962.

[18] H. Müller, P. Clough, T. Deselaers, and B. Caputo, Eds., ImageCLEF—
Experimental Evaluation in Visual Information Retrieval (Int. Series In-
form. Retrieval), vol. 32, Berlin, Germany: Springer, 2010.

[19] T. Heimann et al., “Comparison and evaluation of methods for liver seg-
mentation from CT datasets,” IEEE Trans. Med. Imag., vol. 28, no. 8,
pp. 1251–1265, Aug. 2009.
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