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Abstract—Phase synchrony has been used to investigate the
dynamics of subsystems that make up a complex system. Current
measures of phase synchrony are mostly bivariate focusing on
the synchrony between pairs of time series. Bivariate measures
do not necessarily lead to a complete picture of the global inter-
actions within a complex system. Current multivariate synchrony
measures are based on either averaging all possible pairwise
synchrony values or eigendecomposition of the pairwise bivariate
synchrony matrix. These approaches are sensitive to the accuracy
of the bivariate synchrony indices, computationally complex and
indirect ways of quantifying the multivariate synchrony. Recently,
we had proposed a method to compute the multivariate phase
synchrony using a hyperdimensional coordinate system. This
method, referred to as Hyperspherical Phase Synchrony (HPS),
has been found to be dependent on the ordering of the phase
differences. In this paper, we propose a more general hyper-
spherical coordinate system along with a new higher-dimensional
manifold representation to eliminate the dependency on the or-
dering of the signals’ phases. This new framework, referred to
as Hyper-Torus Synchrony (HTS), is shown to be equivalent to
the root-mean-square of a sufficient set of squared phase-locking
values whose phase differences contain information about all
oscillators in the network. The statistical properties of HTS are
given analytically and its performance is evaluated thoroughly for
both synthetic and real signals.

Index Terms—Multivariate phase synchrony, time-frequency
analysis, Rihaczek distribution, electroencephalogram, functional
brain connectivity.

I. INTRODUCTION

C OORDINATED time-varying interactions are funda-
mental in dynamical systems, ranging from a few coupled

elements to complex networks. Examples of systems of cou-
pled oscillators occur widely in nature and engineering such
as circadian rhythms [1], neuroscience [2], flashing fireflies
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[3], coupled Josephson junctions [4], the Millenium Bridge
[5], and others [6]–[9]. In the stochastic sense, synchronization
has been defined as an adjustment of rhythms of oscillating
objects due to their weak interaction [10] and this adjustment
can be described in terms of phase locking and frequency
entrainment. Phase locking or phase synchrony between two
oscillators occurs when the generalized phase difference,

, at
time and frequency [11], [12]. Two steps are needed for
quantifying phase synchrony. First, instantaneous phase of each
signal is estimated at a particular frequency of interest through
methods such as the Hilbert transform, complex wavelet trans-
form [13], empirical mode decomposition [14]–[18] or the
recently proposed Reduced Interference Distribution-Rihaczek
(RID-Rihaczek) complex time-frequency distribution [19],
[20]. In the second step, the amount of synchrony is quantified
through either the entropy of the distribution of the phase
differences or mean phase coherence, also known as phase
locking value (PLV), which computes the circular variance of
the relative phase [21], [22]. Although bivariate PLV has been
widely used, it has various disadvantages for the study of large
and complex networks. First, PLV does not provide information
about the common integrating structure among the ensemble of
oscillators. Second, for large data sets multiple computations
of pairwise PLV increase computational costs.
Recently, phase synchronization of a group of oscillators,

which is referred to as global or multivariate phase synchro-
nization, has been of interest for understanding the group
dynamics and characteristic behavior of complex networks
[17], [23]–[26]. Contrary to the bivariate phase synchrony,
multivariate synchrony captures the global synchronization
patterns quantifying the degree of interactions within a group
of oscillators. In addition, multivariate synchrony methods
provide a single number, rather than a matrix of pairwise syn-
chrony values. One of the earliest approaches to multivariate
synchrony analysis was global field synchronization (GFS)
proposed by Koenig et al. [24]. GFS first transforms the time
series data to the frequency domain, and then quantifies the
scatter of the multivariate data through the eigenvalues of the
covariance matrix between the sine and cosine coefficients of
the Fourier transform. This measure inherently assumes the
stationarity of the data and cannot capture time-varying aspects
of synchrony. Moreover, this method quantifies synchrony as
the instance when the phases of the two signals are exactly
the same and does not take into account the case of constant
phase difference. Knyazeva et al. [27] proposed another simple
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measure, the multivariate phase synchrony (MPS), defined as
the mean phase synchrony averaged across the observation
samples. Rudrauf et al. [28], on the other hand, proposed an
alternative approach to quantifying phase synchrony through
frequency locking by exploiting the relationship between
phase and frequency and identifying continuous periods of
identical instantaneous frequency. Similarly, in [17] the idea of
cointegration is used to define multivariate phase synchrony.
However, this method can only identify phase synchrony in
a nonstatistical sense and is not reliable in the case of noisy
signals.
More recently, methods inspired by random matrix theory

(RMT) and spectral graph theory were proposed. These
methods first compute the bivariate synchrony and then perform
cluster analysis through eigendecomposition of the bivariate
synchrony matrix as proposed by Allefeld et al. [29]. Initial
work in this area focused on perceiving the oscillators as con-
stituting a single cluster to which they participate in different
degrees [30]. The existence of a single synchronization cluster
is not a reasonable assumption since most complex networks
usually consist of multiple clusters. In order to address this
limitation, approaches based on the eigenvalue decomposition
of the pairwise bivariate synchronization matrix have been
proposed [31], [32]. However, it has recently been shown
in cases where there are clusters of similar strength that are
slightly synchronized with each other, the assumed one-to-one
correspondence between eigenvectors and clusters is not real-
istic [33].
In order to capture the connectivity structure with a single

number, Saito et al. [34] quantified global synchrony through
the entropy of the eigenspectrum of the covariance or bivariate
connectivitymatrix. Thismeasure was then generalized by Stam
et al. [35] and others as the S-measure [23], [36], [37]. This
measure uses the principle of time-delay embedding and indi-
cates how strongly channel at a given time is synchronized
to all other channels. Similar to other methods in nonlinear dy-
namics, it requires the selection of different parameters, such as
a threshold and the time-lag, and is computationally expensive.
Recently, hyperspherical phase synchrony (HPS) was intro-

duced as an alternative method to directly measure the multi-
variate phase synchronization among a group of oscillators [38],
[39]. HPS generalizes bivariate synchrony, where the phase dif-
ference between two time series is mapped onto a unit circle,
by mapping the phase differences between consecutive
oscillators onto an N-dimensional space parameterized by hype-
spherical coordinates [38]. HPS is advantageous over the S-es-
timator thanks to its reduced computational complexity and ro-
bustness to noise [39]. However, as we show in Section III, we
found that this estimator was highly dependent on the ordering
of the phase differences parameterizing the hypersphere.
In this paper, we propose a novel measure to estimate the

multivariate phase synchrony in a hyperdimensional coordinate
system and address the shortcomings of HPS. Two complemen-
tary approaches are developed to quantify the circular variance
of phase differences amongmultiple oscillators in a high dimen-
sional space. In the first approach, we extend the hyperspherical
coordinate system used in HPS to include redundancies, i.e.,

and coordinates of circles with varying radii, such that the or-
dering of the phases is not important. In the second approach,
we propose a newmapping of the phase differences to a high-di-
mensional flat torus and compute the magnitude of the mean
phase vector in this new geometry resulting in the hyper-torus
phase synchrony (HTS). We then show the equivalence of these
two metrics, provide analytical bounds on the bias and variance
of HTS and show bias correction for HTS squared. We com-
pared the performance of HTS and the S-estimator on simu-
lated networks of chaotic oscillators for sensitivity to coupling
strength and network structure. Finally, we consider an applica-
tion of HTS for quantifying global synchrony in the brain from
multichannel electroencephalogram (EEG) signals and compare
it to S-estimator.

II. BACKGROUND

A. Reduced Interference Rihaczek Distribution (RID-Rihaczek)
As mentioned in the Introduction, the computation of phase

synchrony relies on an estimate of instantaneous phase. In this
work, we will compute the signal’s instantaneous phase based
on the RID-Rihaczek time-frequency distribution as proposed
in [19]. For a signal , define to be its complex RID-
Rihaczek time-frequency distribution, given by

(1)

where is the ambiguity function of :

(2)

The time-varying phase of the signal is computed as

(3)

The phase difference between two signals and can be
computed as

(4)

B. Phase Locking Value
PLV between two signals and as a function of time and

frequency [40] is defined by

(5)

where corresponds to the total number of trials or realizations
of the signal, is the phase difference between and
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as defined by (4) for the th trial and denotes averaging
over trials. For each trial , the phase difference de-
fines a vector on the unit circle. Thus, PLV evaluates the cir-
cular variance of the unit vectors across trials. Therefore, PLV
approaches 1 if the phase differences over trials exhibit small
variation and approaches 0 if there is no synchrony over trials.

C. S-Estimator
The S-estimator at time and frequency is computed as

(6)

where are the eigenvalues of the bivariate
synchronization matrix , and

is the total number of oscillators in the network [35], [37].
S-estimator is equivalent to 1 minus the entropy of the normal-
ized eigenvalues of the PLV matrix. This measure equals to 1
when all the oscillators are pairwise highly synchronized. In
that case, all the entries in the PLV matrix will be equal to one
and thus only one eigenvalue will be equal to one. On the other
hand, when all the oscillators in the network are not pairwise
synchronized the PLV matrix is full rank and its eigenvalues are
uniformly distributed, maximizing the entropy and resulting in
zero multivariate synchrony.

III. HYPERSPHERICAL PHASE SYNCHRONY
Bivariate phase synchrony is based on the circular vari-

ance of the two-dimensional direction vectors on a unit
circle (1-sphere), obtained by mapping the phase differences

, where is the total number of trials, be-
tween the two time-series onto a Cartesian coordinate system.
If the circular variance of these direction vectors is low, the
time-series are said to be locked to each other.
Hyperspherical Phase Synchrony proposed in [38] is

an extension of this idea to the multivariate case. Define
as the angular

coordinates at time and frequency for the th trial, where
is the phase difference

between the th and th time series within a group of
oscillators. These angular coordinates are mapped
onto an -dimensional space by forming direction vectors in
an -dimensional hyperspherical coordinate system. For any
natural number , an -sphere of radius is defined
as the set of points in -dimensional Euclidean space which
are at distance from a central point, where the radius
may be any positive real number. The set of coordinates in
an -dimensional space, , that define an

-sphere is represented by

(7)

where is the center point and is the radius.
In [38], and the center point is the origin.

Using the angular coordinates, a direction vector
can be formed by map-

ping the angular coordinates on a unit
-sphere as1:

...

(8)

Based on this mapping we define the hyperspherical phase syn-
chrony (HPS) as

(9)

where is the multivariate synchronization value
at time and frequency is the Euclidean norm
and is the number of trials. In the case of perfect multi-
variate phase synchronization of the network, HPS is equal
to 1 and it equals 0 when the oscillators are independent.
Note that HPS is equivalent to PLV for a network con-
sisting of two signals. In this case, and from (8)
the direction vector , where

and .
Hence, (9) is equivalent to (5).
It can be shown that the HPS defined based on the coordi-

nate system in (8) is dependent on the ordering of the phase dif-
ferences . This dependency will result in unstable HPS
values and lead to incorrect interpretation of the multivariate
synchrony. To illustrate this problem, we show the derivation
of the HPS value for the case of three oscillators . The
rotating vectors in (8) can be written as,

(10)

For simplicity, we further assume that we have only
two trials with angular coordinates (or phase differences)

and , respectively.
The corresponding HPS given in (9) reduces to (11) on the
following page. In order to show that HPS is dependent on
the ordering of the phase differences, we recalculate the HPS
with reordered angular coordinates and

, which in this case reduces to (12) on the
bottom of the following page. It is clear that (11) and (12) are
not equivalent except in the case of perfect synchrony, i.e.,

and . Therefore, the ordering of the phase
differences plays a major role in calculating the cor-
responding HPS values. Thus, a modification of this definition

1In this paper, unit hyperspheres are sampled based on uniform angular sam-
pling methods in order to generate a suitable set of direction vectors [41].
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is required to address this problem. In addition, in order to
capture global phase information, we will replace the previ-
ously defined pairwise phase differences for HPS by the phase
difference between the phase of each oscillator and the phase of
the resultant vector of the remaining oscillators [42], given by

(13)

IV. PROPOSED SOLUTION

A. Hyperspherical Approach
In this section, we propose a solution to the phase ordering

problem encountered in HPS. This approach is based on the
analysis of the hyperspherical coordinate system given in (8).
The coordinates in (8) are equivalent to coordinates of a ro-
tating circle with varying radii. For example, is the
coordinate of a vector on the unit circle at angular position

, while is the coordinate of a vector on a
circle with radius at angular position .
Similar analysis applies to the remaining s. Thus, every

is just the coordinate of a vector on a circle with ra-
dius , for and
with a phase . The equation for shows that as
increases, will have less impact on the overall syn-

chrony. This means that the choice of the first phase difference,
, will have a high impact on the measured synchrony.

Equation (8) may also be interpreted as follows. Every
is the projection of the coordinate of the previous
on the -axis with a phase , i.e., define

and coordinates of the rotating vector for each trial as

...

(14)

where the phases s are defined as in (13) and the super-
scripts and refer to the projection coordinates.
We can also rewrite (14) as,

...

(15)

Equation (15) reveals that the radius
, for is just the

coordinate of the previous . This recursive structure
is the cause of the ordering problem. To solve this problem,
we propose to consider both the and coordinates for all
oscillators.
By computing the norm, , of the direction vec-

tors for each oscillator using the coordinates and
, we end up with the following norms,

...
(16)

or simply for
. Thus, in order to get rid of the dependency on the

phase ordering, we propose to normalize and
by . This will result in unit radius for all . Therefore,
the modified multivariate phase synchrony measure is given by

(17)

where

(11)

(12)
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As the norm of each vector in the above equation is
equal to , to make the definition and range of HPS consis-
tent with PLV (see (5)) we normalize HPS by .
The modified measure given in (17) can be rewritten

as in (18) at the bottom of the page. By noting that
and we can

write the modified HPS as

(19)

where quantifying the synchronization of each oscillator
with respect to a common reference angle with as de-
fined in (13) and is given by

(20)

The maximum value of is 1, when there is com-
plete phase synchronization among oscillators. On the other
hand, is theoretically 0 when the oscillators are
independent.

B. Hyper-Torus Synchrony
Results found in the previous section can alternatively be

derived from an alternative mapping: the Cartesian product
of unit circles parameterized by phase differences as given in
(13). In a network consisting of oscillators, consider a phase

that parameterizes the unit circle by the an-
gular coordinates .
Let another unit circle be parameterized by the angular
coordinates . The
Cartesian product defines the manifold

embedded in . The -dimensional flat torus is
the manifold defined by

. It is parameterized by and
[43].

A Riemannian metric on a n-dimensional manifold de-
fines an inner product between tangent vectors in each tangent
space for every point [43]. ARiemannianmanifold

is a differentiable manifold equipped with a Riemannian
metric [44]. Thus, for every point in the length of
any tangent vector is given by
[43]. The Cartesian product between two Riemannianmanifolds

and is equipped with the product metric
, which is defined as [43]

(21)

where and
.

A torus is locally isometric to Euclidean space, meaning
that every point on has a neighborhood that is isometric
to an open set in [43], which results in a manifold whose
curvature is zero everywhere and its tangent spaces are identical
to the manifold [45]. Hence, is a flat Riemannian manifold
equipped with the Euclidean metric [46].
For a group of oscillators, vector (22) lies in

(22)

where , and
is a phase difference as defined in (13) for the th trial.

can then be defined as

(23)

where is the number of oscillators and is the total number
of trials. HTS can be re-expressed as shown in (24) at the
bottom of the following page, which is equivalent to (19).
Throughout the rest of this article we will use HTS to refer to
both approaches.

C. Computational Complexity
HTS involves the computation of PLVs, with com-

plexity per time-frequency point [47], where
is the number of points used in the fast Fourier transforms

(ffts) in the computation of the time-frequency distribution
(usually equal or greater than the length of the signal). The
computation of one square root has complexity when
computed through the Newton-Raphson Method [48], where

corresponds to the minimum of the number of bits from
the two numbers being multiplied (32 or 64 bits for double
precision). Thus, the total computational complexity of HTS
is . On the other hand, the computa-
tional complexity of the S-estimator relies on the computation
of PLVs for the construction of the synchronization
matrix and its eigendecomposition. Computing PLVs
has a complexity of , which can be approx-
imated as for large . The eigendecomposition
of the synchronization matrix has complexity [49].
Thus, the total computational complexity of the S-estimator
is . Therefore, the proposed metric is
computationally more efficient than the S-estimator.

(18)
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V. STATISTICAL ASSESSMENT OF HTS

In this section, we assessed the asymptotic properties of the
expected value and variance of in the absence of syn-
chrony as well as for different levels of synchrony. Finally, as
previously done for PLV, we found an unbiased estimator for

and evaluated its variance empirically.

A. Bias

Due to its dependence on PLV, the proposed measure also
exhibits a bias which is dependent on the number of trials. We
will first illustrate this dependency by assuming a Von Mises
distribution for phase differences. The Von Mises distribution

is the most common model for circular data [42]. It
is defined by the reference direction, , and its dispersion about
that direction, . Its probability density function is given by

(25)

where is the modified
Bessel function of order zero [42].
Fig. 1 illustrates the theoretical and experimental multivariate

synchrony, HTS and , respectively, for different levels of
synchronization in a network consisting of oscillators.
Here we are assuming that the phase differences in (19) and (24)
are equally distributed according to for simplicity and
various levels of synchrony are obtained by varying the concen-
tration parameter . As observed, the bias of HTS depends on
the underlying distribution of the angles , bias being the most
prominent in the absence of synchrony, or when is uniformly
distributed. In addition, the bias is dependent on the sample size
and results based on small sample sizes should be interpreted
carefully.
In this paper, we further assessed the bounds on the bias and

variance of . A lower bound on bias can be found from the
inequality for arithmetic and quadratic means [50] as

(26)

Fig. 1. (solid lines) and true HTS (dashed lines) for synchrony values
of 0, 0.20, 0.40, 0.60, 0.80 and 0.99. oscillators were simulated with
phases distributed as .

where the absolute value in the original inequality is no longer
required since . An upper bound can be found
as

(27)

Thus, the lower and upper bounds on the expected value of
can be found as

(28)

(29)

respectively.

(24)
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An approximate value for in the absence of

synchrony has been previously found to be

[19]. Hence, can be bounded as

(30)

Equation (30) shows that in a network in which all oscilla-
tors are independent, the minimum possible value that can
attain is inversely proportional to the square root of the total
number of trials or observations, as previously found for .
On the other hand, its upper bound is directly proportional to
the number of oscillators.
Asymptotic results for , or the mean resultant

length as known in the circular statistics community, have been
found for the Von Mises distribution with mean direction
and concentration parameter [51] as

(31)

where and is the modified Bessel function
of the first kind of the th order. Considering all oscillator’s
s to be identically distributed and substituting (31) into (28)

and (29) yields

(32)

B. Variance

In order to find an upper bound on the variance of
we will define as

(33)

Taking expectation on both sides yields

(34)

where the linearity property of expectation has been employed.
The expected value of is a well known expression
[51], [52], given by

(35)

Thus, substituting (35) in (34) yields

(36)

An upper bound on the variance of in the absence
of synchrony can be found as

(37)

Thus, in the absence of synchrony, the maximum possible
value that the variance of can attain is 1.
In the case of the upper bound for the variance is

(38)

where phase differences are drawn from .
Fig. 2(a) and (b) show the upper bounds on the variance of

and its empirical variance, respectively, for various
levels of synchrony in a network consisting of oscil-
lators. From Fig. 2(a), the variance of decreases as
the number of trials or observations increase as well as when
the global synchronization increases. Fig. 2(b) shows the vari-
ance of obtained empirically for various levels of
synchrony. It is observed that the empirical variance follows
similar trends as those obtained by the upper bound, without
attaining it.

C. Correction of Bias in
As in the case of PLV [52], [53], it is straightforward to find

an unbiased estimator of rather than for .
Equation (36) suggests that the bias in arises from the bias
in . An unbiased estimator for can be found as

(39)

This result is obtained similarly by substituting
in (34) by its unbiased estimator previously found in [52], [53]

(40)

Figs. 3 and 4 illustrate the expected value and variance of
and for various synchrony values. As

previously reported for , the variance of the unbiased es-
timator is slightly higher than that of the biased estimator for
small sample sizes.

VI. RESULTS
In this section, results of multivariate phase synchronization

on simulated and real data are presented. First, the proposed
measure is evaluated on a network of Kuramoto oscillators with
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Fig. 2. (a) Theoretical upper bounds for the variance of HTS; and (b) empir-
ical variance of HTS as a function of sample size in a network of os-
cillators for different synchronization levels in the Von Mises distribution in
(38). (a) Upper bounds for variance of . (b) Empirical variance of

.

Fig. 3. (solid lines) and true (dashed lines) for true HTS values
of 0, 0.20, 0.40, 0.60, 0.80 and 0.99.

varying coupling strengths. Next, the sensitivity to global cou-
pling is evaluated for various Rössler oscillators. Finally, the

Fig. 4. Variance of (solid lines) and true (dashed lines) for true
HTS values of 0, 0.20, 0.40, 0.60, 0.80 and 0.99.

proposed measure is implemented in the assessment of multi-
variate synchrony in a EEG dataset.

A. Kuramoto Model

In order to evaluate the performance of the proposed measure
as a function of coupling strength, we computed the multivariate
synchrony in a large network of coupled oscillators as presented
by Kuramoto [54]. Kuramoto model describes a system con-
sisting of multiple oscillators with different natural frequencies
which synchronize to a common frequency after their coupling
exceeds a certain threshold [55]. This model has been used to
describe many physical phenomena, ranging from unicellular
organisms [56] to the neurosciences [20], [57]. Phase dynamics
governing the cooperative synchronization among oscilla-
tors are given by

(41)

where corresponds to the phase of the th oscillator, is its
natural frequency and corresponds to the coupling strength,
which is equal among all oscillators. The natural frequency of
each oscillator is chosen randomly from a Lorentzian distribu-
tion given by

(42)

with mean and width .
Kuramoto found that oscillators are desynchronized until

exceeds a critical value . Exceeding separates the
oscillators into two groups: one that contributes to the synchro-
nization of the system and another whose natural frequencies
come from the tails of the distribution and contribute to desyn-
chronization of the system [58]. As increases, the group of
synchronized oscillators increases until all oscillators are syn-
chronized. A network consisting of oscillators was
simulated and the time-varying phases were solved nu-
merically via Runge-Kutta with a time step of s,
which results in a sampling frequency of 128 Hz. The natural
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Fig. 5. Comparison of mean and standard deviation of multivariate synchrony
(HTS and S-estimator) within a Kuramoto network with .

frequencies of each oscillator are drawn from a Lorentzian dis-
tribution as given by (42) where rad/s and . This
results in a . The signal length was 2048 samples,
and the first 500 samples were discarded to avoid transients.
Fig. 5 shows multivariate synchrony estimated fromHTS and

the S-estimator as increased from 0 to 9 in increments of 0.5.
We expect to observe low synchrony for with a sudden
increase in synchrony after . When multivariate syn-
chrony from both S-estimator and HTS is greater than 0, which
indicates bias on the estimators when phases come from an uni-
form distribution. On the other hand, HTS is more sensitive to
the increase of global synchronization for com-
pared to the S-estimator. The standard deviation of both estima-
tors is maximal around [57], with S-estimator showing less
variance than HTS since it is a weighted average of all bivariate
PLVs, obtained from the eigendecomposition. Finally, when the
system is fully synchronized HTS approaches 1 as expected.

B. Rössler Oscillator
In order to test multivariate synchrony under different net-

work configurations we used a Rössler oscillator model. Rössler
oscillators describe a system of weakly coupled self-sustained
stochastic oscillators [59]. We modeled a network consisting of
6 oscillators coupled through their -dimension [60]. Eight dif-
ferent configurations are considered, illustrated in Fig. 6. It is
expected that networks 1 and 2 will exhibit low synchrony, and
network 8 will result in multivariate synchrony close to 1. Dy-
namics governing the networks under study are given by

(43)

where

Fig. 6. Eight Rössler networks. (a) Network 1, (b) Network 2, (c) Network 3,
(d) Network 4, (e) Network 5, (f) Network 6, (g) Network 7 (h) Network 8.

and is white Gaussian
noise. The differential equations were solved by the Runge-
Kutta method at a time step of 0.067 seconds. Simulations were
repeated 200 times, for a signal length of 2000 samples and sam-
pling frequency of 15 Hz.
Table I compares multivariate synchrony evaluated using

HTS and S-estimator for each of the eight Rössler networks
presented in Fig. 6. The second and third columns show results
for HTS and S-estimator (mean st.dev.) computed according
to (23) and (6), respectively. Multivariate synchrony values
obtained from both measures are comparable and align with
our expectations for all networks. For both methods, the mul-
tivariate synchrony results for each network is significantly
different from that obtained from a null network in which none
of the oscillators is connected, i.e., , (Wilcoxon rank
sum test, ).
The two networks differ in their behavior only for networks

5 and 6. In the case of network 5, multivariate synchrony ob-
tained from HTS is higher than that from network 6, whereas
it is the opposite for S-estimator. In network 5, four out of six
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TABLE I
MULTIVARIATE SYNCHRONY (MEAN ST.DEV.) IN NETWORKS OF

RÖSSLER OSCILLATORS

TABLE II
MULTIVARIATE SYNCHRONY (MEAN ST.DEV.) FOR DIFFERENT NUMBER OF
OSCILLATORS CONTAINING TWO SUBNETWORKS OF THREE OSCILLATORS

oscillators are all interconnected with only two isolated oscil-
lators contributing to low synchrony. Since HTS relies on the
root mean square of PLVs with one PLV computed between
each oscillaor and the mean phase, there will be only two PLVs
with low synchrony. On the other hand, in network 6 although
there are two sub-networks that are fully synchronized these are
not interconnected and hence the global synchrony of the net-
work should not be as high as in network 5 as indicated by HTS.
This result is also observed from the unbiased squared HTS and
S-estimator, as shown in the fourth and fifth columns of Table I,
respectively. Here, is computed as in (39) and is
obtained by using unbiased as in (40). Note that network
4 also contains 6 connections and results in higher synchrony
than networks 5 and 6. This is due to the indirect connections
that emerge when oscillators are interconnected through a third
oscillator.
In order to assess the effect of the number of oscillators in the

computed synchrony values, we constructed two subnetworks
consisting of 3 oscillators each (as in Fig. 6(f)) and increased the
number of oscillators in the network to 9 and 12. Table II shows
the results for both HTS and S-estimator as the number of os-
cillators increases. Note that the first case, 6 oscillators, is the
same as network 6 in Fig. 6. For both methods, as the number
of oscillators increases the multivariate synchrony decreases as
there aremore non-synchronized oscillators in the network. This
trend is also observed from the unbiased estimators of
and .
Finally, we assessed the effect of the number of subnetworks

on the multivariate synchrony measures. Table III shows the re-
sults for HTS, S, their squared unbiased estimators for different
number of subnetworks of three oscillators in a network of 12
oscillators. As expected, increasing the number of subnetworks
increases the multivariate synchrony for both estimators.

C. Cognitive Control: A Study of Error-Related Negativity

In order to assess the synchronized activity among various
regions in the brain, we compared the proposed measure against
the S-estimator in a cognitive control-related error processing

TABLE III
MULTIVARIATE SYNCHRONY (MEAN ST.DEV.) FOR A NETWORK CONSISTING

OF 12 OSCILLATORS FOR DIFFERENT NUMBER OF SUBNETWORKS
COMPOSED OF THREE OSCILLATORS

study from multichannel EEG recordings [61]. Multivariate
synchrony is vital in neuroscience since cognitive tasks rely
on the integration of multiple functional regions over the brain
[62], [63]. In particular, we assessed the error-related negativity
(ERN) which is an event-related potential (ERP) that reaches
its maximal amplitude within 100 ms after response errors in
simple reaction time tasks [64]. The ERN has been associated
with increased synchronization in the theta band (4–8 Hz)
among the central and frontal regions, particularly the medial
prefrontal cortex (mPFC) and the lateral prefrontal cortex
(lPFC) [65], when compared to central and parietal regions
[66].
EEG data was provided from a previously published study

where subjects performed a speeded-response flanker task [67].
In this experiment subjects were required to correctly identify
the target letter, located at the center of a five-letter string.
By pressing one mouse button, subjects identified the target
letter being congruent (e.g., MMMMM) or incongruent (e.g.,
MMNMM) with respect to the flanker letters. Each trial was
135 ms long, where during the first 35 ms prior to the onset of
the target letter only the flanker letters (e.g., MM MM) were
presented and then the five letters were kept on the screen
during the remaining 100 ms. Inter-trial intervals ranged be-
tween 1 200 ms to 1 700 ms and a fixation cross was presented
during that time. The experiment entailed a total of six blocks
of 80 trial and the letters were changed between blocks.
EEG activity from error and correct responses was recorded

by the ActiveTwo system (BioSemi, Amsterdam, The Nether-
lands). Epochs were 1200 ms long, with the beginning 200 ms
belonging to the time prior to the response. All epochs were
processed using the Current Source Density (CSD) Toolbox for
volume conduction [68], after correction for eye movement ar-
tifacts and rejection of trials containing artifacts. Nineteen sub-
jects whose error trials ranged from 20 to 61 ( ,
mean st.dev.), were considered in this analysis and the same
number of correct responses was chosen randomly. The sam-
pling frequency of the EEG epochs was 512 Hz. Fig. 7 illus-
trates the locations of the 58 electrodes considered in this work.
We investigated topographical connectivity by computing the

multivariate synchrony of error and correct responses separately
at each electrode among it and its four nearest neighbors. For
example, multivariate synchrony at electrode FCz will include
electrodes FCz, Fz, FC2, Cz, and FC1. For each subject, HTS
and S-estimator were computed as in (24) and (6), respectively,
resulting in a multivariate synchrony time and frequency map.
In order to consider themultivariate synchrony occurring during
the peak of the ERN (50–75 ms) [69] and the onset of the ERN,
we selected a time window of 25–75 ms. This is similar to our
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Fig. 7. Locations and names of electrodes.

Fig. 8. Topographical error-correct synchrony plots for (a) HTS, (b) S-Esti-
mator.

previous work [20] as this time window showed the strongest
differences between error and correct responses. In addition,
we focus on the theta band since synchronization during the
ERN interval has been shown to occur within this band [65].
Thus, time-frequency multivariate synchrony maps were aver-
aged over the time interval [25 ms, 75 ms] and the theta band
(4–8 Hz) for each electrode, resulting in a single multivariate
synchrony value for each electrode to be used in the construc-
tion of topographical plots and statistical significance tests.
Fig. 8(a) and (b) illustrate the topological distribution of mul-

tivariate synchrony for error minus correct responses averaged
over subjects estimated fromHTS and S-estimator, respectively.
HTS results in higher synchrony differences for error versus
correct responses for the frontal and central electrodes when
compared to the central-parietal electrodes, following previous
hypotheses. We performed a Wilcoxon rank-sum test over all
subjects (19) in order to compare the multivariate synchrony
from error and correct responses obtained from both methods at
each electrode. Fig. 9(a) and (b) show the topoplots of p-values
for HTS and S-estimator, respectively. Both estimators result
in significant differences ( , Wilcoxon rank-sum test)
in the central-frontal regions. However, the two methods differ
slightly in the significant error-correct differences in the cen-
tral-lateral regions. In particular, HTS detects significantly dif-

Fig. 9. Topographical p-values of error vs. correct multivariate synchrony
(a) HTS, (b) S-Estimator. (White refers to significant differences).

Fig. 10. ROC curves for HTS and S-Estimator. Probability of detection is based
on the multivariate synchrony among FCz and its neighbors whereas the prob-
ability of false alarm is based on the multivariate synchrony around CPz.

ferent synchrony in the right-central region with this significant
difference nonexistent for the left-central region. Although in a
lower degree, this is also observed for the S-estimator where the
right frontal-central electrodes show significant differences be-
tween error and correct while the left frontal-central electrodes
do not. This finding is in agreement with previous cognitive
control studies that showed higher clustering and bivariate syn-
chrony in the right-central region compared to the left-central
region [70], [71]. This lateralization in synchrony is in agree-
ment with findings in functional imaging studies on emotion
regulation which have linked activity in the right hemisphere
to cognitive control tasks [72].
In addition, a Receiver Operating Characteristic (ROC) curve

was constructed in order to compare the performance of HTS
and the S-estimator in the detection of multivariate synchrony
during the ERN interval in the theta band. The probability of
detection and false alarm were defined as the ratio at which
the average multivariate synchrony over the ERN interval and
theta band in electrodes FCz and CPz, respectively, exceeded a
threshold. Fig. 10 shows the ROC curves for both estimators.
The area under the curve (AUC) for each estimator was com-
puted, resulting in and

. Thus, as observed, HTS exceeds S-estimator in the de-
tection of multivariate synchronization in the frontal-central re-
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gions during the ERN in the theta band indicating that HTS
is more sensitive to detecting the difference in synchroniza-
tion between the frontal-central region and the central-parietal
region.

VII. CONCLUSION

In this work, we presented a novel time-frequency measure of
multivariate phase synchrony based on a hyperdimensional co-
ordinate system. This measure has been derived from both a hy-
perspherical coordinate system and from the Cartesian product
of unit circles. The proposed measure has been shown to be ad-
vantageous over a widely used multivariate measure, the S-es-
timator, in estimating the global synchrony in simulated sys-
tems of coupled oscillators and in neurophysiological signals.
In particular, it was shown that the proposed method is a di-
rect measure of global synchrony which overcomes the draw-
backs of multivariate synchrony methods based on the bivariate
PLV. First, it was shown, from a simulation in Rössler oscilla-
tors, that the proposed measure provides information about the
underlying structure of the network, otherwise misinterpreted
from the S-estimator. Second, the proposed measure is compu-
tationally efficient since it does not require the computation of
all pairwise synchrony values in a network nor the eigendecom-
position of a connectivity matrix. In addition, this measure is
effective in detecting multivariate synchrony in the frontal-cen-
tral regions during the ERN. Furthermore, the proposed mea-
sure can be implemented using instantaneous phase estimates
obtained from the Hilbert transform, theWavelet transform and,
with some limitations, the Hilbert-Huang transform in addition
to the RID-Rihaczek distribution. Thus, the proposed measure
of multivariate synchrony is a promising tool for the assessment
of the global integration in dynamic complex networks.
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