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Summary

This paper concerns the joint behaviour of precedence and exceedance statistics in random
threshold models. Joint distributions of precedence and exceedance statistics, both exact and
asymptotic, are obtained, and the results are illustrated for random thresholds based on order
statistics and record values.
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1. Introduction

The problem of finding the distribution of precedence (exceedance) statistics, which
denote the total number of observations preceding (exceeding) a threshold value, has always
been the subject of much study. These kinds of statistics have been widely used in many
areas involving statistical process control, reliability, and hydrological frequency analysis. If
the threshold value is fixed, the problem is closely related to the classical binomial model.
Random thresholds, however, make the problem more complicated and difficult. The use of
a random threshold was first considered in the works of Gumbel & von Schelling (1950) and
Epstein (1954).

Precedence and exceedance models based on random thresholds are generally set up
using two random samples that are independent of each other. Random thresholds are deter-
mined according to one of the samples, and the behaviour of observations in the other sample
with respect to these random thresholds is investigated. In this context, these statistics are
potentially useful for testing whether the two random samples are from the same popula-
tion: see, for example, Katzenbeisser (1989). We refer also to Balakrishnan & Ng (2006) for
precedence type tests and applications.

The topic is closely related to tolerance limits (Robbins 1944), and to invariant confidence
intervals containing the main distributed mass, as introduced by Bairamov & Petunin (1991).
It is known that, under certain conditions, an invariant confidence interval for the class of all
continuous distribution functions can be constructed only from the order statistics. As will be
explained in the following sections, this result supports the use of order statistics as random
thresholds.

Wesolowski & Ahsanullah (1998) investigated the distributional properties of various
exceedance statistics. Bairamov & Eryilmaz (2000) obtained the distributions (both exact

∗Author to whom correspondence should be addressed.
Department of Mathematics, Izmir University of Economics, 35330 Izmir, Turkey.

e-mail: serkan.eryilmaz@ieu.edu.tr
Acknowledgments. The authors thank the Technical Editor and the referees for their careful reading and
constructive comments, which helped improve the paper.

C© 2008 Australian Statistical Publishing Association Inc. Published by Blackwell Publishing Asia Pty Ltd.

http://crossmark.crossref.org/dialog/?doi=10.1111%2Fj.1467-842X.2008.00512.x&domain=pdf&date_stamp=2008-09-08


210 ISMIHAN BAIRAMOV AND SERKAN ERYILMAZ

and asymptotic) of exceedance-type statistics based on the minimal spacing of a sample and
record values. Recent discussions on the topic can be found in Bairamov & Kotz (2001),
Eryilmaz & Bairamov (2003), Stepanov (2004) and Bairamov & Eryilmaz (2006).

Here, we investigate the joint behaviour of precedence and exceedance statistics with
respect to lower and upper random thresholds X L and XU . In Section 2, we present the joint
distributions, both exact and asymptotic, of precedences and exceedances. Section 3 contains
an illustration of distributions for random thresholds, based on order statistics and record
values.

2. Joint distribution of precedence and exceedance statistics

Let Y 1, Y 2, . . . be independent, identically distributed (i.i.d.) random variables with
a continuous cumulative distribution function (cdf) F . Let X L and XU be two random
variables termed the lower and upper random thresholds, respectively. These two thresholds
are generally dependent random variables, and may be viewed as a function of a random
sample X1, X2, . . . , which is independent of Y 1, Y 2, . . . . Therefore, X L = φ(X1, X2, . . .) and
XU = ψ(X1, X2, . . .), where φ and ψ are two Borel functions satisfying φ(x1, x2, . . . , xm)
≤ ψ(x1, x2, . . . , xm) for all (x1, x2, . . . , xm) ∈ R

m .
Suppose that X1, X2, . . . are i.i.d. random variables with continuous cdf G, and the joint

cdf and probability density function (pdf) of X L and XU are denoted respectively by

H (x, y) = Pr {X L ≤ x, XU ≤ y} and h(x, y) = ∂2 H (x, y)

∂x∂ y
.

Define

Sn(X L ) = # {i ≤ n : Yi < X L} and Sn(XU ) = # {i ≤ n : Yi > XU } .

It is obvious that Sn(X L ) (Sn(XU )) denotes the number of Y s that precede (exceed) the
random threshold X L (XU ). The following result provides the joint probability mass function
(pmf) of these random variables.

Theorem 1. For k + l ≤ n,

Pr[Sn(X L ) = k, Sn(XU ) = l]

=
(

n

k, l, n − k − l

)
EH

{
Fk(X L )F̄ l(XU )[F(XU ) − F(X L )]n−k−l

}
,

where ( n
k,l,n−k−l ) = n!/{k!l!(n − k − l)!} and F̄(x) = 1 − F(x).

Proof. Let us introduce the following trivalue random variables:

ξi =
⎧⎨
⎩

0 if Yi < X L

1 if Yi ∈ (X L , XU )
2 if Yi > XU

, i = 1, . . . , n.

C© 2008 Australian Statistical Publishing Association Inc.
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PRECEDENCES AND EXCEEDANCES 211

Since the random variables ξ 1, ξ 2, . . . , ξ n are exchangeable, one can write

Pr[Sn(X L ) = k, Sn(XU ) = l]

=
(

n

k, l, n − k − l

)
Pr

[
n∑

i=1

I (ξi = 0) = k,

n∑
i=1

I (ξi = 2) = l,

n∑
i=1

I (ξi = 1) = n − k − l

]
,

where I (A) = 1 if A occurs and I (A) = 0 otherwise. The proof readily follows because
[
∑n

i=1 I (ξi = 0),
∑n

i=1 I (ξi = 2),
∑n

i=1 I (ξi = 1)] has a multinomial distribution of param-
eters [n, p1 = F(X L ), p2 = F̄(XU ), p3 = F(XU ) − F(X L )]; that is, it is a mixture with the
mixed distribution H . �

Now, consider the asymptotic behaviour of (Sn(X L )/n, Sn(XU )/n) as n tends to infinity.
Let us first establish the following limit result, which will be helpful.

Lemma 2. For real values a, b, c and complex values α and β, if a + b + c = 1, then

lim
n→∞[a exp(α/n) + b exp(β/n) + c]n = exp(aα + bβ).

Proof. One can write

n log[a exp(α/n) + b exp(β/n) + c]

= n log {a [1 + α/n + o(1/n)] + b [1 + β/n + o(1/n)] + c}

= n log

[
1 + 1

n
(aα + bβ) + o(1/n)

]

= n

[
aα + bβ

n
+ o(1/n)

]
→ aα + bβ as n → ∞. �

We are now ready to construct the asymptotic distribution of (Sn(X L )/n, Sn(XU )/n).

Theorem 3. For n → ∞,(
Sn(X L )

n
,

Sn(XU )

n

)
d→ (F(X L ), F̄(XU )).

Proof. The joint characteristic function of Sn(X L )/n and Sn(XU )/n is

ϕSn (X L )/n,Sn (XU )/n(t1, t2) =
∑ ∑

k+l≤n

eit1k/neit2l/n Pr[Sn(X L ) = k, Sn(XU ) = l]

= EH

{∑ ∑
k+l≤n

(
n

k, l, n − k − l

)
eit1k/neit2l/n Fk(X L )F̄ l(XU )

× [F(XU ) − F(X L )]n−k−l

}

C© 2008 Australian Statistical Publishing Association Inc.
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212 ISMIHAN BAIRAMOV AND SERKAN ERYILMAZ

= EH

{∑ ∑
k+l≤n

(
n

k, l, n − k − l

) [
F(X L )eit1/n

]k [
F̄(XU )eit2/n

]l

× [F(XU ) − F(X L )]n−k−l
}

= EH
({

F(X L ) exp(i t1/n) + F̄(XU ) exp (i t2/n) + [F(XU ) − F(X L )]
}n)

.

Using Lemma 2 with a = F(X L ), b = F̄(XU ), c = F(XU ) − F(X L ) and α = i t1, β = i t2,
one obtains (noting that taking the limit under the integral sign is allowed by the dominated
convergence theorem)

ϕSn (X L )/n,Sn (XU )/n(t1, t2) →
n→∞ EH

{
exp

[
i t1 F(X L ) + i t2 F̄(XU )

]}
,

and this completes the proof. �

Note that the above theorem can be seen as a stochastic version of the law of large
numbers, because it presents the convergence of a multinomial distribution of parameters
[n, p1 = F(X L ), p2 = F̄(XU ), p3 = F(XU ) − F(X L )] in law to (p1, p2, p3).

3. Precedences and exceedances based on order statistics and record values

In this section, we illustrate the findings of the previous section for the random thresholds
defined with the help of order statistics and record values. Let X1, X2, . . . , Xm be i.i.d. random
variables with cdf G, and denote by X1:m ≤ X2:m ≤ · · · ≤ Xm:m the corresponding order
statistics. Let

X L = Xr :m and XU = Xs:m, 1 ≤ r < s ≤ m. (1)

In this case, the corresponding precedence and exceedance statistics are defined respectively
by

Sn(Xr :m) = # {i ≤ n : Yi < Xr :m} , Sn(Xs:m) = # {i ≤ n : Yi > Xs:m} ,

where Y 1, Y 2, . . . , Y n are i.i.d. random variables with cdf F .
There is a strong motivation behind the choice of (1) in both theory and practice. It is

well known that, under the hypothesis H 0 : F = G,

Pr [Yk ∈ (Xr :m, Xs:m)] = s − r

m + 1
, 1 ≤ r < s ≤ m, (2)

and under H 0, Y 1, Y 2, . . . , Y n can be seen as a continuation of X1, X2, . . . , Xm so that

Yi
d= Xm+i , i = 1, . . . , n. In this case, the probability (2) can be rewritten as

Pr[Xm+1 ∈ (Xr :m, Xs:m)] = s − r

m + 1
,

which implies that (Xr :m , Xs:m) is a distribution free confidence interval containing the future
observation in the class of all absolutely continuous distribution functions. It is also known
that, if φ and ψ are two Borel functions satisfying φ(x1, x2, . . . , xm) ≤ ψ(x1, x2, . . . , xm) for
all (x1, x2, . . . , xm) ∈ R

m , then the probability

Pr {Xm+1 ∈ [φ(X1, X2, . . . , Xm), ψ(X1, X2, . . . , Xm)]}

C© 2008 Australian Statistical Publishing Association Inc.
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PRECEDENCES AND EXCEEDANCES 213

is the same for all absolutely continuous distributions if and only if

φ(X1, X2, . . . , Xm) = Xr :m and ψ(X1, X2, . . . , Xm) = Xs:m

for some 1 ≤ r < s ≤ m (see Bairamov & Petunin 1991).
These random thresholds are also of special importance in applications. For example,

in statistical process control the random sample X1, X2, . . . , Xm is known to be a reference
sample, and distribution free control charts proposed recently by Chakraborti, van der Laan
& van de Wiel (2004) are based on order statistics of a reference sample with a lower control
limit Xr :m and upper control limit Xs:m .

Corollary 4. Under the hypothesis H 0 : F = G, the joint pmf of Sn(Xr :m) and Sn(Xs:m) is

Pr [Sn(Xr :m) = k, Sn(Xs:m) = l] =
(

n−k−l+s−r−1
n−k−l

) (
k+r−1

k

) (
m−s+l

l

)
( n+m

m

)

k, l = 1, . . . , n ; k + l ≤ n.

Proof. Via Theorem (1),

Pr[Sn(Xr :m) = k, Sn(Xs:m) = l]

=
(

n

k, l, n − k − l

) ∫∫
x<y

Fk(x)[1 − F(y)]l

×[F(y) − F(x)]n−k−l gr ,s(x, y) dydx, (3)

where gr,s(x , y) denotes the joint pdf of Xr :m , Xs:m , and it is given by (see, for example,
David & Nagaraja 2003)

gr ,s(x, y) =
(

m

r − 1, s − r − 1, m − s

)
Gr−1(x) [G(y) − G(x)]s−r−1

× [1 − G(y)]m−s g(x)g(y), x < y. (4)

Using (4) in (3) and assuming F = G, one obtains

Pr [Sn(Xr :m) = k, Sn(Xs:m) = l] =
(

n

k, l, n − k − l

)(
m

r − 1, s − r − 1, m − s

)

×
∫ 1

0

∫ 1

u
uk+r−1(v − u)n−k−l+s−r−1(1 − v)m−s+ldvdu,

and simple manipulations yield the result. �

Corollary 5. For n → ∞,(
Sn(Xr :m)

n
,

Sn(Xs:m)

n

)
d→ (F(Xr :m), F̄(Xs:m)), (5)

C© 2008 Australian Statistical Publishing Association Inc.
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214 ISMIHAN BAIRAMOV AND SERKAN ERYILMAZ

and, under the hypothesis H 0 : F = G, the pdf of the vector (F(Xr :m), F̄(Xs:m)) is

q(x, y) =
(

m

r − 1, m − s, s − r − 1

)
xr−1 ym−s(1 − x − y)s−r−1

if x + y < 1, and q(x , y) = 0 if x + y ≥ 1. The joint distribution given by the pdf q(x , y)
is actually the Dirichlet distribution with parameters r , m − s + 1, and s − r .

Proof. The result (5) directly follows from Theorem 3. For the second part, the probability
integral transformation yields

Pr
[
F(Xr :m) ≤ x, F̄(Xs:m) ≤ y

] = Pr (Ur :m ≤ x, Us:m ≥ 1 − y)

=
(

m

r − 1, s − r − 1, m − s

)∫ x

0

∫ 1

1−y
ur−1(v − u)s−r−1(1 − v)m−sdvdu, (6)

where Ur :m and U s:m are the r th and sth order statistics of a random sample from the unit
uniform distribution. Now, taking the second derivative of (6) with respect to y and x , the
required result is obtained.

Distributional properties of precedences and exceedances can also be considered using
record threshold models. These types of considerations are available in the literature. See for
example Bairamov (1997), Wesolowski & Ahsanullah (1998) and Stepanov (2004).

Let {Xm}m≥1 be a sequence of i.i.d. random variables with continuous cdf G. Define
the record times of this sequence as u(1) = 1, u(n) = min { j : j > u(n − 1), X j > Xu(n−1)},
n > 1. Xu(1), Xu(2), . . . denote the corresponding record values. Now, let

X L ≡ Xu(r ) and XU ≡ Xu(s), r < s.

The joint pdf of Xu(r ) and Xu(s) is given by (see, for example, Ahsanullah 1995)

h(x, y) = R(x)r−1

(r − 1)!
r (x)

(R(y) − R(x))s−r−1

(s − r − 1)!
g(y), −∞ < x < y < ∞,

where

R(x) = − ln(1 − G(x)) and r (x) = d

dx
R(x) = g(x)

1 − G(x)
. �

In the following, we illustrate the joint distributions of precedence and exceedance
statistics. We assume that s = r + 1 for simplicity.

Corollary 6. Under the hypothesis H 0 : F = G, the joint pmf of Sn(Xu(r )) and Sn(Xu(r+1))
is

Pr[Sn(Xu(r )) = k, Sn(Xu(r+1)) = l]

= 1

n − k + 1

(
n

k

) k∑
j=0

(−1) j

(
k

j

)
1

( j + n − k + 1)r
, k + l ≤ n.

C© 2008 Australian Statistical Publishing Association Inc.
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PRECEDENCES AND EXCEEDANCES 215

Proof. Using Theorem 1, along with the joint pdf of Xu(r ) and Xu(r+1),

Pr
[
Sn(Xu(r )) = k, Sn(Xu(r+1)) = l

]
=

(
n

k, l, n − k − l

)∫∫
x<y

[
Fk(x)(1 − F(y))l(F(y) − F(x))n−k−l

× R(x)r−1

(r − 1)!

1

1 − F(x)
dF(x)dF(y)

]

=
(

n

k, l, n − k − l

)∫ 1

0

∫ 1

u

[
uk(1 − v)l(v − u)n−k−l × (− ln(1 − u))r−1

(r − 1)!

1

1 − u

]
dvdu.

Using the transformation 1 − v = (1 − u)t , the required result is obtained. �

Corollary 7. For n → ∞,(
Sn(Xu(r ))

n
,

Sn(Xu(s))

n

)
d→ (

F(Xu(r )), F̄(Xu(s))
)
,

and, under the hypothesis H 0 : F = G, the pdf of the vector (F(Xu(r )), F̄(Xu(s))) when
s = r + 1 is

z(x, y) = 1

(r − 1)!

1

1 − x
(− ln(1 − x))r−1, x + y < 1.

Proof. This immediately follows, using the joint distribution of Xu(r ) and Xu(s). �
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