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ABSTRACT

CUSTOMER CHURN PREDICTION FOR
TELECOMMUNICATIONS INDUSTRY

YABAŞ, UTKU

MS in Intelligent Engineering Systems

Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Türker İnce

Co-Supervisor: Asst. Prof. Dr. Hakkı Candan Çankaya

January 2014

Customer churn is a concern for telecommunication service providers due to its

associated costs. In this thesis, we analysed state-of-the-art data mining algo-

rithms and developed novel methods to accurately predict customers who will

change and turn to another provider for the same or similar service. We ex-

tensively evaluated performance of our proposed approach using a public and

real dataset compiled by Orange Telecom for the Knowledge Discovery and Data

Mining (KDD) 2009 Competition. This dataset has 100, 000 instances with 230

attributes, which makes it a “big data”. IBM achieved the highest score on this

dataset requiring significant amount of computational resources. We aimed to

find alternative methods that can match or improve the recorded highest score

with more efficient use of resources. In our study, we focus on ensemble of clas-

sifiers techniques. We compared performance of single, powerful classifiers to

state-of-the-art ensemble methods for churn detection problem. Additionally, we

showed that these results can be further improved by combining selected subset

of well performing classifiers by a voting classifier. Overall, the results with our

proposed approach were similar to the official top scorers of the competition. We

believe that our proposed approach can be valuable for solving other challenging

machine learning problem domains (such as “big data” problems) rather than

churn prediction. Also, we performed experiments using the selected datasets

from the UCI Machine Learning repository. Our proposed approach outperforms

the single powerful algorithms contained in the ensemble for most of the datasets

tested.

Keywords: churn prediction, ensemble classifier, voting classifier, data mining,

machine learning.
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ÖZ

TELEKOMÜNİKASYON SERVİSLERİNDEN
ABONELİKLERİNİ İPTAL EDECEK MÜŞTERİLERİ

ÖNCEDEN TAHMİN ETMEK

YABAŞ, UTKU

Akıllı Mühendislik Sistemleri, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Doç. Dr. Türker İnce

İkinci Tez Danışmanı: Yrd. Doç. Dr. Hakkı Candan Çankaya

Ocak 2014

Müşteri kaybetmek, telekom firmaları açısından kaybettirdiği para bakımından

önemli bir endişedir. Bu tez çalışmasında, en son veri madenciliği yöntemlerini

analiz ederek, servislerden ayrılacak veya başka bir firmanın servisini kul-

lanmayı düşünen müşterileri tahmin etmek için yeni metotlar geliştirdik.

Önerdiğimiz yaklaşımın performansını yoğun bir şekilde değerlendirdik. Bu

değerlendirmeyi yapmak için Orange Telecom tarafından “Knowledge Discov-

ery and Data Mining 2009”(KDD) yarışması için sunduğu gerçek ve kullanıma

açık bir veri kümesi kullandık. Bu veri kümesinde toplam 100.000 örnek

ve 230 değişken bulunmaktadır. Bu yüzden veri kümesi “büyük veri” kap-

samına girmektedir. IBM bu yarışmada birinci olmuştur, ancak önemli ölçüde

bilişimsel kaynak kullanmaktadır. Biz alternatif metotlar ve daha uygun kay-

naklar kullanarak, yarışmadaki en yüksek skorlara ulaşmayı hedefledik. Bu

çalışmada, toplu sınıflandırıcı teknikleri üzerine yoğunlaştık. Tek ve güçlü

sınıflandırıcılar ile en son toplu sınıflandırıcıları “müşteri ayrılma” problemi

için karşılaştırdık. Ayrıca, bu metotların performanslarını arttırmak için iyi

performans gösteren sınıflandırıcıları seçerek; bunları oylayıcı sınıflandırıcı ile

birleştirdik. Genel olarak, elde ettiğimiz sonuçlar, yarışmanın en yüksek sonuç

alan resmi yarışmacıları ile yakındı. Önerdiğimiz yaklaşımın, “müşteri ayrılması

tahmini” dışındaki başka zorlayıcı otomatik öğrenme problem alanları için de

değerli olabileceğine inanıyoruz. Yöntemimizin doğruluğunu onaylamak için,

UCI Machine Learning kütüphanesinden topladığımız veri kümeleri ile deneyler

yaptık. Bu deneyler sonucunda çoğu veri kümesinde yöntemimiz, içinde bulunan

toplu sınıflandırıcıdaki bütün algoritmalardan daha iyi sonuçlar elde etmiştir.
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İnce and Assist. Prof. Hakkı Candan Çankaya for their guidance, advice, criti-

cism, insight throughout the research.

I must state my thanks to my supervisor Dr. Türker İnce for his thoughts,
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Chapter 1

Introduction

Rapidly changing technology in wireless infrastructure, like LTE, variety of hand-

held smart devices, and innovative apps in Mobile communication world make

service subscriber retention a competitive effort. Subscriber churn is a concern of

customer care management for most of the mobile and wireless service providers

and operators due to its associated costs. Especially, in saturated wireless com-

munications market, there are incumbent service providers and small operators

offering promotions and packages for subscribers who would like to change-and-

turn (churn) to their own services. Wireless service providers have to have strate-

gies and counter promotions for potential churners as it is more expensive earning

a subscriber back once s/he unsubscribes the service. Therefore, subscriber churn

awareness lands on the roadmaps of many wireless and mobile service providers

for their survival.

In this study, we concentrate on evaluation and analysis of performance of

different machine learning and data mining methods for accurate churn predic-

tion. We analysed state-of-the-art data mining algorithms and developed novel

methods to accurately and efficiently predict subscribers who will change-and-

turn (churn) to another provider for the same or similar service. In 2009, the

French telecom company Orange sponsored a competition in Knowledge Discov-

ery and Data Mining (KDD), and posted three datasets [1] compiled from real

1



CHAPTER 1. INTRODUCTION 2

customers. One of the dataset was churn analysis and prediction in wireless ser-

vice providers’ domain. They provided a sample dataset from their wireless and

mobile subscribers filtered transactions to be used in the competition. In our

study,we developed and tested various algorithms over this dataset and used it

in our experiments. Although the competition is over, platform is still open for

submissions and data is still available for further research towards improvements

and other interpretations. Evaluations for the ranking consider the area under

the Receiver Operating Characteristic (ROC) curve. ROC area is a standard

scoring for the problems where classes are highly skewed. It is a scoring that

is independent from the class ratios. IBM achieved high scores on this dataset

requiring a significant amount of computing resources [10].

In this study, we aimed to develop alternative data mining methods that can

match or improve the recorded high scores with more efficient and practical use

of resources. We have concentrated on ensemble classification methods which

encompass single methods to improve the solution to the churn prediction prob-

lem. Then we propose our own approach to solve churn prediction problem.

Our approach considers different classifier - preprocessing pairs. It is based on

the various single powerful classifier algorithms together with own preprocessing

methods, which are called meta-classifiers. We build meta-classifier models from

different algorithms. We choose best performing meta-classifiers for our final vot-

ing classifier. The results from preliminary application of our proposed approach

to churn prediction problem were promising [42,43].

The first place in the KDD 2009 Competition in churn problem solutions is still

held by IBM [3]. Our proposed approach scored close to the top scores of the KDD

2009 Competition with motivating results and less computational resources. We

have further investigated our proposed approach on different benchmark datasets

gathered from UCI Machine Learning dataset repository [41]. These datasets

represent real-world problems with low-dimensional and limited training sets as

opposed to large and high dimensional data of churn prediction problem. Re-

sults are analysed and interesting conclusions have been found after intensive

benchmark tests.
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This thesis is organized as follows; Chapter 2 briefs about the definition of

churn, churn prediction problem, methods used and challenges. Chapter 3 pro-

vides some background on related or similar studies on churn prediction, followed

by the tools we have used. In Chapter 4, KDD 2009 dataset is analysed and we

explain our proposed approach for churn prediction problem. Chapter 5 illus-

trates our benchmark tests we did for the evaluation of our method on different

datasets. Our method is compared and contrasted with other methods. We con-

clude the thesis in Chapter 6 by giving a direction for our future studies, and

improvements for our system.



Chapter 2

Churn Prediction

2.1 What is Churn?

Over the last two decades mobile telecommunications become the dominant com-

munication medium. The market has reached a degree of saturation where each

new customer must be won over the competitors. Since the cost of winning a new

customer is far greater than the cost of preserving an existing one. Churn for

telecommunication can be defined as, subscriber who has a contract with a service

provider quits the contract and makes a contract with another service provider

for a same or similar service because of a better deal or some other reason.

There are three types of churn which are:

1. Active: the customer decides to quit

2. Rotational: the customer quits contract without the aim of switching to

a competitor.

3. Passive: the company discontinuous the contract itself.

We are interested in the first two types of the churn. The basis of the churn

4



CHAPTER 2. CHURN PREDICTION 5

detection is historical data containing information about past churners. A com-

parison is made between these churners and existing customers. As likely churn-

ers are identified customers for which the classification suggests similarly to prior

churners.

The dataset used in churn prediction includes:

1. Customer behaviour: identifies the parts of service a customer is using

and their frequencies. For example; the provider can track number and

length of calls, period between calls, the usage of the network for data

exchange, etc.

2. Customer perceptions: Customer perceptions are defined as the way a

customer apprehends the service. They can be measured with customer sur-

veys and include data like overall satisfaction, quality of service, problem

experience, satisfaction with problem handling, pricing, locational conve-

nience, image/reputation of the company, customer perception of depen-

dency to the vendor, etc.

3. Customer demographics: are some of the most used variables for churn

prediction. They include age, gender, level of education, social status, geo-

graphical data, etc.

4. Macro-environment variables: identify changes in the world, different

experiences of customers, which can affect the way they use a service. For

example; people who have survived a natural disaster and could rely on

their mobile phones during the event are most likely to continue using the

service.

The size of gathered data is usually very large, with large number of attributes

(features) which results in high dimensionality, hence making it a complex and

challenging ”Big Data” problem. One approach is to use data reduction (such as

principal component analysis) and feature selection (such as mutual information

feature selection) techniques.
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The methods used in churn prediction are regression analysis, Näıve Bayes

classifier, Decision Trees, Artificial Neural Networks, Support Vector Machines

and many more. These algorithms are detailed in Mitchell’s book on “Machine

Learning” [35]. We describe some of the specific algorithms we used in Chapter

3 and Chapter 4.

2.2 Churn Prediction Problem

Churn prediction problem can be defined as follows; customer data on past calls

for each mobile subscriber between a specific time period, together with all per-

sonal and business information is maintained by the carrier. In addition, for the

training phase, labels are provided in the form of a list of churners together with

their corresponding churn dates. Given this data consist of previous churners and

non-churners, patterns and similarities between them are tried to be discovered.

These patterns are applied on current customers to predict future churners so

that they can be contacted before they churn.

2.2.1 Churn Prediction as a Classification Problem

Problem of churn prediction is a data mining problem. To predict churn-

ers in telecommunications services, first we need previous customer records of

churners and non-churners. Dataset needs to be gathered from these records.

Data gathering is not in the scope of this work. We assume that we have

the following dataset. Each customer i, should be represented with a vector

xi with n attributes; x1i , x
2
i , x

3
i , ...x

n
i , labeled by a value y which in our case;

y = {churner, non − churner}. y is a Boolean valued target function. Data is

used to build prediction models using a machine learning algorithm. Prediction

model is developed to predict the current customers if s/he is a future churner or

not. Prior to the training stage, data may need preprocessing to help machine

learning algorithms to train models. Pre-processing step we applied is explained

in Chapter 4. The model is tested using a separate independent dataset in which
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classes of each instance are known. Test dataset can also be gathered by splitting

the training dataset. Model is applied to the test dataset to predict the churn-

ers in this dataset. We know the labels of the test dataset. Therefore, we can

see how well the model does perform. The test dataset has to be different than

the training set. Otherwise the performance of the model would be unrealistic.

Model will definitely perform better on the dataset that it had been developed

and trained on than the completely different dataset. This process can be seen in

Figure 2.1. There is another testing method called 10-fold cross validation which

is used to test our proposed method on other well known datasets from UCI. The

k-fold cross validation is explained in Section 2.2.3.1.

Churn Prediction is a 2-class classification problem with a boolean-valued tar-

get function: churner (1) and non-churner (0). There are many machine learning

algorithms available which can be applied to churn prediction problem. However,

there is no single golden method that is better than others in all indicators, be-

cause accuracy and concision cannot appear in a single method simultaneously.

Therefore, we have focused on ensemble of classifiers. Our proposed approach is

described in detail in Chapter 4.

Figure 2.1: Churn Prediction as Data Mining Problem

2.2.2 Challenges in Churn Prediction

Data needed for the training is gathered from telecommunication companies.

Records of the users are usually very big. Hundreds of millions of transactions

are recorded everyday. These transactions and user information are stored in

databases consist of thousands of tables and millions of rows. This makes churn

prediction challenging task. Not all of these data is relevant with the churn.
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Database has to be processed and relevant tables should be gathered. However,

data will still be huge with large number of features (columns) and instances

(rows). This makes churn classification problem using classical methods very

expensive in computing resources. Therefore, churn prediction problem which

consists of analysing a very large and high dimensional data is a real ”Big Data”

problem where special, more efficient data mining algorithms should be used.

Another important problem with churn prediction is that churn data is usu-

ally skewed or imbalance. Skewed data means, majority classes (non-churner)

are way higher in number than minority classes (churner). In our case ratio be-

tween the minority and majority classes are only less than 1 : 10. Less than 1

in every 10 customers churn. This makes evaluation harder. Algorithms used

on classification are biased through the majority classes due to class imbalanced.

There is very small information on minority classes. Non-churner patterns must

be learned from these small number of non-churner instances. Some preprocess-

ing techniques can be used for this situation. Resampling method is a simple and

effective method to bias the classifier through minority class. Resampling used in

our approach explained in Chapter 4. Without resampling, some classifier mod-

els classify all instances as non-churner. If the algorithm classifies all instances

as “non-churner”, classifier would have more than 90% accuracy. Classifying all

instances as non-churner result in high accuracy, but obviously it is useless. Clas-

sifier cannot find any churners which is our main purpose. Different evaluation

metric is needed for skewed data which is explained in Section 2.2.3.

2.2.3 Evaluating Churn Prediction System

In complex data mining tasks like churn prediction, researchers cannot just choose

their favourite classifier and apply to the problem. Not all algorithms can be

applied to all problem domains. Many machine learning algorithms should be

executed with different settings to build many different models (classifiers). After

these models are build, they needed to be compared and contrast to choose the

best one for the prediction task. We need a score metric that can tell us how well

the algorithm is predicting and compare the models. Methods to compare and
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evaluate the classifiers will be discussed but first some performance metrics need

to be clarified.

When a new instance in the test dataset comes, the classifier predicts it.

If the prediction is correct (same value as the label), it is counted as true. If

the prediction is wrong, it is counted as false. Prediction is counted as true

negative if the prediction is negative (non-churner) and correct, true positive

if the prediction is positive (churner) and correct, false negative if the prediction

is negative but the actual class is positive and false positive or false alarm if

the prediction is positive but the actual class is negative. Two by two confusion

matrix can be constructed from a classifier and a set of test instances as in Figure

2.2. This matrix is basis for many common metrics.

Figure 2.2: Confusion Matrix

The definitions of most common performance metrics based on the confusion

matrix which are used to evaluate machine learning algorithms are given below:

• P =Number of Actual Positives

• N =Number of Actual Negatives

• TP =True Positives

• TN =True Negatives

• FP =False Positives

• FN =False Negatives

• fprate = False positive rate =
FP

N
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• tprate = true positive rate =
TP

P

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• Accuracy = (TP+TN)×100
TP+FP+TN+FN

• F −measure = 2×precision×recall
precision+recall

Some measures that can be used to evaluate different classifiers includes accu-

racy, F-measure, lift chart, ROC area etc. Each represents a different approach to

evaluating the performance. Before we choose a measure, we first need to clarify

what the performance means to our application. Performance changes according

to the data properties and problem domain. For example, there are two systems

that are predicting forest fires. In a time span of a month, forest is observed.

There were 5 fires. First system predicted 8 fires, 4 of them being true positives

and 4 of them being false positives. Second System predicted 15 fires, 5 of them

being true positives, 10 of them being false positives. Which system is better?

System 1 is better if we measure with accuracy but it misses a fire and a cost of

a fire is too high. We cannot risk missing a fire. 10 false alarms can be tolerated

for correct prediction of a 1 more fire.

There are two other practical issues that need to be explained and we will

see some occurrences of these in later chapters. Over-fitting and under-fitting

are encountered often, not just in churn prediction but in all classification tasks.

Over-fitting happens when the classifier specializes too much on the training

dataset [33]. This usually happens when the classifier model or structure is

overly complex hence it is severely affected by the noise in data due to over-

parameterization. Therefore, it performs poor on the test or the new dataset.

Patterns it discovers are too specific and complex. It discovers patterns that do

not actually in the data. Classifier may adjust to very specific random features

of the training data; features that have no causal relation to the target func-

tion. Therefore, classifier’s performance is quite well on seen examples (training

dataset) but poor on new data (test dataset). The other issue is under-fitting
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which is just the opposite of over-fitting. Under-fit classifier model cannot fit to

data. Because, it is too general or simple even for training data. Under-fitting is

easier to discover because, classifier performs poor on training data. The k-fold

cross validation can reduce the problem of over-fitting. Figure 2.3 is an example

for these issues. Figure show the data points (a) of the dataset, an under-fit

model (b), fit model (c) and over-fit model (d).

Figure 2.3: Fit, Under-fit and Over-fit Model [32]

In churn domain, we should be able to predict as much churners as possible and

we must not misclassify many non-churners as churners. There will be some cost

to get a churner back. If system, classifies non-churner as churner (false positive),

cost of a retaining customer back will be paid for non-churning customer. On the

other hand, if a churner is classified as non-churner (false negative), the company

will not try to get the customer back. Hence, company will loose the customer

resulting in more cost for the company. For a telecom company, the cost of

retaining a current customer is lower than acquiring a new customer.

True positive rate is the ratio between the number of true churners which are

classified as churners (true positives) and number of actual churners (Positives =

TP + FN). False positive rate is the ratio between the number of predicted

churners that are actually non-churners (false positives) and the number of actual

non-churners (Negatives = FP + TN). tprate and tprate are not individually

enough. Precision and recall are two measures that can be used in imbalanced

datasets. Precision is the portion of the customers correctly classified as churners

to all customers that are classified as churners. Recall is the portion of the
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customers correctly classified as churners to all churners. Precision answers the

following question: “Among the customers that are classified as churners, how

many of them are actually churners” and Recall answers “Among all churners,

how many of them the classifier could predict correctly”. There is always a trade-

off between precision and recall. High precision results in low recall. F-measure

considers both precision and recall. Therefore, it is a better measurement for

problems that suffer from class imbalance. For the churn prediction domain

and our dataset, the most appropriate measure is the ROC area which will be

discussed on the next subsection. It is widely used in telecommunications because

this measure considers both true positive and false positive rates. ROC area score

is independent from class ratios. The KDD 2009 competition which have used

the dataset we used also uses ROC curve for scoring. Therefore, we have chosen

the same metric for evaluating our models to solve our main problem in addition

to other common metrics.

2.2.3.1 Cross Validation

Cross validation is about selecting a hypothesis out of a set of hypotheses each

resulting from an application of a learning algorithm to set of training data. The

common approach is to test all hypotheses on a separate (independent) set of

data and select the hypothesis which gives lowest error. According to the k-fold

cross-validation technique, the original sample is randomly partitioned into k

equal size sub-samples. Of the k sub-samples, a single sub-sample is retained as

the validation data for testing the model, and the remaining k−1 sub-samples are

used as training data. The cross-validation process is then repeated k times (the

folds), with each of the k sub-samples used exactly once as the validation data.

The k results from the folds can then be averaged (or otherwise combined) to

produce a single estimation. The advantage of this method over repeated random

sub-sampling is that all observations are used for both training and validation,

and each observation is used for validation exactly once [38]. We used 10 as k

which is also the most common value for k used in the literature [28, 40]. Cross-

validation is analysed very well by Refaeilzadeh et al [40]. They show three-fold

cross validation with a figure, see Figure 2.4.
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Figure 2.4: Three-Fold Cross Validation [40]

Procedure of the ten-fold cross validation can be defined as follows;

• Let n be the number of instances in the data.

• Break data into 10 sub-samples of size
n

10
.

• Train on 9 sub-samples and test on the remaining 1.

• Repeat the process 10 times and take the mean of the evaluation.

Ten-Fold cross validation technique is used in our experiments, see Chapter

5. It is widely used in data mining community to compare models or evaluate

the performances of classifiers, especially when data is limited.

2.2.3.2 ROC Area Evaluation

ROC stands for a Receiver Operating Characteristics graph. ROC is a technique

for visualising, organizing and selecting a classifier based on their performance

[24,26,34]. ROC area is very useful evaluation method because it has properties

that make it useful for skewed class distribution. ROC graphs are two-dimensional

graphs in which tprate is plotted on the Y axis and fprate is plotted on the X

axis. A classifier’s tprate and fprate is plotted on this graph. An example with

5 classifiers of this graph can be seen on Figure 2.5.
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Figure 2.5: ROC Graph with 5 Discrete Classifiers

There are some important points to mark. If a classifier predicts all instances

as non-churner (negative) then, it will be on the point (0, 0). If a classifier predicts

all instances as churner then, it will be on the point (1, 1). (0, 1) would be a prefect

classifier. Classifier is better than another one, if it is on the north west of the

other classifiers [26]. The diagonal line y = x represents the random classifier. A

classifier is expected to do better than a random classifier. The classifier A is the

best classifier in Figure 2.5. It predicts most of the positive instances correctly

without making too many false positives. Classifier E also predicts most of the

positives correctly, but it predicts too many instances as positive which results in

an increase in false positive rate.

Discrete classifiers have only one confusion matrix so they yield to a single

point on the graph. Probabilistic classifiers outputs a probability which represents

the instance’s membership score to the positive class. If this score is higher than

the threshold then classifier outputs the positive class. By varying the threshold,

different confusion matrix would be generated, each of them representing a point

on the graph. Each discrete classifier also produces a value that represents the

degree of membership to target class. Degree of membership values might not

be strict probabilities. For example, decision trees can output its confidence by

looking at how many of positive and negative instances appear on the leaf node

on training set. Higher the probability value represents higher confidence to
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the membership to the class. If these probability values are normalized, we can

have a probabilistic classifier. Now, it is possible to vary the threshold and plot

the classifiers on the ROC graph. From these points a curve is drawn and the

area under this curve is the area under the ROC curve score or area under the

curve (AUC). Main advantage of the ROC graphs in churn prediction problem is

that they enable visualizing of the classifier performance without regard to class

distributions [26]. An example ROC Curve is given in Figure 2.6. Each step

on the graph is a point formed by varying the threshold. The figure is taken

from [24].

Figure 2.6: A Sample ROC Curve [24]



Chapter 3

Technical Background

3.1 Literature Survey

Since the topic of the thesis is a relatively new area,there are a limited number of

good quality academic papers written on churn prediction in telecommunications

industry. Most of the literature about churn prediction is about different fields

and do not cover the problem we face in this thesis.

Lazarov et al. [22] explain the steps and methods of the churn prediction in a

very nice and neat way. It tries to give a basic idea how the churn prediction is

done. The paper begins by discussing the importance of the churn prediction in

a world of ever growing competition on the market. The companies are trying to

find churners because gaining a new customer is more expensive than the keeping

the one that is going to leave. Paper continues on introduction by summarizing

Van Del Poel and Larivieres work on economic value of customer retention. Not

all customers bring the same profit by retention. Some customers are more worthy

than others. Value of a customer is summarized as below:

• lowering the need to seek new and potentially risky customers, which allows

focusing on the demands of existing customers;

16
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• long-term customers tend to buy more;

• positive word of mouth from satisfied customers is a good way for new

customers’ acquisition;

• long-term customers are less costly to serve, because of a larger database

of their demands;

• long-term customers are less sensitive to competitors’ marketing activities;

• losing customers results in less sales and an increased need to attract new

customers, which is five to six times more expensive than the money spent

for retention of existing customers;

• people tend to share more often negative than positive service experience

with friends, resulting in negative image of the company among possible

future customers.

Paper is finalized by description of the structure of the Customer Relationship

Management tools used today. Churn prediction should answer who?, why? and

when? questions then actions should be taken for the profitable customers that

are going to churn. They claim that churn prediction analysis is complex because

data gathered is very large. Paper continues with describing how the quality

of the predictor is measured. Paper discuss the most popular learners in churn

prediction with their advantages and disadvantages, they are regression analysis,

Näıve Bayes, Decision Trees and Artificial Neural Networks.

“Predicting Customer Churn in Mobile Networks through Analysis of Social

Groups”, Yossi Richter, Elad Yom-Tov, and Noam Slonim [12] describe their

method to predict churners which also take into consideration of the effect of a

social group on a person in that group. The paper begins by providing information

on how a good churn prediction system should be. Then, it briefly describes

existing solutions and notes that all of them take a person as one but there can

be a social group that can affect him/her and justifies this approach. Later in

the introduction they describe the churn prediction and how it is done in real

business. Their approach which is group-first approach is described. They built
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a social network graph, nodes represent customers and edges are relations among

customers. Later they weight these edges and these weights represent the strength

of the link between customers. This information helps them to find the social

groups and leaders of the groups. If the leader churns, s/he might persuade

whole group to churn. Therefore, they calculate the customer value of possible

churners so that mobile operator can take action on more valuable customers.

Because, not all churners can be contacted on time. Paper continues with their

experiments and the results. First, they describe their data. They had a 28 days

data from a major mobile operator. Later, they indicate how they decide that the

group will churn. They claim that possibility to churn for small groups are 2.7

times higher than for larger groups. On last section authors describe the possible

reasons for churn which they found with their experiment. They conclude the

paper with their results and execution times. They claim that their results were

good. However, they did not provide much information with their results. Their

execution time is worse than the traditional churn prediction methods. Authors

conclude paper by supporting that this method can also be used for other goals

in mobile operators other than churn prediction.

An Experimental Study on Four Models of Customer Churn Prediction - Zhu

et. al. [15] try to experiment and compare four models used for churn prediction.

Methods like Decision Tree, Artificial Neural Networks and Logistic Regression

have been improved for many times and are difficult to become better. Their

study tries to choose some novel models which can be improved and solve more

complex customer churn problems. These four models are Bayesian networks,

support vector machines, rough set and survival analysis. Paper first briefly

describes each method with their advantages and disadvantages. Later on the

paper authors explain, how these methods can be applied to this specific prob-

lem, churn prediction. The process applied in each method and their results are

explained later on. For the experiments, authors describe how they compared the

results. They compared the results in four different metrics. These metrics are;

ROC curve, accuracy, captured response and lift value evaluation which are the

main indicators to evaluate preciseness of the models. They claim that in overall

Bayesian network performs better than all others by supporting this by results
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and different evaluation metrics.

Wei et al. [13] try to predict potential churners at the contract level for a

specific prediction time-period. They have a dataset from one of the largest

service providers in Taiwan. They are using two types of data for churn prediction

which are contractual data and call details of the subscribers. They do not

consider the demographics data. Authors claim that Decision Tree and Decision

Rule approaches are better than neural network on churn prediction. They’ve

used Decision Tree over Decision Rule based on its popularity. Authors clarify

that data is highly skewed. They use multi-classifier class-combiner approach to

address this problem. They create S randomly partitioned training data subsets

from the majority class examples. Minority class examples are replicated among

all these subsets. Ratio of minority and majority instances are the same for

each subset. Minority examples are the same in all subsets. S is decided by the

desired ratio among the majority and minority classes. A Decision Tree is built

from the each training subset. Now, number of Decision Trees are also S. These

S classifiers perform a weighted voting for the prediction.

Ensemble methods are widely used in Data-mining community as well as for

churn prediction systems. Verbeke et al. [28] experiments machine learning algo-

rithms consist of both single and ensemble algorithms in a set of churn prediction

datasets compiled from telecommunication service providers including KDD 2009

dataset. They propose a profit based evaluation function to choose best perform-

ing classifier. They use small number of variables and report that results are

better than the classical evaluation methods. We have also compared our score

on KDD 2009 and SGI datasets with their work.

Idris et. al. [29] propose an intelligent churn prediction system for telecom.

They report that system uses Random Forest, Rotation Forest, RotBoost and

DECORATE ensembles in combination with minimum redundancy and maxi-

mum relevance (mRMR), Fisher’s ratio and F-score. System is tested on the

KDD 2009 dataset and their results show that the system performs very well on

it. Almost as well as IBM’s score.
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Another example of ensemble algorithms used applied to a different appli-

cation area is by Coussement et. al. [30]. They apply some state-of-the-art

ensemble algorithms for churn prediction in gambling industry. They claim that

churn prediction is a valuable strategy to retain customers at risk. Many experi-

ments reported on this paper. Methods they’ve applied are CART Decision Tree,

generalized additive models, Random Forest and GAMens. They use real world

dataset from gambling industry. Evaluation metrics used are top-decile lift and

the lift index. They conclude their paper by referring that churn prediction to

retain customers in gambling industry is highly profitable.

Rodriguez et al. [27] propose a ensemble method called “Rotation Forest”.

Rotation Forest is a meta-classifier. It randomly splits the dataset in to subsets

and apply Principal Component Analysis is in order to preserve the variability

information. Decision Trees algorithm is used for model building. They compare

Rotation Forest with Bagging, AdaBoost and Random Forest on a set of UCI

datasets. We have also used Rotation Forest for our experiments in Chapter 5.

The studies most similar to ours are the studies on KDD 2009 Competition.

Top scorers on this competition written a report that is published by the compe-

tition [2]. We will now briefly review their methods. IBM has their success from

the ensemble selection. After some pre-processing, they’ve added more features

with binning and prediction of Decision Tree with one or two features. Then,

they built a library of classifiers. Many classifiers are put into this library even

if their test performance was not good. Classifier library includes 500 to 1000

classifiers. They note that best performing classifiers in this library are boosted

trees, followed by Logistic Regression and Random Forest. We alsoverified and

got similar results with these classifiers. Once the library is generated, Ensem-

ble Selection builds an ensemble by selecting from the library of classifiers that

best performs on area under the ROC curve. Bagging is applied to the final

models to reduce the variation. Chances of over-fitting increase if there are large

number of classifiers to choose. Their method is classical data mining approach

without needing of human expert to interpret. Main problem of this approach is

significant amount of computer resources needed because of the large number of

classifiers in the library. Our main goal is to propose a new data mining method
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to improve IBM’s method in terms of computational resources required while

achieving comparable or close prediction accuracies. They claim that each fold

of the cross validation took little more than one day with a cluster of nine dual

Opteron nodes(2 GHz).

Second best scoring team on KDD 2009 Competition were ID Analytics [11].

They have used TreeNet algorithm which is also known as Classification and

Regression Trees. Variable pre-processing is done in a very standard way. They’ve

down-sampled the negative examples because of the huge number of negative

examples in the dataset. Feature selection is applied with the TreeNet algorithm.

Feature selection is done by removing variables one by one considering the variable

importance from Breiman. They combine bagging and boosting with TreeNet as

their final model to improve their results.

Third best scoring team were University of Melbourne [4]. Their approach

needed fair amount of computational resources that can be easily found on to-

day’s personal computers. They ran their algorithms on 2.66 GHz Intel Core 2

Duo processor with 2 Gb of RAM. They have used shallow Decision Trees with

boosting. Their primary reference is from the work of Freidman [17].

3.2 Classifiers

In this study, we have used variety of state-of-the-art powerful classifiers. Number

of classification algorithms used are around 20 and total number of models trained

are around 250. However, we include, in this manuscript, the subset we used in

final model of our proposed ensemble classifier in Chapter 4. The selected subset

of single classifiers are Decision Trees, Random Forest and Logistic Regression.

Other significant algorithms include Artificial Neural Networks, SVM (Support

Vector Machines), Rotation Forest, Näıve Bayes etc. ANN and SVM had a

common disadvantage of long training time (due to large number of training

examples) hence being very slow in model building [24, 35]. Their performance

were rather poor in comparison to the other algorithms explained below and we
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had to eliminate them from consideration during our studies. In Analysis of

KDD 2009 [3], we saw that either top scoring teams have not used them or these

algorithms did not perform well. The algorithms we have used in our final model

are described in the following subsections.

3.2.1 Decision Tree

The ID3 and its successor C4.5 algorithms are the most popular decision tree

algorithms and are widely used in machine learning [16,18]. The C4.5 algorithm

recursively builds sub-trees by putting instances into tests and sum of all these

sub-trees forms a single decision tree. The C4.5 demonstrates an improvement of

ID3 decision tree algorithm from Quinlan [16, 18, 24, 35]. Decision Tree has been

widely used in churn prediction practices. For pruned decision trees, confidence

factor can be parametrized. When deciding the classification for the leaf in the

tree, confidence factor determines how many misclassified instances on the train-

ing set that leaf can tolerate. We have applied confidence factors of 0.25, 0.50,

0.60, 0.75 where higher confidence factors decrease the performance significantly.

We have chosen to use confidence factors of 0.25 and 0.50 for pruned decision trees

as the best practice. We also built un-pruned decision tree where its own results

were good on the training set but, performed significantly worse on the test set

compared to pruned ones. This shows that un-pruned tree over-fits the test set.

In this problem single decision tree was not predictive enough. On the other

hand, our observation is that ensemble of decision trees performs significantly

better than using a single decision tree.

3.2.2 Logistic Regression

Linear Regression is a type of regression analysis, where data are modelled using

linear predictor functions and unknown model parameters are estimated from the

data [24]. It attempts to model the relationship between relevant predictive fea-

tures and the target feature by fitting a linear equation to the observed data. Lin-

ear regression is usually fitted using least squares approach. For j = 1, 2, 3, ...,m
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features and i = 1, 2, 3, ..., n instances , linear regression can be expressed as:

yi = w0 + w1a
i
1 + w2a

i
2 + ...+ wna

i
n (3.1)

where:

• yi is the target label for the instance i

• w0 is the constant parameter

• wj is the weight of the feature j

• aij represents the value of the feature j of instance i

Linear regression was the first regression analysis that has been studied and

used in practice extensively. This is because models which depend linearly on

their unknown parameters are easier to fit. Linear regression is best for the

regression tasks where target feature is continuous. Linear regression can be used

for churn prediction problem with a little modification; however, it is not a good

algorithm for the churn prediction problem because it cannot predict categorical

targets. Logistic regression [24] is a modified version of the linear regression for

prediction tasks where target feature is categorical like in churn problem; namely,

churner and non-churner.

By using the logistic regression, we modelled the relationship between the

target feature and other features. Logistic regression replaces the target feature

with; P (1|a1, a2, ..., ak)

Logistic regression builds a linear model based on transformed target feature.

The final model is;

P (1|a1, a2, ...., ak) =
1

1 + e−w0−w1a1−...−wkak
(3.2)

Similar to linear regression, logistic regression tries to find weights that mini-

mize the training error in the dataset. Linear regression measures the weights by
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using squared error and logistic regression uses the log-likelihood of the model.

The log-likelihood of the model is;

n∑
i=1

(1−xi)log(1− P (1|ai1, ai2, ..., aik))+ (3.3)

(xi)log(P (1|ai1, ai2, ..., aik))

Logistic regression technique tries to maximize the equation above by fitting

the weights and is widely used for the churn prediction problem.

3.2.3 Random Forest

Random Forest is also another powerful machine learning algorithm from Breiman

[9]. It builds a given number of decision trees with random features. At each split

of a single decision tree, m number of random features are chosen and the best

split on these m random features is used to split the node. Each single tree

votes for the prediction. Most popular prediction among many decision trees is

the output of the forest. It is the best performing base algorithm in our tests.

It runs significantly faster than adaBoost algorithm and performs better. Some

disadvantages of the Random Forest are that they sometimes over-fit and it is

hard for a human to interpret.

The original Random Forest algorithm [23], grows many classification trees.

To classify a new object from an input vector, the algorithm puts the input vector

down on the each tree in the forest. Each tree determines a classification, and

votes for that class. The forest chooses the classification that has the most votes

over all the trees in the forest. Each tree grows as follows:

• If the number of cases in the training set is N , sample N cases at random

with replacement, from the original data. This sample will be the training

set for growing the tree.
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• If there are M input features, a number m � M is specified such that at

each node, m features are selected at random out of the M and the best

split on these m is used to split the node. The value of m is held constant

during the forest growing.

• Each tree is grown to the largest extent possible. There is no pruning.

Our implementation differs from the original random forest. We limit the

depth of the trees by 15, 20 and 25: hence, did not grow the trees to the largest

extent. In some cases Random Forest over-fits our dataset. We applied this limit

to overcome the over-fitting problem. Limiting the depth of the trees also reduces

the need for memory. Smaller trees need less space in memory.

3.3 Machine Learning and Programming Tools

3.3.1 Weka

(Waikato Environment for Knowledge Analysis) is a popular suite of machine

learning software written in Java, developed at the University of Waikato, New

Zealand. Weka is open source software issued under the GNU General Pub-

lic License [7]. Weka can be downloaded for free from its website [6]. Weka

supports standard data mining tasks, more specifically, data preprocessing, clus-

tering, classification, regression, visualization, and feature selection. Weka is a

standalone packet and can also be used with Java programming language. Weka

normally do not support multi-threading. Therefore it can be very slow with big

datasets. All the basic machine learning algorithms and most of the preprocessing

methods we used have been implemented under this tool. Additionally, we have

implemented some of our own preprocessing methods and voting classifiers using

Weka’s class structure. Our study includes the interpretation and the evaluation

of the algorithms that are already implemented in Weka.
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3.3.2 Java

All implementation had been done with Oracle’s Java [36] programming language

using Weka’s libraries with Eclipse IDE [37]. Java’s collections, string and con-

currency libraries are used intensively.

3.3.3 Regular Expressions and Text Editors

When importing data to the Weka environment, data has to be in “.arff” format.

We have done it with some regular expressions and text editors. Some of the

preprocessing like replacing missing values is done with regular expressions.

3.3.4 Rapidminer

Rapid miner is a data mining and data analysis toolkit which includes a rich

GUI [8]. Data-mining process can be generated by building pipelines and flows.

We have not used this tool for development. However, we have used it for some

analysis and data format converting operations. Rapidminer can generate rich

analysis. Through these analysis, we have decided which variables to keep or

remove.



Chapter 4

Methods

4.1 The Proposed Approach

In this study, we applied data mining algorithms for subscriber churn analysis and

prediction; namely, data gathering and preparation, prediction model building,

and model evaluation. Our algorithms were developed using the data available

from the KDD 2009 Competition website [1] and we also performed testing on the

SGI [39] churn dataset. The KDD 2009 dataset is the largest real, publicly avail-

able datasets for churn related problems. The data were collected from Orange

Telecom wireless customer transactions. The properties of the dataset features

are explained in the next subsection.

In order to develop our proposed methods and perform some experiments we

had to make some necessary preprocessing of the data. KDD 2009 dataset is

challenging. Preprocessing had to be done to convert the raw data to training

data for classification. This processing step is explained on the next subsection.

In usual settings a machine learning algorithm can be directly applied to this

dataset for training. However, we propose to use a different approach based on

meta-classifier to improve performance of individual, powerful classifiers. Each

meta-classifier we propose encompasses both a preprocessing method and a model

27
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built from the preprocessed dataset. Preprocessing which is applied by the meta-

classifier may vary depending on the model built. After a set of meta-classifiers

is tested, a combination is used in our final proposed model. To come up with a

good performing meta-classifier, we search for a well-matched preprocessing and

algorithm pairs according to their performance. In classical ensemble techniques,

preprocessing applied to the dataset is same for all classifiers used. While a

preprocessing technique can increase the performance of some algorithms, it may

decrease the performance of others. Our approach uses the suitable preprocessing

technique or techniques for each algorithm. In our proposal, the final classification

is achieved by using a voting classifier technique. Classifiers used in the voting

classifier is chosen among the best performing meta-classifiers that were developed

and tested. The decision can be made by applying a performance threshold.

Alternative for that approach is to train each meta-classifier and include the top n

meta-classifier to the voting classifier by looking at their performance scores. The

procedures (pseudo-codes) of the above-mentioned two alternative approaches are

given as Algorithm 2 and Algorithm 3. High level design of the proposed churn

prediction system can be seen in Figure 4.1.

4.1.1 Dataset

The KDD 2009 dataset consists of a very large and high dimensional data which

makes it very challenging for data mining application. It has 100, 000 examples

with 230 variables and is equally divided into training and test sets. Test set’s

labels have been removed. ROC area results of the classifier on the test set can

be obtained by submitting predictions to the website. It was not possible to use

domain expertise because customers’ data was encrypted and variables’ names

were hidden. 190 variables are numeric and 40 variables are nominal. Dataset is

suffering from class imbalance. Ratio of positive and negative instances is only

less than 1 : 10. While some algorithms is not effected from this situation, some

of them are highly biased through positive class. Resampling is a preprocessing

technique to help these algorithms.
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Figure 4.1: The Proposed Churn Prediction System Design
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4.1.1.1 Numeric Variables

There were many problems with the numeric variables. There are 190 numeric

variables in the dataset and all had been multiplied by a factor. None of the

numeric variables was normalized with different dynamic ranges. They were not

on the same scale. Some variables are scaled between 0 to 1, while others take

value between 1 to 1000000. Example for this case can be seen between Var138

and Var5 on Table 4.1.

Table 4.1: Statistics of Some Numeric Variables
Name Min Max Mean Std. Dev. Distinct Missing

Var1 0 680 11.487 40.71 18 99%
Var2 0 5 0.00 0.14 2 98%
Var5 0 12325590 392606 928090 534 97%
Var8 NaN NaN NaN NaN NaN 100%

Var11 8 40 8.626 2.87 5 98%
Var25 0 13168 96.83 214.32 271 10%
Var32 NaN NaN NaN NaN NaN 100%
Var43 0 625 4.16 20.57 20 98%
Var50 0 18 0.09 0.88 4 98%
Var73 4 264 66.64 52.86 131 0%
Var87 0 28 5.42 5.25 5 99%
Var95 0 5640330 98671 180633 20002 45%

Var112 0 10352 66.22 157.64 230 10%
Var138 0 2 0 0.05 2 97%

Variables are polluted by high number of missing values and outliers. There

are many attributes that have more than 90% of their values missing. There are

some variables that are completely empty. Some variables only take few distinct

values or all values are gathered around only one value, see Figure 4.2. Problems

of numeric variables are summarized below:

• 19 attributes have all their values missing.

• 40 attributes have 99% of their values missing.

• 45 attributes have 98% of their values missing.

• 43 attributes have 97% of their values missing.
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• 148 attributes have more than 90% of their values missing.

• 3 attributes contain only one value over all instances.

• Only one attribute have less than 1% of its values missing.

• 52 attributes have less than 10 distinct values.

• All numeric variables have different dynamic ranges.

Table 4.1 summarizes some of the statistics of the numeric values. Please

refer to Table A.1 in Appendix A for full statistics of the numeric variables.

Some examples from the Table 4.1 are that Var8 and Var32 have all of their

values missing. Therefore, they are useless variables. Standard deviations are

very large for the scales of the variables. Var138 take only 2 distinct values over

more than thousand instances which means that Var138 is more like a nominal

variable.

4.1.1.2 Nominal Variables

Nominal or categorical variables also have many issues. There are total of 40

nominal variables. Nominal variables do not have as much missing values as in

numerical variables. There are only 6 variables with more than 90% of their

values missing or that only take one value.

Some categorical variables have quite large vocabulary. Table 4.2 show an

overview of some of the statistics of nominal variables. Table 4.2 shows the

number of instances that have the value of the mode for that variable, number

of distinct values and percentage of missing values for some categorical variables.

As seen on the Table 4.2, Var201 and Var205 have more than 10, 000 different

categories. Problematic issues of the total 40 nominal variables are as follows:

• 17 variables have less than 10 categories, 3 of them take only 1 category.

• 9 variables have more than 10 less than 100 categories.
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• 2 variables have more than 100 categories.

• 9 variables have more than 1000 categories.

Table 4.2: Statistics of Some Categorical Variables
Name # of Instances at Mode Distinct Missing
Var191 1083 1 98%
Var199 955 5073 0%
Var201 12777 2 74%
Var205 31962 3 0%
Var214 73 15415 51%

Figure 4.2: Histograms of some variables

We have also tried our method on a public artificial churn dataset from SGI.

This dataset is much more structured than the KDD 2009 dataset and is not as

challenging as KDD. It has 5000 instances and 21 attributes. 1700 instances were

kept as held off instances for test. 3300 instances were used for training. Best

performing models were chosen for the final model and tested on the hold off set

of 1700 instances. Four attributes were removed from the dataset because they

were 100% correlated with an another attribute.
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4.1.2 Feature Selection and Preprocessing

There are two preprocessing steps in our approach. The first one is applied to

convert raw data into usable training data. This preprocessing will be called

“initial processing” or “initial pre-processing” on the rest of the thesis. Output

of this initial preprocessing is a dataset that is used by all meta-classifiers. In this

section, we explain initial preprocessing step. The initial preprocessing includes,

removal of redundant variables, handling of missing values, aggregation of the

categorical values and normalization. Because of the large number of variables

on KDD 2009 dataset we had to filter some of them. We have removed the

variables which have more than 98% of their values missing. We also removed

the features which take only one value over all instances. Information is carried

over only if there is a change in the pattern of the value of the variable. Because,

if there is no change then there is no information to process.

This process left us with 168 variables. Missing values in numeric variables

are replaced with mean and missing values in categorical variables are assigned

to a new value as “missing”. They are treated as a new value and new category.

There can be a reason for these values to be missing. Therefore, missingness

might be predictive. All values in numerical values are normalized between 0

and 1. Some categorical values have large number of items in their vocabulary.

These variables are problematic because some classifiers, like neural networks,

can only handle numeric variables. To use these categorical variables with such

classifiers that accepts only numeric variables, we have to apply binarization.

In binarization each value in a categorical variable is represented by a binary

variable. This variable is assigned 1 if the instance belongs to that category and

all other variables created from binarization is assigned 0. This approach was not

useful for our problem because some categorical variables have more than 1000

distinct values creating additional 1000 new variables which significantly increase

model building time complexity.

To circumvent this expansion in number of variables, we keep the 10 most

frequent categories and group the rest in a category called “Others”. Therefore,

there are at most 11 new variables generated. Some algorithms cannot handle
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numeric values. We have applied discretization to numeric variables for these

algorithms. Preprocessing we applied can be listed as follows:

• Remove the variables that have more than 98% of their values missing.

• Remove the variables that take only one value or category.

• Replace missing values in numerical variables with mean.

• Aggrate the missing values in nominal variables in a category called “miss-

ing”.

• Keep 10 most frequent categories in nominal variables and aggrate others

in a category called “others”.

• Apply binarization to the nominal variables for the algorithms that cannot

handle nominal values.

• Apply discretization to the numeric variables for the algorithms that cannot

handle numeric values.

SGI dataset was already preprocessed and most of the methods were not

applicable that were on KDD 2009 dataset.

4.1.2.1 Bagging with Decision Trees

Bagging was first introduced by Breiman in 1996 [20]. Bagging, see Algorithm

1, repeatedly samples instances with replacement from a dataset according to a

uniform probability distribution. If a instance is chosen for the sample, it is not

removed from the original set. For the next iteration it has same probability to

be chosen again. Therefore, some instances maybe chosen more than once in the

same dataset, and some of them may not be chosen at all. This is called sampling

with replacement. In bagging, each sample is equally sized. A decision tree is

built for each of these samples. Each of these trees votes for the prediction for

the test set instance. The class that is voted for most of the time is the output of
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the ensemble classifier. Bagging may be applied to other algorithms as well but

bagging with decision trees is the most popular practice.

We have applied bagging algorithm for Decision Trees. Bagging technique

significantly improved the performance of our Decision Trees. For these results

please refer to Table 5.1. AdaBoost can also be applied to the Decision Trees but

Bagging performs better and faster.

Algorithm 1 Bagging Algorithm with Decision Trees

1: k is the number of samples with replacement
2: for i = 0 to k do
3: Create a sample of size N , Di

4: Train a decision tree Ci on the sample Di

5: end for
6: C∗(x) = argmax

∑
i σ(Ci(x) = y)

σ(.) = 1 if its argument is true and 0 otherwise.

4.1.3 The Meta-Classifier

In this study, we built and used our own meta-classifiers for the churn analysis and

prediction problem. For each meta-classifier, we match a preprocessing method or

a set of methods that best fit the base classifier and increase its performance. In

this study, we decided to use ensemble of meta-classifiers because of the fact that

there is no single preprocessing technique that is compatible with all classifier al-

gorithms. Therefore, we apply different preprocessing techniques where they fit.

Each meta-classifier we propose encompasses both a preprocessing method and

a model built from the preprocessed dataset, see Figure 4.3. The dataset is pre-

processed with the preprocessing technique chosen then the classification model

is developed with the preprocessed data. This method might look like suffering

from excessive computations of subsets; however, in practice there are only lim-

ited number of preprocessing techniques for each classifier. For example, ANNs

cannot handle categorical values; therefore, there is no need to apply discretiza-

tion methods to it. Pruned decision trees are biased through frequent class. We

can apply re-sampling for pruned decision trees. With a little training and testing

with a small subset of the data, correct matchings can be determined. On Table
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Figure 4.3: High Level Design of Meta-Classifiers

4.3 the effects of preprocessing techniques to decision trees(DT), Logistic Regres-

sion(LR) and Random Forest(RF) are given. While selection of attributes with

information gain metric, significantly increases performance of decision trees, it

decreases the performance of Logistic Regression while having nearly no effect on

Random Forest.

Table 4.3: Preprocessing - Classifier pairs : Meta-Classifiers
Name DTa DT prunedb LRc RFd

No preprocessing 0.52 0.50 0.67 0.67
Re-sample 0.47 0.53 0.67 0.68

Discretization 0.62 0.68 0.69 0.69
Info gain selection 0.63 0.64 0.61 0.68
a Decision Trees
b Decision Trees with post-punning algorithm
c Logistic Regression
b Random Forest

4.1.4 The Proposed Ensemble Classifier Approach

As explained previously, in order to improve the performance of single, powerful

classifiers contained within, we propose an ensemble classifier approach to ad-

dress the churn prediction problem over large and high-dimensional datasets. We

formed our ensemble classifier using the “voting classifier” method described in

the following subsection. The participating meta-classifiers in the voting classifier

of our final model are determined by a threshold. In our experiments the thresh-

old is 0.69. If classifier performance exceeds or equals the threshold ROC area

score, then we include it in the final model. This score is chosen by inspecting

the other classifiers’ performances. We have tried to include good performing
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classifiers to our final model. Thresholds between 0.65 to 0.70 were empirically

turned out to be reasonable choices. We tried all of them and best result was

achieved with threshold of 0.69. There were 3 classifiers with ROC area larger

than 0.69. For the KDD 2009 dataset we choose the best classifiers by looking at

their ROC area performance. However, the metric used to choose classifiers can

be different depending on the dataset and characteristics of the problem. Differ-

ent metrics for choosing algorithms can be F-measure, recall, precision, accuracy,

etc. which were used during our tests shown in Chapter 5. Algorithm 2 is the

procedure of the whole process of our proposed approach. Alternative evaluation

functions can be implemented easily. For example, as shown in Algorithm 3, top

n number of algorithms can be used for selection. It would not be easy to decide

on the number n as well as the threshold. However, it can be experimented using

different values. Large values of n or small values of threshold will cause more

algorithms to be selected and can result in over-fitting. Each problem domain

will require different values of n or threshold.

Algorithm 2 Algorithm of Our Approach

Require: threshold
Require: Meta-classifiers MC = mc1,mc2, ..,mcn

1: vc is voting classifier
2: for Each mci ∈MC do
3: Train Meta-classifier mci
4: score← Evaluate mci
5: if score > threshold then
6: add mci to vc
7: else
8: ignore
9: end if

10: end for
11: train vc

4.1.4.1 Voting Classifier

Voting classifier, as explained in Algorithm 4, is also a meta-classifier. Voting

classifiers include many trained classifiers in them. Each classifier in the ensem-

ble, classifies instances and votes for a class(churner or non-churner). These votes
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Algorithm 3 Alternative Algorithm of Our Approach

Require: n← number of algorithms that will be used in the voting classifier
Require: Meta-classifiers MC = mc1,mc2, ..,mcm

1: vc is voting classifier
2: E = e1, e2, ..., en are evaluations of meta-classifiers
3: for Each mci ∈MC do
4: Train Meta-classifier mci
5: ei ← Evaluate mci
6: end for
7: Add top n, mc to vc
8: train vc

Figure 4.4: High Level Design of a Voting-Classifier

might be probabilities or pure votes. There are some experimented and practised

ways of combining different classifiers and meta-classifier. Some of them use ma-

jority voting and some use product of probabilities or average probability. With

majority voting, each individual classifier votes for the prediction. As the name

suggests, the class which gets the maximum vote simply becomes the output of

the ensemble classifier. With product of probabilities, each classifier’s probability

contributes to the class selection and class with a higher probability has stronger

influence for the output of the ensemble classifier. Another method to combine

classifiers takes the average of the probabilities from classifiers and decides the

output. Algorithm 4 presents pseudo-code of a sample voting classifier. The

high-level design of a voting classifier is also illustrated in Figure 4.4. In this

study we have used average of probabilities method to determine final prediction.
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Algorithm 4 Sample Voting Classifier Algorithm

1: Train n classifiers C1,C2,...,Cn

2: D is the un-labeled test instance to be classified
3: Prediction of the ensemble classifier C∗(D) is:
4: C∗(D) = argmax

∑n
i σ(Ci(D) = y)

σ(.) = 1 if its argument is true and 0 otherwise.



Chapter 5

Experimental Evaluation and

Results

The method we have tried to solve the churn prediction problem performed well

on the KDD 2009 and SGI datasets. After these results, we wanted to further

experiment our algorithm on well studied datasets. We did extensive experiments

to discover our approach and, its weaknesses and strength. Datasets we have used

in the experiments are given in Table 5.5 along with some of their statistics. All

the datasets in Table 5.5 are classification tasks. These datasets are very neat,

therefore we did not apply any preprocessing on most of them. For benchmark

tests, we have chosen 10 well known machine learning algorithms. They are

given on the Table 5.6. These algorithms also form our library of classifiers for

our proposed approach. We tried to inspect the performance of the algorithms in

Table 5.6 executed on the datasets in Table 5.5 along with our proposed approach.

What we want to show is if the algorithms can perform better when used with

our approach compared to running individually. Results were very promising. In

most of the cases our approach performed equal or better than the best performing

algorithm in the Table 5.6.

40
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5.1 Results on Churn Prediction Datasets

Our proposed model is built out of meta-classifiers that have performance exceed-

ing or equal to the ROC area score of 0.69. There are three meta-classifiers that

qualify for this requirement, see in Table 5.1. These classifiers are chosen from

library of more than 250 classifiers. Logistic Regression based meta-classifier was

built with discretization. Decision trees use bagging. For Random Forest based

meta-classifiers 300 trees and a depth limit of 20 is used. Preprocessing applied

to the Random Forest based meta-classifiers were supervised discretization, re-

sampling and the feature selection of 60 features with information gain metric.

As seen from the Table 5.2, the base classifier performance significantly increases

with proposed ensemble of models with voting procedure.
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Table 5.2: ROC Area of the Final Model
Classifier Score

1 Bagging 0.6933
2 RF with 300 trees 0.6984
3 Log. Reg. 0.6929

Final Model with (1),(2),(3) 0.7230

The results of our proposed approach are still below the top three scorers of

the KDD 2009 competition. On the other hand, it performs better than all the

algorithms experimented by Verbeke et al [28]. Our best performing algorithms

are similar to the top 3 of the KDD 2009. Bagging, Random Forest and Logistic

Regression were reported to perform well which can be seen in Table 5.3. However,

Verbeke’s experiments do not show the same.

Table 5.3: Comparision of Results with Other Methods for KDD 2009 Dataset
Technique ROC Score Variables Reference
Ensemble selection 0.7651 100 to 5000 [10]
TreeNet 0.7614 7595 [11]
Gradient Boosting Machine 0.7493 198 [4]
Our Meta-classifiers with voting 0.7230 168
Bayes Network 0.714 20 [28]
Neural Networks 0.712 20 [28]
k-Nearest Neighbour 0.700 20 [28]
Näıve Bayes 0.688 20 [28]
CART 0.658 20 [28]

Our observations indicate that model building is significantly faster than

IBM’s reported methods [10]. The runtime for the proposed final classifier was

approximately 2 hours using standard desktop computing platform with dual core

2.66 GHz processor and a 4 Gb of RAM. The final results were very encouraging

in terms of efficiency with higher scores and faster runtime. Our method also has

some limitations. Human expertise is needed to choose the appropriate prepro-

cessing methods to use with each classifier. An expert in the field can easily limit

the set of preprocessing methods for each classifier. An expert also needs to de-

termine the threshold to choose classifiers for final model. For each new problem,

this threshold may vary. Therefore, a prior work has to be done to determine

the threshold before automating the process. As a future work, we will try to
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automate both preprocessing method selection and final threshold selection steps.

Table 5.3 show the comparison of our results with KDD 2009 Competition

leaders and other known algorithms tested on this dataset by Verbeke et al. For

results of other algorithms, refer to Verbeke’s paper [28]. Our method is close

to leaders of the competition. It cannot get a better score. On the other hand,

it performs better than the all of the state-of-the-art algorithms tested on this

dataset. In terms of computational resources it is better than IBM’s methodology.

Our experiments are promising that with less resources, very high scores can be

achieved.

For the SGI dataset, F-measure of the models were very close to each other.

Therefore, it was not very good indicator to compare different models in terms

of performance. ROC area scores show the distinction between the models. Pre-

processing methods did not help the algorithms very much. Most of the time

models without preprocessing are better than the ones with the preprocessing

techniques. We can conclude that this is a normal result. Because, dataset is

artificial and it is already in an organized form. There aren’t any missing values

and attributes are normalized. But we have seen that preprocessing techniques

significantly increased the results on KDD dataset, since it is a real data collection

from customer. Through KDD 2009 website, only ROC area results are calculated

and published. We didn’t have a chance to see and publish the accuracy and F-

measure.

We have tried variety of Random Forest with different depths and trees. Re-

sults were almost the same with the different number of depth limits. We have

used depth limits of 0, 5, 10, 15, 20 and results were the same. This is because

the limited number of attributes. Random Forest converges with a depth limit

of 5, therefore increasing the depth limit does not help. Situation is the same

with the number of trees, too. To summarize, random forest with 300 trees and

5 depth had ROC area of 0.864. Bagging with decision trees had ROC area of

0.838. They had the highest ROC score in our models except the Random For-

est. We have included those two in our final ensemble voting classifier. This final

model had 0.876 ROC area score on the test set. We observed that results are
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significantly increase when our approach is used. Accuracy has also increased

with 0.06 points. However, this score is not significant. F-measure scores stayed

the same with the best performing classifier. We were concentrated on increasing

ROC area, which is a distinctive metric for skewed class problems.

Table 5.4: Best Meta-Classifiers for SGI
Technique Accuracy F-measure ROC Area
Random Forest 88.18 0.877 0.864
Bagging with DT 88.66 0.889 0.838
Final Model 88.72 0.889 0.876

Our approach improved the base classifier results significantly. SGI dataset

that is artificial were already had some pre-processing techniques applied. There-

fore pre-processing techniques did not help our method. As a result we have built

a normal voting classifier. Methods in Table 5.4 are obtained without preprocess-

ing techniques but initial preprocessing is applied. Test has been run 10 times

and mean scores have been reported.

Our experiment with SGI dataset shows that the ROC area scoring is the most

distinctive one among others. Therefore, a good method to evaluate classifiers

for churn prediction problem. In addition, our method performed well on another

churn dataset which is very promising. Further experiments with our proposed

approach are given and explained on the next chapter.

5.2 Test Framework

We used Weka libraries for our tests. Test framework is written in JAVA. All

tests reported in this section are done with 10 times 10-fold cross validation.

10-fold cross validation is explained in Chapter 2. 10 times 10-fold cross valida-

tion is executing 10-fold cross validation 10 times. The data is re-shuffled and

re-stratified before each round. For each run performances are recorded. Average

performances and standard deviations for these 10 runs is computed. Weka has

its own evaluation class for 10-fold cross validation. To apply methods from this

class to our own classifier, we had to integrate classifier to Weka environment.
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10-fold evaluation method in Weka expects a classifier that is implemented from

Weka.Classifier interface. The Weka.Classifier interface want classifiers to im-

plement only one method called buildClassifier(), see Figure 5.1. As the name

suggests, Weka wants new classifiers to declare how it is built. The buildClassi-

fier() method expects only one parameter called Instances. Instances is a Weka

class that represents instances. Classifier gets build with these instances. In-

stances are training examples. Weka has another class called Evaluation. It

has a method, evaluateModel. Evaluation class has attributes like ROC area, F-

measure, precision, recall and accuracy. When evaluateModel method is called,

the attributes of the Evaluation class is set. Evaluation class’s evaluateModel

method can be called by providing the classifier, dataset and number of folds.

Weka environment takes care of the rest.

Tests are done on 17 UCI datasets with 10 algorithms. Each algorithm trained

and tested on each dataset for 10 folds. This process is done 10 times. Total of

170 results, 1700 runs and 17000 folds were gathered. We also experimented our

algorithm by varying the number of algorithms used in our final model. This test

is also done on each dataset for 10 folds and 10 times. Each of these test were

done in a multi-threaded environment. For details please see Section 5.2.1. Class

diagram for Weka’s Classifier, Evaluation and our method when integrated to

Weka can be seen on Figure 5.1.

Figure 5.1: Class Diagram related with Classifiers
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Table 5.5: UCI Datasets Used in Tests

Dataset Class Instance Disc. features Cont. Features

anneal 6 898 32 6
autos 7 205 10 16

breast-cancer 2 286 10 0
glass 7 214 0 9

hearth-statlog 2 270 0 13
hepatisis 2 155 13 6

iris 3 150 0 4
labor 2 57 8 8

lymph 4 148 15 3
primary-tumor 22 239 17 0

segment 7 2310 0 19
soybean 19 683 35 0

splice 3 3190 60 0
vehicle 4 846 0 18

vote 2 435 16 0
wine 3 178 0 13
zoo 7 101 16 1

Table 5.6: Algorithms Used in Tests

Algorithm acronym

1 Decision Trees with 0.25 confidence factor DT
2 Decision Trees with 0.50 confidence factor DT
3 Näıve Bayes NB
4 Logistic Regression LR
5 Bagging with Decision Trees Bagging
6 AdaBoost
7 Rotation Forest
8 Random Forest with 10 trees RF
9 Random Forest with 20 trees RF

10 Nearest Neighbour IBK
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5.2.1 Multi-processing

Weka GUI does not support multi-threading by default. However, by using the

Weka through Java code itself, each classifier and each test can be trained in

a different thread. This makes use of the different cores of the processor. Our

benchmark tests were done on a 8-core processor. By multi-threading, tests were

done approximately 8 times faster. We have used 8 threads for experiments

which made optimum use of 8 cores. Multi-threading was implemented with

Java’s Executor class. Executor classes thread pool was invoked. Thread pool

can be created by providing number of threads to be used in Java. As mentioned

in Section 5.2, each test case was run 10 times. All of these tasks are runnable

tasks. They were executed on thread pool. Thread pool queues each of these

tasks. Thread pool takes a task from the task queue. If there is a waiting thread,

task is invoked on this thread. There are at most 8 tasks running at the same

time, because task pool was created with 8 threads. Multi-threading is essential

in benchmark tasks. It significantly reduces the time that an experiment take.

Our approach is also done by multi-threading. Our method includes training

of meta-classifiers in the voting classifier. Each classifier is trained on a different

thread, therefore on a different core of the CPU. Multi-threading increases the

performance of the classifier if the processor is multi-cored.

5.2.2 Experimental Results from UCI Benchmark Datasets

Our tests have been executed in various different settings. For KDD 2009 dataset,

we have chosen best performing meta-classifiers to our final ensemble model ac-

cording to their ROC area scores. From now on, we will call our algorithm

selection evaluation function as metric. Such metrics are ROC area, F-measure,

recall, precision, etc. ROC area is a good metric for skewed datasets. However,

for some datasets F-measure and accuracy might be more predictive. Even if they

are not, they might be better for the purpose of the classification problem. In

the experiments we have tried both ROC area, F-measure and accuracy for the

algorithm selection for the ensemble model. ROC area and F-measure scores are
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weighted average values of the metrics. Accuracy cannot be weighted. It is the

percentage of the correct classifications over all classifications. Weighted average

is calculated as follows;

• Suppose we have a dataset D with the label y which can take n number of

values(classes)

• Each class is defined as;

y = c1, c2, ..., cn.

• Number of instances labeled as each class are;

m1,m2, ...,mn.

• Evaluation function for class i is defined as;

E(ci, D)

• Total number of instances is;

N =
∑n

i=1(mi)

• Weighted average evaluation of the classifier is;

n∑
i=1

(
E(ci, D)×mi

N
) (5.1)

With weighted average score, each classes score contributes to the final score

according to their proportion of the number of instances belong to that class.

Evaluation function can easily be made ROC area evaluation or F-measure eval-

uation. Tables below are the evaluation results. Note that the tables were too

big, therefore they were split into two tables. Table 5.7 and Table 5.8 forms one

table, Table 5.9 and 5.10 forms another table, Table 5.11 and Table 5.12 forms

the last table.

Table 5.7 and Table 5.8 are the ROC area results of the 10 experimented algo-

rithms versus our approach. Results show the ROC area scores of the algorithms

in each dataset. The Max column in Table 5.8 shows the score of the best per-

forming algorithms out of 10 algorithms we have experimented. The last column
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shows the comparison of our method with other algorithms. If the value on the

last column is better, our method is significantly better than all algorithms used

in regards to significance factor. If it is same, our method performs same as the

algorithm that performs best among others, therefore better than all others. If

it is worse, our method is not as good as the best performing algorithm, but this

doesn’t mean that our method is the worst. It is just worse than the best one

when chosen ROC area metric. Table 5.9, Table 5.10 and Table 5.11, and Table

B.6 structured same as the ROC Tables. Table 5.9 and Table 5.10 are F-measure

results of the algorithms and our method when F-measure chosen as algorithm

selection metric. Table 5.11 and Table 5.12 is accuracy results of the algorithms

and our method when accuracy chosen as algorithm selection metric.

First, we compare the performance of algorithms used in these experiments.

When we apply the ROC area evaluation for the algorithms declared in Table 5.6,

scores were very close to each other on the same datasets. Rotation Forest [27]

performs best on 8 datasets. Surprisingly, Näıve Bayes classifier is the best over

6 datasets and it is significantly better than others. We would not expect Näıve

Bayes to out perform others, because other algorithms include some state-of-the-

art techniques. There is no similarity between the attributes of the datasets that

an algorithm performs well on, see Table 5.5 and Table 5.7 , Table 5.8. Unlike for

KDD 2009 dataset, Random Forest, Logistic Regression, AdaBoost and Bagging

did not perform very well over the selected UCI datasets. Bagging did not top on

any of the datasets, AdaBoost top only one dataset but sharing the score with

Rotation Forest, and Random Forest tops 4 datasets sharing the score of the 2

with Rotation Forest. Rotation Forest over-performed the Bagging, AdaBoost

and Random Forest on all datasets. Overall, Rotation Forest and Näıve Bayes

had the best ROC area scores.

For ROC area results, our algorithm is slightly better than the all other meth-

ods on most datasets. We applied significance factor of 0.005. In most of the

dataset, results are not improved more than the significance factor therefore our

method did not significantly improved the results. On the dataset “primary tu-

mor” our method is better than all of the other methods except Näıve Bayes.
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It scores very close to Näıve Bayes but slightly worse. For the “hepatisis, lym-

phography, vehicle” datasets, our method performs significantly better than all

algorithms. ROC area metric is not distinctive on these datasets in respect to

other metrics. These datasets do not suffer from class imbalance. For relatively

simple datasets that do not suffer from class imbalance like the ones in UCI, ROC

area is not a very good evaluation. Algorithms reported in Table 5.6 already tops

the ROC area scores for the datasets used. Using more algorithms do not help

the results. ROC area is not a good evaluator for UCI datasets since all scores are

very close to each other. Algorithms have score of more than 0.99 on 8 datasets

which is very hard to improve. However, our method is still at least as good as

the other methods we have used with lower standard deviation. We can conclude

that our method do not provide a much improvement if the evaluation is done by

the ROC area, and ROC area is not very predictive for the chosen datasets.
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F-measure results are more distinctive than the ones in the ROC area. We

used significance factor of 0.005 for F-measure like in ROC area evaluation. F-

measure considers both precision and recall. Normally, when precision is in-

creased, recall decreased. There is a trade-off between them. F-measure is a

good evaluator when both precision and recall are important. Näıve Bayes, Lo-

gistic Regression, Rotation Forest and AdaBoost are among the best scoring

algorithms. Näıve Bayes and Rotation Forest top 3 of the datasets. Logistic

Regression and AdaBoost top 4 datasets each. Our method is better on many of

the datasets with F-measure metric, see Table 5.9 and Table 5.10. Our method

is better even when the comparision is “same” on the table, however it is not

significantly better. On “iris” dataset, our method performs slightly worse than

the best of other algorithms. It performs better on “glass,hearth-statlog, hepati-

sis, labor, lymphography, primary tumor, wine and zoo”. The datasets that our

approach performs well on have a common thing. They all have 2 or 3 values

for the class variable, except zoo and primary tumor, as seen in Table 5.5. Zoo

dataset has 7 classes and Primary - tumor dataset has 22 classes. If the evalua-

tion is done with F-measure we can easily say that our method performs better

or same on almost all datasets.
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Accuracy results in Table 5.11 and Table 5.12 are computed from percentage

of the number of correct classified instances over total number of instances. Signif-

icance factor used is 0.005. Like the F-measure evaluations, adaBoost and Näıve

Bayes are the best performing classifiers. Each one tops 4 datasets in the list.

The datasets they top are the same with the ones with F-measure evaluations. It

is expected that results will be correlated with other measures. Our method still

performs significantly better. It is worse on “breast cancer”, “iris” and “soybean”

datasets, same on “anneal” and “glass” datasets, and better on all other datasets.

As mentioned above it is very hard to do better on “anneal” dataset, because like

in other experiments results are very high. Almost all algorithms scores above

99%.
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All classifiers had a hard time when trying to classify “primary tumor”

dataset. This is due to the high number of nominal values that “primary tu-

mor” has for the class label, which is 22. Our classifier cannot do better on iris

dataset. Näıve Bayes performs very good on some datasets, however it performs

poor on the other datasets that other algorithms perform well on like; “autos”,

“glass” and “segment”. On average our proposed approach is significantly bet-

ter on most of the datasets with all metrics. These experiments gave us some

motivating results.

5.2.2.1 Effects of Number of Algorithms

Our method decides which algorithms to be used for the final voting by providing

it number of algorithms or a threshold score. In this section, we will examine the

effects of number of algorithms used in the final model. This experiment has

same configuration and framework with the previous experiment. The effects of

number of classifiers will be discussed separately for each metric, just like the

experiment above. X-axis of the graphs in this section represents the number of

algorithms used in the final model. Number of algorithms used is varied between

1 to 10. Y-axis shows the corresponding result. Each line represents a dataset

which are described on legend of the graph. All graphs are drawn from the results

shown in Table B.1 and Table B.2; Table B.3 and Table B.4; and Table B.5 and

Table B.6. All results can also from seen from these tables in Appendix B

As described in the previous section ROC area evaluation is not distinctive

for these datasets. The number of classifiers effects the scores of the final model,

however depending on the dataset it increases or decreases. It is hard to see

the relation between number of algorithms and ROC area score, see the Figure

5.2. Different number of algorithms performs better on different datasets. It

is hard to find a global number. However, most of the algorithms have their

best performance around 3, 4 and 5 number of algorithms. If more than 3, 4, 5

algorithms are used, performance decreases. On hard classification tasks like the

“primary tumor”, best performance is found by using only one algorithm. This

is actually the same as using only the best performing algorithm, and voting
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classifier does not have any effect because there is only one voter. Algorithms

training on this datasets seem to over-fit faster. Datasets do not contain easily

detectable pattern and final model gets complex with more than one algorithm.

Final model tend to discover patterns that do not exists.

Figure 5.2: Effects of Number of Algorithms, ROC Area

With most of the datasets score increases with the number of algorithms with

some exceptions. At some point it starts to decrease because of over-fitting. It

is easier to see this when we remove the exceptions from the graph and zoom it,

see Figure 5.3 and Figure 5.7.

Figure 5.3: Effects of Number of Algorithms, ROC Area 2
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Figure 5.4: Effects of Number of Algorithms, F-measure

Figure 5.5: Effects of Number of Algorithms, F-measure 2

5.3 Limitations

One limitation of our proposed approach is the need for human expert interven-

tion, which prevents it from being fully automatic. Number of algorithms or

threshold score should be decided upon for algorithm selection. There has to be

a human expert to decide number of algorithms to be used. Brute force can be

used to select the best number by trying all numbers. However it would be very

expensive if algorithm library is too large in means of computational resources.

Optimum number of algorithms would be different for each dataset and it should

be experimented. There is no good interval for it. This is experimented on the

previous section. However, all machine learning algorithms should be experi-

mented by tuning parameters in data mining tasks and different tests should be
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Figure 5.6: Effects of Number of Algorithms, Accuracy

Figure 5.7: Effects of Number of Algorithms, Accuracy 2

executed. Best way to decide number of algorithms is by experimenting different

values. As seen on the graphs above, final method performance tend to increase

for a while and after some point it decreases but not always. In some cases, this

heuristic will stuck in local optima. It is not possible to fully automate the pro-

cess. This is the major limitation we currently see with our proposed approach.



Chapter 6

Conclusions

In this thesis, we analysed various powerful single classifier algorithms and their

combinations as ensemble classifiers and proposed a new ensemble classifier model

with improved performance for churn prediction problem in Mobile and Wireless

Communication Services. We worked on KDD 2009 dataset and tried to improve

or match highest scoring teams on the KDD 2009 Competition. Earlier in the

study we have observed that preprocessing technique has a significant impact on

the performance of a classifier. Single preprocessing technique will not perform

well on all classifiers. In this study, we have built an ensemble voting classifier

encompassing a set of well performing meta-classifiers. Meta-classifiers consists of

preprocessing and classifier pairs. Best meta-classifiers are chosen from a library

of classifiers. These classifiers vote for the prediction. The results demonstrated

that the performance of churn prediction can significantly improve on a single

computer with a practical time window for obtaining the results. We could not

score as well as the winners of the competition. However our scores were very

promising. Our score was close to top scores with less computational resources.

We have further investigated our algorithm on 17 UCI datasets. We compared

10 well studied algorithms and our approach on UCI datasets. Our approach

scored better or same on almost all datasets in both ROC area, F-measure and

accuracy.

64
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We experimented the number of algorithms used in the final model. However,

we cannot find a global value or a routine to calculate the value for number of

algorithms. This stay as limitation to our approach. Number of algorithms is

still parametrized. A human expert needs to experiment the algorithm to find a

optimum or near optimum value for this.

Our approach is integrated with Weka libraries. Therefore, one can use it on

his/her own application with Java programming language when made publicly

available. It is also implemented by multi-threading. Each algorithm in the final

model and each fold of the validation process can be executed in different threads.

Our future work is to find a logical value or way to find the number of algo-

rithms to be used in the final model. This value will be different for each dataset

and algorithms used. Therefore; rather than a common value, we will try to

find a way or formula to calculate the optimum number of classifiers. If we can

achieve this, all process can be fully automated. Our experiments in these thesis

shows that it will be very complex to formulate that. Within the time given for

this graduate study, we observed that the proposed technique is promising and it

needs further study to overcome its limitations.



Appendix A

Numeric Variables in KDD 2009

Dataset
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