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Abstract—Let G = (V (G), E(G)) be a simple graph. A subset S of V (G) is a dominating set
of G if, for any vertex v ∈ V (G) − S, there exists some vertex u ∈ S such that uv ∈ E(G). The
domination number, denoted by γ(G), is the cardinality of a minimal dominating set of G. There are
several types of domination parameters depending upon the nature of domination and the nature of
dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-
weak bondage numbers. In this paper, we first investigate the strong-weak domination number of
middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of
middle graphs are obtained.
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1. INTRODUCTION

There has been an explosive growth between graph theory and computer science, Operations
Research, chemical applications, electrical and communication engineering in the last 50 years. In view
of many varied applications in the fields of communication networks, algorithm designs, computational
complexity, etc., the study of several domination parameters is the fastest growing area in graph theory.
There are several types of domination depending upon the nature of domination and the nature of
dominating set. In the following, we present the notions of strong and weak domination number,
bondage number, and strong and weak bondage number in connected graphs.

In a graph G = (V (G), E(G)), a subset S ⊆ V (G) of vertices is a dominating set if every vertex
in V (G) − S is adjacent to at least one vertex of S. The domination number γ(G) is the minimal
cardinality of a dominating set. In graph theory, the concept of domination with its numerous variations
is well studied.

If uv ∈ E(G), then u and v dominate each other. The notions of strong and weak domination in
graphs were first introduced by Sampathkumar and Pushpa Latha [1]. For two adjacent vertices of G, u
and v, if deg(u) ≥ deg(v), then u strongly dominates v. Similarly, if deg(v) ≥ deg(u), then u weakly
dominates v.

A set S ⊆ V (G) is strong-dominating set (sd-set) of G if every vertex in V (G) − S is strongly
dominated by at least one vertex in S. Similarly, if every vertex in V (G) − S is weakly dominated by at
least one vertex in S, then S is a weak-dominating set (wd-set).

Applications of strong and weak domination are seen in certain practical situations. For instance,
in a road network in which a number of locations are connected, the degree of a vertex v is the number
of roads meeting at v. If deg(u) ≥ deg(v), then, naturally, the traffic at u is heavier than that at v, and
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vice versa. If the traffic between u and v is considered, preference should be given to the vehicles going
from u to v. Thus, u strongly dominates v and v weakly dominates u.

The strong domination number γs(G) and the weak domination number γw(G) of G are defined
similarly as the domination number γ(G) of G.

When investigating the domination number of any given graph G, one may want to learn the answer
of the following questions: How does the domination number decrease in a graph G? How does the
domination number increase in a graph G? One of the vulnerability parameters known as bondage
number in a graph G answers the second question, while the other vulnerability measure known as
reinforcement number gives the answer of the first question. The bondage number was introduced by
Bauer, Harary, Nieminen and Suffel [2]; and has been further studied by Fink, Jacobson, Kinch and
Roberts [3], Hartnell and Rall [4] and others. The bondage number b(G) of a nonempty graph G is the
cardinality of a smallest set of edges whose removal from G results in a graph with domination number
greater than γ(G).

The strong bondage number of G, denoted by bs(G), is the minimal cardinality among all sets of
edges E′ ⊆ E(G) such that γs(G − E′) > γs(G) [5]. The weak bondage number of G, denoted by
bw(G), is the minimal cardinality among all sets of edges E′ ⊆ E(G) such that γw(G − E′) > γw(G);
and we deal with the strong bondage number of a nonempty graph G [6]. In this paper, we investigate,
first of all, strong-weak domination number of the middle graph of a graph. Then several results for the
bondage and strong-weak bondage of middle graphs are obtained.

Throughout this paper, for any graph G, α(G) and β(G) are, respectively, the covering number and
the independence number of G.

2. BASIC RESULTS

In this section, we will review some of the known results.

Theorem 1 ([6]). If G is a nonempty graph with a unique minimal dominating set, then b(G) = 1.

Theorem 2 ([6]). The strong bondage number of

(a) the complete graph Kn, n ≥ 2, is bs(Kn) = �n/2�;

(b) the cycle Cn, n ≥ 3, is

bs(Cn) =

{
3 if n ≡ 1 (mod 3),
2 otherwise;

(c) the path Pn, n ≥ 3, is

bs(Pn) =

{
2 if n ≡ 1 (mod 3),
1 otherwise;

(d) the wheel Wn, n ≥ 4, is bs(Wn) = 1;

(e) the complete bipartite graph Kr,t, 4 ≤ r ≤ t, is

bs(Kr,t) =

{
2r if t = r + 1,
r otherwise.

Theorem 3 ([6]). The weak bondage number of

(f) the complete graph Kn, n ≥ 2, is bw(Kn) = 1;

MATHEMATICAL NOTES Vol. 93 No. 6 2013



ON THE BONDAGE NUMBER OF MIDDLE GRAPHS 797

(g) the cycle Cn, n ≥ 3, is

bw(Cn) =

{
2 if n ≡ 1 (mod 3),
1 otherwise;

(h) the path Pn, n ≥ 3, is

bw(Pn) =

{
2 if n = 3 or 5,
1 otherwise;

(i) the wheel Wn, n ≥ 4, is

bw(Wn) =

{
2 if n ≡ 2 (mod 3),
1 otherwise;

(j) the complete bipartite graph Kr,t, 4 ≤ r ≤ t, is bw(Kr,t) = t.

Theorem 4 ([6]). If T is a nontrivial tree, then bs(T ) ≤ 3.

Theorem 5 ([6]). If any vertex of tree T is adjacent with two or more end-vertices, then bs(T ) = 1.

Theorem 6 ([6]). If T is a nontrivial tree, then bw(T ) ≤ Δ(T ), where Δ(T ) denotes the maximum
vertex degree of G.

3. SOME EXACT VALUES FOR THE BONDAGE NUMBER OF MIDDLE GRAPH
In this section, we first give the definition of the middle graph of a graph. Then, the domination

number and bondage number of middle graphs are calculated.

Definition 7 ([7]). The middle graph M(G) of a graph G is the graph obtained from G by inserting a
new vertex into every edge of G and by joining by edges those pairs of these new vertices which lie on
adjacent edges of G.

We can see that middle graphs M(G) have a higher stability than the given graphs G. So, in this
paper, we study bondage number, strong bondage number, and weak domination number for middle
graphs M(G) of any given graph G.

Theorem 8. Let G be a nonempty graph of order n and M(G) be the middle graph of G. Then,

γw(M(G)) = n = |V (G)|.

Proof. The vertices which are added to G to construct M(G) are adjacent to at least one vertex of G
and the degrees of these vertices are at least greater by 1 than the degrees of the vertices of G. Thus,
the necessary and sufficient condition to dominate weakly the entire set of vertices of M(G) is to include
the entire set of vertices of G in the wd-set of M(G). Furthermore, the wd-set of M(G) is unique and
includes only the entire set of vertices of G. Hence we conclude that γw(M(G)) = n = |V (G)|.
Theorem 9. Let M(Pn) be the middle graph of Pn. Then

γs(M(Pn)) =
⌊

n

2

⌋
.

Proof. In order to obtain M(Pn), n − 1 new vertices are added to Pn. Two of these new vertices
and n − 3 of these new vertices are of degree 3 and 4, respectively. In order to dominate the end
vertices of M(Pn) in the γs-set, two vertices of degree 3 must be taken. These two vertices exactly
dominate four vertices of Pn. Thus, there are n − 4 vertices of Pn remaining in M(Pn). One of
the vertices having maximal vertex degree of M(Pn) dominates at most two vertices in Pn. In order
to dominate n − 4 more vertices, (n − 4)/2 more new vertices must be included in the γs-set. In
view of the parity of the number of vertices, the obtained value is bounded by �(n − 4)/2�. Hence
γs(M(Pn)) = 2 + �(n − 4)/2� = 	n/2
, the result holds.
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Theorem 10. Let M(Cn) be the middle graph of Cn. Then

γs(M(Cn)) =
⌈

n

2

⌉
.

Proof. The graph M(Cn) has a total of 2n vertices: n are of degree 2 and n are of degree 4. The proof
is similar to that of Theorem 9. Thus, �n/2� vertices of degree 4 are necessary to strongly dominate the
entire set of vertices of the graph. Therefore, γs(M(Cn)) = �n/2�. This completes the proof.

Theorem 11. Let M(K1,n) be the middle graph of K1,n. Then

γs(M(K1,n)) = n.

Proof. To dominate strongly the n end-vertices of M(K1,n), n vertices of degree n + 1 must be included
in the strong-dominating set of M(K1,n). These n vertices of degree n + 1 also strongly dominate
the vertex of degree n. Thus, the strong-dominating set of M(K1,n) of minimal cardinality includes n
vertices. We have γs(M(K1,n)) = n. Furthermore, the strong-dominating set of M(K1,n) which gives
the strong-domination number of M(K1,n) is unique including only the entire set of vertices that are
added to K1,n to form M(K1,n).

Theorem 12. Let M(Pn) be the middle graph of Pn. Then

b(M(Pn)) =

{
1 if n is even,

2 if n is odd.

Proof. The graph M(Pn) is a connected graph with |V (M(Pn))| = 2n − 1 vertices and |E(M(Pn))| =
3n − 4 edges. The domination number of M(Pn) is γ(M(Pn)) = �n/2� [8]. We consider two cases in
the proof according to the parity of the number of vertices of Pn.

Case 1: n is odd. After the removal of one of the edges of M(Pn), γ(M(Pn)) remains the same.
If two edges, say, the pendant edges of M(Pn) (we denote the set of these edges by S′ = {e1, e2}) are
removed, then there remains a graph M(Pn) − S′ with three components, and two of them are isolated
vertices. The largest component of M(Pn)− S′ has n− 3 vertices of degree 4. Taking (n− 1)/2 vertices
is enough to dominate the entire set of vertices of the remaining largest component. Thus,

γ(M(Pn) − S′) = 1 + 1 +
n − 1

2
=

n − 3
2

,

which is greater by 1 than γ(M(Pn)) = (n + 1)/2.

Consequently, we can say that the removal of the set of edges S′ of M(Pn) results in a graph with
three components with domination number greater by 1 than that of M(Pn). Hence, for odd n, the
bondage number of M(Pn) is b(M(Pn)) = 2.

Case 2: n is even. In this case, M(Pn) has a unique minimal dominating set with two vertices of
degree 2 and (n − 4)/2 vertices of degree 4. Thus, by Theorem 1, for even n, we have b(M(Pn)) = 1.

Theorem 13. Let M(Cn) be the middle graph of Cn. Then

b(M(Cn)) =

{
2 if n is even,

3 if n is odd.
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Proof. We have two cases according to the number of vertices of Cn.

Case 1: n is even. As γ(M(Cn)) = n/2 [8], deleting less than two edges will leave γ of the resulting
graph unchanged. By deleting the two edges incident to one of the vertices of degree 2, this vertex is
isolated and γ of the resulting graph increases. This completes the proof.

Case 2: n is odd. In this case (see [8]),

γ(M(Cn)) =
n − 1

2
+ 1.

That is, (n − 1)/2 vertices are not enough to dominate the entire set of vertices of M(Cn); one more
vertex must be included in a minimal dominating set. Therefore, after deleting the two edges as in
Case 1, in addition to this case, one more edge should be deleted from the resulting graph. This edge
must be incident to both one of the vertices of degree 3 and one of the vertices of M(Cn) which is added
to Cn in order to construct the middle graph. If we denote the set of the deleted edges by S′, then
γ(M(Cn) − S′) > γ(M(Cn)). As a result, b(M(Cn)) = 3.

Theorem 14. Let M(K1,n) be the middle graph of K1,n. Then

b(M(K1,n)) = n.

Proof. The graph M(K1,n) is a connected graph with

|V (M(K1,n))| = 2n + 1

vertices and

|E(M(K1,n))| = 2n +
(

n

2

)

edges. The domination number of M(K1,n) is γ(M(K1,n)) = n [8]. The removal of a set edges S′

of M(K1,n) of cardinality less than n results in a graph with the same domination number as that
of M(K1,n).

If n edges of M(K1,n), say, the pendant edges, S′ = {e1, e2, . . . , en}, are removed, then there remains
M(K1,n)− S′, with n + 1 components n of which are isolated vertices and the other one is the complete
graph Kn+1. The domination number of the largest component Kn+1 is 1. Thus,

γ(M(K1,n) − S′) = n + 1,

which is greater by 1 than that of γ(M(K1,n)) = n. Therefore, the minimal cardinality of the set of
edges S′ of M(K1,n) whose removal from M(K1,n) results in a graph with domination number greater
than that of M(K1,n), is n. Hence the bondage number of M(K1,n) is b(M(K1,n)) = n.

Corollary 15. Let G be a graph of order n with a star as a spanning subgraph. Then

b(G) =
⌊

m(degn−1(v))
2

⌋
,

where m(degn−1(v)) denotes the number of vertices of degree n − 1 of G.

Theorem 16. Let G be a nonempty graph of order n, and let M(G) be the middle graph of G. Then

bw(M(G)) = 2.

Proof. Without loss of generality, by the definition of the middle graph, deleting less than two edges
does not change the weak domination number of the graph. Let D be a minimal wd-set. As proved
in Theorem 8, the set D consists of the vertices of M(G) which are of minimal degree, i.e., exactly the
vertices of G. In order to increase γw(M(G)), one of the vertices of M(G) which are added to G to
construct M(G) should be included in D. By the definition of the middle graph, this vertex vek

must
be adjacent to the two vertices of G. Thus, the two vertices in D dominate the vertex vek

. When the
two edges incident to these two vertices are deleted in order not to dominate the vertex vek

, vek
must be

included in D.
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Theorem 17. Let M(Pn) be the middle graph of Pn, n > 7. Then

bs(M(Pn)) =

{
2 if n is odd,

1 if n is even.

Proof. By definition, the γs-set includes the vertices of maximum degree. In order to increase the
cardinality of the γs-set, one of the vertices of minimal degree must be included in this set. In order
to achieve this, this vertex must dominate itself. This yields deleting the edges to isolate this vertex.

Case 1: n is odd. Deleting one of the edges will leave the γs of the resulting graph unchanged. After
removing the two edges incident to the end vertices, the γs of the resulting graph increases by 1. This
leaves the two vertices isolated. For the other remaining component, except these two, 	n/2
 of the
vertices of maximum degree strongly dominate the component. Therefore, the γs of the remaining graph
results with 2 + (n − 1)/2 = (n + 3)/2, which is 1 more than γs(M(Pn)). This completes the proof.

Case 2: n is even. To increase the γs, we need to delete the edge incident to an end vertex of M(Pn).
This leaves one vertex isolated and it must exactly be in any γs-set. For the other component, we need
to include n/2 of the vertices of maximum degree in the γs-set. These suffice to strongly dominate the
rest. Thus, the γs-set has the cardinality 1 + n/2, and hence we have the result.

The values of bs(M(Pn)) for n < 8 are indicated in the following table.

Table. The values of bs(M(Pn)) for n < 8

n 2 3 4 5 6 7

bs(M(Pn)) 1 2 3 2 1 1

Theorem 18. Let M(Cn) be the middle graph of Cn. Then

bs(M(Cn)) =

{
2 if n is even,

3 if n is odd.

Proof. We have two cases according to the number of vertices of Cn.

Case 1: n is even. When less than two edges of M(Cn) are deleted, γs(M(Cn)) is unchanged.
Deleting the edges incident to one of the vertices of Cn increases this number by 1. Thus,

bs(M(Cn)) = 2.

Case 2: n is odd. Deleting the same edges as in Case 1, γs(M(Cn)) is unchanged. In addition to
these edges, one of the edges of M(Cn) must be deleted. This edge is adjacent to one of the deleted edges
and the end vertices of this edge are of degree 3 and 4. Thus, three edges in all are deleted by increasing
γs(M(Cn)) by 1. Then, we have bs(M(Cn)) = 3. Hence the proof is complete.

Theorem 19. Let M(K1,n) be the middle graph of K1,n. Then

bs(M(K1,n)) = n.

Proof. As γs(K1,n) = 1, the proof is similar to that of Theorem 14.

Theorem 20. If G is a graph of order n and if G includes an induced subgraph as a star, then

bs(G) =
⌈

m(degn−1(v))
2

⌉
,

where m(degn−1(v)) denotes the number of vertices of G of degree n − 1.
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Proof. For such a graph G, we have γs(G) = 1. In order to increase γs(G), the edges that are incident
to the pairs of vertices of maximum degree, should be deleted, yielding a decrease of 1 in the degree of
each vertex of maximum degree.

Theorem 21. If G is a nonempty connected graph of order n with α(G) = 1, then

b(G) = 1, bw(G) = n − 1, bs(G) = 1.

Proof. If α(G) = 1, then, without loss of generality, G has a star as a spanning subgraph b(G) =
bs(G) = 1 and bw(G) = 1. Hence we have b(G) = bs(G) = 1 and bw(G) = 1.

4. CONCLUSIONS

Graph theory has seen an explosive growth due to interaction with areas like computer science.
Perhaps the fastest growing area within graph theory is the study of domination. There are several
types of domination parameters depending upon the nature of domination and the nature of dominating
set. These parameters are strong-weak domination, bondage, strong-weak bondage numbers. We have
given the exact values of the strong-weak domination number of the middle graph of any graph. Then
several results for the bondage, strong-weak bondage of middle graphs are obtained.
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