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Entropic uncertainty relation under correlated dephasing channels

Goktug Karpat*
Faculty of Arts and Sciences, Department of Physics, Izmir University of Economics, Izmir, 35330, Turkey

Uncertainty relations are one of the characteristic traits of quantum mechanics. Even though the traditional
uncertainty relations are expressed in terms of the standard deviation of two observables, there exists another
class of such relations based on entropic measures. Here we investigate the memory-assisted entropic uncer-
tainty relation in an open quantum system scenario. We study the dynamics of the entropic uncertainty and
its lower bound, related to two incompatible observables, when the system is affected by noise which can be
described by a correlated Pauli channel. In particular, we demonstrate how the entropic uncertainty for these
two incompatible observables can be reduced as the correlations in the quantum channel grow stronger.

PACS numbers: 03.65.Yz, 03.65.Ta, 03.67.Mn

I. INTRODUCTION

Quantum systems are typically not isolated from their sur-
rounding environment in real world conditions. The unpre-
ventable interaction between the principal quantum system of
interest and its environment is detrimental to the character-
istic quantum traits, such as coherence and entanglement in
the principal system. The theory of open quantum systems
supplies the mathematical tools to comprehend and rigorously
analyse such systems, which are undergoing decoherence due
to the uncontrollable coupling with the environment [1]. Open
quantum system dynamics of various quantum properties have
been widely investigated in the recent literature, e.g., quantum
entanglement [2] and more general discord-like quantum cor-
relations [3] in composite systems, and quantum coherence
[4]. In addition, numerous techniques have been developed to
suppress the destructive effects of decoherence on these exclu-
sively quantum mechanical properties, since they are known
to serve as a critical resource for quantum computation and
quantum information processing tasks.

On the other hand, a very fundamental property of quantum
theory is the fact that it is impossible to prepare a quantum
state, for which the measurement outcomes of two incompat-
ible observables are arbitrarily accurate. After the pioneering
ideas of Heisenberg on uncertainty [5], Kennard rigorously
proved the first preparation uncertainty relation for the posi-
tion x and momentum p, of a particle [6], in terms of the
product of standard deviations of these two observables, as
AxzAp, > h/2. Soon after, Robertson generalized it to the
case of two arbitrary observables Y and Z showing that [7]

AYAZ 2 Z{WIIY, Z)9). m

Although these type of standard deviation based uncertainty
relations have been of great importance for the development of
quantum theory, they suffer from several issues limiting their
applicability [8]. In particular, the lower bound of uncertainty
given in Eq. (1) is state dependent, and for the quantum states
|1)) having a zero expectation value for the commutator [Y, Z],
the lower bound vanishes and becomes completely trivial.
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A possible remedy for these issues is to utilize entropic
measures to quantify the amount of uncertainty related to
the lack of knowledge of possible measurement results. De-
spite the first entropic uncertainty relation was introduced by
Deutsch [9], one of the most well known version in the litera-
ture was proven by Maasen and Uffink [10], which reads

H(Q)+ H(R) > log, % )

The Shannon entropy H(X) = — ) _ p(z)logy p(x) quan-
tifies the uncertainty related to the observable X € (Q, R)
before its measurement outcome is known, and p(x) is the
probability of obtaining the outcome z for a density operator
p measured in the X-basis. 1/c = 1/ max; ; [{1i]¢;)|? de-
notes the complementarity of the observables () and R, where
|1h;) and |¢;) are respectively the eigenstates of @ and R.

In this work, we intend to investigate the open quantum
system dynamics of the memory-assisted entropic uncertainty
relation. In fact, this problem has been recently studied for
several different decoherence models exhibiting pure dephas-
ing and relaxation type dynamics [11-13]. However, possi-
ble effects of classically formed correlations in the applica-
tion of quantum channels, which describes the decoherence
process, have not yet been considered. Here, we will system-
atically explore the consequences of having correlated noise
on the considered quantum system for the behaviour of the
entropic uncertainty of two incompatible observables. Specif-
ically, we will demonstrate that both the entropic uncertainty
and its lower bound can be reduced as we induce higher de-
gree of correlations in the quantum noise channel.

II. MEMORY-ASSISTED UNCERTAINTY RELATION

Let us first mention that it is actually informative and con-
venient to think about the entropic uncertainty relation given
in Eq. (2) in terms of an uncertainty game played between
two players, namely, Alice and Bob. Before the game com-
mences, Alice and Bob agree to only use two fixed observ-
ables () and R. Bob then prepares a particle in a state of his
choosing and sends it to Alice, who in return measures the par-
ticle she received in one of the two fixed bases and tells her
choice to Bob. The goal of the game for Bob is to minimize
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the amount of uncertainty related to the outcomes of Alice’s
measurement. Indeed, as Bob is only able to access classical
information in this scenario, Eq. (2) puts a bound Bob’s un-
certainty about the measurement outcomes that Alice obtains.

We now consider a generalization of the above setting by
assuming that Bob gains access to an additional particle B
serving as a quantum memory, which is entangled with the
particle A that Alice receives. It has been recently demon-
strated that, with the introduction of the quantum memory
particle B, it is possible to formulate the following memory-
assisted entropic uncertainty relation [14]:

1
S(QIB) + S(R|B) 2 log, — + 5(A[B), 3)

where S(A|B) = S(pap) — S(pp) is the conditional en-
tropy. Whereas S(p) = —tr[plog, p] is the von Neumann en-
tropy, S(X|B) with X € (@, R) are the conditional entropies
of the post-measurement states pxp = > ;(|1;)(¥;| ®
Dpas(|¥;) (¥, ® I) after the subsystem A is measured in
X basis. {|1;)} are the eigenstates of the observable X,
and I represents the identity matrix. In this new setting, the
memory-assisted entropic uncertainty relation given in Eq.
(3) becomes what restricts the uncertainty of Bob about Al-
ice’s measurement outcomes in () and R bases. While the on
the left-hand side of Eq. (3) we have Bob’s total uncertainty
about Alice’s measurement results, on the right-hand side we
have complementarity and the quantum conditional entropy
S(A|B), which might potentially reduce the lower bound of
Bob’s uncertainty related to ¢ and R, since quantum condi-
tional entropy can take negative values unlike its classical ana-
logue. In fact, provided that Alice and Bob share a maximally
entangled state, then Bob can predict the measurement out-
comes of two incompatible observables with zero uncertainty.
It is also worth to mention that the relation of quantum and
classical correlations, and the memory-assisted entropic un-
certainty relation has been investigated in the literature from
different perspectives [15, 16]. In particular, an improved and
a potentially tighter bound has also been obtained [17].

III. CORRELATED PAULI CHANNELS

In this section, we introduce the correlated channels (also
known as channels with memory in the literature) which will
describe the open system dynamics of our principal quantum
system of interest. A Pauli channel £ acting on a single qubit
is simply a random application of Pauli transformations,

3
p—E(p) = aioipoi, “)
=0

where o;’s are the Pauli operators in x, y, z directions and the
0o is the 2 x 2 identity matrix. p denotes the density matrix
of the open system and ¢;’s form a probability distribution
as Z?:o q¢; = 1. Throughout this work, we consider only
two consequent implementations of the channel for simplicity.

2

Then, the Pauli channel acts on a two-qubit system as follows

3

p—E(p) = pij(0i @ 0;)plo; @ 0;) (5)
i,5=0

where p;; is a joint probability distribution. In case we as-
sume that p;; can be factorized as p;; = ¢;¢;, the noise is not
correlated and Eq. (5) in fact describes two independent ap-
plications of the channel on the two-qubit state. On the other
hand, p;; is indeed not restricted to be factorized and such a
situation might give rise to correlations between the two re-
peated applications of the channel.

One of the well known models, which takes the correlations
in the application of the Pauli channels into the account, has
been introduced by Macchiavello and Palma [18], where the
joint probability distribution is given by

pij = (1 — 1)qiq; + 11qi6i;. (6)

Here the parameter p € [0, 1] quantifies the amount of clas-
sical correlations in the implementation of the channel. Par-
ticularly, existence of a non-vanishing p actually forces the
same Pauli operator to be re-applied in the second use of the
channel with some probability. The quantum channel is max-
imally correlated in case we have p = 1 (p;; = ¢;0;;) since it
is guaranteed that the same Pauli transformation is applied on
both qubits. On the other hand, it is straightforward to see that
we recover the case of two independent channels for 1 = 0.

Until this point, we have elaborated on the structure of the
rather general case of correlated Pauli channels. Let us now
introduce a specific physical model which describes coloured
pure dephasing dynamics of a single qubit [19], and which
has a solution in the form of Eq. (4). Suppose that the time
evolution of the qubit can be described with a time-dependent
Hamiltonian H(t) = hI'(t)o., and I'(¢) is an independent
random variable having the statistics of a random telegraph
signal. If we assume that I'(¢t) = an(t), where n(t) has a
Poisson distribution with the mean v = ¢/27 and « is a coin-
flip random variable having the possible values +1, then the
time evolution of the open system composing of a single qubit
can be obtained using the operator-sum representation

p(v) = Z Ki(v)p(0)Ki(v)T, ()

where the corresponding Kraus operators are given as

Ki(v) =
KQ(I/) =

[1+@(v))/2L, ©)
[1 = ®(v)]/203, ©)

with ®(v) = e ¥[cos(uv) + sin(uv)/ul, u =
and v = t/27 is the scaled time.

We can now easily see that the solution of this coloured pure
dephasing model is in the form of Eq. (4) for a single qubit,
where the time dependent coefficients g;’s can be identified as

(47)2 -1,

1
0 =5[1+2W)], @ =0=0, g¢g=;[1-2F). 10

N
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FIG. 1. The incompatible observables are chosen as QQ = o3
and R = o3 and the initial Bell-diagonal state has the parameters
c1 = —0.6, c2 = c3 = 0.5. The model parameter controlling non-

Markovianity is assumed to be 7 = 0.1 in (a) and (b), and 7 = 5 in
(c) and (d). In (a) and (c), we show the dynamics of the uncertainty
U for p = 0 (red solid line) and for p» = 0.4 (dotted green line), and
the lower bounds U B for ;1 = 0 (blue dashed line) and for ;x = 0.4
(purple dot-dashed line). In (b) and (d), we show the dynamics of the
uncertainty U for ;# = 0.6 (red solid line) and for ;x = 0.95 (dotted
green line), and their lower bounds U B for = 0.6 (blue dashed
line) and for ;1 = 0.95 (purple dot-dashed line).

Thus, the dephasing type correlated Pauli channel acting on a
two-qubit quantum system (which is in the form of Eq. (5))
can be simply described in the following way:

E(p) = pos(oo ® 03)p(00 ® 03) + P3o(o3 @ ) p(03 ® 00)

+poo(oo ® 00)p(o0 ® 0¢) + p33(03 ® 03)p(03 ® 03),
(11)

Adjusting the parameter p will let us vary the degree of corre-
lations between two applications of this dephasing channel.

IV. MAIN RESULTS

Having briefly discussed the type of classically correlated
quantum noise channel we are interested in, we can now anal-
yse the memory-assisted entropic uncertainty relation in this
setting. Let us start by introducing the initial bipartite states
that we consider in this work, i.e. the Bell-diagonal states,

3
1
pap =7 (Lt > cotwal |, (12)

Jj=1

where I, denotes the 4 x 4 identity matrix, c; are real numbers
satisfying 0 < |¢;| < 1. Here, the necessarily non-negative
eigenvalues of p4p can be easily found as

1
/\1,2 = Z(li61 j:CQ — 63),

1
)\3,4 = i(l:l:cl :FCQ—FCg). (13)

0.2 0.4 0.6 0.8 1
/2t

FIG. 2. The incompatible observables are chosen as () = o1 and
R = o> and the initial Bell-diagonal state has the parameters ¢; =
—c3 = —0.2, co = 0.8. The model parameter controlling non-
Markovianity is assumed to be 7 = 0.1 in (a) and (b), and 7 = 5 in
(c) and (d). In (a) and (c), we show the dynamics of the uncertainty
U for = 0 (red solid line) and for ¢+ = 0.4 (dotted green line), and
the lower bounds U B for ;¢ = 0 (blue dashed line) and for x = 0.4
(purple dot-dashed line). In (b) and (d), we show the dynamics of the
uncertainty U for p = 0.6 (red solid line) and for o = 0.95 (dotted
green line), and their lower bounds U B for = 0.6 (blue dashed
line) and for ;1 = 0.95 (purple dot-dashed line).

Moreover, it is not difficult to verify that the density matrix de-
scribing the dynamics of the correlated dephasing noise chan-
nel given in Eq. (11) can be expressed as

o 0 0, s
paB(t) = pap o ®(v) T(v,p) 17M o(v)
T(v,u) ®(v) @) 1

(14)
where T'(v, ) = . — ®(v)?(uu — 1). At this point, it is worth
to mention that the above described time-evolution preserves
the general form of Bell-diagonal states and transforms their
three real coefficients as follows:

C3(t) = C3. (15)

a(t) =al(v,p), ea(t) =cal(v, 1),

Besides, we will assume that the two observables () and
R to be measured by Alice are chosen as pairs of Pauli ma-
trices {o;} with ¢ € [1,2,3]. In this case, the conditional
von Neumann entropy S(o;|B), after the particle A is mea-
sured by Alice, can be written with the help of the binary en-
tropy function as S(Q|B) = Hpin[(1 + ¢;)/2] [11], where
Hpin(z) = —xlogy(z) — (1 — x)logy(l — x). Thus, for
two different Pauli observables o; and o, the left-hand side
of the Eq. (3) or equivalently the total uncertainty is given by
U = Hpin[(1 4 ¢)/2] + Hpin[(1 + ¢;)/2]. Since we know
how the coefficients are transformed by the effect of the corre-
lated dephasing noise from Eq. (15), we can calculate the total
uncertainty U straightforwardly. On the other hand, comple-
mentarity of @) and R simply becomes ¢ = 1/2 as pairs of
Pauli observables are complementary. In turn, the entropic
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uncertainty bound U B = log,[1/c] + S(A|B) reduces to von
Neumann entropy S(pap) = — Zle Ailog A; due to the
fact that all the Bell-diagonal states have maximally mixed
reduced density matrices, that is, S(pp) = 1. Once again,
with the assistance of Eq. (15), it is not difficult to evaluate
the dynamics of the lower bound of the uncertainty S(pa g (t))
as we can find out how the eigenvalues given in Eq. (13) are
transformed by the action of the correlated noise.

In the following, we will demonstrate how it is possible to
reduce the total entropic uncertainty of the incompatible ob-
servables () and R in an open quantum systems scenario via
the classical correlations in the application of purely dephas-
ing noise. Let us first recall that the coloured dephasing model
we consider here might exhibit memory effects depending on
the value of the parameter 7. In case 7 < 1/4, the dynamics
is Markovian and there exists no memory effects. However,
when we have 7 > 1/4, memory effects emerge due to the
non-Markovian nature of the dynamics [20].

In Fig. 1, we display the time evolution of the total en-
tropic uncertainty U (along with its lower bound U B) of Bob
about the measurement outcomes of Alice under a correlated
dephasing noise setting. In other words, we assume that both
the particle A, which is to be sent to Alice by Bob, and the
memory particle B that Bob can access, are open quantum
systems being affected by a correlated dephasing noise. In
fact, Fig. 1 shows entropic uncertainty U and its lower bound
U B for four different values of the correlation parameter p
and two different values of the model parameter 7, control-
ling the Markovianity of the dynamics. We suppose that the
initial Bell-diagonal state has the coefficients ¢c; = —0.6,
co = c3 = 0.5, and the two observables are fixed as ) = o
and R = o03. In Fig. 1(a) and 1(b), dynamical behaviour of U
and U B are shown for the Markovian case, where we have no
backflow of information from the environment. In particular,
while we have the results of our investigation for 4 = 0 and

= 0.4 in Fig. 1(a), the outcomes of the same analysis for
© = 0.6 and p = 0.95 are shown in Fig. 1(b). Here, we can
make the observation that, as the parameter ; (which adjusts
the strength of the correlation between the two applications of
the channel) increases, both the lower bound U B and the total
entropic uncertainty U are diminished. It means that the exis-
tence of classical correlations in the two-qubit channel causes
a reduction of the total uncertainty, as compared to the case
of independent channels where ;v = 0. Also, it is interest-
ing to see that the lower bound is becoming less tight with
the increasing correlations in the channel. In Fig. 1(c) and
1(d), we demonstrate the results of the same analysis for non-
Markovian dynamics as 7 = 5 and we can clearly observe
the revivals in entropic quantities due to the memory effects.
It is rather straightforward to observe that similar conclusions
hold for this case, that is, the greater the correlations in the
dephasing channel is, the less the total uncertainty of the ob-
servables will be. Thus, classical correlations in the channel
as described in Eq. (6) can reduce the total uncertainty that
Bob has about the measurement outcomes of Alice both in
Markovian and non-Markovian dephasing noise settings. The
underlying physical reason, which makes this reduction pos-
sible, has its roots in the residual coherence contained in the

4

composite state p4p shared by Alice and Bob as the corre-
lated dephasing noise affects the system. Considering the fact
that here we deal with X-shaped states in the Bell-diagonal
form and looking at Eq. (14), one can see that all the off-
diagonal coherence terms are multiplied by the decay factor
I'(v, 1) = u—®(v)?(pu—1) and the diagonal population terms
remain invariant due to the dephasing interaction. Then, it is
not difficult to notice that a greater amount of channel corre-
lations, quantified via the parameter y, gives rise to a greater
amount of coherence left in the state, which in turn makes pos-
sible to reduce the entropic uncertainty and its lower bound as
their time evolutions are determined by the dynamics of the
coherence terms of the density matrix.

Fig. 2 describes the results of the same examination for a
different pair of observables and a different initial state, that
is, here it is assumed that we have an initial Bell-diagonal
state with the coefficients ¢; = —c3 = —0.2, co = 0.8,
and the two observables are chosen as () = o1 and R = os.
Once again, the dynamical behaviour of the total uncertainty
U and its lower bound U B are shown for the Markovian case
(r = 0.1) in Fig. 2(a) and Fig. 2(b) for the correlation pa-
rameters ¢ = 0,0.4 and p = 0.6, 0.95, respectively. When it
comes to the non-Markovian case where 7 = 5, Fig. 2(c) and
Fig. 2(d) respectively present the results for ¢ = 0,0.4 and
w = 0.6,0.95. Observing the figure, one can conclude that
both in Markovian and non-Markovian correlated dephasing
noise cases, the total entropic uncertainty U decreases as the
strength of the correlations in the implementation of the chan-
nel is increased. It is rather interesting to note that whereas the
channel correlations have a greater impact in reducing the en-
tropic uncertainty and its lower bound in Fig. 2 as compared
to Fig. 1, the uncertainty lower bound gets more and more
tight with increasing correlations in Fig. 2, unlike the case
of Fig. 1, where increasing channel correlations makes the
lower bound less tight. All the same, in both cases, the total
amount of uncertainty of Bob about the possible outcomes of
the measurements of Alice on the particle A is reduced, when
the purely dephasing channel becomes more correlated.

V. CONCLUSION

In summary, we studied the open system dynamics of the
memory-assisted entropic uncertainty relation when the parti-
cle A and the memory B are affected by a classically corre-
lated dephasing channel. We have considered both the Marko-
vian and the non-Markovian time evolutions and two different
pairs of observables and in all cases we concluded that as the
correlations in the application of the channels is strengthened,
the total uncertainty of Bob about the measurement outcomes
of Alice is diminished. Lastly, we should mention as a side
note that our preliminary analysis shows that the improved
uncertainty bound in Ref. [17] behaves similarly to the stan-
dard one, i.e., diminishes with increasing channel correlations.
Considering that the memory-assisted uncertainty relation has
potential to give rise to applications related to witnessing en-
tanglement and cryptographic security [14], we believe that
our results might be of relevance in appropriate settings.
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