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Abstract

Because variables may be correlated in the social and behavioral sciences, multicolli-
nearity might be problematic. This study investigates the effect of collinearity manipu-
lated in within and between levels of a two-level confirmatory factor analysis by
Monte Carlo simulation. Furthermore, the influence of the size of the intraclass cor-
relation coefficient (ICC) and estimation method; maximum likelihood estimation
with robust chi-squares and standard errors and Bayesian estimation, on the conver-
gence rate are investigated. The other variables of interest were rate of inadmissible
solutions and the relative parameter and standard error bias on the between level.
The results showed that inadmissible solutions were obtained when there was
between level collinearity and the estimation method was maximum likelihood. In
the within level multicollinearity condition, all of the solutions were admissible but
the bias values were higher compared with the between level collinearity condi-
tion. Bayesian estimation appeared to be robust in obtaining admissible parameters
but the relative bias was higher than for maximum likelihood estimation. Finally, as
expected, high ICC produced less biased results compared to medium ICC
conditions.
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Email: seda.can@ieu.edu.tr



Keywords

collinearity, multilevel confirmatory factor analysis, maximum likelihood estimation,
Bayesian estimation, inadmissible parameter estimates

Multicollinearity has been an important issue both in multiple regression and general-

ized linear models and in structural equation modeling (SEM) or multilevel structural

equation modeling (MSEM). While multicollinearity has been studied extensively in

multiple regression and generalized linear models (cf., Aiken & West, 1991; Field,

2013; Stevens, 2009; Tabachnick & Fidell, 2006), it has been studied less in the gen-

eral SEM framework (for exceptions, see Grewal, Cote, & Baumgartner, 2004;

Jagpal, 1982; Kaplan, 1994; Marsh, Dowson, Pietsch, & Walker, 2004). It has

received some attention in multilevel regression modeling (i.e., Kreft & de Leeuw,

1998; Kubitschek & Hallinan, 1999; Shieh & Fouladi, 2003) but, has to our knowl-

edge, never been studied in MSEM.

From the 1960s, multicollinearity has been an issue of interest to researchers

studying multiple regression, especially in economics and statistics (e.g., Fabrycy,

1975; Farrar & Glauber, 1967; Gordon, 1968; Harvey, 1977; Johnston, 1963;

Malinvaud, 1966; Pedhazur, 1982). Because independent variables are usually corre-

lated in the social and behavioral sciences, multicollinearity has also become a field

of interest to researchers who use multiple regression in the analysis of social science

data (e.g., Morrow-Howell, 1994). The terms multicollinearity, collinearity and ‘ill

conditioning’ are all used interchangeably, and without a firmly established defini-

tion in the literature (Belsley, 1991). Multicollinearity refers to a situation consisting

of linearly or near linearly related predictors, independent or explanatory variables.

In this case the correlation matrix among the set of predictors is ill conditioned,

resulting in at least one eigenvalue that is nonpositive (Shieh & Fouladi, 2003). In

such cases, there is no unique mathematical solution for estimating the regression

coefficients.

The consequences of multicollinearity can be discussed in terms of standard errors

and the regression coefficients. First, when multicollinearity exists, the standard

errors for the coefficients become large and this increases the probability of Type II

error (Cohen, Cohen, West, & Aiken, 2003; Mason & Perrault, 1991; Pedhazur,

1997). As a result, the estimates with large standard errors are more likely to vary

between samples causing unstable estimates across samples (Hays, 1981; Neter,

Wasserman, & Whitmore, 1978). Second, regression coefficients may decrease in

magnitude or change in sign, resulting in interpretation problems (Cohen & Cohen,

1983; Kleinbaum, Kupper, & Muller, 1988). Pedhazur (1997) showed that the para-

meters estimated from two samples are quite different if the predictors are highly

correlated.

The current study uses Monte Carlo simulation to investigate the effect of multi-

collinearity manipulated in the within and between levels of a two-level confirmatory

factor model, on the convergence rate, the rate of inadmissible solutions, relative
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parameter and standard error bias. In addition to the magnitude of multicollinearity,

the effect of the magnitude of the intraclass correlation coefficient (ICC) and the esti-

mation method; maximum likelihood (ML) estimation versus Bayesian estimation,

are investigated.

In what follows, we first present an overview of previous studies that investigated

multicollinearity in multilevel regression and SEM frameworks. Then we end the

introduction section with a comparison between ML and Bayesian estimation.

Multilevel Regression, Structural Equation Modeling, and Multicollinearity

Few studies have investigated multicollinearity in the context of multilevel model-

ing. Kreft and de Leeuw (1998) and Kubitschek and Hallinan (1999) used National

Educational Longitudinal Survey data to demonstrate the effect of collinearity. Kreft

and de Leeuw developed different multilevel models by using different predictor

variables in the models. The results showed that multicollinearity can make the inter-

pretation of the regression coefficients difficult especially when cross-level interac-

tion exists. Kubitschek and Hallinan used the same data set and found that owing to

the collinearity, parameter estimates had large standard errors and the effect of the

predictor variable varied strongly from sample to sample. Shieh and Fouladi (2003)

investigated the effect of multicollinearity, operationalized as the correlation between

Level 1 predictors, on multilevel model parameters and standard errors when cross-

level interactions exist in the data by using Monte Carlo simulation. Sample size and

intraclass correlation were manipulated in the research design as well. Sample size

was varied by both number of groups and the number of cases in each group. The

number of groups was 10, 20, and 40 and the number of cases per group was also

10, 20, and 40. The second independent variable ICC was manipulated in three levels

including .25, .50, and .75. Finally, the varied Level 1 predictor correlations were .0,

.10, .30, .50, .70, and .90. The results for the convergence rate showed that it

improved as the number of groups increased, as the number of cases in each group

increased, as the ICC is decreased and as the correlation between Level 1 predictors

decreased. Their study showed that the fixed-effect parameter estimates produced

relatively unbiased estimates. However, the variance and covariance component esti-

mates produced negatively biased values (except for Level 1 variance) and the rela-

tive bias of the standard errors of the parameters increased when the correlation

between the Level 1 predictors increased.

The effect of multicollinearity in the SEM framework is unclear. Measurement

error can be eliminated in structural models, and the subsequent increase of the

explained variance may lessen the effect of multicollinearity (Bollen, 1989). On the

other hand, the elimination of error may also increase the size of the estimated corre-

lations among latent variables (Grewal et al., 2004). To illustrate the interpretation

problems when multicollinearity exists in a data, a study was conducted by Marsh et

al. (2004). They showed that constraining paths to be equal in a model with collinear

latent constructs made the fit better and reduced the standard errors.
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Two of the few studies investigating multicollinearity in the SEM framework,

especially on its detection, were carried out by Schmidt and Muller (1978) and

Kaplan (1994). In addition to the tools suggested to detect multicollinearity in multi-

ple regression, Kaplan proposed inspecting the determinant of the correlation matrix

of the predictor variables to evaluate the multicollinearity problem. Schmidt and

Muller (1978) suggest using the Haitovsky test (Haitovsky, 1969) to assess the

amount of singularity of the correlation matrix of the predictors, together with deter-

minant of correlation matrices in detecting multicollinearity.

To investigate to what degree multicollinearity may be problematic in a structural

equation model; two Monte Carlo simulation studies were conducted by Grewal et al.

(2004). They manipulated the level of multicollinearity, measurement error, amount

of explained variance, relative importance of exogenous variables and sample size.

The accuracy of coefficient estimates and standard error estimates were studied in

addition to studying under which conditions multicollinearity and measurement error

in the structural model caused misleading tests of theory. The results showed that in

extreme multicollinearity, Type II error rates were more than 80%, which is unaccep-

tably high. When multicollinearity was between 0.60 and 0.80 Type II error rates

were greater than 50% and frequently more than 80% if composite reliability was

weak, explained variance was low and sample size was relatively small. Moreover

when multicollinearity was between 0.40 and 0.50, Type II error rates were small

unless the reliability was weak, R2 was low and sample size was small but the error

rates were still high.

To sum up, both in multilevel regression and SEM framework, when multicolli-

nearity exists, undesirable results may occur. For example, the signs of the regression

parameters might be different from the expected direction, and the standard errors of

the regression parameters might become extremely large which makes the parameter

estimates statistically nonsignificant and results in high Type II error rates. These

effects have not yet been studied in an MSEM framework and this is exactly what we

will do in the current study. The purpose of this study to examine how multicollinear-

ity, which is operationally defined as the correlation between the factors in a multile-

vel confirmatory factor analysis model, can affect the parameter estimates obtained

from the model. We expect a more severe bias caused by multicollinearity on the

between level of the model because of the smaller sample size on this level when

compared with the within level.

Maximum Likelihood and Bayesian Estimation

ML estimation is generally being used as the standard estimation method for the para-

meters of statistical models. For the ML equations and their implementation in the

MSEM framework we refer to B. O. Muthén (1990) and Mehta and Neale (2005).

We would like to briefly discuss ML with robust chi-squares and standard errors,

which is denoted as MLR. MLR produces the same parameter estimates as ML, but

the chi-squares for the model test and the standard errors for the parameters are
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calculated differently (L. K. Muthén & Muthén, 2014). MLR is assumed to be robust

against moderate violations of assumptions, including unmodeled heterogeneity.

With multilevel data, robust chi-squares and standard errors are assumed to provide

some protection against mis-specifying the group level model or by omitting a vari-

able resulting in unmodeled heterogeneity (Hox, 2010). Owing to these mentioned

advantages of MLR for multilevel data, in the current study we will use MLR instead

of ML estimation.

Bayesian estimation has started to be used in structural equation modeling of hier-

archical data (e.g., Jedidi & Ansari, 2001). In the Bayesian approach, posterior distri-

butions for the parameters are acquired from the prior distribution and from the

likelihood of the data. For an introduction to Bayesian estimation see Gelman, Carlin,

Stern, and Rubin (2004). Bayesian estimation offers several potential advantages over

MLR estimation. First, Bayesian methods require specifying prior information about

all the parameters in the model. By a judicious choice of the prior distribution, we

can ensure that parameter estimates are confined to the permissible parameter space.

That is, if the priors for (residual) variance terms are set in such a way that they can

only obtain positive values, the obtained posterior distribution can never be negative.

For this reason, inadmissible values of residual variance terms cannot occur. If a dif-

ferent prior would be specified, for example, normal priors, negative values would be

possible. As said before, the crucial part of a Bayesian analysis is to choose the prior

distributions wisely. Furthermore, Bayesian procedures do not rely on asymptotic

inference, and as such are valid for small sample sizes. Third, central credibility inter-

vals (CCIs), the Bayesian equivalent to a confidence interval (CI), are actually the

probability that a certain parameter is in between two numbers, which is not the defi-

nition of a confidence interval. For detailed information about these advantages, see

also Howard, Maxwell, and Fleming (2000), Lee and Wagenmakers (2005), van de

Schoot et al. (2011), and Walker, Gustafson, and Hennig (2001).

Bayesian estimation uses Markov chain Monte Carlo (MCMC) algorithms to cre-

ate approximations to the posterior distributions by iteratively taking random draws

in the MCMC (Gelman et al., 2004; L. K. Muthén & Muthén, 2014). We refer to

Lynch (2007) for an introduction to the Bayesian approach, and for more technical

details in Bayesian estimation to Gelman et al. (2004). For Bayesian SEM, see Jedidi

and Ansari (2001) and Lee (2007). In our simulation, we compare the MLR results

to the results obtained with Bayesian estimation as a possible solution to multicolli-

nearity problems because it provides a convenient way to avoid estimation problems

due to inadmissible estimates. Also, Bayesian estimation does not rely on asymptotic

inference, and as such we expect less biased results on the between level.

In conclusion, we hypothesize that multicollinearity at the between level will

cause more problems such as uninterpretable or unexpected results (e.g., high stan-

dard error values) when compared with multicollinearity manipulated at the within

level. The main reason is that the sample sizes tend to be larger at the within level

than at the between level, while correlations tend to be higher at the between level
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than at the within level. In addition to the multicollinearity, the effect of the size of

the ICC and the estimation method is also investigated.

Method

The steps suggested by Skrondal (2000) and Paxton, Curran, Bollen, Kirby, and Fen

(2001) are used in the current Monte Carlo simulation study.

Simulated Model

A two-factor model with four indicators, two factors both in the within and between

levels is used in this study. We use a confirmatory factor model to represent a

research problem often used in practice. In determining the population parameter val-

ues, especially the ICC conditions, we benefited from the values that Julian (2001)

used in his study. ICC levels are manipulated by changing the residual variances and

factor variances of the between level, while keeping the within model the same. The

path diagram of the model tested in the study and common population parameters

used in each simulation are shown in Figure 1 and the other parameter values for

each simulation are presented in Tables 1 and 2 separately for different values of

within- and between-level collinearity. For within-level collinearity simulations,

within-level covariances, between-level residual variances, between-level factor var-

iances, and between-level covariance values are presented in terms of ICC conditions

Figure 1. The path diagram of multilevel confirmatory factor analysis model tested in the
study.
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in Table 1. Between-level residual variances, between-level factor variances, and

between-level covariance values are presented in Table 2 for simulating between-

level multicollinearity.

A sample size about 200 cases is accepted as reasonable with a good model and

normal data in single level SEM framework in order to reach accurate maximum

likelihood estimates (Boomsma, 1983). This finding was also supported by Hox and

Maas (2001) in an MSEM simulation study. To ensure that potential estimation prob-

lems are not the result of insufficient sample sizes, we used 200 groups in the

between level with 25 individuals nested in each group.

Table 2. Population Parameter Values Used in Between-Level Multicollinearity Simulations.

Between-level
multicollinearity

Intraclass
correlation
coefficient

Between-level
residual

variances

Between-level
factor

variances
Between-level

covariance

Low (.30) Medium (.15) 0.71 0.35 0.130
High (.25) 1.00 0.90 0.300

Medium (.50) Medium (.15) 0.71 0.35 0.200
High (.25) 1.00 0.90 0.500

High .80 Medium (.15) 0.71 0.35 0.310
High (.25) 1.00 0.90 0.760

.90 Medium (.15) 0.71 0.35 0.342
High (.25) 1.00 0.90 0.850

.95 Medium (.15) 0.71 0.35 0.345
High (.25) 1.00 0.90 0.890

Note. The population parameter value for within level covariance is 0.65 in all between level

multicollinearity simulations.

Table 1. Population Parameter Values Used in Within-Level Multicollinearity Simulations.

Within-level
multicollinearity

Intraclass
correlation
coefficient

Within-level
covariance

Between-level
residual

variances

Between-level
factor

variances
Between-level

covariance

Low (.30) Medium (.15) 0.65 0.71 0.35 0.130
High (.25) 0.65 1.00 0.90 0.295

Medium (.50) Medium (.15) 1.04 0.71 0.35 0.130
High (.25) 1.04 1.00 0.90 0.295

High .80 Medium (.15) 1.64 0.71 0.35 0.130
High (.25) 1.64 1.00 0.90 0.295

.90 Medium (.15) 1.84 0.71 0.35 0.130
High (.25) 1.84 1.00 0.90 0.295

.95 Medium (.15) 1.88 0.71 0.35 0.130
High (.25) 1.88 1.00 0.90 0.295
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Design Factors

Three variables with 5 (multicollinearity) 3 2 (ICC) 3 2 (estimation method) 3 2

(level on which the multicollinearity is manipulated) = 40 conditions are used in the

simulation. Multicollinearity is manipulated in the within and between levels of the

model separately with low, medium, and high multicollinearity conditions. To cover

high levels of correlations between the factors in the simulations we investigated

three sublevels: high, extremely high, and almost perfect correlation in the high mul-

ticollinearity condition. In total, the population correlation values between the two

factors in the model are .30, .50, .80, .90, and .95. The ICC is manipulated with

medium (.15) and high (.25) conditions. And finally, type of estimation is used as

the third variable consisting of MLR and Bayesian estimation.

Mplus Version 7.11 (L. K. Muthén & Muthén, 2013) was used to carry out the

Monte Carlo simulations. The simulation syntax is given in Appendix A. For MLR

estimation, we relied on the Mplus defaults, which include a robust chi-square

(Yuan–Bentler correction) and robust standard errors (sandwich estimators).

Bayesian estimation became available in Mplus since version 6.11 (L. K. Muthén

& Muthén, 2011). For a technical description of Bayesian estimation in Mplus, see

Asparouhov and Muthén (2010a, 2010b). We used the default Mplus settings in

Bayesian estimation. The prior specifications are by default set to prior distributions

that are noninformative, and constrain the parameter values to admissible values.1

From the posterior distribution a point estimate of mean, median or mode is provided,

we used the median which is the default. To monitor the convergence of the Bayesian

estimation procedure, Mplus uses the Gelman–Rubin convergence criterion which

considers the variability within and between different estimation chains (Gelman et

al., 2004, pp. 296-298). This process proceeds by default with two chains of the

Gibbs sampler in Mplus running in a parallel process.

Dependent Variables

The convergence rate is the first dependent variable in the study, and it is computed

as the rate of completed number of replications over the requested number of replica-

tions. In addition, we present the percentage of the number of inadmissible solutions,

computed by dividing the number of inadmissible solutions by the number of replica-

tions. To compare the degree of bias in the estimation of parameter values (between-

level factor loadings and between-level covariance) of different magnitude, we use

the percentage relative bias. The percentage relative bias is computed as follows:

RelativeBias = ((û� u)=u)3100 ð1Þ

where û equals the mean of the parameter estimates across the replications and u

equals the population parameter value. Since there are six estimated factor loadings

(for each factor one is used for scaling) we calculated the mean relative bias across

the between level factor loadings. The percentage relative bias for the standard errors

Can et al. 413



are also computed with Equation 1; but û is the mean of the standard error estimates

of the corresponding parameter estimates obtained from the replications and u is the

population standard deviation in this case. When the number of replication is large,

the standard deviation obtained from the simulations is considered to be a good esti-

mate of the population standard error (L. K. Muthén & Muthén, 2010). These bias

values are also averaged to obtain the mean relative bias for the standard error esti-

mates. To assess whether the estimated parameters and their standard errors are

biased, a 610% criterion value is used, which is suggested by Hoogland and

Boomsma (1998).

For each cell of the research design, 1000 normally distributed data sets are gener-

ated and analyzed with Mplus 7.11 (L. K. Muthén & Muthén, 1998-2013). We have

included Appendix A consisting of the Mplus syntax for 0.80 between level collinear-

ity, medium ICC condition with MLR and Bayesian estimation. Other conditions can

be specified by changing the population parameter values presented in Tables 1 and 2.

Results

Convergence Rate and Inadmissible Solutions

There were no nonconvergent solutions across all simulated data sets. All the solu-

tions are admissible for Bayesian estimation. However, inadmissible solutions do

occur in MLR estimation when the multicollinearity is manipulated at the between

level. As can be seen in Figure 2, there were no inadmissible solutions for the low

and medium collinearity in both ICC conditions. On the other hand, the percentages

of inadmissible solutions increase as the multicollinearity increases for the high colli-

nearity conditions. When the ICC is medium, the percentages of inadmissible solu-

tions are 12%, 42%, and 52%, respectively, for the high, extremely high, and almost

perfect collinearity. In the high ICC condition, these percentages go down to 0.2%,

11.7%, and 42.4%, respectively, as the multicollinearity increases. The results in the

next section are based only on admissible solutions; however, the estimates including

the inadmissible solutions lead to highly similar results.

Parameter Estimates

In the within part of the model (where the effective sample size is the largest), even

high degrees of multicollinearity do not present a problem in any of the simulated

conditions. Therefore, we concentrate on a discussion of the results at the between

level, where multicollinearity manipulated at either the within or the between level

does cause problems.

The mean relative parameter bias of between-level factor loadings and relative

bias for the covariance between the latent variables obtained through MLR estimation

when the multicollinearity is manipulated in the within level of the model are pre-

sented in Table 3. The relative bias values of factor loadings are nearly the same with

small differences in the third decimal places for each multicollinearity condition in

414 Educational and Psychological Measurement 75(3)



terms of ICC levels. For medium ICC, the values are nearly 2.95% and for high ICC

conditions, the mean relative bias values for factor loadings are about 0.64% regard-

less of the multicollinearity levels. The relative bias percentages for the covariance

between the latent variables are lower than the bias for the factor loadings and the

values are both negative showing underestimated covariances. The relative bias per-

centages of the covariance are between 20.20% and 20.46%, with small differences

across the conditions. The values for the low and medium collinearity conditions are

20.31% and 20.39%, for the high collinearity conditions, the values are same for

medium ICC condition, which is 20.46%. For high ICC condition, the percentages

are lower with respect to other multicollinearity conditions with very small differ-

ences in low and medium multicollinearity conditions. The relative bias values for

low and medium multicollinearity conditions are 20.20% and 20.24%; for the 0.80,

0.90, and 0.95 collinearity conditions relative bias values are found to be 20.31%,

20.34%, and 20.34%, respectively.

The Bayesian results when there is within-level multicollinearity in the model are

shown in Table 4. It can be seen that the percentages of the mean relative bias for the

factor loadings are higher than the MLR results. The percentages are, respectively,

8.38%, 8.01%, 8.00%, 8.55%, and 9.28% for low, medium, and high collinearity con-

ditions in medium ICC. In high ICC condition, the corresponding values are 2.39%,

2.31%, 2.37%, 2.39%, and 2.52%. When we look at the bias for the covariance, it

can be said that the covariances are negatively biased in medium ICC conditions and
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Figure 2. Percentages of inadmissible solutions in between level multicollinearity conditions
across intraclass correlations (ICCs).
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the percentages of the bias increase as the multicollinearity increases. The values in

this ICC condition are 213.39%, 213.69%, 213.92%, 214.69%, and 215.31-% for

low, medium, and 0.80, 0.90, and 0.95 multicollinearity conditions showing a large

bias exceeding the 10% criterion suggested by Hoogland and Boomsma (1998) for

‘‘reasonable’’ accuracy. In the high ICC condition, the percentages are very close to

each other with the values of 23.39%, 23.39%, 23.59%, 23.93%, and 23.53%.

When multicollinearity is manipulated in the between level, the mean of between-

level factor loadings from MLR estimation have a relative bias of 2.93%, 2.64%,

2.00%, 1.79%, and 1.77% for medium ICC and 0.65%, 0.63%, 0.55%, 0.51%, and

Table 3. MLR Results of Between-Level Parameters From Within-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 2.93 0.10 –0.31 2.47
High (.25) 0.65 –0.46 –0.20 0.79

Medium (.50) Medium (.15) 2.94 0.23 –0.39 2.77
High (.25) 0.65 –0.35 –0.24 0.59

High .80 Medium (.15) 2.96 0.55 –0.46 2.26
High (.25) 0.64 –0.17 –0.31 0.49

.90 Medium (.15) 2.95 0.71 –0.46 2.25
High (.25) 0.64 –0.05 –0.34 0.59

.95 Medium (.15) 2.95 0.75 –0.54 2.25
High (.25) 0.64 –0.03 –0.34 0.59

Note. MLR = maximum likelihood with robust chi-squares and standard errors.

Table 4. Bayesian Results of Between-Level Parameters From Within-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 8.38 –7.91 –13.39 –3.30
High (.25) 2.39 –7.78 –3.39 0.69

Medium (.50) Medium (.15) 8.01 –2.94 –13.69 –4.15
High (.25) 2.31 –2.03 –3.36 0.79

High .80 Medium (.15) 8.00 –2.28 –13.92 –4.46
High (.25) 2.37 –2.43 –3.59 –0.39

.90 Medium (.15) 8.55 –9.39 –14.69 –3.24
High (.25) 2.39 –2.07 –3.93 0.68

.95 Medium (.15) 9.28 –11.48 –15.31 –3.62
High (.25) 2.52 –2.54 –4.17 1.28
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0.49% for high ICC condition (see Table 5). Although these values are negligible,

the values do decrease as the multicollinearity increase in each ICC condition. The

relative bias values for the covariance between the factors are small and negative

with the values of 20.31%, 20.40%, 20.52%, 20.53%, and 20.52% for medium

ICC and 20.31%, 20.18%, 20.26%, 20.29%, and 20.30% for high ICC in terms

of low, medium, and high multicollinearity conditions.

The Bayesian results presented in Table 6 show that the relative bias values for the

factor loadings in 0.30, 0.50, 0.80, 0.90, and 0.95 collinearity conditions are 8.38%,

Table 5. MLR Results of Between-Level Parameters From Between-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 2.93 0.09 –0.31 2.47
High (.25) 0.65 –0.46 –0.31 0.79

Medium (.50) Medium (.15) 2.64 0.73 –0.40 2.34
High (.25) 0.63 –0.26 –0.18 0.86

High .80 Medium (.15) 2.00 0.89 –0.52 1.84
High (.25) 0.55 0.04 –0.26 0.87

.90 Medium (.15) 1.79 0.63 –0.53 1.77
High (.25) 0.51 –0.03 –0.29 0.76

.95 Medium (.15) 1.77 0.59 –0.52 1.89
High (.25) 0.49 –0.12 –0.30 0.61

Note. MLR = maximum likelihood with robust chi-squares and standard errors.

Table 6. Bayesian Results of Between-Level Parameters From Between-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 8.38 –7.91 –13.39 –3.30
High (.25) 2.39 –2.87 –3.37 –0.39

Medium (.50) Medium (.15) 6.79 0.12 –11.2 –5.40
High (.25) 2.18 –1.68 –2.82 –1.34

High .80 Medium (.15) 5.33 –3.51 –8.94 –2.35
High (.25) 1.93 –1.96 –1.84 0.07

.90 Medium (.15) 5.00 –5.38 –9.21 –3.15
High (.25) 1.88 –4.34 –2.00 1.23

.95 Medium (.15) 4.77 –4.93 –9.33 –1.65
High (.25) 1.66 –4.26 –2.28 3.50
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6.79%, 5.33%, 5.00%, and 4.77% in the medium ICC condition and 2.39%, 2.18%,

1.93%, 1.88%, and 1.66% in the high ICC condition. The relative bias for the covar-

iance are negative and biased for some of the conditions when the collinearity is

manipulated in the between level. They are underestimated and biased for the low

and medium multicollinearity conditions with the values of 213.39% and 211.20%,

for the other collinearity conditions the values are very close to critical value with the

values of 28.94%, 29.21%, and 29.33% in medium ICC showing an increase as the

collinearity increases and they drop to 23.37%, 22.82%, 21.84%, 22.00%, and

22.28% in the high ICC condition.

Standard Error Estimates

The between level standard error bias values of the factor loadings for the within-

level collinearity produced from MLR estimation are very small changing from

20.46% to 0.75%. As can be seen in Table 3, the values are slightly lower in the high

ICC than in the medium ICC condition. When the relative standard errors for the cov-

ariance between the factors are investigated, they are very close to each other ranging

from 2.25% to 2.77% in the medium ICC condition. In the high ICC condition, the

relative bias values of standard errors of the covariances for the 0.30, 0.50, 0.80, 0.90,

and 0.95 collinearity conditions are 0.79%, 0.59%, 0.49%, 0.59%, and 0.49 with

small changes in the third decimal places that makes these values appear the same in

the table. The percentages obtained through Bayesian estimation are presented in

Table 4. Most of the standard error bias values of factor loadings are higher than the

ones obtained from MLR estimation and they are negatively biased. The values for

the low and medium collinearity conditions are 27.91% and 22.94% in medium

ICC. For the 0.80 collinearity condition, the bias value is found to be 22.28%, and in

the 0.90 collinearity condition, the value is very close to the critical value with the

value of 9.39%. And in the 0.95 condition, there is found to be a negatively biased

value, 211.48%, in the same ICC condition. Moreover, all the values in the high ICC

condition are underestimated as in medium ICC but the values are smaller in compar-

ison. When we look at the standard error bias for the covariance in detail, the values

are negative with values of 23.33%, 24.15%, 24.46%, 23.24%, and 23.62%. In

high ICC, there are small positive biases in all collinearity conditions.

The relative standard error bias of factor loadings are all less than 1% in each cell

of the research design (Table 5) when the multicollinearity is manipulated in the

between level of the model with MLR estimation. The same holds for the standard

errors of the covariance except the medium ICC condition. In medium ICC, the val-

ues are 2.47%, 2.34%, 1.83%, 1.77%, and 1.89%, respectively, for 0.30, 0.50, 0.80,

0.90, and 0.95 multicollinearity conditions.

Bayesian estimation underestimates the standard errors for the factor loadings with

values ranging from 27.91% to 21.68% with one exception in the medium ICC and

medium multicollinearity condition, which is 0.12%, as shown in Table 6. The values

are also underestimated for the covariance between the latent variables in medium
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ICC condition. The bias values of the covariance are underestimated for each colli-

nearity condition in medium ICC. On the other hand, the values are found to be over-

estimated in high ICC.

Although we focus on the effect of multicollinearity on the between-level para-

meters in the current study, we also examined the within-level part of the model. The

within-level parameters obtained are shown in Appendix B (Tables B.1-B.4). As can

be seen in the tables provided, there were no biased values but especially for the stan-

dard errors Bayesian estimation produced negative bias values around 25.00% both

for within- and between-level collinearity conditions in medium and high ICC.

Discussion

The purpose of this study was to investigate the effect of multicollinearity on multi-

level confirmatory factor analysis and to compare ML estimation and Bayesian esti-

mation when there are collinear latent variables in the within or between level. The

results of the current study suggests that when there was multicollinearity in the

between level of the data, the number of inadmissible solutions increased as the mul-

ticollinearity increases for MLR estimation. Grewal et al. (2004), using SEM, also

found an increase in the number of inadmissible solutions with higher levels of mul-

ticollinearity. There were no inadmissible solutions for the low and medium colli-

nearity in both ICC conditions. Additionally, we found an interaction effect of

multicollinearity and ICC on the percentage of the inadmissible solutions for the high

levels of multicollinearity. In the high ICC condition in which there is more

explained between-level variance than in the medium ICC condition, the number of

inadmissible solutions was lower in high conditions of multicollinearity. There was

no problem in obtaining admissible solutions when there was within-level multicolli-

nearity in the model. On the other hand, the relative bias values were higher com-

pared with between-level collinearity conditions. We expected a more severe bias

caused by multicollinearity on the between-level model because of the smaller sam-

ple size on this level when compared with the within-level model. Nevertheless, we

also found higher bias values in the between level when collinearity was manipulated

in the within level. This may be the result of the way how the between-groups struc-

ture is estimated. The between level structure is obtained both from the within-level

and group-level covariance matrices. Thus, the manipulation that we did in the

within level might have produced higher bias values in the between level.

The results of the current study also indicate that all the parameters were admissi-

ble in all replications using Bayesian estimation. In Mplus (also in MLWIN and

AMOS) the prior distributions are set to be noninformative by default but they reflect

the admissible parameter space. This is done by using an inverse chi-square or a

gamma distribution for variance terms such that these can only be positive. Because

of this default setting, the variance terms are all larger than zero in Bayesian estima-

tion. However, in MLR estimation, negative variance or residual variance values or

correlations larger than 61 may be obtained, as we found in our estimation. On the
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whole, Bayesian estimation was robust in obtaining admissible parameters but not in

estimating parameter estimates of the model. In general, the mean relative bias val-

ues in estimates obtained by Bayesian estimation were higher than the ones obtained

by MLR estimation. Therefore, it can be concluded that our hypothesis—Bayesian

estimation is more robust compared with MLR estimation—was only partially sup-

ported in the current study.

In MLR estimation, inadmissible solutions for the parameters can be an indication

of multicollinearity. Although there were relative bias values larger than the 610%

criterion (obtained especially for the covariances), we conclude that Bayesian estima-

tion solves the issue of obtaining always admissible parameters at the cost of obtain-

ing parameter estimates with higher relative bias values when compared with MLR

estimation. On the basis of our results, we recommend researchers switching to the

Bayesian estimation if you are interested in the structural part of the model (the rela-

tionships between the latent variables). But we also recommend caution in relying on

estimates obtained from Bayesian estimation even if low and medium collinearities

exist in models, because this affects other parameters too, as was demonstrated with

the higher relative bias of the factor loadings.

It is important to remember that we defined the collinearity as the correlation

between the latent factors in a confirmatory factor analysis model. High levels of

correlation between the factors may also be viewed as indicating a misspecification

of the model. Maybe the best solution for the multicollinearity in our model would

be to collapse both latent factors on the between level. On the other hand, such

highly correlated models may be retained in the model because of the correspond-

ing constructs are viewed as conceptually different as long as there is not a correla-

tion of 1 between them. Either you have misspecification or have highly collinear

factors in your model, the results of this study may be crucial for these two cases.

When MLR is used in these type of data, the inadmissible solutions warn research-

ers for model misspecification, but Bayesian does not. And if you could obtain

admissible solutions our results also showed that the parameters and the standard

errors may not be biased in MLR estimation. Additionally, the researchers always

have to be aware of model misspecification more when they are using Bayesian

estimation.

Another issue is that the results of our study based on a relatively large sample

size in the group level. We intentionally used a high sample size to analyze only the

effect of multicollinearity without having power or estimation issues. Future research

should manipulate the sample size by changing both the number of groups and the

number of cases in groups to investigate the interaction of power issues with

multicollinearity.

While our study takes a first step toward investigating the effect of multi-

collinearity in multilevel confirmatory factor analysis, this effect can also be investi-

gated in the structural modeling of hierarchical data consisting of more complex

models.
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Appendix A

Simulation Commands

A. MLR syntax

MONTECARLO:

names are y1-y8;

nobservations = 5000;

ncsizes = 1;

csizes = 200 (25);

seed = 50277;

nreps = 1000;

save = M2ICC2E1cond.dat;

ANALYSIS: TYPE = TWOLEVEL;

MODEL POPULATION:

%WITHIN%

fw1 BY y1-y4@1;

fw2 BY y5-y8@1;

y1-y8*4;

fw1-fw2*2;

fw1 WITH fw2*0.65;

%BETWEEN%

fb1 BY y1-y4@1;

fb2 BY y5-y8@1;

y1-y8@.71;

fb1-fb2*.35;

fb1 WITH fb2*.31;

MODEL:

%WITHIN%

fw1 BY y1@1 y2-y4*1;

fw2 BY y5@1 y6-y8*1;

y1-y8*4;

fw1-fw2*2;

fw1 WITH fw2*0.65;

%BETWEEN%

fb1 BY y1@1 y2-y4*1;

fb2 BY y5@1 y6-y8*1;

y1-y8*.71;

fb1-fb2*.35;

fb1 WITH fb2*.31;

Output: tech9;
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B. Bayesian Estimation Syntax

MONTECARLO:

names are y1-y8;

nobservations = 5000;

ncsizes = 1;

csizes = 200 (25);

seed = 50277;

nreps = 1000;

save = M2ICC2E2cond.dat;

ANALYSIS: TYPE = TWOLEVEL;

estimator = bayes;

MODEL POPULATION:

%WITHIN%

fw1 BY y1-y4@1;

fw2 BY y5-y8@1;

y1-y8*4;

fw1-fw2*2;

fw1 WITH fw2*0.65;

%BETWEEN%

fb1 BY y1-y4@1;

fb2 BY y5-y8@1;

y1-y8@.71;

fb1-fb2*.35;

fb1 WITH fb2*.31;

MODEL:

%WITHIN%

fw1 BY y1@1 y2-y4*1;

fw2 BY y5@1 y6-y8*1;

y1-y8*4;

fw1-fw2*2;

fw1 WITH fw2*0.65;

%BETWEEN%

fb1 BY y1@1 y2-y4*1;

fb2 BY y5@1 y6-y8*1;

y1-y8*.71;

fb1-fb2*.35;

fb1 WITH fb2*.31;

Output: tech9;
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Appendix B

Within-Level Parameters Obtained From Multicollinearity Simulations

Table B.1. MLR Results of Within-Level Parameters From Within-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 0.20 1.24 –0.35 –1.59
High (.25) 0.21 1.24 –0.35 –1.59

Medium (.50) Medium (.15) 0.21 1.05 –0.32 –1.72
High (.25) 0.21 0.96 –0.31 –1.71

High .80 Medium (.15) 0.19 0.08 –0.29 –1.94
High (.25) 0.19 0.12 –0.29 –2.08

.90 Medium (.15) 0.18 –0.24 –0.27 –2.36
High (.25) 0.18 –0.24 –0.27 –2.36

.95 Medium (.15) 0.18 –0.23 –0.27 –2.46
High (.25) 0.18 –0.23 –0.27 –2.46

Note. MLR = maximum likelihood with robust chi-squares and standard errors.

Table B.2. Bayesian Results of Within-Level Parameters From Within-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SE l

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 0.17 –3.79 0.06 –2.55
High (.25) 0.14 –5.35 0.05 –4.09

Medium (.50) Medium (.15) 0.12 –3.75 0.07 –4.33
High (.25) 0.17 –4.53 –0.11 –6.10

High .80 Medium (.15) 0.12 –3.01 0.01 –4.48
High (.25) 0.13 –3.44 –0.06 –4.64

.90 Medium (.15) 0.10 –3.73 0.04 –3.51
High (.25) 0.11 –5.06 –0.03 –4.13

.95 Medium (.15) 0.13 –2.96 –0.15 –1.84
High (.25) 0.09 –5.22 –0.02 –3.99
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Table B.3. MLR Results of Within-Level Parameters From Between-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SEl

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 0.20 1.24 –0.35 –1.59
High (.25) 0.21 1.24 –0.35 –1.59

Medium (.50) Medium (.15) 0.21 1.24 –0.35 –1.59
High (.25) 0.21 1.29 –0.35 –1.59

High .80 Medium (.15) 0.21 1.24 –0.35 –1.59
High (.25) 0.21 1.29 –0.35 –1.59

.90 Medium (.15) 0.21 1.24 –0.35 –1.59
High (.25) 0.21 1.29 –0.35 –1.59

.95 Medium (.15) 0.21 1.24 –0.35 –1.59
High (.25) 0.21 1.29 –0.35 –1.59

Note. MLR = maximum likelihood with robust chi-squares and standard errors.

Table B.4. Bayesian Results of Within-Level Parameters From Between-Level Multicollinearity
Simulations.

Multicollinearity

Intraclass
correlation
coefficient

Mean
bias l

Mean
bias SEl

Bias
covariance

C12

SE
covariance

C12

Low (.30) Medium (.15) 0.17 –3.79 0.06 –2.55
High (.25) 0.13 –5.24 0.09 –4.47

Medium (.50) Medium (.15) 0.13 –3.95 0.17 –3.89
High (.25) 0.11 –6.08 0.11 –4.65

High .80 Medium (.15) 0.15 –4.62 0.23 –3.89
High (.25) 0.15 –5.30 0.03 –4.64

.90 Medium (.15) 0.15 –3.44 0.31 –4.09
High (.25) 0.16 –4.29 0.05 –3.70

.95 Medium (.15) 0.17 –3.63 0.31 –4.45
High (.25) 0.15 –4.05 0.17 –3.52
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Technological Research Council of Turkey (TUBITAK). The second author received a grant

from the Netherlands Organization for Scientific Research (NWO-VENI-451-11-008).

Note

1. In Mplus, the default prior distributions for means and intercepts of observed and latent

continuous variables, thresholds of observed categorical dependent variables, factor load-

ings, and regression coefficients are normal distributions with a prior mean of zero and an

infinitive large prior variance. For the prior distributions of variances and residual var-

iances of observed and latent parameters, gamma distributions are used, but an inverse

Wishart distribution is used if more than one latent variable is estimated, and a Dirichlet

distribution is used for categorical (latent) variables.
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