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ABSTRACT. By means of the shift operators we introduce a new periodicity

concept on time scales. This new approach will enable researchers to investigate
periodicity notion on a large class of time scales whose members may not satisfy
the condition

there exists a P > 0 such that t± P ∈ T for all t ∈ T,
which is being currently used. Therefore, the results of this paper open an avenue
for the investigation of periodic solutions of q-difference equations and more.
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1. Introduction

In the last two decades, theory of time scales has become a very useful tool for
the unification of difference and differential equations under dynamic equations
on time scales (see [1]–[10], and references therein). A time scale, denoted by
T, is a non-empty arbitrary subset of real numbers. To be able to investigate
the notion of periodicity of the solutions of dynamic equations on time scales
researchers had to first introduce the concept of periodic time scales and then
define what it meant for a function to be periodic on such a time scale. To
be more specific, we restate the following definitions and introductory examples
which can be found in [5], [6], and [10].

���������� 1� ([9]) A time scale T is said to be periodic if there exists a P > 0
such that t± P ∈ T for all t ∈ T. If T �= R, the smallest positive P is called the
period of the time scale.
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Example 1. The following time scales are periodic.

i) T = Z has period P = 1,

ii) T = hZ has period P = h,

iii) T = R,

iv) T =
∞⋃

i=−∞
[(2i− 1)h, 2ih], h > 0, has period P = 2h,

v) T =
{
t = k − qm : k ∈ Z, m ∈ N0

}
, where 0 < q < 1, has period P = 1.

���������� 2� Let T �= R be a periodic time scale with period P . We say that
the function f : T → R is periodic with period T if there exists a natural number
n such that T = nP , f(t± T ) = f(t) for all t ∈ T and T is the smallest number
such that f(t±T ) = f(t). If T = R, we say that f is periodic with period T > 0
if T is the smallest positive number such that f(t± T ) = f(t) for all t ∈ T.

Based on the Definitions 1 and 2, periodicity and existence of periodic solu-
tions of dynamic equations on time scales were studied by various researchers
and for first papers on the subject we refer to (see for instance [3]–[6], [9]–[11]).

There is no doubt that a time scale T which is periodic in the sense of Defi-
nition 1 must satisfy

t± P ∈ T for all t ∈ T (1.1)

for a fixed P > 0. This property obliges the time scale to be unbounded from
above and below. However, these two restrictions prevent us from investigating
the periodic solutions of q-difference equations since the time scale

qZ =
{
qn : q > 1 is constant and n ∈ Z

} ∪ {0}
which is neither closed under the operation t±P for a fixed P > 0 nor unbounded
below.

The main purpose of this paper is to introduce a new periodicity concept on
time scales which does not oblige the time scale to be closed under the operation
t±P for a fixed P > 0 or to be unbounded. We define our new periodicity concept
with the aid of shift operators which are first defined in [1] and then generalized
in [2].

2. Shift operators

Next, we give a generalized version of shift operators (see [2]). A limited
version of shift operators can be found in [1]. Hereafter, we use the notation
[a, b]

T
to indicate the time scale interval [a, b] ∩ T. The intervals [a, b)T, (a, b]T,

and (a, b)
T
are similarly defined.
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���������� 3� Let T
∗ be a non-empty subset of the time scale T including a

fixed number t0 ∈ T
∗ such that there exist operators δ± : [t0,∞)T × T

∗ → T
∗

satisfying the following properties:

P.1. The functions δ± are strictly increasing with respect to their second argu-
ments, i.e., if

(T0, t), (T0, u) ∈ D± :=
{
(s, t) ∈ [t0,∞)T × T

∗ : δ±(s, t) ∈ T
∗},

then

T0 ≤ t < u =⇒ δ±(T0, t) < δ±(T0, u).

P.2. If (T1, u), (T2, u) ∈ D− with T1 < T2, then

δ−(T1, u) > δ−(T2, u),

and if (T1, u), (T2, u) ∈ D+ with T1 < T2, then

δ+(T1, u) < δ+(T2, u).

P.3. If t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t. Moreover, if t ∈ T
∗,

then (t0, t) ∈ D+ and δ+(t0, t) = t holds.

P.4. If (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t, respectively.

P.5. If (s, t) ∈ D± and (u, δ±(s, t)) ∈ D∓, then (s, δ∓(u, t)) ∈ D± and
δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)), respectively.

Then the operators δ− and δ+ associated with t0 ∈ T
∗ (called the initial point)

are said to be backward and forward shift operators on the set T∗, respectively.
The variable s ∈ [t0,∞)T in δ±(s, t) is called the shift size. The values δ+(s, t)
and δ−(s, t) in T

∗ indicate s units translation of the term t ∈ T
∗ to the right

and left, respectively. The sets D± are the domains of the shift operators δ±,
respectively.

Hereafter, we shall denote by T
∗ the largest subset of the time scale T such

that the shift operators δ± : [t0,∞)T × T
∗ → T

∗ exist.

Example 2. Let T = R and t0 = 1. The operators

δ−(s, t) =
{
t/s if t ≥ 0,
st if t < 0,

for s ∈ [1,∞) (2.1)

and

δ+(s, t) =

{
st if t ≥ 0,
t/s if t < 0,

for s ∈ [1,∞) (2.2)

are backward and forward shift operators (on the set R
∗ = R−{0}) associated

with the initial point t0 = 1. In the table below, we state different time scales
with their corresponding shift operators.
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T t0 T
∗ δ−(s, t) δ+(s, t)

R 0 R t− s t+ s

Z 0 Z t− s t+ s

qZ ∪ {0} 1 qZ t
s st

N
1/2 0 N

1/2
√
t2 − s2

√
t2 + s2

The proof of the next lemma is a direct consequence of Definition 3.

��		
 1� Let δ− and δ+ be the shift operators associated with the initial point
t0. We have

(i) δ−(t, t) = t0 for all t ∈ [t0,∞)T.

(ii) δ−(t0, t) = t for all t ∈ T
∗.

(iii) If (s, t) ∈ D+, then δ+(s, t) = u implies δ−(s, u) = t. Conversely, if
(s, u) ∈ D−, then δ−(s, u) = t implies δ+(s, t) = u.

(iv) δ+(t, δ−(s, t0)) = δ−(s, t) for all (s, t) ∈ D+ with t ≥ t0.

(v) δ+(u, t) = δ+(t, u) for all (u, t) ∈ ([t0,∞)T × [t0,∞)T) ∩ D+.

(vi) δ+(s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0.

(vii) δ−(s, t) ∈ [t0,∞)T for all (s, t) ∈ ([t0,∞)T × [s,∞)T) ∩ D−.

(viii) If δ+(s, ·) is ∆-differentiable in its second variable, then δ∆t
+ (s, ·) > 0.

(ix) δ+(δ−(u, s), δ−(s, v)) = δ−(u, v) for all (s, v) ∈ ([t0,∞)T × [s,∞)T) ∩ D−
and (u, s) ∈ ([t0,∞)T × [u,∞)T) ∩ D−.

(x) If (s, t) ∈ D− and δ−(s, t) = t0, then s = t.

P r o o f.

(i) is obtained from P.3–5 since

δ−(t, t) = δ−(t, δ+(t, t0)) = t0 for all t ∈ [t0,∞)T.

(ii) is obtained from P.3–P.4 since

δ−(t0, t) = δ−(t0, δ+(t0, t)) = t for all t ∈ T
∗.

Let u := δ+(s, t). By P.4 we have (s, u) ∈ D− for all (s, t) ∈ D+, and hence,

δ−(s, u) = δ−(s, δ+(s, t)) = t.

The latter part of (iii) can be done similarly.

We have (iv) since P.3 and P.5 yield

δ+(t, δ−(s, t0)) = δ−(s, δ+(t, t0)) = δ−(s, t).
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P.3 and P.5 guarantee that

t = δ+(t, t0) = δ+(t, δ−(u, u)) = δ−(u, δ+(t, u))

for all (u, t) ∈ ([t0,∞)T × [t0,∞)T) ∩ D+.

Using (iii) we have

δ+(u, t) = δ+(u, δ−(u, δ+(t, u))) = δ+(t, u).

This proves (v).

To prove (vi) and (vii) we use P.1–2 to get

δ+(s, t) ≥ δ+(t0, t) = t ≥ t0

for all (s, t) ∈ ([t0,∞)× [t0,∞)T) ∩ D+ and

δ−(s, t) ≥ δ−(s, s) = t0

for all (s, t) ∈ ([t0,∞)T × [s,∞)T) ∩ D−.
Since δ+(s, t) is strictly increasing in its second variable we have (viii) by [8:

Corollary 1.16].

(ix) is proven as follows: from P.5 and (v) we have

δ+(δ−(u, s), δ−(s, v)) = δ−(s, δ+(v, δ−(u, s)))

= δ−(s, δ−(u, δ+(v, s)))

= δ−(s, δ+(s, δ−(u, v)))

= δ−(u, v)

for all (s, v) ∈ ([t0,∞)T × [s,∞)T) ∩ D− and (u, s) ∈ ([t0,∞)T × [u,∞)T) ∩ D−.
Suppose (s, t) ∈ D− = {(s, t) ∈ [t0,∞)T × T

∗ : δ−(s, t) ∈ T
∗} and δ−(s, t)

= t0. Then by P.4 we have

t = δ+(s, δ−(s, t)) ∈ δ+(s, t0) = s.

This is (x). The proof is complete. �

Notice that the shift operators δ± are defined once the initial point t0 ∈ T
∗ is

known. For instance, we choose the initial point t0 = 0 to define shift operators
δ±(s, t) = t± s on T = R. However, if we choose λ ∈ (0,∞) as the initial point,

then the new shift operators associated with λ are defined by δ̃±(s, t) = t∓λ±s.

In terms of δ± the new shift operators δ̃± can be given as follows

δ̃±(s, t) = δ∓(λ, δ±(s, t)).
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Example 3. In the following, we give some particular time scales with shift op-
erators associated with different initial points to show the change in the formula
of shift operators as the initial point changes.

T = N
1/2

T = hZ T = 2N

t0 0 λ 0 hλ 1 2λ

δ−(s, t)
√
t2 − s2

√
t2 + λ2 − s2 t− s t+ hλ− s t/s 2λts−1

δ+(s, t)
√
t2 + s2

√
t2 − λ2 + s2 t+ s t− hλ+ s ts 2−λts

where λ ∈ Z+, N
1/2 =

{√
n : n∈N

}
, 2N = {2n : n∈N}, and hZ = {hn : n∈Z}.

3. Periodicity

In the following we propose a new periodicity notion which does not oblige
the time scale to be closed under the operation t± P for a fixed P > 0 or to be
unbounded.

���������� 4 (Periodicity in shifts)� Let T be a time scale with the shift op-
erators δ± associated with the initial point t0 ∈ T

∗. The time scale T is said to
be periodic in shifts δ± if there exists a p ∈ (t0,∞)T∗ such that (p, t) ∈ D∓ for
all t ∈ T

∗. Furthermore, if

P := inf {p ∈ (t0,∞)T∗ : (p, t) ∈ D∓ for all t ∈ T
∗} �= t0,

then P is called the period of the time scale T.

The following example indicates that a time scale, periodic in shifts, does not
have to satisfy (1.1). That is, a time scale periodic in shifts may be bounded.

Example 4. The following time scales are not periodic in the sense of Definition 1
but periodic with respect to the notion of shift operators given in Definition 4.

(1) T1 =
{±n2 : n ∈ Z

}
,

δ±(P, t) =

⎧⎪⎨
⎪⎩

(√
t±√

P
)2

if t > 0,
±P if t = 0,

−(√−t±√
P
)2

if t < 0,

P = 1, t0 = 0,

(2) T2 = qZ, δ±(P, t) = P±1t, P = q, t0 = 1,

(3) T3 =
⋃
n∈Z

[22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,
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(4) T4 =
{

qn

1+qn : q > 1 is constant and n ∈ Z

}
∪ {0, 1},

δ±(P, t) =
q

(
ln( t

1−t)±ln( P
1−P )

ln q

)

1 + q

(
ln( t

1−t )±ln( P
1−P )

ln q

) , P =
q

1 + q
.

Notice that the time scale T4 in Example 4 is bounded above and below and

T
∗
4 =

{
qn

1+qn : q > 1 is constant and n ∈ Z

}
.

Remark 1� Let T be a time scale that is periodic in shifts with the period
P . Thus, by P.4 of Definition 3 the mapping δP+ : T∗ → T

∗ defined by δP+(t) =
δ+(P, t) is surjective. On the other hand, we know by P.1 of Definition 3 that
shift operators δ± are strictly increasing in their second arguments. That is, the
mapping δP+(t) := δ+(P, t) is injective. Hence, δ

P
+ is an invertible mapping with

the inverse
(
δP+

)−1
= δP− defined by δP−(t) := δ−(P, t).

In next two results, we suppose that T is a periodic time scale in shifts δ±
with period P and show that the operators δP± : T∗ → T

∗ are commutative with
the forward jump operator σ : T → T given by

σ(t) := inf {s ∈ T : s > t} .
That is, (

δP± ◦ σ) (t) = (
σ ◦ δP±

)
(t) for all t ∈ T

∗. (3.1)

��		
 2� The mapping δT+ : T∗ → T
∗ preserves the structure of the points

in T
∗. That is,

σ( t̂ ) = t̂ =⇒ σ(δ+(P, t̂ )) = δ+(P, t̂ ).

σ( t̂ ) > t̂ =⇒ σ(δ+(P, t̂ ) > δ+(P, t̂ ).

P r o o f. By definition we have σ(t) ≥ t for all t ∈ T
∗. Thus, by P.1

δ+(P, σ(t)) ≥ δ+(P, t).

Since σ(δ+(P, t)) is the smallest element satisfying

σ(δ+(P, t)) ≥ δ+(P, t),

we get
δ+(P, σ(t)) ≥ σ(δ+(P, t)) for all t ∈ T

∗. (3.2)

If σ( t̂ ) = t̂, then (3.2) implies

δ+(P, t̂ ) = δ+(P, σ( t̂ )) ≥ σ(δ+(P, t̂ )).

That is,
δ+(P, t̂ ) = σ(δ+(P, t̂ )) provided σ( t̂ ) = t̂.

823



MURAT ADIVAR

If σ( t̂ ) > t̂, then by definition of σ we have

( t̂, σ( t̂ ))T∗ = ∅ (3.3)

and by P.1

δ+(P, σ( t̂ )) > δ+(P, t̂ ).

Suppose contrary that δ+(P, t̂ ) is right dense, i.e., σ(δ+(P, t̂ )) = δ+(P, t̂ ). This
along with (3.2) implies

(δ+(P, t̂ ), δ+(P, σ( t̂ )))T∗ �= ∅.

Pick one element s ∈ (
δ+(P, t̂ ), δ+(P, σ( t̂ ))

)
T∗ . Since δ+(P, t) is strictly in-

creasing in t and invertible there should be an element t ∈ ( t̂, σ( t̂ ))T∗ such that

δ+(P, t) = s. This contradicts (3.3). Hence, δ+(P, t̂ ) must be right scattered,
i.e., σ(δ+(P, t̂ )) > δ+(P, t̂ ). The proof is complete. �

����


�� 1� We have

δ+(P, σ(t)) = σ(δ+(P, t)) for all t ∈ T
∗. (3.4)

Thus,

δ−(P, σ(t)) = σ(δ−(P, t)) for all t ∈ T
∗. (3.5)

P r o o f. The equality (3.4) can be obtained as we did in the proof of preceding
lemma. By (3.4) we have

δ+(P, σ(s)) = σ(δ+(P, s)) for all s ∈ T
∗.

Substituting s = δ−(P, t) we obtain

δ+(P, σ(δ−(P, t))) = σ(δ+(P, δ−(P, t))) = σ(t).

This and (iii) of Lemma 1 imply

σ(δ−(P, t)) = δ−(P, σ(t)) for all t ∈ T
∗.

The proof is complete. �

Observe that (3.4) along with (3.5) yields (3.1).

���������� 5 (Periodic function in shifts δ±)� Let T be a time scale that is
periodic in shifts δ± with the period P . We say that a real valued function f
defined on T

∗ is periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f(δT±(t)) = f(t) for all t ∈ T
∗, (3.6)

where δT±(t) := δ±(T, t). The smallest number T ∈ [P,∞)T∗ such that (3.6)
holds is called the period of f .
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Example 5. By Definition 4 we know that the set of reals R is periodic in shifts
δ± defined by (2.1)–(2.2) associated with the initial point t0 = 1. The function

f(t) = sin

(
ln |t|

ln (1/2)
π

)
, t ∈ R

∗ := R− {0}

is periodic in shifts δ± defined by (2.1)–(2.2) with the period T = 4 since

f (δ±(T, t)) =
{
f
(
t4±1

)
if t ≥ 0,

f
(
t/4±1

)
if t < 0,

= sin

(
ln |t| ± 2 ln (1/2)

ln (1/2)
π

)

= sin

(
ln |t|

ln (1/2)
π ± 2π

)

= sin

(
ln |t|

ln (1/2)
π

)
= f(t)

for all t ∈ R
∗ (see Figure 1).

Figure 1. Graph of f(t) = sin
(

ln|t|
ln(1/2)

π
)

Example 6. The time scale qZ =
{
qn : n ∈ Z and q > 1

} ∪ {0} is periodic in

shifts δ±(P, t) = P±1t with the period P = q. The function f defined by

f(t) = (−1)
ln t
ln q , t ∈ qZ (3.7)
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is periodic in shifts δ± with the period T = q2 since δ+(q
2, t) ∈ qZ

∗
= qZ and

f
(
δ±(q2, t)

)
= (−1)

ln t
ln q±2

= (−1)
ln t
ln q = f(t)

for all t ∈ qZ. However, f is not periodic in the sense of Definition 2 since there
is no any positive number T so that f(t± T ) = f(t) holds.

In the following, we introduce ∆-periodic function in shifts. For a detailed
information on ∆-derivative and ∆-integration we refer to [7] and [8].

���������� 6 (∆-periodic function in shifts δ±)� Let T be a time scale that is
periodic in shifts δ± with period P . We say that a real valued function f defined
on T

∗ is ∆-periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T
∗, (3.8)

the shifts δT± are ∆-differentiable with rd-continuous derivatives, (3.9)

and
f(δT± (t))δ∆T

± (t) = f(t) (3.10)

for all t ∈ T
∗, where δT±(t) := δ±(T, t). The smallest number T ∈ [P,∞)T∗ such

that (3.8)–(3.10) hold is called the period of f .

Notice that Definition 5 and Definition 6 give the classic periodicity definition
(i.e. Definition 2) on time scales whenever δT±(t) = t±T are the shifts satisfying
the assumptions of Definition 5 and Definition 6.

Example 7. The real valued function g(t) = 1/t defined on 2Z = {2n : n ∈ Z}
is ∆-periodic in shifts δ±(T, t) = T±1t with the period T = 2 since

f (δ±(2, t)) δ∆±(2, t) =
1

2±1t
2±1 =

1

t
= f(t).

The following result is essential for the proof of next theorem:

������	 1 (Substitution)� ([7: Theorem 1.98]) Assume ν : T → R is strictly

increasing and T̃ := ν(T) is a time scale. If f : T → R is an rd-continuous
function and ν is differentiable with rd-continuous derivative, then for a, b ∈ T,

b∫
a

g(s)ν∆(s)∆s =

ν(b)∫
ν(a)

g(ν−1(s)) ∆̃s. (3.11)

������	 2� Let T be a time scale that is periodic in shifts δ± with period P ∈
(t0,∞)T∗ and f a ∆-periodic function in shifts δ± with the period T ∈ [P,∞)T∗ .
Suppose that f ∈ Crd(T), then

t∫
t0

f(s)∆s =

δT±(t)∫
δT±(t0)

f(s)∆s.
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P r o o f. Substituting v(s) = δT+(s) and g(s) = f(δT+ (s)) in (3.11) and taking
(3.10) into account we have

δT+(t)∫
δT+(t0)

f(s)∆s =

ν(t)∫
ν(t0)

g(ν−1(s))∆s

=

t∫
t0

g(s)ν∆(s)∆s

=

t∫
t0

f(δT+ (s))δ∆T
+ (t)∆s

=

t∫
t0

f(s)∆s.

The equality
δT−(t)∫

δT−(t0)

f(s)∆s =

t∫
t0

f(s)∆s

can be obtained similarly. The proof is complete. �
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