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Abstract. In this paper, a quadratic pencil of Schrödinger type difference opera-
tor Lλ is taken under investigation to provide a general perspective for the spectral
analysis of non-selfadjoint difference equations of second order. Introducing Jost-type
solutions, structure and quantitative properties of the spectrum of Lλ are investi-
gated. Therefore, a discrete analog of the theory in [6] and [7] is developed. In
addition, several analogies are established between difference and q-difference cases.
Finally, the principal vectors of Lλ are introduced to lay a groundwork for the spec-
tral expansion.
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1. Introduction. Let Lλ denote the quadratic pencil of difference operator
generated in �2(Z) by the difference expression

�λyn := Δ (an−1Δyn−1) +
(
qn + 2λpn + λ2

)
yn, n ∈ Z,

where Δ is forward difference operator, λ is spectral parameter, {an}n∈Z
, {pn}n∈Z

,
and {qn}n∈Z

are complex sequences satisfying∑
n∈Z

|n| {|1 − an| + |pn| + |qn|} < ∞, (1.1)

and an �= 0 for all n ∈ Z.
Evidently, Schrödinger type difference equation

Δ(an−1Δyn−1) + (qn − λ)yn = 0 n ∈ Z (1.2)

and the difference equation

Δ(an−1Δyn−1) + (qn − λ)2 yn = 0, n ∈ Z (1.3)
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of Klein–Gordon type are special cases of the equation

Δ (an−1Δyn−1) +
(
qn + 2λpn + λ2

)
yn = 0, n ∈ Z. (1.4)

Observe that the dependence on spectral parameter λ in (1.3) and (1.4) is non-
linear while it is linear in (1.2). Also, since the sequences {an}n∈Z

, {pn}n∈Z
, and

{qn}n∈Z
are allowed to take complex values, Equation (1.4) is non-selfadjoint.

Note that, the equation (1.2) can be rewritten as

anyn+1 + bnyn + an−1yn = λyn, (1.5)

where
bn = qn − an − an.

In [11], Guseinov studied the inverse problem of scattering theory for the Equation
(1.5), where {an}n∈N

and {bn}n∈N
are real sequences satisfying an > 0 and∑∞

n=1 |n| (|1 − an| + |bn|) < ∞.

In [1] and [2], the authors investigated spectral properties of the difference operator
associated with Equation (1.5) in the case when {an}n∈Z

and {bn}n∈Z
are complex

sequences satisfying ∑
n∈Z

|n| (|1 − an| + |bn|) < ∞. (1.6)

To the best of author’s knowledge, quantitative properties of spectrum of the non-
selfadjoint difference operators corresponding to Equation (1.3) and Equation (1.4)
have not been treated elsewhere before.

In recent years, quantum calculus and q-difference equations has taken a promi-
nent attention in the literature including [3], [4], [8], [18]. In particular, [3] and [4]
are concerned with the spectral analysis of q-difference equation(

a (t)uΔ (t)
)Δρ

+ (b (t) − λ)u (t) = 0, t = qn and n ∈ Z. (1.7)

However, there is lack of literature on the spectral analysis of quadratic pencil of
q-difference equation(

a (t)uΔ (t)
)Δρ

+
(
b (t) + 2μc (t) + μ2

)
u (t) = 0, t = qn and n ∈ Z (1.8)

which includes Equation (1.7) as a particular case.
This paper aims to investigate quantitative properties of spectrum of quadratic

pencil difference operator Lλ. This will provide a wide perspective on spectral
analysis of second order difference Equations (1.2) and (1.3) and avoid deriving
results separately. The remainder of the manuscript is organized as follows: In
Section 2, we proceed by the procedure, which has been developed by Naimark,
Lyance, and others, consisting of the following steps:

• Formulation of Jost solutions.

• Determination of the resolvent operator.
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• Description of the sets of eigenvalues and spectral singularities in terms of
singular points of the kernel of the resolvent.

• Use of boundary uniqueness theorems of analytic functions to provide suffi-
cient conditions guaranteeing finiteness of eigenvalues and spectral singular-
ities.

Section 3 is concerned with applications of acquired results in Section 2. This
section also contains a brief subsection to show how the obtained results might
be extended to quadratic pencil of q-difference Equation (1.8). The latter section
introduces principal functions of the operator Lλ.

Therefore, we improve and generalize the results given in [1, 2, 3, 4].

2. Spectrum. Hereafter, we assume (1.1) unless otherwise stated.

2.1. Jost solutions of Equation (1.4). The structure of Jost solutions plays
a substantial role in spectral analysis of difference and differential operators. By
the next theorem and several lemmas in this section, we provide an extensive
information about the structure of Jost solutions of Equation (1.4).

To show the structural differences between Jost solutions in continuous and
discrete cases, we first consider the Jost solutions of the differential equations

−y′′ +
[
q(x) + 2λp(x) − λ2

]
y = 0 , x ∈ R+ (2.1)

and
−y′′ + [q(x) − λ] y = 0 , x ∈ R+. (2.2)

While a Jost solution of the quadratic pencil of differential Equation (2.1) is
given by

e(x, λ) = eiw(x)+iλx +
∫ ∞

x

A(x, t)eiλtdt, Im λ ≥ 0, (2.3)

where w(x) =
∞∫
x

p(t)dt (see [13]), the Jost solution of Equation (2.2) is obtained as

f(x, λ) = ei
√

λx +
∫ ∞

x

B(x, t)ei
√

λtdt, Im
√

λ ≥ 0 (2.4)

[17]. Note that, w(x) does not appear in (2.4) since p(x) = 0 in (2.2). The term
w(x) in (2.3) makes the spectral analysis of (2.1) quite challenging. For one thing,
the set of eigenvalues of Equation (2.2) lies only in C+ (see [14]) while that of
Equation (2.1) resides both in C+ and C− (see [6] and [12]), where C+ and C−
indicates the open upper and lower half-planes, respectively.

One of the main achievements of this paper is to introduce Jost solutions of
Equation (1.4) in a simple structure and to show that there is no such a difficulty
in discrete case. This will enable us to investigate the spectral analysis of (1.4) as
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it is done for (1.2) in which dependence on λ is linear. In discrete case, the Jost
solutions of Equation (1.2) takes the form

e±n (z) = β±
n e±inz +

∞∑
m∈Z±

A±
n,me±imz, n ∈ Z (2.5)

where λ = 2 cos z, Im z ≥ 0, and Z± denotes the sets of positive and negative
integers, respectively (see [1] and [11]).

Despite the fact that the dependence on spectral parameter λ is non-linear in
Equation (1.4), the next theorem offers Jost solutions of the form

f+
n (z) = α+

n einz
(
1 +

∑∞
m=1K

+
n,meimz/2

)
, n ∈ Z (2.6)

and
f−

n (z) = α−
n e−inz

(
1 +

∑m=−1
−∞ K−

n,me−imz/2
)

, n ∈ Z (2.7)

which have similar structure to (2.5), i.e., there is no additional function ω of n in
the exponent of first terms.

Theorem 1. For λ = 2 cos (z/2) and z ∈ C+ := {z ∈ C : Im z > 0} , (2.6) and
(2.7) solve Equation (1.4). The coefficients α±

n and the kernels K±
n,m are uniquely

expressed in terms of {an}n∈Z
, {pn}n∈Z

, and {hn}n∈Z
(where hn = 2−an−an−1 +

qn) as follows:.

α+
n = (

∏∞
r=n(−ar))

−1
,

K+
n,1 = 2

∑∞
r=n+1pr,

K+
n,2 =

∑∞
r=n+1

(
hr + 2prK

+
r,1

)
,

K+
n,3 =

∑∞
r=n+1hrK

+
r,1 + 2pr

(
K+

r,2 + 1
)
,

K+
n,4 =

∑∞
r=n+1

(
1 − a2

r

)
+ hrK

+
r,2 + 2pr

(
K+

r,3 + K+
r,1

)
,

K+
n,m+4 = K+

n,m +
∞∑

r=n+1

(
1 − a2

r

)
K+

r+1,mhrK
+
r,m+2 + 2pr

(
K+

r,m+1 + K+
r,m+3

)
,

for m = 1, 2, ...; n ∈ Z, and

α−
n =

(∏r=n−1
−∞ (−ar)

)−1

,

K−
n,−1 = 2

∑r=n−1
−∞ pr,

K−
n,−2 =

∑r=n−1
−∞

(
hr + 2prK

−
r,−1

)
,

K−
n,−3 =

∑r=n−1
−∞ hrK

−
r,−1 + 2pr

(
K−

r,−2 + 1
)
,

K−
n,−4 =

∑r=n−1
−∞

(
1 − a2

r−1

)
+ hrK

−
r,−2 + 2pr

(
K−

r,−3 + K−
r,−1

)
,

K−
n,m−4 = K−

n,m +
r=n−1∑
−∞

(
1 − a2

r−1

)
K−

r−1,m +hrK
−
r,m−2 +2pr

(
K−

r,m−1 + K−
r,m−3

)
,

for m = −1,−2, ...; n ∈ Z.
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Proof. Using λ = 2 cos (z/2) , Equation (1.4) can be rewritten as

anyn+1 + an−1yn−1 +
(
hn + 2

(
eiz/2 + e−iz/2

)
pn + eiz + e−iz

)
yn = 0.

Substituting f+
n (z) for yn in this equation and comparing the coefficients of

ei(n−1)z, ei(n− 1
2 )z, einz, ei(n+ 1

2 )z, and ei(n+1)z, we find

an−1α
+
n−1 + α+

n = 0,

K+
n,1 − K+

n−1,1 + 2pn = 0,

K+
n,2 − K+

n−1,2 + 2pnK+
n,1 + hn = 0,

K+
n,3 − K+

n−1,3 + 2pn

(
K+

n,2 + 1
)

+ hnK+
n,1 = 0,

K+
n,4 − K+

n−1,4 +
(
1 − a2

n

)
+ hnK+

n,2 + 2pn

(
K+

n,1 + K+
n,3

)
= 0,

respectively. From remaining terms we have the following recurrence relation

K+
n−1,m+4 − K+

n,m+4 = K+
n,m − a2

nK+
n+1,m + hnK+

n,m+2

+ 2pn

(
K+

n,m+1 + K+
n,m+3

)
for m = 1, 2, ... and n ∈ Z. Similarly we obtain

an−1α
−
n+1 + α−

n = 0,

K−
n,−1 − K−

n+1,−1 + 2pn = 0,

K−
n,−2 − K−

n+1,−2 + 2pnK−
n,−1 + hn = 0,

K−
n,−3 − K−

n+1,−3 + 2pn

(
K−

n,−2 + 1
)

+ hnK−
n,−1 = 0,

K−
n,−4 − K−

n+1,4 +
(
1 − a2

n

)
+ hnK−

n,−2 + 2pn

(
K−

n,−1 + K−
n,−3

)
= 0,

from the coefficients of e−i(n+1)z, e−i(n+ 1
2 )z, e−inz, e−i(n− 1

2 )z, and e−i(n−1)z, re-
spectively. Use of remaining terms yields

K−
n+1,m−4 − K−

n,m−4 = K−
n,m − a2

nK−
n−1,m + hnK−

n,m−2

+ 2pn

(
K−

n,m−1 + K−
n,m−3

)
for m = −1,−2, ... and n ∈ Z. Above difference equations give the desired result,
whereas convergence of the coefficients α±

n and the kernels K±
n,m is immediate from

the condition (1.1). �

Different than the solutions (2.5) of (1.2) the coefficients K±
n,m in (2.6-2.7) are

determined by recurrence relations depending on first four terms K±
n,m, n ∈ Z,

m = ±1,±2,±3,±4 (the ones for A±
n,m depend on A±

n,m, n ∈ Z, m = ±1,±2).
In addition to these, the exponential function in the second terms in (2.5) and
(2.6) contains the half of the complex variable z because of the transformation
λ = 2 cos (z/2).
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In the following lemma, we list some properties of Jost solutions f± (z) =
{f±

n (z)} :

Lemma 1. i. The kernels K±
n,m satisfy∣∣K+

n,m

∣∣ ≤ c
∑∞

r=n+[m/2] (|1 − ar| + |pr| + |qr|) ,∣∣K−
n,m

∣∣ ≤ C
∑r=n+[m/2]+1

−∞ (|1 − ar| + |pr| + |qr|) ,

where [m/2] is the integer part of m/2, and c and C are positive constants,

ii. f±
n (z) are analytic with respect to z in C+ := {z ∈ C : Im z > 0}, continuous

in C+,

iii. For z ∈ C+, f±
n (z) satisfy the following estimates

f+
n (z) = exp (inz) [1 + o (1)] as n → ∞, (2.8)

f−
n (z) = exp (−inz) [1 + o (1)] as n → −∞, (2.9)

and

f±
n (z) = α±

n exp (±inz) [1 + o (1)] as Im z → ∞ for n ∈ Z. (2.10)

Proof. The proof follows from (1.1), (2.6), and (2.7). �

Let g± (z) = {g±n (z)} denote the solutions of Equation (1.4) satisfying

limn→±∞ g±n (z) einz = 1,

respectively. By making use of Theorem 1, (2.8) and (2.9) we have the next result:

Lemma 2. i. For z ∈ C− := {z ∈ C : Im z < 0}
g± (z) =

{
f±

n (−z)
}

n∈Z

holds.

ii. g±n (z) are analytic with respect to z in C−, and continuous in C−.

iii. For ζ ∈ R,
W

[
f± (ζ) , g± (ζ)

]
= ∓2i sin ζ

holds, where the Wronskian of two solutions u and v of Equation (1.4) is
defined by

W [u, v] = an (unvn+1 − un+1vn) .

iv. For ζ ∈ R\ {nπ : n ∈ Z} and λ = 2 cos (ζ/2)

f+
n (ζ) = ψ (ζ) f−

n (ζ) + μ (ζ) g−n (ζ) , (2.11)

where

ψ (ζ) =
W [f+ (ζ) , g− (ζ)]

2i sin ζ
, μ (ζ) = −W [f+ (ζ) , f− (ζ)]

2i sin ζ
.

It is worth noting that the function μ has an analytic continuation to the open
upper half-plane C+.
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2.2. Resolvent and discrete spectrum. The set of values λ ∈ C such that
Rλ (Lλ) = L−1

λ exists as a bounded operator on �2(Z) is said to be the resolvent
set ρ (Lλ) of Lλ.

Similar to the one in [1], we formulate the resolvent set ρ (Lλ) and the resolvent
operator Rλ (Lλ) as follows:

ρ (Lλ) =
{

λ = 2 cos
z

2
: z ∈ C+ and Φ (z) �= 0

}
(2.12)

and
Rλ (Lλ)φn =

∑
m∈Z

Gn,m (z)φm

for λ = 2 cos z
2 ∈ ρ (Lλ) and φ := {φn}n∈Z

∈ �2 (Z), n ∈ Z, where

Gn,m (z) =

{
f−

m(z)f+
n (z)

Φ(z) , m = n − 1, n − 2, ...
f+

m(z)f−
n (z)

Φ(z) , m = n, n + 1, ...
, (2.13)

and
Φ (z) := 2i sin zμ (z) = W

[
f− (z) , f+ (z)

]
. (2.14)

Notice that the function Φ is 4π periodic, analytic in C+, and continuous in
C+. The zeros of the function Φ play a substantial role in the formulation of the
sets of eigenvalues and spectral singularities of Lλ. From (2.11-2.14) and definition
of eigenvalues we arrive at the following conclusion.

Lemma 3. (Eigenvalues) Let σd (Lλ) denote the set of eigenvalues of the operator
Lλ. Then we have

σd (Lλ) =
{

λ = 2 cos
z

2
: z ∈ P+ and Φ(z) = 0

}
,

where
P+ = {z = η + iϕ : η ∈ [−π, 3π] and ϕ > 0} .

Note that Lλ has no eigenvalues on the real line. This is because, if λ0 =
2 cos(z0/2) ∈ R is an eigenvalue, then the corresponding solution yn (z0) will satisfy
the estimate yn (z0) = c1e

inz0 + c2e
−inz0 + o (1) as n → ∞ contradicting the fact

that yn ∈ �2 (Z).

2.3. Continuous spectrum and the spectral singularities. To obtain the
continuous spectrum of the operator Lλ we shall resort to the following lemma.

Lemma 4. For every δ > 0, there is a positive number cδ such that

‖Rλ (Lλ)‖ ≥ cδ

|Φ(z)|√1 − exp (−2 Im z)

for λ = 2 cos z
2 , z ∈ C+, and Im z > δ. Hence, ‖Rλ (Lλ)‖ → ∞ as Im z → 0.
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Proof. Let δ > 0, z ∈ C+ and Im z > δ. Define the function hm0 by

hm0
n (z) :=

{
f−

n (z), n = m0 − 1, m0 − 2, ...
0, n = m0, m0 + 1, ...

.

Evidently, hm0(z) ∈ �2 (Z) and

Rλ (Lλ)hm0
n (z) =

∑m=m0−1
−∞ Gn,m (z) f−

m(z)

=
f+

n (z)
Φ(z)

‖hm0‖2

for m0 < n. By (310) we have f+
n (z) = einz + o (1) as Im z → ∞ for n ∈ Z. Thus,

we can choose m0 = m0(δ) sufficiently large so that m0 < n, Im z > δ, and the
inequality ∣∣f+

n (z)
∣∣ >

1
2
e−n Im z

holds. Therefore, we get

∥∥f+(z)
∥∥2 ≥ exp (−2m0 Im z)

4 (1 − exp (−2 Im z))
.

Hence, we arrive at the following inequality:

‖Rλ (Lλ)hm0‖2

‖hm0‖2 ≥ c2
δ

(1 − exp (−2 Im z)) |Φ(z)|2

as desired, where

cδ =
‖hm0‖

2 exp (m0 Im z)
.

�

We shall need the following theorem at several occasions in our further work.

Theorem 2. σc (Lλ) = [−2, 2], where σc (Lλ) denotes the continuous spectrum of
the operator Lλ.

Proof. By (2.12), for any λ ∈ ρ(Lλ) there is a corresponding z ∈ C+ such that
λ = 2 cos z

2 and Φ (z) �= 0. Let λ0 = 2 cos z0
2 ∈ σc (Lλ). Then ‖Rλ (Lλ)‖ → ∞ as

λ → λ0. This shows that Φ (z) = 2i sin zμ (z) → 0 as z → z0. Continuity of μ and
μ (z0) �= 0 yield sin z → 0 and Im z → 0. On the other hand, we have Im z → Im z0

since λ → λ0. It follows that Im z0 = 0, i.e., λ0 = 2 cos z0
2 ∈ [−2, 2]. Conversely,

from Lemma 4 ‖Rλ (Lλ)‖ → ∞ for λ = 2 cos z
2 ∈ [−2, 2]. Now, we have to show

that the range R (Lλ) of values of the operator Lλ is dense in the space �2 (Z). It
is obvious that the orthogonal complement of R (Lλ) coincides with the space of
solutions y ∈ �2 (Z) of Equation L∗

λy = 0, where L∗
λ denotes the adjoint operator.
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Since Equation L∗
λy = 0 has no any eigenvalue on the real line, the orthogonal

complement of the set R (Lλ) consists only of the zero element. This completes
the proof. �

Remark 1. If pn = 0, the difference equation

Δ (an−1Δyn−1) +
(
qn + 2λpn + λ2

)
yn = 0, n ∈ Z,

turns into
anyn+1 + bnyn + an−1yn−1 = λ̃yn, n ∈ Z, (2.15)

where
bn = 2 + qn − an − an−1 and λ̃ = 2 − λ2.

Namely, in the case pn = 0, (1.1) is equivalent to (1.6) and λ̃ = 2−λ2 becomes the
new spectral parameter. Thus, Theorem 2 implies that the continuous spectrum of
the difference operator corresponding to (2.15) is [−2, 2]. This result was obtained
in [1, Theorem 3.1].

Spectral singularities are poles of the kernel of the resolvent operator and are
imbedded in the continuous spectrum ([15, Definition 1.1.]). Analogous to the
quadratic pencil of Schrödinger operator [6], from Theorem 2 and (2.13) we obtain
the set of spectral singularities of the operator Lλ as follows:

Corollary 1. (Spectral singularities) Let σss (Lλ) denote the set of spectral
singularities. We have

σss (Lλ) =
{

λ = 2 cos
z

2
: z ∈ P0 and Φ(z) = 0

}
,

where P0 := (−π, 3π) \ {0, π, 2π}.
Hereafter, we discuss the quantitative properties of eigenvalues and spectral

singularities. For this purpose, we will make use of boundary uniqueness theorems
of analytic functions [9]. Lemma 3 and Corollary 1 show that the problem of
investigation of quantitative properties of eigenvalues and spectral singularities can
be reduced to the investigation of quantitative properties of zeros of the function
Φ in the semi-strip P+ ∪ P0.

2.4. Quantitative properties of eigenvalues and spectral singularities.
Now, we investigate the structure of discrete spectrum and the set of spectral
singularities. In this context, the sets of eigenvalues and spectral singularities are
analyzed in terms of boundedness, closedness, being countable, etc.

Theorem 1 and (2.10) imply the next result.

Corollary 2. Let Φ be defined by (2.14). Then

Φ(z) =
(∏

r∈Z(−ar)
)−1

e−iz [1 + o (1)] for z ∈ P+as Im z → ∞.
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Let M1 and M2 denote the sets of zeros of the function Φ in P + and P0,
respectively, i.e.,

M1 =
{
z ∈ P+ : Φ (z) = 0

}
,

M2 = {z ∈ P0 : Φ (z) = 0} .

Corollary 2 shows boundedness of the set M1. Since Φ is a 4π periodic function
and is analytic in P+, the set M1 has at most countable number of elements. By
uniqueness of analytic functions, we figure out that the limit points of the set M1

lie in the closed interval [−π, 3π]. Moreover, we can obtain the closedness and the
property of having zero Lebesgue measure of the set M2 as a natural consequence
of boundary uniqueness theorems of analytic functions [9]. Hence, from Lemma 3
and Corollary 1 we conclude the following.

Lemma 5. The set of eigenvalues σd (Lλ) is bounded and countable, and its ac-
cumulation points lie on the closed interval [−2, 2]. The set of spectral singularities
σss (Lλ) is closed and its Lebesgue measure is zero.

Hereafter, we call the multiplicity of a zero of the function Φ in P + ∪ P0 the
multiplicity of corresponding eigenvalue or spectral singularity.

In the next two theorems, we shall employ the following conditions and show
that each of them guarantees finiteness of eigenvalues, spectral singularities, and
their multiplicities.

Condition 1. supn∈Z {exp (ε |n|) (|1 − an| + |pn| + |qn|)} < ∞ for some ε > 0.

Condition 2. supn∈Z

{
exp

(
ε |n|δ

)
(|1 − an| + |pn| + |qn|)

}
< ∞ for some ε > 0

and 1
2 ≤ δ < 1.

Note that Condition 2 is weaker than Condition 1. If Condition 1 holds, then
we get by (i) of Lemma 1 that∣∣K±

n,m

∣∣ ≤ c1,2 exp (∓ (ε/4) m) for n = 0, 1 and m = ±1,±2, ...,

where c1,2 are positive constants. That is, the function Φ has an analytic continu-
ation to the lower half-plane Im z > −ε/2. Since Φ is a 4π periodic function, this
analytic continuation implies that the bounded sets M1 and M2 have no any limit
point on the real line. Hence, we have the finiteness of the zeros of the function Φ
in P+ ∪ P0. These results are complemented by the next theorem.

Theorem 3. Under Condition 1, the operator Lλ has finite number of eigenvalues
and spectral singularities, and each of them is of finite multiplicity.

Proof. The proof follows from Lemma 5 and the fact that the sets σd (Lλ) and
σss (Lλ) have no limit points. �

Under Condition 2, Φ has no any analytic continuation, so finiteness of eigenval-
ues and spectral singularities cannot be proven in a similar way to that of Theorem
3.

The following lemma can be proved similar to that of [2, Lemma 2.2]:
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Lemma 6. If Condition 2 holds, then we have∣∣∣∣dkΦ
dλk

(z)
∣∣∣∣ ≤ Ak, z ∈ P+, k = 0, 1, ...,

where

Ak ≤ C4k + Ddkk!kk(1/δ−1)

and C, D, and d are positive constants depending on ε and δ.

Theorem 4. If Condition 2 holds, then eigenvalues and spectral singularities of
the operator Lλ are finite, and each of them is of finite multiplicity.

Proof. Let M3 and M4 denote the sets of limit points of the sets M1 and M2,
respectively, and M5 the set of zeros in P+ of the function Φ with infinite multi-
plicity. From the boundary uniqueness theorem of analytic functions we have the
relations

M1 ∩ M5 = ∅, M3 ⊂ M2, M5 ⊂ M2,

and using continuity of all derivatives of Φ on [−π, 3π] we get that

M3 ⊂ M5, M4 ⊂ M5.

Combining Lemma 6 and the uniqueness theorem (see [2, Theorem 2.3]), we con-
clude that

M5 = ∅.

Thus, countable and bounded sets M1 and M2 have no limit points. The proof is
complete. �

3. Applications to special cases. In this section, the spectral results ob-
tained for Equation (1.4) are applied to the following particular cases:

Case 1. pn = 0

Case 2. pn = −vn and qn = v2
n,

in which we obtain the equations (1.2) and (1.3), respectively.
In addition, we explore some analogies between Equation (1.4) and its q-analog

(1.8) using some transformations and the results obtained in theorems 1-4. Finally,
we deduce the main results of [3, Theorem 5]-[4] in the special case.

In the next we cover the first case.
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3.1. Sturm-Liouville type difference equation. It is evident that the sub-
stitution pn = 0 in (1.4) yields the Sturm-Liouville type difference equation (2.15)
whose spectral parameter is λ̃ = 2 − λ2. Denote by Λ the difference operator cor-
responding to Equation (2.15). In [1], the authors show that the operator Λ has
finitely many eigenvalues and spectral singularities provided that

sup
n∈Z

{exp (ε |n|) (|1 − an| + |bn|)} < ∞ (3.1)

holds for some ε > 0. Afterwards, a relaxation of the condition (3.1) is given by
[2, Theorem 2.5] as follows

sup
n∈Z

{
exp

(
ε |n|δ

)
(|1 − an| + |bn|)

}
< ∞,

1
2
≤ δ < 1. (3.2)

Note that Conditions 1 and 2 turn into the conditions (3.1) and (3.2), respectively.
That is, the results [1, Theorem 4.2] and [2, Theorem 2.5] can be obtained from
Theorem 3 and Theorem 4 as corollaries.

The second case is handled in the following.

3.2. Klein-Gordon type difference equation. Setting pn = −vn and qn =
v2

n in Equation (1.4), we obtain the Klein-Gordon type non-selfadjoint difference
equation

Δ(an−1Δyn−1) + (vn − λ)2 yn = 0, n ∈ Z. (3.3)

Observe that Equation (3.3) is more general than the discrete analog of the differ-
ential equation

−y′′ + (p (x) − λ)2 y = 0. (3.4)

Let Γ denote the difference operator corresponding to Equation (3.3). The set
of eigenvalues of differential operator corresponding to (3.4) was determined by
Degasperis [7], in the case that p is real, analytic and vanishes rapidly for x → ∞
(for non-selfadjoint case see also [5]). However, finiteness of eigenvalues and spectral
singularities of difference operator Γ has not been shown elsewhere before. As a
consequence of Theorem 3 and Theorem 4, we derive this result as a corollary.

Corollary 3. If for some ε > 0

sup
n∈Z

{
exp

(
ε |n|δ

)
(|1 − an| + |vn|)

}
< ∞,

1
2
≤ δ ≤ 1

holds, then the difference operator Γ has finite number of eigenvalues and spectral
singularities, and each of them is of finite multiplicity.

3.3. q-difference case. We suppose q > 1 and use the following notations
throughout this section:

qN = {qn : n ∈ N} ,

q−N =
{
q−n : n ∈ N

}
,

qZ = {qn : n ∈ Z} .
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The q-difference equation is an equation which contains q-derivative of its unknown
function. The q-derivative is given by

yΔ (t) =
y (qt) − y (t)

(q − 1) t
, t ∈ qZ,

and the q-integral is defined by∫ b

a

f (t)Δqt = (q − 1)
∑

t∈[a,b)∩qZ

tf (t) .

We shall denote by �2
(
qZ

)
the Hilbert space of square integrable functions with

the norm
‖f‖2

q =
∫

qZ

|f (t)|2 Δqt.

Consider the quadratic pencil of Schrödinger type q-difference operator Lq
λ corre-

sponding to the equation(
a (t)uΔ (t)

)Δρ
+

(
b (t) + 2λc (t) + λ2

)
u (t) = 0, t ∈ qZ (3.5)

where a, b, and c are complex valued functions, λ is spectral parameter and ρ is
the backward jump operator defined by

u (t)ρ = u (t/q) , t ∈ qZ.

Multiplying Equation (3.5) by
√

t/q we arrive at

0 =
√

t

q

{(
a (t)uΔ (t)

)Δρ
+

(
b (t) + 2λc (t) + λ2

)
u (t)

}
=

√
t

q

{
a(t)

u(qt) − u(t)
(q − 1)t

}Δρ

+
√

t

q

(
b (t) + 2λc (t) + λ2

)
u (t)

=
√

t

q

{
1

(q − 1)t

[
a(qt)

u(q2t) − u(qt)
(q − 1)qt

− a(t)
u(qt) − u(t)

(q − 1)t

]}ρ

+
√

t

q

(
b (t) + 2λc (t) + λ2

)
u (t)

=
√

t

q

{
1

(q − 1)t/q

[
a(t)

u(qt) − u(t)
(q − 1)t

− a(
t

q
)
u(t) − u(t/q)
(q − 1)t/q

]}
+

√
t

q

(
b (t) + 2λc (t) + λ2

)
u (t)

=
a(t)

(q − 1)2t2
√

qtu(qt) +
a(t/q)

(q − 1)2t2/q2

√
t

q
u(

t

q
)

+
{[

b(t)√
q
−√

q
a(t)

(q − 1)2t2
− 1√

q

a(t/q)
(q − 1)2t2/q2

]
+ 2

(
λ

q1/4

)
c(t)
q1/4

+
(

λ

q1/4

)2
}√

tu(t)
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= â (t) û (qt) + â (t/q) û (t/q) +
{

b̂ (t) + 2λ̂ĉ (t) + λ̂2
}

û (t) , t ∈ qZ,

and therefore,

â (t) û (qt) + â (t/q) û (t/q) +
{

b̂ (t) + 2λ̂ĉ (t) + λ̂2
}

û (t) = 0, (3.6)

where t ∈ qZ and
û (t) =

√
tu (t) , λ̂ = q−1/4λ (3.7)

â (t) =
a (t)

(q − 1)2 t2
,

b̂ (t) =
b (t)√

q
−√

qâ (t) − â (t/q)√
q

,

ĉ (t) = q−1/4c (t) .

Using the notations

t = qn, â (qn) = ân, b̂ (qn) = b̂n, ĉ (qn) = ĉn, û (qn) = ûn (3.8)

we can express Equation (3.6) in the following form

ânûn+1 + ân−1ûn−1 +
{

b̂n + 2λ̂ĉn + λ̂2
}

ûn = 0, n ∈ Z. (3.9)

By establishing a linkage between Equations (3.5) and (3.9), the next theorem
provides an information about some spectral properties of Lq

λ.

Theorem 5. Let the sequence û = {ûn}n∈Z
and the value λ̂ be defined as in (3.7)

and (3.8). The following properties hold:

i. u ∈ �2
(
qZ

)
and solves (3.5) if and only if û ∈ �2 (Z) and solves (3.9).

ii. λ is an eigenvalue of (3.5) if and only if λ̂ = q−1/4λ is an eigenvalue of (3.9).

iii. For λ = 2q1/4 cos (z/2)

J+ (t, z) = α+(t) exp
(

i
ln t

ln q
z

){
1 +

∫
r∈qN

A+ (t, r) exp
(

i
ln r

2 ln q
z

)
Δqr

}
and

J− (t, z) = α−(t) exp
(
−i

ln t

ln q
z

){
1 +

∫
r∈q−N

A− (t, r) exp
(
−i

ln r

2 ln q
z

)
Δqr

}
are Jost solutions of the Equation (3.5), where α±(t) and A± (t, r) can be

uniquely expressed in terms of â(t), b̂(t), and ĉ(t) provided that the condition∑
t∈qZ

∣∣∣∣ ln t

ln q

∣∣∣∣ (|1 − â (t)| +
∣∣∣2 − b̂ (t)

∣∣∣ + |ĉ (t)|
)

< ∞

holds.
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iv.

σd (Lq
λ) =

{
λ = 2q1/4 cos

(z

2

)
: z ∈ P+ and Q (z) = 0

}
,

σss (Lq
λ) =

{
λ = 2q1/4 cos

(z

2

)
: z ∈ P0 and Q (z) = 0

}
,

where

Q (z) = W
[
J− (t, z) , J+ (t, z)

]
.

v.

σc (Lq
λ) =

[
−2q1/4, 2q1/4

]
,

where σc (Lq
λ) denotes the continuous spectrum of the operator Lq

λ.

vi. If the condition

sup
t∈qZ

{
exp

(
ε

∣∣∣∣ ln t

ln q

∣∣∣∣δ
)(

|1 − â (t)| +
∣∣∣2 − b̂ (t)

∣∣∣ + |ĉ (t)|
)}

< ∞,
1
2
≤ δ ≤ 1

holds for some ε > 0, then the quadratic pencil of q-difference operator Lq
λ has

finite number of eigenvalues and spectral singularities with finite multiplicity.

Proof. The proof can be done similar to that of related results in preceding sec-
tions. For brevity we only give the outlines. From (3.7) we have (i) and (ii.). Using
n = ln t

ln q and (i), proof of (iii) can be obtained in a similar way to that of Theorem
1. Hence, Lemma 3 along with Corollary 1 implies (iv). Using (3.5), (3.7), (3.9),
and Theorem 3 we obtain (v). Finally, combining Theorems 3, 4, and (3.9), we
conclude (vi). �

Remark 2. Theorem 5 not only covers the results of [3, Theorem 5] and [4, Theo-
rem 4] but also derives spectral properties of Klein-Gordon type q-difference equa-
tions in the special case b(t) = v2(t) and c(t) = −v(t).

4. Principal vectors. In this section, we determine the principal vectors of Lλ

and discuss their convergence properties. Thus, we will have an information about
principal vectors of the operators Λ, Γ, and Lq

λ.
Define

F+
n (λ) := f+

n

(
2 arccos

λ

2

)
, n ∈ Z,

F−
n (λ) := f−

n

(
2 arccos

λ

2

)
, n ∈ Z,

H (λ) := Φ
(

2 arccos
λ

2

)
.
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Obviously, F± (λ) = {F±
n (λ)} solve Equation (1.4), and

H (λ) = W
[
F− (λ) , F+ (λ)

]
is satisfied. Furthermore, F± and H are analytic in Θ = C\ [−2, 2] and continuous
up to the boundary of Θ. Using Lemma 3 and Corollary 1 we can state the sets
σd (Lλ) and σss (Lλ) as the sets of zeros of the function H in Θ and in [−2, 2] ,
respectively. Moreover,

sup
n∈Z

{
exp

(
ε |n|δ

)
(|1 − an| + |pn| + |qn|)

}
< ∞,

1
2
≤ δ ≤ 1, ε > 0

is the condition that guarantees finiteness of zeros H in Θ and in [−2, 2]. Let
λ1, ..., λs denote the zeros of the functions H in Θ (which are the eigenvalues of Lλ)
with multiplicities m1, ...,ms, respectively. Similarly, let λs+1, ..., λk be zeros of the
functions H in [−2, 2] (which are the spectral singularities of Lλ) with multiplicities
ms+1, ...,mk, respectively. Similar to that of [1, Theorem 5.1] one can prove the
next result.

Theorem 6.{
dr

dλr
F+

n (λ)
}

λ=λj

=
r∑

v=0

(
r
v

)
β+

r−v

{
dv

dλv
F−

n (λ)
}

λ=λj

, n ∈ Z,

holds for r = 0, 1, ...,mj−1, j = 1, 2, ..., k.

Let us introduce the vectors

U (r) (λj) :=
{

U (r)
n (λj)

}
n∈Z

, (4.1)

for r = 0, 1, ...,mj−1, j = 1, 2, ..., k, where

U (r)
n (λj) =

1
r!

{
dr

dλr
F+

n (λ)
}

λ=λj

=
r∑

v=0

β+
r−v

(r − v)!
1
v!

{
dv

dλv
F−

n (λ)
}

λ=λj

, n ∈ Z. (4.2)

Define the difference expression �λU (n) by

�λU (n) (λj) = Δ
(
an−1ΔU (n−1)(λj)

)
+

(
qn + 2λjpn + λ2

j

)
U (n)(λj), n ∈ Z.

We get by Equation (1.4) that

�λU (0) (λj) = 0,

�λU (1) (λj) +
1
1!

d�λ

dλ
U (0) (λj) = 0,

�λU (r) (λj) +
1
1!

d�λ

dλ
U (r−1) (λj) +

1
2!

d2�λ

dλ2
U (r−2) (λj) = 0
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for r = 2, 3, ...,mj−1, j = 1, 2, ..., k. This shows that U (r) (λj) :=
{

U
(r)
n (λj)

}
n∈Z

for r = 0, 1, ...,mj−1, j = 1, 2, ..., s are principal vectors corresponding to the
eigenvalues λ1, ..., λs of the operator Lλ. The principal vectors corresponding to
the spectral singularities λs+1, ..., λk are found similarly.

Let us define the Hilbert spaces

Hp (Z) :=

{
y = {yn}n∈Z

:
∑
n∈Z

(1 + |n|)2p |yn|2 < ∞
}

,

H−p (Z) :=

{
y = {yn}n∈Z

:
∑
n∈Z

(1 + |n|)−2p |yn|2 < ∞
}

for p = 0, 1, .... Evidently H0 (Z) = �2 (Z) and

Hp+1 � Hp � �2 (Z) � H−p � H−p−1.

Convergence properties of principal vectors of Lλ are given in the following
theorem.

Theorem 7. We have

i. U (r) (λj) :=
{

U
(r)
n (λj)

}
n∈Z

∈ �2 (Z) for r = 0, 1, ...,mj−1, j = 1, 2, ..., s,

ii. U (r) (λj) :=
{

U
(r)
n (λj)

}
n∈Z

/∈ �2 (Z) for r = 0, 1, ...,mj−1, j = s + 1, s +

2, ..., k,

iii. U (r) (λj) :=
{

U
(r)
n (λj)

}
n∈Z

∈ H−p0+1 for r = 0, 1, ...,mj−1, j = s + 1, s +

2, ..., k, where

p0 = max {m1,m2, ...,ms,ms+1, ...,mk} .

Proof. Use (4.1-4.2) and proceed by a method as in [1, Theorem 5.2] and
[1, Lemma 5.1]. �

Remark 3. Using the substitutions that lead to establishment of Subsections 3.1,
3.2, and 3.3 in the equalities (4.1-4.2), one may derive the principal vectors of
the operators Λ, Γ, and Lq

λ easily. Moreover, Theorem 7 enables us to see the
convergence properties of principal vectors of the operators Λ, Γ, and Lq

λ.

Open problem: The eigenfunction expansion has not been studied even for the
above mentioned particular cases. So, this may be the topic of further studies.
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6. E. Bairamov, Ö. Çakar and A.M. Krall, Spectral properties, including spectral
singularities, of a quadratic pencil of Schrödinger operators on the whole real axis,
Quaest. Math. 26(1) (2003), 15–30.

7. A. Degasperis, On the Inverse Problem for the Klein-Gordon s-wave Equation, J.
Math. Phys. 11 (1970), 551–567.

8. V.K. Dobrev, P. Truini and L.C. Biedenharn, Representation theory approach
to the polynomial solutions of q-difference equations: Uq(sl(3)) and beyond, J. Math.
Phys. 35(11) (1994), 6058–6075.

9. E.P. Dolzhenko, Boundary Value Uniqueness Theorems for Analytic Functions,
Math. Notes 25(6) (1979), 437–442.

10. W. Greiner, Relativistic Quantum Mechanics, Wave Equations, Springer Verlag,
Berlin/Heidelberg/New York, 1994.

11. G.Sh. Guseinov, The inverse problem of scattering theory for a second order differ-
ence equation on the whole real line, Dokl. Akad. Nauk SSSR 230(5) (1976), 1045–
1048. (Russian)

12. , On the spectral analysis of a quadratic pencil of Sturm-Liouville
operators, Dokl. Akad. Nauk SSSR 285(6) (1985), 1292–1296. (Russian)

13. M. Jaulent and C. Jean, The inverse s-wave scattering problem for a class of
potentials depending on energy, Comm. Math. Phys. 28 (1972), 177–220.
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