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Abstract: A handheld USB-powered instrument developed for the electrochemical detection of
nucleic acids and biomolecular interactions is presented. The proposed instrument is capable of
scanning ± 2.25 V while measuring currents up to ±10 mA, with a minimum current resolution of
6.87 pA. Therefore, it is suitable for nucleic acid sensors, which have high background currents. A
low-cost microcontroller with an on-chip 16-bit analog-to-digital converter, 12-bit digital-to-analog
converter, and a built-in USB controller were used to miniaturize the system. The offset voltages
and gain errors of the analog peripherals were calibrated to obtain a superior performance. Thus,
a similar performance to those of the market-leader potentiostats was achieved, but at a fraction
of their cost and size. The performance of the application of this proposed architecture was tested
successfully and was found to be similar to a leading commercial device through a clinical application
in the aspects of the detection of nucleic acids, such as calf thymus ssDNA and dsDNA, and their
interactions with a protein (BSA) by using single-use graphite electrodes in combination with the
differential pulse voltammetry technique.

Keywords: potentiostat; differential pulse voltammetry; point-of-care testing

1. Introduction

In the last few decades, various electrochemical sensors have been developed and
successfully applied in various fields over the extensive surfaces of transducers and fabri-
cating elements. There is an increasing demand for electrochemical sensors because they
are rapid, sensitive, selective, easily prepared, and low-cost devices [1]. Much effort has
been put into the electrochemical detection of nucleic acids for improving the sensitivity,
stability, and reproducibility [2–4].

Voltammetric techniques have the benefits of easy, rapid, and sensitive measurement
up to the nano level, showing a promising future in the analyses of various analytes. Differ-
ential pulse voltammetry (DPV) and square wave voltammetry (SWV) were utilized, which
are sensitive and fast techniques in comparison with the other voltammetric techniques,
and the extent of the overoxidation can be controlled in a facile manner. The development
of new materials as electrode materials is successfully fulfilling the need of modern electro-
chemical technology. In this context, instead of common electrodes, such as carbon-paste
electrodes, glassy-carbon electrodes, etc., disposable electrodes, including screen-printed
electrodes and pencil-graphite electrodes (PGEs), have been used for voltammetric analyses
in recent years. PGEs have the advantages of being inexpensive and readily available,
and they have the best mechanical resistance [5]. Nowadays, the on-site measurement
demand for economic, field-utilizable, easy-to-fabricate voltammetric sensors has been
steadily increasing. In this context, pencil-graphite electrodes are more popular due to their
good stability, easy disposability, reproducibility, and uniform quality. Therefore, PGEs
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are often used as voltammetric sensors in analytical chemistry for various electrochemical
measurements [5–10].

Although benchtop potentiostats are suitable for laboratories, there is an increasing
need for small, low-cost, and high-performance devices to take advantage of miniaturized
biosensors [11]. For this aim, several designs have been proposed [12–14], but these works
either require external peripherals (e.g., DACs and ADCs), which leads to an increase
in the cost and size of the sensors, or they use the low-resolution internal peripherals of
Arduino. Additionally, several analog front ends (AFEs) are proposed in the literature. Cruz
et al. [15] and Yokus et al. [16] have suggested using a programmable AFE (LMP91000)
(Texas Instruments, Dallas, TX, USA) that is capable of performing voltammetric and
amperometric protocols. However, this AFE can produce bias voltages only between 0%
and 24% of the reference voltage, and this limits the scan resolution, current resolution, and
maximum scan range [17,18]. With a 5 V reference voltage, the LMP91000 can only sweep
±1.2 V with a step potential of 100 mV. The high step potential results in more capacitive
current, and this limits the sensitivity of the sensor and scan rate. Another drawback is that
it cannot sweep potentials between 0 mV and ± 15 mV because it requires a minimum of
1.5 V as a voltage reference. Saygili et al. proposed a solution to these problems by using
a dual LMP91000 [19]. They used one AFE to bias only the working electrode (WE), and
another AFE to bias only the reference electrode (RE) and counter electrode (CE). Due
to their use of a DAC to bias the reference voltage, they achieved sweep potentials of
±2 V, with a resolution of less than 1 mV. However, because the WE potential in this
application has to be altered to adjust the bias voltage, this architecture limits the dynamic
range of the current measurement. Gu et al. have suggested an architecture similar to the
one proposed in this paper [20]. They used a mixed-signal microcontroller (STM32F373)
(STMicroelectronics, Geneva, Switzerland) for the waveform generation, data acquisition,
and data processing. Although their sweep range was limited to ±1 V, and due to having
used only one gain resistor, they could only record currents of ±100 µA. Moreover, they
used a 1 kHz analog low-pass filter, which cannot eliminate the possible 50/60 Hz power-
line interference and other low-frequency noise sources.

However, nucleic acid-based electrochemical sensors have high background currents,
and hence, they require high-resolution measurements at high bias potentials. Therefore,
the proposed designs are not able to satisfy the need for nucleic acid sensors. In this work,
we have proposed a high-resolution instrument that has a high dynamic range to measure
signals. The potential of the working electrode held constant, and the waveform generator
output was amplified to apply a ±2.25 V sweep range. A switching network with eight gain
resistors was used to obtain a more dynamic range for the current measurement, for which
measuring currents up to ±10 mA was possible. The minimum current resolution reached
6.87 pA. Utilizing the internal ADC and DAC of the microcontroller (MCU) allowed us to
show a calibration procedure and obtain similar responses when compared with external
ADC and DAC devices. A digital low-pass filter, in addition to analog filters, was used
to remove any noise. Therefore, a programmable and very sharp filtering response for
frequencies lower than 10 Hz was obtained.

Scientists first microscopically discovered the association of proteins with nucleic
acids. Then, in vitro and in vivo assays demonstrated that proteins interact with DNA and
RNA and effect the structure and function of nucleic acid [21]. Consequently, it was found
that protein–DNA interactions play a key role in many biological processes, such as the
regulation of gene expression, DNA replication, repair, transcription, and recombination,
and the packaging of chromosomal DNA. In some cases, the definition of the functions
of the protein–nucleic acid complex can be a key point for an understanding of some
disease mechanisms [22]. In this respect, we aimed to apply our miniature device to
the electrochemical monitoring of the surface-confined interaction of proteins with DNA.
Albumin, as the most abundant and major protein of the blood, plays an important role in
many biological processes. In fact, human serum albumin can bind several molecules, such
as bases, nucleotides, RNA, and DNA [23]. With this aim, the target protein was chosen
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as BSA in the present study. Accordingly, its interaction with ssDNA or dsDNA at the
surfaces of PGEs was explored by using the developed instrument.

To the best of our knowledge, a miniaturized handheld potentiostat has been devel-
oped and applied for the electrochemical monitoring of the biointeraction process between
nucleic acid and BSA for the first time in the literature. A low-cost MCU with internal ADC,
DAC, and USB controllers was used to obtain a similar performance to the commercial
potentiostats, but with a lower cost, with the help of a calibration procedure and digital
filtering. The performance of the developed instrument in the detection of nucleic acids
(DNA, etc.) and proteins was also investigated in comparison to the Autolab PGSTAT-302,
which is a widely used electrochemical analyzer, under the same conditions.

2. Materials and Methods
2.1. Instrument Architecture

The architecture of the hardware is shown in Figure 1. The STM32F373 is a mixed-signal
MCU that has a rich set of peripherals, such as an ADC, DAC, and USB, which help to minimize
the circuit and lower the cost. The built-in USB controller is used in full-speed mode to establish
the communication protocol, instead of a UART–USB converter, as in Gu et al. [20].

Figure 1. (A) Schematics of the hardware: STM32F373: microcontroller, ARM M4 cortex architecture,
built-in ADC, DAC, and USB; MAX4617: 8:1 analog multiplexer with low current leakage; A1:
operational amplifier with a gain of 1.5; A2: control amplifier to drive counter electrode; A3: buffer
for reference electrode; TIA: transimpedance amplifier; A4: ADC driver with 2/3 gain; REF5045:
4.5 V reference voltage; REF5030: 3.0 V reference voltage to power analog peripherals of MCU;
MCP1703: 3.3 V regulator to power digital peripherals of MCU; CE: counter electrode; RE: reference
electrode; WE: working electrode. (B) Printed circuit board: 1: USB connector for communication; 2:
3.3 V regulator; 3: 4.5 V reference voltage; 4: 3.0 V reference voltage; 5: ADC driver; 6: op-amp; 7:
op-amp; 8: op-amp; 9: USB connector for electrodes; 10: analog switch; 11: microcontroller.

The cost of the components required to enable our instrument was less than 40 US
Dollars (USD), as shown in Table 1.

Table 1. Bill of materials.

Name Description Quantity Unit Price (USD) Total (USD)

Passive Elements Resistors and
Capacitors 39 0.01 0.39

STM32F373 MCU 1 7.94 7.94

MAX4617 Analog Switch 1 4.56 4.56

AD8605 Single Op-Amp 1 2.50 2.50

AD8608 Quad Op-Amp 2 6.12 12.24

REF5030 3.0 V Reference 1 4.49 4.49

REF5045 4.5 V Reference 1 4.49 4.49

MCP1703 3.3 V Regulator 1 0.73 0.73

USB Connector USB Mini-b
Connector 1 1.31 1.31

Crystal 16 MHz Oscillator 1 1.00 1.00

Total Cost: 39.65
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2.2. Power System

The bus voltage of a USB port is used to power the instrument. Although USB ports can
provide voltage up to 5.25 V, this value highly depends on the total current consumption of
the USB port. Therefore, other devices connected to the same USB hub may affect the output
voltage. A 4.5 V voltage reference (REF5045) (Texas Instruments, Dallas, TX, USA) is used to
power op-amps to provide the maximum available voltage. To prevent high-speed switching
noises caused by the digital circuitry of the MCU, separate power supplies for the analog and
digital divisions of the MCU are used. The analog circuitry of the MCU is powered with a
3.0 V reference voltage (REF5030) (Texas Instruments), which has a 3 ppm/◦C temperature
drift and 0.05% accuracy, while the digital circuitry is powered with a 3.3 V-output high-current
(250 mA) MCP1703 (Microchip Technology, Chandler, AZ, USA) voltage regulator.

2.3. Signal Generation

The analog waveform is generated by the internally buffered DAC of the MCU, and
it has a 4 µs rise time and 12-bit resolution, which corresponds to 0.732 mV per the least
significant bit (LSB) with a 3.0 V voltage reference. However, to increase the dynamic range
of the experiments, the A1 amplifier, shown in Figure 1, was used to multiply the DAC
output by 1.5, and therefore, 1 LSB corresponds to 1.1 mV, which is a sufficient resolution
for voltammetric experiments. As Gu et al. [20] suggested, this resolution can be easily
well adjusted by summing it with the second DAC of the MCU in the voltage-divider
configuration. Amplification by 1.5 makes the waveform output span 4.5 V. REF5045,
which is the voltage reference with a 4.5 V output, was used to create the 2.25 V bias voltage
for the WE, and to supply low noise and high-precision voltage for the op-amps and analog
multiplexer. Therefore, the scan range can cover up to ±2.25 V, depending on the gain
of the TIA and the value of the CE. Op-amp A2 acts as an error amplifier, which aims
to supply the necessary current to hold the reference electrode at the desired potential.
Therefore, the buffer voltage of the reference electrode provides negative feedback to A2,
and the output of A2 drives the CE, depending on the error between A1 and the RE.

2.4. Data Acquisition

To provide an optimum range for the current measurements, the potential of the working
electrode was held constant at 2.25 V. Therefore, the bias voltage on the sensor becomes
(VDAC × 1.5) − 2.25 V. The TIA output can be written as Vout = 2.25 V − Isensor × Rgain. The
gain of the TIA is configured with MAX4617, which is an eight-channel analog switch and
has a low-leakage current (1 pA at 20 ◦C) and 8 Ω on-resistance. The switch-on and -off
times are 10 ns and 15 ns, respectively. Therefore, by using values between 220 Ω and 10 MΩ,
current values between 10.22 mA and 6.87 nA could be measured. Because the ADC has 16-bit
resolution, the current resolutions with the maximum and minimum gains are 31.19 µA and
6.87 pA, respectively. The output of the TIA is divided by 1.5 to scale because the reference
voltage of the ADC is 3.0 V. The internal ADC of the MCU has a 16-bit resolution up to a
50 kilo-sample per second (kSPS) rate, and it is used to measure the output of the TIA. Because
the ADC has a delta–sigma architecture, there is a need for a reservoir capacitor before the ADC
input, which helps to filter the switching spikes caused internally by the ADC and provides
a charge to the sampling capacitor of the ADC. However, connecting it directly to the TIA
output causes oscillation because the op-amps have limited capacity to drive capacitive loads,
and therefore a resistor is put between a capacitor and low-pass filter, which also acts as an
anti-aliasing filter with a cut-off frequency (fc). Although it is possible to configure the fc very
close to the DC, this limits the time response of the circuit for protocols such as differential pulse
voltammetry because the generated waveform contains square waves. In our DPV experiments,
the period of the square wave was 40 ms, which corresponds to 25 Hz, but considering its
harmonics, the fc must be higher than this value. Therefore, the value of the resistance was
selected as 1 kΩ, and value of the capacitance was selected as 100 nF, which corresponds to
a 1.6 kHz 3 dB cut-off frequency. Digital filtering is utilized in addition to analog filtering
for noise reduction. A number of measurement points affect the signal smoothness. On the
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one hand, if high numbers of samples are taken by decreasing the step size, then smoother
voltammograms can be obtained. However, in this case, a digital low-pass filter should be
used to filter interferences, such as 50/60 Hz. On the other hand, if the step size is large, which
means that the period is longer as well, then the signal can be averaged for at least 20 ms to
filter the power-line interferences, without using more complex software techniques.

2.5. Calibration

To calibrate the offset voltages caused by the leakage currents and op-amps, the
waveform generator output and ADC input value were measured with a 6 1

2 -digit digital
multimeter (34461A, Keysight, Santa Rosa, CA, USA), while no load was connected to
calculate the offset deviations from the ideal values. These values are saved in the flash
memory of the MCU for the initial automatic calibration at power-on to provide the values
to be subtracted from each measurement.

2.6. User Interface

The user interface was written in C++ by using the QT framework for desktop comput-
ers, and it was designed by GalvanoPlot (İzmir, Turkey). A virtual COM port was created
for the USB communication between the computer and MCU. An example experiment
window for the CV is shown in Figure 2. For CV experiments, users enter the potential
scan range, scan rate, and current resolution. For DPV experiments, users enter the scan
range, step voltage, pulse period, pulse width, pulse amplitude, and current resolution.

Figure 2. Screenshot of user interface designed in Qt framework.

2.7. Electrochemical Sensing of Nucleic Acids and Its Biointeractions
2.7.1. Apparatus

DPV measurements were undertaken in a Faraday cage using both the developed
instrument and the Autolab PGSTAT-302 electroanalysis system as a commercial potentio-
stat. All measurements were performed with a traditional three-electrode system using a
disposable pencil-graphite electrode, a platinum wire, and an Ag/AgCl/KCl/3M (BAS,
Model RE-5B, W. Lafayette, IN, USA) as the working, counter, and reference electrodes,
respectively. The experimental setup containing an electrochemical cell and three-electrode
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system in combination with the developed instrument is given in Figure 3. The PGEs were
prepared for electrochemical measurement according to the information given in our earlier
studies [8,9].

Figure 3. Experimental setup.

2.7.2. Chemicals

All chemicals were of analytical reagent grade and were supplied from Sigma-Aldrich
and Merck. Bovine serum albumin (BSA), calf thymus single-stranded DNA (ssDNA), and
calf thymus double-stranded DNA (dsDNA) were purchased from Sigma-Aldrich. Milli-Q
ultrapure water was used to freshly prepare all aqueous solutions. The stock solutions of
ssDNA and dsDNA were prepared in Tris-HCl buffer solution (TBS) (pH 7.00) and kept
frozen. Diluted solutions of ssDNA or dsDNA were prepared in 0.50 M acetate buffer
solution (ABS) containing 20 mM NaCl (pH 4.80). The stock solution of BSA was prepared
in ultrapure distilled water. Diluted BSA solutions were prepared in 0.05 M phosphate
buffer solution (PBS) containing 20 mM NaCl (pH 7.40).

2.7.3. ssDNA or dsDNA Immobilization onto the Surface of PGEs

A DNA biosensor was developed by immobilizing DNA onto the electrode surface
via passive adsorption by dipping PGEs into 100 µL of ssDNA or dsDNA solution and
maintaining them over 30 min [9]. Each ssDNA/dsDNA-immobilized PGE was washed
twice with ABS to eliminate nonspecific adsorptions.

2.7.4. BSA and DNA Interaction on the Surface of PGEs

The interaction step involved dipping the DNA (ssDNA or dsDNA)-immobilized
PGEs into the 6 µM BSA solution in 0.05 PBS (pH 7.40). Then, each electrode was washed
with PBS before voltammetric measurement.

2.7.5. Voltammetric Measurements

DPV measurements were performed between the potentials of 0 V and +1.40 V at a
pulse amplitude of 50 mV and scan rate of 50 mV/s. For the electrochemical characterization
of the electrode, CV measurements were performed in a potential range from −1 V to +1 V,
with scan rates from 5 mV/s to 200 mV/s in the solution containing 2 mM K3Fe(CN)6 and
2 mM K4Fe(CN)6 in 0.1 M KCl [9]. A digital low-pass filter with a 5 Hz cut-off frequency
was applied to all measurements by the developed device. Because no postfiltering was
applied to the signals measured in the experiments with the Autolab PGSTAT-302, raw
data were recorded for each measurement.
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3. Results and Discussion

Following the offset calibration, the gain error is calculated by performing cyclic
voltammetry using a resistor with a known value (4.697 kΩ), and a 3.23% deviation is
found from an ideal curve, as shown in Figure 4. The gain error (GE) is calculated by the
following formula:

GE =
Cr2 − Cr1

Ci2 − Ci1
(1)

Figure 4. (A) Calibration curve of 4.697 kΩ resistance when CV signal with a potential range from
−2 V to +2 V is applied. The resistor was tested both with the developed device (this work) and
Autolab-PGSTAT-302. A small deviation from the ideal curve was found by the calculation of the
tangent of the raw data. This value is called the gain error and it is used to calibrate the ADC after
the measurement of each piece of data. Ci1: the lowest value of the ideal data; Ci2: the highest value
of the ideal data; Cr1: the lowest value of the raw data; Cr2: the highest value of the ideal data.
(B) CV characterizations of both devices.

Therefore, the calibrated value of the ADC is calculated after each measurement by:

ADCcalibrated =
ADCraw − o f f set

GE
(2)

Another experiment was performed with both devices in order to calculate the elec-
troactive surface areas (A) of the PGEs, which were calculated using the Randles–Sevcik
equation [24]. The corresponding anodic current (Ia) and cathodic current (Ic) and the
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electroactive surface areas of the PGEs are listed in Table 2. With the developed potentiostat,
the Ia and Ic were 16.6 % and 35.1 % higher, respectively, than those measured with the
commercial potentiostat.

Table 2. The average values (n = 3) of anodic and cathodic peak currents (Ia, Ic), and electroactive surface
areas (A) for PGEs, measured and calculated by commercial or developed (this work) potentiostat.

Device Ia (µA) Ic (µA) A (cm2)

Commercial
potentiostat 96.44 ± 1.22 98.57 ± 0.28 0.291

Developed
potentiostat 112.44 ± 1.08 133.17 ± 3.63 0.339

CV studies were performed at various scan rates to demonstrate the custom system,
and the results are shown in Figure 5. The relationship between the square root of the
scan rate and the peak current is found to be linear for both the anodic peak current and
cathodic peak current, with R2 = 0.99, as shown in Figure 5B. The linearity between the
square root of the scan rate and peak current is an indication of a diffusion-controlled redox
phenomenon [25,26].

Figure 5. Results of CV measurements: (A) CV voltammograms at different scan rates; (B) the
relationship of the peak current with the square root of the scan rate. R2 is 0.99 for both anodic and
cathodic peak currents.

Nucleic acid detection by electrochemical biosensors has received a great deal of inter-
est due to the high sensitivity allowed by electrochemical techniques [10,27] in comparison
with other techniques, such as the ELISA or spectroscopic techniques. The most promising
application of the technology is in a handheld device for point-of-care testing. These types
of biosensors provide sensitive and selective detection and the quantitation of nucleic
acids. Detection is possible in clinical samples, such as whole blood, serum, and urine [1].
Therefore, in this part of our work, the applications of the designed potentiostat on the
quantitative determination of ssDNA and dsDNA are presented. The performance of the
potentiostat is compared with the Autolab PGSTAT-302. As seen in Figure 6C, with the
increasing concentration of ssDNA, the current is proportionally increased over a wide
concentration range of 2–20 µg/mL using the presented instrument. The linear regression
equation was I (µA) = 0.25 [ssDNA] (µg/mL) + 0.31, with a correlation coefficient of 0.99
(Figure 7A). Conversely, when using the Autolab PGSTAT-302, there was a proportional
increase observed at the current over a concentration range of ssDNA from 2 to 12 µg/mL
(Figure 6A). The linear regression equation was I (µA) = 0.79 [ssDNA] (µg/mL) + 1.31, with
a correlation coefficient of 0.98 (Figure 7A). The limit of detection (LOD) was estimated
as explained by Miller and Miller [28], with a regression equation and the definition as
“y = yB + 3SB” (yB is the signal of the blank solution, and SB is the standard deviation
of the blank solution). The values of the LOD obtained by the developed instrument
and Autolab PGSTAT-302 were calculated as 1.25 µg/mL and 1.65 µg/mL, respectively.
Similarly, the effect of dsDNA was studied in the case of various concentration of dsDNA
from 2 to 14 µg/mL (Figure 6G). The current was increased in the case of an increased
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dsDNA concentration, as expected. The linear regression equation was I (µA) = 0.14 [ds-
DNA] (µg/mL) + 0.44, with a correlation coefficient of 0.99 (Figure 7B). The response of
the increased dsDNA concentration from 2 to 18 µg/mL using the Autolab PGSTAT-302
is shown in Figure 6E. The linear regression equation for the Autolab PGSTAT-302 was
I (µA) = 0.31 [dsDNA] (µg/mL) + 0.81, with a correlation coefficient of 0.99 (Figure 7B).
The LODs [28] of the developed instrument and Autolab PGSTAT-302 were calculated as
1.10 µg/mL and 0.96 µg/mL, respectively. Line graphs (Figure 6B,D,F,H) representing the
average guanine oxidation signals related to the ssDNA or dsDNA-immobilized PGEs in
the case of different DNA concentrations were used to observe the relationship between
the DNA concentration and current. The current is proportionally increased in the case of
an increased DNA concentration until the PGE surface is saturated.

Figure 6. Effects of DNA concentrations on the electrochemical signal measured by the developed
instrument and Autolab-PGSTAT-302. DPVs representing the guanine signals related to the different
concentrations of ssDNA using (A) Autolab PGSTAT-302, and (C) the developed instrument, and
the guanine signals related to the different concentrations of dsDNA using (E) Autolab PGSTAT-302,
and (G) the developed instrument. (B) Line graph presenting average guanine signals (n = 3) related
to ssDNA-immobilized PGEs in the case of different ssDNA concentrations from 2 to 14 µg/mL
with Autolab PGSTAT-302. (D) Line graph representing the average guanine signals (n = 3) related
to ssDNA-immobilized PGEs in the case of different ssDNA concentrations from 2 to 20 µg/mL
with the developed instrument. (F) Line graph representing average guanine signals (n = 3) related
to dsDNA-immobilized PGEs in the case of different ssDNA concentrations from 2 to 18 µg/mL
with Autolab PGSTAT-302. (H) Line graph representing average guanine signals (n = 3) related to
dsDNA-immobilized PGEs in the case of different dsDNA concentrations from 2 to 14 µg/mL with
the developed instrument.
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Figure 7. Calibration plots representing the guanine signals related to different concentrations of (A)
ssDNA and (B) dsDNA using Autolab PGSTAT-302 and the developed instrument.

The quantitative evaluation of the interaction between DNA and protein is essential
for many biological processes, including function and the developmental stages of many
diseases. In this respect, we aimed to apply this miniature device for the electrochemical
monitoring of the surface-confined interaction of protein with DNA. Under this aim, the
target protein was chosen as BSA, and accordingly, its interaction with ssDNA or dsDNA
at the surfaces of PGEs was explored by the developed instrument. The effect of the
interaction time was first studied in different times, varying from 5 to 60 min. Before and
after the interaction, both the oxidation signals of the BSA and guanine were measured at
potentials of +0.79 V and +1.01 V, respectively, in the same voltammetric scale (shown in
Figure 8).

Figure 8. Electrochemical detection of interaction of BSA with ssDNA and dsDNA. Histograms
representing the average oxidation signals of BSA and guanine, measured before and after the
interaction of BSA with (A) ssDNA and (B) dsDNA in the case of different interaction times (n = 3).

The changes obtained at both signals of the BSA and guanine were calculated and
are presented in Table 3 for both ssDNA and dsDNA. The oxidation signal of the BSA
gradually decreased, while the interaction time increased. Similarly, the oxidation signal
of the guanine gradually decreased in cases of increased interaction times. These results
are consistent with earlier reports [29–31]. This phenomenon could be explained as more
BSA interaction with ss/dsDNA occurring over longer durations. The highest decrease
percentage was obtained with the surface-confined interaction performed for 60 min.
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Table 3. The average oxidation signals of BSA and guanine (n = 3) measured before/after interactions
(Ibefore, Iafter, respectively) performed at different times with the decrease in the ratios obtained at both
signals calculated after the interaction of BSA and ssDNA or dsDNA at different interaction times.

Type of DNA Time
(min)

BSA Ibefore
(µA)

BSA Iafter
(µA)

Decrease % at
BSA Signal

Guanine
Ibefore (µA)

Guanine
Iafter (µA)

Decrease % at
Guanine

Signal

ssDNA

5 1.19 ± 0.13 0.50 ± 0.12 58%

4.11 ± 0.44

2.91 ± 0.54 29%

15 1.51 ± 0.03 0.88 ± 0.09 41% 1.99 ± 0.56 51%

30 2.17 ± 0.20 0.57 ± 0.09 73% 2.12 ± 0.26 48%

60 2.36 ± 0.11 1.14 ± 0.17 52% 1.97 ± 0.03 52%

dsDNA

5 1.19 ± 0.13 0.98 ± 0.07 17%

2.27 ± 0.25

1.28 ± 0.08 43%

15 1.51 ± 0.03 1.04 ± 0.08 31% 0.93 ± 0.22 38%

30 2.17 ± 0.20 1.24 ± 0.07 42% 0.77 ± 0.04 66%

60 2.36 ± 0.11 1.18 ± 0.04 69% 0.70 ± 0.16 69%

4. Conclusions

A miniaturized potentiostat was developed and applied for the electrochemical moni-
toring of the biointeraction process between nucleic acid and BSA for the first time in the
literature. A low-cost MCU with internal ADC, DAC, and USB controllers was used to
obtain a similar performance as commercial potentiostats, but with a lower cost, with the
help of a calibration procedure and digital filtering.

We successfully demonstrated the performance of the developed instrument by com-
paring it under the same conditions with the Autolab PGSTAT-302, which is a widely used
electrochemical analyzer for the development of biosensors for the detection of nucleic acids
(DNA, etc.) and proteins. The proposed architecture could be applied to other electrochemical
protocols, such as square wave voltammetry and electrochemical impedance spectroscopy.
The detection of calf thymus ssDNA and dsDNA by using disposable PGEs was also suc-
cessfully demonstrated in this study. The results obtained with the Autolab PGSTAT-302
device were found to be similar to the ones measured by the developed miniaturized poten-
tiostat. The LOD of the ssDNA was calculated based on the results obtained by the developed
instrument, and it was found to be 1.25 µg/mL, whereas it was found to be 1.65 µg/mL
by the Autolab PGSTAT-302. On the other hand, the LOD of the dsDNA was calculated
with the developed instrument as 1.10 µg/mL, whereas it was 0.96 µg/mL by the Autolab
PGSTAT-302. The sensor sensitivities were estimated for ssDNA and dsDNA with both
instruments from the slope of the calibration curve divided by the surface area of a PGE. For
ssDNA using the developed potentiostat and commercial device, the potentiostat sensitivities
were calculated as 0.737 µA·mL/µg·cm2 and 2.714 µA·mL/µg·cm2, respectively. For dsDNA
using the developed potentiostat and commercial device, the sensitivities were calculated as
0.423 µA·mL/µg·cm2 and 1.065 µA·mL/µg·cm2, respectively. The higher sensitivity was
obtained by using the commercial device. Although a lower signal was obtained with the
developed device, the electrochemical detection of DNA was performed in the same concen-
tration range of DNA and resulted with a closer detection-limit values with the commercial
one. The comparison of the performances of the developed potentiostat and the commercial
device are given in Table 4. The developed potentiostat has a significant advantage over
the commercial device, such as handheld portability, and even the sensitivity was lower.
Moreover, the electrochemical monitoring of the interaction of BSA with nucleic acids was also
successfully performed by using this instrument. Because BSA can bind several molecules,
including DNA, we aimed to apply our miniature device for the electrochemical monitoring of
the surface-confined interaction of DNA with BSA. The sensing system was sensitive enough
to detect the surface-confined interaction.
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Table 4. A comparison of the performances of the developed potentiostat and other commercial potentiostats.

Device Electrochemical
Method

Electrode
Type Analyte LOD Ref.

LMP91000 CV Gold IDE Cortisol 1 pM [15]

LMP91000 CV, Amperometry Carbon SPE Cortisol 74.0 nmol L−1 [32]

ADucM355 SWV Glassy Carbon
Electrode TNT 0.25 mg/L [33]

Custom
AFE Chronoamperometry Carbon SPE HRP 0.83 ng mL−1 [34]

Custom
AFE CV, DPV Carbon SPE Cd2+, Pb2+ 1 µg L−1 Cd2+,

0.5 µg L−1 Pb2+ [20]

Autolab
PGSTAT-302 CV, DPV PGE ssDNA,

dsDNA

1.65 µg/mL
ssDNA,
0.96 µg/mL
dsDNA

This work

Current
Prototype CV, DPV PGE ssDNA,

dsDNA

1.25 µg/mL
ssDNA,
1.10 µg/mL
dsDNA

This work

Although the internal peripherals of microcontrollers have poorer specifications com-
pared with external components, we have shown that they can perform as good as high-
performance external components with a proper calibration. Therefore, the proposed
potentiostat has the advantage of a simple, low-cost, and compact architecture, with a
minimum number of external circuit components. For some applications, the ADC and
DAC of the microcontroller could be limiting factors, but this can be overcome by using
signal-processing techniques. For example, the ADC is 16-bit, but because its sample rate is
high (>64 kSPS), oversampling can be used to increase its resolution. Because it has two
DACs with 12-bit resolution, these DACs can be summed with an op-amp circuit to create
a double-precision DAC. Based on the promising outcomes of our study, ongoing studies
on the detection of different types of biointeractions (drugs, environmental pollutants, etc.)
are still being investigated by using this miniature device in our lab.
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