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ABSTRACT 
 
 

CAPACITATED DYNAMIC ECONOMIC LOT-SIZING PROBLEM WITH 
PERISHABLE ITEMS 

 
Işık, Gül 

 
 

M.Sc. in Intelligent Engineering Systems  
Graduate School of Natural and Applied Sciences 

 
 

Supervisor: Asst. Prof. Dr. Zeynep Sargut 
 
 
 

February 2014, 98 pages 

 

Competition in manufacturing industry forces companies to produce products 
with a better way while trying to minimize costs or maximize expected benefits in 
production. Therefore, there are many available researches in this area to 
decide the answers of some questions such as how much or when they should 
produce to achieve their aims. 

In this study, dynamic economic lot sizing models for perishable products are 
considered when demand is deterministic and variable. Capacitated and 
uncapacitated dynamic lot sizing models are investigated additionally. A 
mathematical model is developed to minimize total costs which include 
production, holding and backlogging costs. Stock deterioration rate in the model 
depends on the age of products and also production costs, inventory holding 
costs, and backlogging costs are assumed as general concave functions. 
Moreover, holding costs and backlogging costs are age-dependent. The 
structural properties of the optimal solutions are analyzed and these are used for 
developing an algorithm which gives an approximate solution for this kind of 
problems. The solutions of the algorithm are compared with the solutions of 
GAMS solver. Then, the performance of the algorithm is discussed. 

Keywords: Perishable Inventory, Capacitated Dynamic Lot Sizing Problem, 
Dynamic Programming   
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Üretim endüstrisindeki rekabet, şirketleri maliyetleri azaltmaya yada beklenen 
kazanımları attırmaya çalışırken daha iyi bir yolla üretim yapmaya zorlar. Bu 
nedenle, düşünülen hedefe ulaşmak, nezaman ve nekadar üretim yapılmalı 
sorularının cevabına karar vermek için bu alanda bir çok mevcut çalışmalar ve 
araştırmalar bulunmaktadır. 

Bu çalışmada, çabuk bozulan yani dayanıksız ürünler için talep bilindiğinde fakat 
talep değişken olduğunda dinamik ekonomik sipariş verme modeli üzerinde 
durulmuştur. Buna ek olarak, kapasiteli ve kapasitesiz üretimlerde dinamik 
ekonomik sipariş verme modeli incelenmiştir. Üretim yapmaktan, envanter 
tutmaktan ve biriken siparişlerden dolayı oluşan maliyetleri azaltmak amacıyla 
matematiksel bir model oluşturulmuştur. Bu modelde, stok bozulma oranı 
ürünün yaşına bağlı olup, üretim maliyetleri, envanter tutma maliyetleri ve biriken 
siparişlerin maliyetleri konkav olarak kabul edilmiştir. Ayrıca, envanter tutma ve 
biriken sipariş maliyetleri de ürünün yaşına bağlıdır. İdeal (optimum) çözümlerin 
yapısal özellikleri incelenmiş, yeni geliştirilen ve yaklaşık sonuç veren 
algoritmada kullanılmıştır. Algotimanın sonuçları, GAMS çözücüsünün verdiği 
sonuçlar ile karşılaştırılmıştır. Bu şekilde algoritmanın performansı incelenmiştir. 

Anahtar kelimeler: Çabuk Bozulan Envanter, Kapsiteli Ekonomik Sipariş Verme 
Problemi, Dinamik Programlama. 
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CHAPTER 1 

 

  

INTRODUCTION 

 

 

 

After the industrial revolution, manufacturing has become a complex process 

in the competitive world. Graves (2002) states that volume of manufacturing, 

variety and quality of products, and also manufacturing operations have 

changed correspondingly. 

 

According to Akartunalı (2007) in the growing economy, cost reduction on 

complex manufacturing operations has become very important and 

production planning provides important effects in a positive way for 

manufacturers and companies in this market. The growth has attracted 

attention, thus many scientific researches, different models and solution 

methods have been developed and applied for production planning. 

 

While production planning plays an important role for reducing cost or 

maximizing profit, inventory management also gains importance. Yano and 

Lee (1995) claims that inventory management should be considered with 

production planning, since it sets the inventory activities, operating policy and 

procedures which are designed to maximize expected gain and customer 

satisfaction with using the least inventory investment. Therefore, many 

inventory models are generated and solution approaches are developed to 

control and to improve inventory activities efficiently. Inventory models can be 

categorized in many ways. In an inventory model, demands can be certain or 

uncertain. If demand is certain per period, it means that demand is 
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deterministic but it can be variable or constant. When demand is variable per 

period, production or procurement quantities vary per period. Uncertain 

demand models are called stochastic demand models. Other important 

property is about capacity. According to Yano and Lee (1995) for some 

models there exists production capacity while some models do not include 

the capacity so in capacitated production the production amount is limited 

because of some conditions such as working hours or the number of 

workers. Moreover, in inventory models the aim which can be considered as 

performance measure is generally minimization of total cost or maximization 

of total profit. Some models consider a single product whereas others 

consider multiple products and also planning horizon can be finite or infinite. 

Furthermore, unsatisfied demand can be allowed by backlogging for some of 

them however, for some companies backlogging is not allowed according to 

their policies. Last important property is product types which are specified as 

perishable or non-perishable products. 

 

Manufacturing facilities can face some problems while planning their 

production. Unexpected situations like broken machines or capacity problems 

such as number of workers or number of machines and also problems with 

raw material suppliers can cause some delays in production. Furthermore, 

this may lead to delay in satisfying demands on time so some companies 

rare to ask customers for backlogging not to lose their customers completely 

although it causes dissatisfaction of customers. Therefore, backlogging is an 

important activity in production planning. Backordering and backlogging are 

the terms that have same meaning in the literature according to Wu et al. 

(2011). 

 

Prastacos (1981) defines non-perishable products as products that do not 

decay for long time. Furniture, electronic devices, clothes can be considered 

as non-perishable products. However, perishable products are kinds of 

products which have a limited shelf life or limited time for use or 

consumption. The time period when the product keeps its quality well is 

called as life time or shelf life for that product. If life time of a product expires, 

that product cannot be used after its life time. Dairy products, some foods, 



M a s t e r  T h e s i s  | 3 

 

 

 

and medical drugs can be examples for perishable products. Additionally, 

while foods such as meat, milk or egg have a short life time, medical drugs or 

other chemicals have longer life time for use but they can also be considered 

as perishable products.  

 

Age of a product is defined according to the length of period between its 

production period and current period. Hsu and Lowe (2001) states that 

inventory costs may not be related with the age of products which is called as 

age-dependent while considering non-perishable products. Since the quality 

and the quantity of the products do not change over time. However, this 

cannot be considered for the perishable products. When inventory is 

perishable, quantity and the quality of products change per period according 

to perishability rate of products and they deteriorate based on periods or 

ages. Thus, period-pair-dependent or age-dependent inventory cost should 

be determined for perishable products.  

 

Age-dependent inventory is related with the age of products according to Hsu 

(2003). Deterioration rate is the percentage of the items perished at the end 

of the given period. Deterioration rate also depends on the difference 

between production period and period that the product is used. When the 

length of time that the product kept in the inventory increases, the 

deterioration rate increases. When it passes its shelf life, deterioration rate 

becomes 1. Period-pair dependent inventory depends both production period 

and age of the products. Deterioration rate may not be only related with the 

age of goods. For example, some products like meat or milk can deteriorate 

faster in summer then in winter. Therefore, the deterioration rate may depend 

on both production period and the age of stock. 

 

Backordering cost is related to the degree of the customer dissatisfaction and 

the loss of goodwill. Backlogging a product for a long time causes customer 

dissatisfaction and the length of time increases, the customer dissatisfaction 

increases more. Therefore, backlogging cost which is penalty cost should not 

be a linear fashion and it should also be period-pair dependent and it should 

increase more than increment of delay time.   
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In this thesis, a production facility that produces a single perishable product 

with known demand which is dynamic over a finite planning horizon is 

considered. However, demand is variable (dynamic) and cost functions also 

change over time. They are not fixed for every interval so dynamic lot sizing 

is scope of this project. For every interval the production is limited and it 

cannot pass the production limit. This can be explained as the production 

capacity and it restricts the production. In other words, it puts a capacity 

constraint to the problem.  

 

Our problem is to determine the amount of production at each period to meet 

all demand at the end of the planning horizon so that the total cost of 

production, inventory and backlogging is minimized. As the result of 

production amounts the backlogging and inventory values are determined. 

Backlogging can be needed because of the limited production capacity and 

deterioration of products kept at inventory and also cost minimization 

requires some backlogging. Moreover, in this study we assume that the 

production cost, inventory cost and backlogging cost functions are general 

non-decreasing concave functions. A dynamic programming based approach 

is devised to solve this problem. 

 

Chapter 2 focuses on dynamic economic lot sizing problem and the studies 

of this problem in the literature. Moreover, versions of dynamic economic lot 

sizing problem are mentioned. 

 

In Chapter 3, a new mathematical model for the uncapacitated problem is 

introduced when the products are perishable and also the backlogging and 

inventory costs are general concave. A former formulation exists in Hsu 

(2003). We updated it so that the model has a network flow representation. 

Also, the related literature is explained and compared with our study. The 

network of our problem is drawn and explained. Experimental results are 

discussed. Moreover, some theorems and properties related with our study 

are introduced.  Finally, the dynamic programming algorithm which can be 

applicable for our study is mentioned. 
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The studies for capacitated production problem are in Chapter 4. The 

mathematical model is updated by adding the capacities. The empirical 

analysis is performed to understand the structure of the optimal solution. We 

prove many properties of the optimal solution, one of which is that dynamic 

programming algorithm to solve our problem and explain our dynamic 

programming algorithm. We devise an algorithm that finds a good solution for 

a sub-problem when the production decisions are known. Our algorithm finds 

the optimal solution or near optimal solutions, therefore it is an approximation 

algorithm. We run many tests for our algorithm and include many examples 

to explain how it works. We also tested the performance of the algorithm. We 

tried six types of demand patterns and explore its effect on performance of 

the algorithm.  

 

Finally, the study is concluded in Chapter 5. We discuss the experimental 

results in this section.  
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CHAPTER 2 

 

 

DYNAMIC ECONOMIC LOT-SIZING PROBLEM 

 

 

 

According to Sargut (2006), the objective of Dynamic Economic Lot Sizing 

Problem (DLSP) is to minimize the total cost which includes ordering 

(production) and inventory costs during a finite planning horizon. Firstly, 

Wagner and Whitin (1958) has studied in DLSP and developed the one of the 

simplest and earliest dynamic lot-sizing model in the literature. This model 

includes the production costs which have fixed-cost structure and inventory 

holding costs which are linear, and also production has been considered as 

uncapacitated. Then, many following variations of DLSP have been 

performed. First variations are about the convex and concave cost structures. 

Other variations of DLSP are about the form of inventory held at the facility 

that may be considered as combinations of holding and backlogging. 

Moreover, the examples of models where the total cost is minimized can be 

seen in the literature. Additionally, some models where the profit is 

maximized have been developed. These models are considered as the 

models with one location, but they can be modified in order to optimize the 

decisions of a multi-level system. In multi-level system, costumer does not 

directly get the products from manufacturer since there are some levels 

(wholesaler, retailer, etc.) between them. In each level inventory is held. 

Therefore, decisions of multi-level system are more complicated and the 

transportation decisions should be included between the levels. 
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Wagner and Whitin (1958) has developed their models without the production 

capacity constraint while other many researchers have developed the 

capacitated versions of DLSP. In this case, capacities can be stationary or 

non-stationary (time-varying). In addition, Bitran and Yanasse (1982) states 

that DLSP with non-stationary capacities is very complex and NP-hard. 

Veinott (1963) has studied in general concave production and holding costs 

in DLSP. Furthermore, Zangwill (1969) and Zangwill (1968) have generated a 

network approach and showed the problem as a concave cost network flow 

problem and also Zangwill (1969) has extended the work of Veinott (1963) by 

adding backlogging in the model. This study has illustrated that optimal 

solution is an extreme point solution with an arborescent structure (as tree) 

which means that each node has only one positive incoming arc in the 

network. 

 

Generally, finding minimum cost is the main interest of companies and the 

researchers. In the literature, there can be seen many instances and studies 

which consider the flow of products from the manufacturer to consumers as 

network flows. Zangwill (1968) performed an analysis for determining 

minimum cost for certain types of concave cost networks. Since, considering 

costs as a linear function is often unrealistic due to set-up costs or quantity 

discounts so concave cost functions are more realistic. Some theorems that 

characterize the extreme points for certain single product or multi-product 

networks have been developed according to single source to single 

destination, acyclic single source to multiple destinations and multiple 

sources to single destination. 

 

Concavity can be explained that every line which is drawn by joining any two 

points selected on a function should be on or below the function. The formal 

definition can be derived by a function f of a single variable. 

 

f:  X → R is concave if for any x, y ∈ X, for all λ ∈ (0, 1), 

 

f (λy + (1 − λ) x) ≥ λf (y) + (1 − λ) f (x). 
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f:  X → R is strictly concave if for any x, y ∈ X with x   y, for all λ ∈ (0, 1), 

 

f (λy + (1 − λ) x) > λf (y) + (1 − λ) f (x). 

 

A function f is concave if the line between any two points on the function 

always lies on or below the function itself which is illustrated in Figure 1. 

 

 

 

Figure 1 A Nondecreasing Concave Function 

 

 

In this thesis, the cost structure is nondecreasing concave since when the 

product quantity increase, production costs, holding costs, and also 

backlogging costs increase accordingly. 
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CHAPTER 3 

 

 

DYNAMIC ECONOMIC LOT-SIZING PROBLEM 

WITH PERISHABLE ITEMS 

 

 

 

3.1. Related Literature 

 

In literature, there are available many researches for perishable lot-sizing 

model. Hsu (2000a) has studied about dynamic economic lot sizing model for 

perishable products when deterioration depends on age of stock and the 

inventory and production costs general concave. Dynamic programming 

algorithm is developed for solving the problems in polynomial time. The 

network of the problem has been illustrated in Hsu (2000a) while backlogging 

is not allowed.  

 

In the model of Hsu (2000a), planning horizon consists of n periods, demand 

is known per period for a single perishable product. Products deteriorate 

according to deterioration rate. There is no backlogging in the model.  

Production and holding costs are assumed as nondecreasing and concave. 

The aim of the model in Hsu (2000a) is minimizing the total costs. 

 

Figure 2 shows the constructed network in Hsu (2000a). Node F is single 

supply node. The arcs between node N and S represent the flow of demand. 

Node S is the demand nodes per period. Also, the arcs between nodes N 

represent the inventory which is carried per period. 
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Figure 2 Network Flow of Hsu (2000a) 

 

In the literature, the most related work our study is Hsu (2003). In Hsu 

(2003), the economic lot sizing model for perishable products with age-

dependent inventory and backlogging costs have been considered. For this 

age-dependent inventory and backordering costs problem a mathematical 

model and a dynamic programming algorithm have been performed. Also the 

algorithm has been used for some special cases of their problem. 

Decision variables in Hsu (2003) are given below. 

   is the amount of production in period t. 

  (  ) is the production cost for producing    units in period t. 

    is the amount of inventory which is produced in period i and held at 

the beginning of period t. 

   (   ) is the carrying cost of     units in the inventory in period t. 

    is the proportion of     which is lost in period t.  
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 F 
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    is the amount of unfilled period k demand at the end of period t. 

   (   ) is that the penalty cost of leaving     unfilled in period t. 

    is the amount of period i production used to satisfy the demand in 

period t.  

 

The mathematical model is given below. 

              ∑[  (  )    ∑   (   )   ∑   (   )

 

   

 

   

]

 

   

                                (   ) 

Subject to:  

    ∑        
 
                                                                                     (2.2) 

(        )                                                                        (2.3) 

                                                                                           (2.4) 

∑    
 
                                                                                                   (2.5)  

                                                                    (2.6) 

 

The objective minimizes the total cost of production, holding and 

backlogging. Constraints (2.2) calculate the remaining amount of product at 

the end of period t after satisfying the demand of period t. Constraints (2.3) 

take into account the perishability of the products. The inventory from 

previous period perishes according to loss rate and some of the remaining 

part is used to satisfy the demand of next period. The remainder is calculated 

accordingly. Constraints (2.4) calculate the remaining unfilled demand of 

period k in period t after satisfying some part of demand in period t. 

Constraints (2.5) state that total amount of items used to satisfy the demand 

of period t should be equal to the total demand of period t. Final constraints 

(2.6) enforce non-negativity on all decision variables.  
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Tables 1 and 2 summarize the properties of the related literature and our 

study respectively. The information about the type of product, problem types, 

time complexity of the problem and the cost functions such as production, 

holding and backlogging can be seen explicitly. In these studies, there are 

some special cases and the properties of these have been given in Table 1. 

All papers in the Table 1 consider the production cost functions as general 

concave and nondecreasing. While Hsu (2000a) and Hsu (2003) include 

perishable products, Hsu and Lowe (2001) consider non-perishable products. 

In Hsu (2000a), there is no backlogging and the inventory holding cost 

function is general concave and age-dependent. Hsu and Lowe (2001) and 

Hsu (2003) allow backlogging.  Hsu and Lowe (2001) consider backlogging 

cost functions as period-pair-dependent and inventory holding costs are 

covered as both period-pair-dependent and independent while Hsu (2003) 

considers general concave age-dependent backlogging cost functions and 

inventory holding costs are considered as general concave and age-

dependent. 

In Table 2, all costs functions are general concave; moreover, the holding 

and backlogging costs are considered as age-dependent. 

 

Table 1 The Summary of the Related Literature 

 Hsu (2000a) 
Hsu and Lowe 

(2001) 
Hsu (2003) 

Production 
cost 

function 

General concave 
and nondecreasing 

General concave 
and nondecreasing 

General concave 
and 

nondecreasing 

Perishability 
        

where     
No perishable items 

        

where     
Backlogging 

cost 
function 

No backlogging 
Period-pair 
dependent 

General concave 
age- dependent  

Inventory 
holding cost 

function 

General concave 
age- dependent 

Period-pair 
dependent 

/independent 

General concave 
age-dependent 

Running 
time of the 
algorithm 

O(n4) O(n3) O(n4) 
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Table 2 The Property of our Problem 

 Our Problem 

Production cost function 
General concave and 

nondecreasing 

Perishability 
        

where     

Backlogging cost function General concave age-dependent 

Inventory holding cost function General concave age-dependent 

 

 

Chan et al. (2002) considers economic lot-sizing models (ELS) with modified 

all-unit discount freight ordering cost function and linear holding cost function. 

They showed that this problem is NP-hard and suggest an approximation 

algorithm that assumes ZIP which implies that a positive inventory cannot be 

carried to a production period and which may not hold in any optimal solution.  

 

Chu et al. (2005) considers a more general problem by considering general 

economies of scale cost functions and perishability. They assume age-

dependent deterioration rate and holding cost. Since the problem is NP-hard, 

they propose an approximation scheme that solves the problem 

approximately and it is guaranteed to provide a solution which is not more 

than 1.52 times of the objective function value. 

 

 

3.2.  Mathematical Model 

We assume production cost, backlogging and inventory holding costs are 

nondecreasing concave and age-dependent. Products are perishable and 

they deteriorate according to their perishability rate. A new mathematical 

model generated is related to the model and the problem in Hsu (2003). We 

eliminated one constraint and we defined new decision variables by using 

different notation for demand flow. By the help of this, the number of 

constraints is decreased and also the model can be defined as a network 

flow model.  

 



M a s t e r  T h e s i s  | 14 

 

 

 

We define our model as below.  

Decision Variables 

   is the production volume at the beginning of period t. 

    is the amount of demand in period t which is going to be satisfied from 

production in period i.  When    , it means backlog.  

    is the inventory left at the beginning of period t from the production in 

period i. 

Parameters and Functions  

   is the demand in period t. 

    is the proportion of loss for      during period t or deterioration rate during 

period t. 

   is the production cost function of production at period t. 

    is the penalty cost function or backlogging cost function, the cost of 

satisfying the demand of  period t from production in period i, where     .  

    is the cost function of holding inventory during period t of items produced 

in period i. 

Assumptions  

1. The production, inventory and penalty cost functions are assumed to 

be non-decreasing and concave with 

   ( )        ( )            ( )       

2. Inventory and penalty cost functions are considered as age-

dependent. In age dependent costs, the costs are related with the age 

of products so time of periods that products are carried at the 

inventory is important. This can be shown as     ( )      ( ). 

3. We assume zero inventory at the beginning and the end of the 

horizon.  

4. We assume that there is no backlogged demand at the beginning 

period and also no remaining backlogged item at the end of the 
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horizon.  In other words, all demand is satisfied at the end of the 

horizon. 

 

To summarize the differences between the model in Hsu (2003) and our 

model are given below.  

Model-wise difference: 

     in our model is used for both decision variables            . It is 

enough and sufficient to express the meaning of both two decision 

variables related with satisfied and unsatisfied demand. 

 We eliminated the constraint related with unsatisfied demand which 

is                    ere          . 

 

Representation-wise difference: 

 Our model has a network flow representation whereas the model in Hsu 

(2003) does not have any. 

 

Additionally, to identify the deterioration rate which is in parameters, an 

example is shown below. 

 

(     )(     )(     )
 units of product should be produced at period 1 for one 

unit to be used in period 3. Therefore, to meet demand, the production 

amount should be increased as much as the fraction of loss rate. This can be 

s o n  it  an example. Let’s assume t e deterioration rates are          

         and        .     is the proportion of loss of products kept at the 

inventory at the end of period 1.     is the proportion of loss of products 

which have been produced at the beginning of the period 1 and kept at the 

inventory at the end of the period 2.     is same as     and    . It is the 

proportion of loss products waiting at the inventory 3 periods. Since, in this 

case products have been produced in period 1 and they have been kept at 

the inventory until at the end of period 3. If we want to meet one unit of 

demand of period 3 from the production of period 1, we have to produce 
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2.632 units at the beginning of the period 1. In other 

words,  
 

(      )(     )(     )
 = 2.632. 

 

Our mathematical model of the problem is given below.  

              ∑[  (  )   ∑   (   )   ∑    (   )

 

     

 

   

]

 

   

                           ( ) 

Subject to:  

    ∑        
 
                                                                                     (3.1) 

(        )                                                                          (3.2) 

∑    
 
                                                                                                   (3.3)  

                                                                                                         (3.4) 

                                                                                                             (3.5) 

                                                                                                              (3.6) 

 

This problem can be formulated as a minimum cost flow problem with flow 

loss. The incoming flow to a node is greater than or equal to the outgoing 

flow. A 4-period problem is represented in Figure 3. The notation in Hsu 

(2000a) is followed while drawing the network. However, we have extra 

backward arcs that represent backlogging.  

In Figure 3, node F represents the source for production.     nodes are 

created for every paired periods (i,t) while        . Nodes represented 

by S are demand nodes where the period number appears as a subscript. 

The arcs show the flow of the products. The arc between (F,     ) for every t 

gives the production at period t. This can be considered as   .  For every pair 

of i and t, there is an arc between (          ) which gives the inventory 

holding at period t from production at period i and this is indicated as    . For 
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every t, the arc between (      ) are demand satisfaction arcs and does not 

have an extra cost and also it is shown as    . However, the arcs between 

(    ,  ) for every t and k       are the backlogging arcs. This can be 

illustrated as      where      

 

 

Figure 3 Network Flow Representation for DLSP Model 

 

3.3. Solution Method 

In Winston (1993), Dynamic Programming (DP) is defined as a method used 

to solve complex decision problems. The method is found by Richard 

Bellman in 1953. It is a recursive method. From sub-problems of a whole 

problem the suboptimal solutions are found. Then, the sub-problems are 

expanded and new suboptimal solutions are found for new expanded part 

while using previous optimal solution. The expansion of the problem lasts 

until problem turns into the original problem. Therefore, the stopping 

condition is met when the problem is solved.  

For solving our problem, the problem is divided into smaller parts or sub-

problems and combination of these parts is considered to obtain a solution 
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method for this kind of problems. To decide on the small parts (components), 

Zero Inventory Property and Interval Division Property have been explored.  

 

Zero-Inventory Property (ZIP): A positive inventory cannot be carried into a 

production period. This means that in a given period we can have at most 

one of the following: inventory from previous periods or production. In other 

words, 

                                                     

In Wagner and Whitin (1958) this property is used to obtain a dynamic 

programming based solution and define the parts of the optimal solution. 

 

Interval Division Property (IDP): Production in a period satisfies the 

demand of some consecutive periods. Let j1, j2, ..., jk be the production 

periods in the ascending order and i1, i2, ..., ik be the end of the consecutive 

demand periods in the ascending order, then production in period jm satisfies 

the demand of the periods from im-1 to im.  

 

Figure 4 Interval Division Property (IDP) 

 

An example is shown in Figure 4. There are 2 production periods and n 

periods for demands. Production at period 1 satisfies the demand of periods 

from 1 to    in consecutive order and production at j satisfies the remaining 
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demand from period      to period   . This divided periods and productions 

into intervals and make them groups between each other. 

Florian and Klein (1971) has developed an algorithm with general concave 

inventory cost functions with or without backlogging and IDP can be seen in 

these problems.  Florian and Klein (1971) claims that optimal plans consist of 

independent components. In these components, firstly the inventory level is 

not zero for every period but the inventory level of last period is zero. 

Secondly, if the production level is positive, it should be at capacity with the 

exception that at most one period production level can be less than the 

capacity that is shown as   . It can be calculated by the following equation. 

Therefore, let us to refer that    is demand of period i and    is the capacity. 

Then,    can be found as: 

 

  ∑  

 

   

 ⌊
∑   
 
    

 
⌋  

 

Sargut (2006) states that IDP can be useful when inventory and backlogging 

costs are concave. Moreover, total minimum cost is calculated by adding 

minimum cost for each component.  

 

Table 3 and 4 are detailed versions of Table 1 and 2 respectively. Tables 

include details in terms of Interval Division Property and Zero Inventory 

Property. All papers in the Table 3 have some special cases where IDP 

holds. Table 4 includes the general properties of our study. IDP and ZIP do 

not hold for any optimal solution in our study. It can be seen in following 

examples since the optimal solution shows that these properties may not 

hold in some problems. 
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Table 3 The Properties of the Models in Related Literature in more Detail 

 Hsu (2000a) 
Hsu and Lowe 

(2001) 
Hsu (2003) 

Production 
cost function 

General concave 
and nondecreasing 

General concave 
and nondecreasing 

General 
concave and 

nondecreasing 

Perishability 
        

where     
No perishable items 

        

where     

Backlogging 
cost function 

No backlogging 
Period-pair 
dependent  

General 
concave age- 

dependent  

Inventory 
holding cost 

function 

General concave 
age- dependent  

Period-pair 
dependent 

/independent  

General 
concave age-

dependent  

IDP for 
general case 

Yes No No 

ZIP for 
general case 

No No No 

Running time 
of Algorithm 

O(n4) O(n3) O(n4) 

Special 
cases (IDP 

holds) 

 
General concave 

and age dependent 
inventory costs 

 
General concave, 

period pair 
dependent 

backlogging and 
inventory cost 

 
General 

concave, non-
decreasing 

demand, age 
dependent 

inventory and 
backlogging 

cost 

Running time 
of special 
instances 

O(n2) 
 

O(n3) 
 

O(n2) 

 

Table 4 The Property of our Problem with Detail 

 Our Problem 

Production cost function 
General concave and 

nondecreasing 

Perishability 
        

where     

Structure of the backlogging cost function 
General concave age-

dependent 

Structure of the inventory holding cost 
function 

General concave age-
dependent 

IDP and ZIP for general case No 
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3.4.  EMPIRICAL ANALYSIS 

 

This section includes some example problems and their solutions. 

Example 3.1:  Let us assume there are five periods such as January, 

February, March, April, and May. All demand values are equal to 10. The 

production costs are    ( )           ( )           ( )          ( )  

        ( )     . The holding cost is linear    ( )     (     ) . The 

following equations show the penalty cost functions which are        ( )  

            ( )              ( )      . The deterioration rate matrix (   ) is 

given below. N/A means not defined.  

 

               January  February   March   April   May 

                        January             N/A          0.3          0.8        1        1 

                        February            N/A         N/A         0.4        0.2      1 

                         March               N/A         N/A         N/A       0.5      0.25 

                         April                  N/A         N/A         N/A       N/A     0.45 

                         May                  N/A          N/A         N/A       N/A     N/A 

 

The unique optimal solution for the problem is that               are 

satisfied from production at period 3, it can be seen that the demand of 

periods 1 and 2 are met by backlogging from period 3; furthermore, the 

products which is produced in period 3 and available in the inventory in 

period 4 are used to meet the demand of period 4. Finally     is satisfied in 

period 5. Thus, it is seen that              . Using GAMS, it can be 

solved within seconds. The solution shows that IDP and ZIP are provided. 

Since, period 3 which is one of the production periods satisfies the demand 

of period 1, 2, 3, and 4 in a consecutive way. Also, inventory does not carried 

into production periods. 
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Example 3.2: Consider one instance of a 100-period problem with age-

dependent inventory cost function and the demand values are generated 

uniformly in the interval (50, 500). The holding costs increase linearly by age 

that is       ( )     (     ) . The backlogging cost also increases 

linearly by age. The following equation shows the penalty cost function that 

is     ( )     (   ) . The production cost constraints are set uniformly in 

the interval (110, 1100). The deterioration rate matrix (   ) is given below. 

       = 0.05,        = 0.2,      = 1 when (   )     

The optimal solution for the example 3.2 shows that the demand of periods is 

met consecutively by consecutive production periods. Therefore, it can be 

said that IDP are provided but ZIP does not hold for this example. Since, for 

some periods inventory is carried to production periods. 

Hsu (2000a) showed that zero-inventory property may not hold for any 

optimal solution for perishable items while interval division property can hold. 

Additionally, the same examples in Hsu (2003) are valid to show that for 

some problem instances both ZIP and IDP are not satisfied. We used same 

examples to show that ZIP or IDP may not hold. 

Example 1 in Hsu (2003) shows that IDP may not hold. Suppose there are 

six periods where                                         . The 

production costs are    ( )       ( )        ( )        ( )       ( )  

    ( )     . 

                ( )              for        

      ( )                  for        

      ( )              for       and       

The backorder costs are    ( )     for all     and      

In the optimal solution, d1 and d2 are met by production in period 1. Demand 

in period 4 is satisfied by period 3. Moreover, demand in periods 3, 5, and 6 

are met by production in period 5. 3, 5, and 6 are not consecutively indexed 

demand periods. Additionally, ZIP holds in the optimal solution which can be 
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seen in Figure 5. Since, the inventory is not carried to the production periods 

which are period 1, 3 and 5. 

 

 

Figure 5 GAMS Solution for Example 1 of Hsu (2003) 

 

In Example 2 in HSU (2003) ZIP does not hold but IDP in the optimal solution 

holds. Consider the problem in Example 1 and suppose: 

    ( )      for        

       ( )       for        

       ( )      for       and    .  

In optimal solution, it is seen that production in period 1 satisfies demand in 

first and second periods. Period 2 satisfies the third period. Furthermore, 

demand of period 4, 5, and 6 are met by production in period 5. It can be 

seen in Figure 6 that production periods are met demand in consecutive 

order so IDP holds. However, there exists production in period 2 although 

inventory is carried to period 2. Therefore, ZIP does not hold. 
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Figure 6 GAMS Solution for Example 2 of Hsu (2003) 

 

 

 

3.5. The Structure of the Optimal Solution for Uncapacitated 

Production Problem 

In this section, the structural properties for uncapacitated problems are 

mentioned. Some theorems help to find or analyse the solutions by checking 

whether the conditions of the theorems hold. Therefore, Theorems 1 and 2 in 

Hsu (2003) are explained below. We find the same solution with the solution 

of the model in Hsu (2003) by solving with our model. It means that model in 

Hsu (2003) and our model are alternative models and the theorems about the 

structure are valid for both.  

Theorem 1: There exists an optimal solution to (P) where for each t, there is 

a unique i such that       , where      .  

Proof: Eac  period’s demand is satisfied by t e production at only one 

period. The objective is concave and the feasible region is a compact 

polyhedral. According to Bazaraa and Shetty (1979), the optimal solution will 

be an extreme point in the feasible region. For a network flow problem 

extreme point solution corresponds correspond to an arborescent flow in the 
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network (Zangwill, 1968). In other words, every node will have only one 

incoming arc with positive flow except the source node. □ 

However, in capacitated production problem there may be instances where 

Theorem 1 may not be valid. Since, for this kind of problems the production 

of period i may not be enough to meet the period t demand because of the 

limited production capacity. Thus, there may be more than one production 

period to satisfy a specific period demand. 

In the optimal solution for uncapacitated problems, it is observed that if the 

holding cost and backlogging cost increase when the difference between 

production period and period that product is used increases and if it is also 

known that the demand of a period k is satisfied by a production in period i, 

the production periods before period i such as period i-1 cannot satisfy 

demand of period k or demand of further periods of period k. Since, if the 

holding costs and backlogging costs are considered, satisfying demand of 

any period after k using production in any period before i without using this 

theorem increases total costs which is out of objective.  

The conditions and details are explained below in Theorem 2 and Figure 7. 

 

Theorem 2: There exists an optimal solution to (P) where if      are two 

production periods and       , for some    , then       for all t, 

where      .  

Proof: Assume that in the optimal solution demand in period k is satisfied via 

production in period j, where        Let 
ix be the production quantity of 

period i in the optimal solution and 
ily be the inventory left at the beginning of 

period l from the production in period i.  For any i j  we can say that 

everything is kept the same except period k is satisfied from period i instead 

of period j.  
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Figure 7 The Intersecting Demand Satisfaction with Holding 

 

Let us assume in the optimal solution period k is satisfied from production at 

period j and p periods after period k (                ) are satisfied by 

production at period i. The proof is done by showing that if they are satisfied 

from period j, we will have a better objective value. 

That is: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
p p p p

t t

i i il il j j jl jl

l i l j

r r r rk k
i i j j

i i im m il il lm m j j jm m jl jl lm m

m r l i m r m r l j m r

c x H y c x H y

c x A d H y A d c x A d H y A d

 
   

 

 
   

     

   

      

 

     
1 1 1 1

1 1

1 1

 

The details of the proof without backlogging are given in Hsu (2000a). The 

proof for the case with backlogging is given in Hsu (2000b). □ 
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k t  n 

< 

≤  ≤  
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3.6.  Dynamic Programming Algorithm 

Hsu (2003) presents that a dynamic programming algorithm which can be 

applied when the conditions in Theorem 1 and Theorem 2 are valid. 

Therefore, we can also adopt the same algorithm. Since the problem under 

consideration is the same. 

 ( ) refers the optimal value of the problem when we consider periods from 1 

to i.  ( )     and  ( ) is the optimal value of the whole planning horizon.  

To find the optimal value of the whole planning horizon, the sub-parts of the 

problem and their optimal values should be found. Therefore,  (   ) which is 

the optimal value of the problem for periods from r to i with at most one 

production period should be found. 

The backward recursion of DP can be written as below. 

 ( )           { (   )   (   )}. 

The following calculations are needed to find out   (   ). 

   
  is the amount of production that must be made at period i to satisfy one 

unit demand of period t from the beginning of period k.  

   
   

 

(     )(        )   (        )
  

 

∏ (     )
   
   

                          

  (     ) shows the amount produced at period i and kept at period p for 

demand of periods from q to r. 

    is the demand at period k. 

  (     )  {
 ∑    

  
                                                                     

∑    
     ∑                       

   {   }  
   

 
     {   }

    

   (   ) is the holding cost for demands from q to r when produced at period 

i where      . 

   (   )  ∑   (  (     ))   ∑   (  (       ))                   
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   (   ) is the backordering cost for demands from q to r when produced at 

period i where        

   (   )   ∑    (  )
 
    . 

 (   )      { 
 (   )} is the total cost of producing at period k for demands 

of periods from r to i.  Therefore,  

  (   )  {

  (  (     ))      (   )                                                        

  (  (     ))      (   )     (   )                                

  (  (     ))      (   )                                                        

 

 

According to Hsu (2003) the computational complexity of recursion is 

that  (  ). Since, there are n nodes and n  arcs and also finding shortest 

path on this network takes  (  )  time (Ahuja et al., 1993). All 

   (   ) values can be computed in  (  ) time as well as     (   ). To 

obtain  (   ) additional  (  ) effort is required. The overall computational 

complexity of the DP algorithm is found  (  ) by the summation which is  

 (  )   (  ) +  (  )   (  ) =  (  ) 
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CHAPTER 4 

 

 

CAPACITATED DYNAMIC ECONOMIC LOT- 

SIZING PROBLEM WITH PERISHABLE ITEMS 

 

 

 

Uncapacitated problems are computationally easier than the capacitated 

problems. Systems have capacity because number of shifts, number of 

workers and machines used in production, and also other many factors 

restrict time and amount of production. Florian and Klein (1971) has 

developed their study including capacity limit which is one of the main 

difference from Wagner and Whitin (1958). The problem studied by Florian 

and Klein (1971) is harder than the problem in Wagner and Whitin (1958) 

since optimal solution in Wagner and Whitin (1958) satisfies Zero-Inventory 

Ordering Policy but ZIP does not necessarily lead to an optimal solution for 

the capacitated version. Moreover, product types such as perishable 

products make problem harder. Hsu (2000a) has studied problems with 

perishable products. Hsu (2000a) claims that these problems are much 

harder since number of nodes in network representation increases and 

inventory cost calculation is much more complex. This situation is valid both 

capacitated and uncapacitated production.  
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4.1. Mathematical Model 

In the capacitated version of the model, a capacity constraint (4.6) has been 

added which implies the production per period cannot exceed the production 

limit per period. Backlogging is allowed.  Inventory holding and backlogging 

costs are both concave and age-dependent. Furthermore, perishability 

depends on periods and production costs are concave and nondecreasing. 

This study has stationary production capacities. In addition, Bitran and 

Yanasse (1982) shows that non-stationary one is NP-hard even with easy 

cost structures. 

 

Decision Variables  

   is the production volume at the beginning of period t. 

    is the amount of demand in period t which is going to be satisfied from 

production in period i. If     , it means there exists backlogging.  

    is the inventory left at the beginning of period t from the production in 

period i. 

 

Parameters and Functions  

   is demand in period t. 

    is the proportion of      lost during period t.   

   is the cost function of production at period t. 

    is the penalty cost function for backlogging, the cost of satisfying the 

demand of  period t from production in period i, where     .  

    is the cost of holding inventory during period t of items produced in period 

i. 

K is the fixed production capacity for each period. 
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Assumptions  

1. The production, inventory and penalty cost functions are assumed to 

be non-decreasing and concave where 

     ( )        ( )      and     ( )       

2. Inventory and penalty cost functions are considered as age-

dependent. 

3. We assume zero inventories at the beginning and the end of the 

horizon.  

4. Moreover, we assume that there is no backlogged demand at the 

beginning period and also no remaining backlogged item at the end of 

the horizon.  In other words, all demand is satisfied at the end of the 

horizon. 

5. Let us define △f(x, β) = f(x + β) − f(x). 

 

        For any x, y, β ≥ 0 

        △   (x, β) ≥ △    (y, β),                         for 1 ≤ t < j ≤ i≤ n 

        △   (x  β) ≥ △    (y, β),                         for 1 ≤ i ≤ j ≤ t ≤ n 

 

This assumption states that there is a nondecreasing marginal 

holding/backordering cost with respect to the age of 

inventory/backorder, namely (t-i) or (i-t). This assumption shows that 

when the carried or backlogged products are increased by   , the 

backlogging and holding costs will increase through number of 

periods. If periods are increased for a specific amount of products 

while backlogging or holding, the costs for backlogging and holding is 

increased for that specific amount.  Since, holding inventory longer 

increases the costs and this is same as for backlogging.  

6. Assumption on the deterioration rate              where i j. 
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              ∑[  (  )    ∑   (   )   ∑    (   )

 

     

 

   

]

 

   

                            (  ) 

Subject to:  

    ∑        
 
                                                                                     (4.1) 

(        )                                                                          (4.2)  

∑    
 
                                                                                                   (4.3)  

                                                                                                         (4.4) 

                                                                                                             (4.5) 

                                                                                             (4.6) 

 

4.2.  Structural Properties of the Optimal Solution 

According to Theorem 1, the demand of a period is satisfied from production 

at one period. However, this theorem does not hold in capacitated production 

case. Since the capacity restricts the amount of production and insufficient 

amount may affect the meeting demand so that production at many periods 

can be used to satisfy the demand for a period. 

Theorem 3: In the optimal solution of problem (P) for each period t, there is 

at most one i with         and        . 

Proof: When demand of a period is satisfied by more than one period we 

obtain cycles with positive flow.  Since we have concave costs, we can find a 

better solution, where there is no cycle. We will explain this in a reduced 

network where the inventory arcs are eliminated but they are still there 

between an x value and z values. The first level arcs are the positive 

production arcs and the second level arcs are the positive z values. In the 

reduced network below demand of period t is satisfied by the periods i, j, and 

k.  
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Figure 8 A Reduced Network 

If two of the production periods have positive x values less than the capacity, 

we can improve the solution by equating one of them to capacity/zero and 

decreasing/increasing the other one by some amount.  At one   value, 

where at least one of the values of                hits zero is the best solution 

because of t e concave cost structure.  □  

Any optimal solution is composed of at least one component. Based on 

Theorem 3, we name a component by its range of production periods and the 

demand periods. Its property is that some consecutive demand periods are 

satisfied via some production periods and it may not be connected. 

Production periods start with the next period of the previous component’s last 

production period and ends with its last positive production period. In 

between we can have zero production periods. Demand periods are the 

consecutive periods where their demand is satisfied.  Two examples of the 

component (1, 4, 1, 5) are given in Figures 9 and 10. The first one is not 

connected, whereas the second one is connected. A component may be 

degenerate as can be seen in the first reduced network in Figure 9.  
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Figure 9 A Disconnected  Component 

 

 

 

 

 

 

 

Figure 10 A Connected Component 

 

Suppose that a component is composed of the production periods from s to 

m and the demand periods from p to r. 

We define component as a set of consecutive production periods and a set of 

consecutive demand periods. Let component (s, m, p, r) represents the 

production periods from s to m where s ≤ m and the demand periods from p 

to r where p   r. 

The demand of periods which are p to r is fully satisfied by the production 

periods in the component. It means that there is no incoming 
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inventory/backlog into the component as well as outgoing inventory/backlog 

from the component. Moreover, the total production up to a production period 

t1,   ere s≤ t1 <m is less than or more than the amount needed to satisfy the 

demand up to a period t2,   ere p ≤ t2 < r. The next component starts with 

production period m+1 and ends with the last positive production period. 

 

Theorem 4:  In a given component (s, m, p, r) there will be at least    periods 

with production at full capacity and one period with production quantity 

  ∈   and at other periods production amount is equal to zero, where  

   ⌊
∑   
 
   

 
⌋ 

We consider number of full production periods equal to 

     ⌊
∑   
 
   

 
⌋  and      . Because of perishability, integer part of division is 

not enough to satisfy the demand. 

Proof:  In a connected part of that component we obtain many cycles with 

more than one positive flow. If two of the production periods in the connected 

component have positive x values less than the capacity, we can improve the 

solution by making one of them equal to capacity/zero and 

decreasing/increasing the other one by some amount because of the 

concave cost structure. 

 

 

 

 

 

 

   Figure 11 The Reduced Network for the Proof of Theorem 4 
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Suppose that the values of    and    are between 0 and K.  At least one of 

the values of                hits zero is the best solution because of the 

concave cost structure. □ 

 

Theorem 5:  In an optimal solution we do not have intersecting z arcs such 

as  

a. (t, r1) and (k, p2) where            

 

b. (t, r1) and (k, p2) where            

 

 

c. (t, r1) and (k, p2) where           with the extra assumption 

       (  β)      (  β)          (  β)      (u  β) 

where           and             β     

 

d. (t, r1) and (k, p2) where           with the extra assumption 

    (  β) >     (  β) +     (  β) 

where         and                . 

 

e. (t, r1) and (k, p2) where           with the extra assumption 

    (  β) >     (  β) +     (  β) 

where       and            

 

 

Proof: We will prove it by contradiction. For part a, consider the following 

situation in the optimal solution.  Suppose that            . 

Now consider this updated solution. 
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Figure 12 First Reduced Network for the Proof of Theorem 5 

 

 

 

 

 

 

 

Figure 13 Second Reduced Network for the Proof of Theorem 5 

 

While total production at periods t and k are kept below the capacity and 

constant as possible  

 The backlogging cost change of sending      units from k to r1 instead 

of k to p2 is negative.  

 The holding cost change of decreasing the amount from t to r1 by      

and increasing the amount from t to p2 by the same amount is 

negative. 

 Moreover the production amount will decrease at period t.  
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Therefore, we can eliminate this situation one by one until we do not have 

any.   

For part b, Figures 14 and 15 are below.  

 

 

 

 

 

 

 

Figure 14 First Reduced Network for the Part b of Theorem 5 

 

Figure 15 Second Reduced Network for the Part b of Theorem 5 
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We send just y units from t to p2.  

The change in the cost can be summarized as below. 

1. Carry extra  
    
 

    
  units for ages 1, 2, ..., r1-k+1 

2. Carry       
       

  units less for ages 1, 2, .., r1-t+1 

3. Carry y units less for ages 1, 2, ..., p2-k+1 

4. Carry extra y units from 1, 2, ..., p2-t+1 

 

 

The joint effect of 1 and 2 is negative since it corresponds to carrying less 

than y units for age r1-k+2 to r1-t+1. 

 

The joint effect of 3 and 4 is also negative since we carry y units less for age 

p2-t+2 to p2-k+1. Moreover production at period t will decrease. Total effect 

will be negative. There we will not have this kind of intersection in an optimal 

solution.  

 

For part c we have the following figure which is Figure 16.  

 

 

Figure 16 Reduced Network for the Part c of Theorem 5 
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For part d we have Figure 17, we can prove similarly and the production at 

period t will decrease.  

 

 

 

 

 

 

 

 

 

 

Figure 17 Reduced Network for the Part d of Theorem 5 

 

For part e we have Figure 18, we can prove similarly and the production at 

period t will decrease. 

 

 

 

 

 

 

 

 

 

 

Figure 18 Reduced Network for the Part e of Theorem 5 
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There is no assumption that prevents the following case. (t=r1) 

 

 

Figure 19 A Possible Network in Optimal Solution 

□ 

 

Theorems 3 and 4 and also part a, b and c of Theorem 5 are valid with the 

beginning assumption which is 

        For any x, y, β ≥ 0 

        △   (x, β) ≥ △    (y, β),                         for 1 ≤ t < j ≤ i≤ n 

        △   (x  β) ≥ △    (y, β),                         for 1 ≤ i ≤ j ≤ t ≤ n 

 

Ho ever, T eorems 3 and 4 and also all parts of T eorem 5 are valid   en 

t e extra assumptions in t e T eorem 5 are applied. 

 

From now on we consider a component by consecutive set of production 

periods and consecutive set of demand periods, where the next component 

has later demand and production periods then the previous component. A 

component can be disconnected in that case we say that it is degenerate.  
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4.3. EMPIRICAL ANAYSIS 

Four data sets have been generated with different capacities to analyse the 

problem. Number of periods, the amount of demand per periods and 

production costs are the same but the production capacity, holding costs and 

the penalty costs are different in the examples. Thus, there are 6 periods 

where                                  and      .  The costs 

of production are     ( )       ( )        ( )        ( )       ( )    

  ( )     .  

 

Data Set 1:  

K=20  

      ( )             ( )            ( )     , 

   ( )              for               ( )                  for        

      ( )              for       and    . 

Figure 20 Optimal Solution of Data Set 1 in GAMS 
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The problem is solved using GAMS. The optimal solution is reported in 

Figure 20. According to this solution, IDP and ZIP do not hold for the optimal 

solution.  

Demand periods are not satisfied by production periods in a consecutive 

order. Since        ( )   ere     is assumed to be 0. However, it should be 

as        ( )         ( )   ere      . The solution consists of 2 

components. Demand periods 1, 2, 5, and 6 belong to a component and 

other demand periods 3 and 4 are belong to other component.  

 

Data Set 2: 

K=2000 

      ( )           ( )           ( )            ( )            ( )       

   ( )              for               ( )                  for        

      ( )              for       and    . 

 

 

Figure 21 Optimal Solution of Data Set 2 in GAMS 
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In the optimal solution, IDP holds where the penalty costs are increasing by 

age. That means demand periods are consecutive order whereas, ZIP does 

not hold in the problem.  

 

Data Set 3: 

K=20 

      ( )           ( )           ( )            ( )            ( )       

   ( )              for               ( )                  for        

      ( )              for       and      

 

In this example, it can be said that ZIP does not hold. Because, if Figure 22 is 

observed, the inventory form periods 1 and 2 is carried to production periods 

2 and 3. According to ZIP the inventory cannot be carried to production 

periods. 

 

Figure 22 Optimal Solution of Data Set 3 in GAMS 
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Data Set 4: 

K=20, 

      ( )           ( )           ( )            ( )            ( )       

   ( )               for               ( )                 for        

      ( )              for       and      

 

For this example, ZIP does not hold. Since, inventory from periods 1 and 2 is 

carried to production periods 2 and 3.  

 

 

Figure 23 Optimal Solution of Data Set 4 in GAMS 

 

The optimal solution may change upon changing backlogging costs. Since, 

when the backlogging costs are changed, some different optimal solutions 

are obtained. Especially, IDP and Theorem 1 do not hold in Data Set 1. Since 

the production periods does not divided the periods in a consecutive order to 
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meet the demand and also in some periods such as period 2, 3 and 5 the 

demand is not satisfied by only one periods production.  

Additionally, Theorem 1 does not hold in Data Set 3 but Interval Division 

Property (IDP) is provided in both Data Set 2 and Data Set 3. In the example 

named Data Set 4, IDP does not hold since the holding costs are not formed 

as     ( )        ( ) and also ZIP is not provided. 

 

4.4. The Feasibility Test 

When we compare total demand and total production capacity of the problem 

for whole planning horizon, we can basically understand problem feasibility if 

the product is non-perishable. The problem with non-perishable product and 

allowing backlogging is feasible when ∑   
 
      . However, if the product is 

perishable for the problem, feasibility checking is not easy because the 

amount of inventory decreases when time passes. Thus a basic table 

calculation can be helpful for checking feasibility. Thus, let us to show an 

example to check the feasibility.  

 

Example 4.4.1: Assume that demands for six periods are 15, 10, 20, 5, 30, 

and 1 respectively. The loss rate of product for waiting a period in inventory is 

0.05, the loss rate for two periods is 0.20 and the loss rate for three and more 

periods is 1. Backlogging is allowed and production capacity is 20 units.  

   ( )               for         

       ( )                 for        

      ( )              for       and      
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Table 5 Test of Feasibility Example 4.4.1 

 

The table shows the amount satisfied either from production or inventory for 

each period. That refers Z values in the model for the problem. We assume 

production at each period at full capacity until unneeded. In the table, full 

capacity production until period 5 provides a feasible solution for the problem.  

Here we use a first-in-first-out (FIFO) policy. We observe that amount 

produced in a period is used starting from the first needed period until it runs 

out. Since in this problem there is no objective function to find an optimal 

solution so optimality checking and the constraints (holding cost for holding 

inventory) which restricts the problem to achieve the optimality is not scope 

of this example. Therefore, if there are products in the inventory, firstly they 

are used to meet demand. 

At first period 20 units are produced and 15 units of them are used for first 

period demand. The remaining 5 units are carried to second period but 5% of 

carried product are spoiled so 4.75 units are used for demand of period 2. 

Period 2 production meets the demand of period 2 and 3. The production of 

period 3 satisfies remaining part of demand of period 3, the total demand of 

period 4 and the part of demand of period 5. Therefore, some of remaining 

part of the production of period 3 is carried two periods and according to loss 

rate some products are perished. In period 5, there is no need to full capacity 

     to 

 

from 

 

P 1 

 

15 

P 2 

 

10 

P 3 

 

20 

P 4 

 

5 

P 5 

 

30 

P 6 

 

1 

 

 Max. 
amount   

of 
production 

P 1 15 4.75     20 

P 2  5.25 14    20 

P 3   6 5 6,64  20 

P 4     20  20 

P 5     3,36 1 4,42 

P 6       - 
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production. Since the production in period 4 satisfies the some part of 

demand of period 5 so 4.42 units are enough for demand of period 5 and 6. 

Moreover, it is already assumed that at the beginning period there is no 

inventory from previous periods and there is no inventory left at the end of 

periods.  

 

4.5. Dynamic Programming Formulation 

 

 (   ) is the minimum cost of satisfying the demand of periods 1,…,r by t e 

production at periods 1,…,m. We write the following backward recursion. 

 (   )           
     

{ (       )   (       )}. 

 (       ) is t e minimum cost of satisfying t e demand of periods p,…,r by 

t e production at periods s,…,m. In other words, it is the cost of the 

component (s, m, p, r). 

We are looking for  (   ) as the optimal solution value of P.  

This algorithm runs in O(n4) time if we know the cost of each component. 

Because this dynamic programming formulation corresponds to a shortest 

path problem on a network with O(n2) nodes and O(n4) arcs. The shortest 

path can be solved in the order of arcs time.  

 

4.6.  Calculating the Cost of a Component  

4.6.1. Number of Z Arcs in a Component 

N = number of positive production periods in the component + the number of 

demand periods in the component –1 

To be connected we need to have N positive z values or z arcs in the 

reduced network. For a disconnected component we may have less N arcs. 

N=    +1+ r – p +1 – 1 =     + r – p + 1 
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The minus 1 part is needed not to create a cycle in the part without the 

production arcs.     is the number of full production periods needed to satisfy 

demand periods from p to r.  

For the component (       ) we have (     
   

) (         ) possible 

combinations of full production and zero production assignments.  This value 

takes its maximum value s = 1 and     ⌈
   

 
⌉.  

Let us to consider a component (1, 6, 1, 6) and assume that the component 

has 3 full production period and 2 zero production periods. The remaining 

period produces between zero and the capacity. Therefore, we can say that 

the number of possible combinations of assignments is  ( 
 
)( ). ( 

 
) gives the 

number of combinations for full capacity periods and this is multiplied by 3 

because of the remaining period which is   can be one of the other three 

periods. In that case, the number of combinations gets its maximum value. 

Since, if   and s increase, the number of combination decreases. However, 

we ignore a component which has more than 2 empty periods where there is 

not production. If the number of combinations increases, the running time of 

algorithm also increases and if there are more than 2 empty periods in a 

component, in this case without these periods the production satisfies the 

demand so problem can be considered as uncapacitated.  Therefore, number 

of total possible combinations in this study can be at most  (  
   
) . This 

equals at most O(n3). 

For a given combination, we have to find the best objective value of a 

combination. Thereafter, we need to the best one among all combinations to 

find the optimal solution of a component. Let   (       ) be the minimum 

cost of the ith combination then we can write the following equation.  

 (       )        (       ) 

Now we will show how we calculate a good solution of a given combination in 

n(    + p – r + 1) time, which is  (  ). After our empirical analysis and 

Theorem 5, we propose an algorithm that finds a near optimal solution for a 

given component and combination.  
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4.6.2. Finding a Good  Solution for component (s, m, p, r) for a 

Particular Combination  

 

In this thesis, an algorithm is generated to solve the combinations of a 

component. Also, this thesis mainly focuses to solve these combinations or 

sub-problems. After solving possible combinations with our algorithm, the 

best results within solutions are selected for final solution.  

We have converted the full capacity periods and zero production periods 

information into best z values for the component. The remaining period will 

be t e ε period. In other words, identifying the full capacity and zero 

production periods helps identifying the best z values for the component and 

t e only period t at is not identified as a full or zero production period is t e ε 

period. 

We use a method similar to finding an initial solution to transportation 

problem such as the Northwest-Corner method. (For the Northwest-Corner 

Method see Winston, 1993).  

Our algorithm finds a good solution for each combination of a component. By 

proving Theorem 5, it is wise to stay close to diagonal as much as possible 

and avoid intersections. 

Initial Part: 

First of all, we start from first demand and production period and then the 

production period is checked if it is   or not. If production amount is not  , we 

compare following unsatisfied demand and following unused production. 

After comparison, the smaller value is inserted to the table. Then, the 

inserted value is subtracted from both unsatisfied demand and unused 

production and we check if there is a positive remaining value in row or 

columns from comparison. If there is a positive remaining value in unused 

production, we calculate the loss and we use this value for further 

comparisons. Until period of   , the algorithm tends to satisfy its current 

period demand first and then it satisfies demands for previous periods if 

exists any unsatisfied demand of these periods. When there are two or more 
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periods for backlogging, the algorithm satisfies firstly the earlier period with 

unsatisfied demand which is at the beginning. In problem with concave cost 

function, this movement generally behaves from left to right of the table. 

Then, if any unused production remains, it is carried to next period. 

When production amount is   , it starts from last period to previous periods. If 

  is in last period or there are no remaining periods, then calculate   value by 

checking backorders and holding periods according to how many periods are 

satisfied by  . If   is not in last period, we insert smaller value of unsatisfied 

demand and unused production in the intersection of row and column. When 

the production period satisfies its own unsatisfied demand, the algorithm 

moves to previous production period for comparison. If the production period 

cannot satisfy its own demand, the algorithm checks whether there exists any 

unused production below. If such production exists, the algorithm uses that 

unused production first to satisfy demand via backlogging. If backlogging is 

not possible, it moves to previous production period and that production 

period firstly satisfy this further unsatisfied demand and then it satisfies its 

own demand. Therefore, algorithm satisfies demand of periods from right to 

left of rows up to its own period respectively in this case. It performs in this 

way until the skipped period where production amount is   reached.  

When the skipped period is reached, the algorithm starts to check whether 

any remaining unused production exists or not. If exits, algorithm puts the 

remaining products from nearest unsatisfied demand period to furthest 

periods. At the end,   value is calculated by checking backorders and holding 

periods according to how many periods are satisfied by  . 

Second Part: 

According to these steps, algorithm creates an initial solution and it looks for 

improvements. The improvement is provided by checking the values in the 

diagonal cells of the table. If there exists backlogged products and also there 

are not any carried products for period of  , the algorithm starts to process as 

described again. However, in this case the value of   is known. Therefore, 

when the period of   is reached, the algorithm satisfies the demand of period 

of   from its known production and then it continues to insert remaining 
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unused productions to the nearest periods. This provides that unused 

productions are used for satisfying their own periods primarily and this 

sometimes helps to reduce costs because of cost structure. Finally, the 

results of the initial solution and second part solution are checked. The better 

one is used for the final solution. 

Assume that P is the current production period and D is the current demand 

period. We know which period produces   and which periods produce at full 

capacity.  

 

Steps of the Algorithm: 

Initial Part: 

Step 1: Start from the first period of the component (s, m, p, r) that is P=s, 

D=p. 

Step 2: If the production amount of P is equal to  , go to Step 10. 

Step 3: If the production amount of P is not equal to  . Compare unsatisfied 

demand for D and unused production amount of P. 

Step 4: Insert the smaller value to the cell (P, D) in the table. 

Step 5: Update unsatisfied demand for D and unused production amount of P 

by subtracting the inserted value. 

Step 6: If unsatisfied demand for D is 0 and unused production for P is 0 then 

there is no solution so go to the next period. 

Step 7: If unused production for P is 0, move to next production and satisfy 

firstly its own period demand. Then, satisfy unused demand of previous 

periods from left to right if exist.  

Step 8: If unused production for P is greater than 0, unused production for P 

is multiplied by loss rate to update P. 

Step 9: Go to Step 2.  
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Step 10: If the production amount is    start from last period to previous 

periods.  =m,   =r. 

Step 11: Compare unsatisfied demand for D and unused production amount 

of P. 

Step 12: Insert the smaller values to the cell (P, D) in the table if there is no 

further unsatisfied demand. 

Step 13: Update demand and production periods by subtracting the inserted 

value from unsatisfied demand for D and unused production amount of P. 

Step 14: If unsatisfied demand for D is 0, then move to previous production 

period to satisfy its own demand. 

Step 15: If unsatisfied demand for D is greater than 0, check if there is 

remaining unused production below. If exists, use them to satisfy demand via 

backlogging. If does not exists, move to previous production period and 

satisfy first demand of this period and then continue until its own period 

demand is satisfied.  

Step 16: If period of   is reached, insert all remaining unused production to 

the nearest period for unsatisfied demand. 

Step 17: Calculate value of  . 

Step 18:             where 

  is the total production amount to meet unsatisfied demands which 

equal to   when D=P. 

  is the total production amount to meet unsatisfied backlogged 

demands which equal to   when D < P. 

  is the total production amount to meet unsatisfied demands which 

equal to  (     )(        ) (        ) when D >P and n > 0. 

Step 18.1: Calculate the total cost. This is the summation of 

production, inventory and backlogging costs. 
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Step 18.2: Calculate production cost. Production amounts are 

multiplied by production costs for each period. Let   (  ) refers the 

production cost for producing    unit at period i. 

∑  (  )

 

   

    

Step 18.3: Calculate inventory costs. Let    (   ) refers the holding 

cost for holding     in the inventory.      is also kept in the right 

columns of the table. Moreover, it can be found in above of the 

diagonal line of the table by adding the loss. The equations for 

obtaining y values from z and x are also available in section 4.7 below. 

∑   (   )      ere i < t 

 

   

 

Step 18.4: Calculate backlogging costs. Let    (   ) refers the 

backlogging costs for backlogged product.     is found in below of 

diagonal line of the table. 

∑   (   )     ere i > t

 

   

 

 

Second Part: 

If period of   satisfies demand of previous periods without satisfying its own 

period demand totally, algorithm performs the second stage. 

Step 1: Start the algorithm with the value of   computed in the initial part of 

the algorithm 

Step 2: Use the production for demand of period of  . 

Step 3: Use the remaining unused production for unsatisfied demand periods 

according to nearest to furthest. 
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Example A:  

We consider the problem when K =20, 

      ( )           ( )           ( )            ( )            ( )      , 

   ( )              for               ( )                  for        

      ( )              for       and    . 

Demand values are 15, 10, 20, 5, 1, and 30. Production costs per period are 

10, 40, 60, 80, 10, and 40 per units respectively. Total demand is 81 units; 

therefore we need at least 4 full capacity production periods. We consider 

some combinations and apply our method. Then, we solve with GAMS by 

giving the conditions. The bold periods are the full production periods and the 

circled one is t e ε period.  

The cost per unit per period according to parameters above is given in Table 

6. In the table each cell gives the corresponding z value. Besides this, if we 

draw a diagonal line to the table, the values in lower triangle give the 

numbers of backordered products. Moreover, the cells of diagonal line of the 

table have the minimum unit cost of Z per row. 

 

Table 6 The Unit Cost of Z for index pairs 

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 

Period 1 10 11,6 20,7 - - - 

Period 2 45 40 43,15 60,21 - - 

Period 3 67 65 60 64,21 86,51 - 

Period 4 90 87 85 80 85,26 112,82 

Period 5 24 20 17 15 10 11,6 

Period 6 60 54 50 47 45 40 

 

 

 



M a s t e r  T h e s i s  | 56 

 

 

 

 Combination 1 of Example A 

 

Table 7 Solution Table of Combination 1 of Example A: 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

              

P 1 15 4,75     20   5   0 0 

P 2  5,25 14    20  14,75 0 0 

P 3       0 - - 

P 4   6 5 1 6,04 20  15  9 7,55 0 

P 5      3,96  =4,16 4,16 0 

P 6      20 20 0 0 

Unsatisfied 
Demand 

15 
 10 
5,25 

20  
6 

5 1 
30    
10     
3,96 

- - - 

 

Based on table, the flow of z values can be observed by checking which 

periods satisfy which periods demand.  

 

 

Figure 24 The Network Flow of Combination 1-A Based on Algorithm 

 

In Figure 24, period 1 satisfies both demand of period 1 and period 2. Period 

2 satisfies both demand of period 2 and 3. In period 4, demand of periods 3, 
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4, 5, and 6 are satisfied. Demand of period 6 is satisfied by production 

periods 5 and 6. 

 

 

Figure 25 GAMS Result of Combination 1-A 

 

 

Figure 26 The Network Flow of Combination 1-A according to GAMS 

 

Optimal solution identified by GAMS software gives the optimal objective 

function value which is the minimizing the costs gives 3542. Moreover, based 

on optimal solution, the flow of z values are shown in Figure 26. The flow of z 

values are same for both optimal solution identified by GAMS software and 
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the algorithm. Decimal values are round up in the table of algorithm. 

Therefore, there may be slight differences between values.  

 

 Combination 2 of Example A: 

 

Table 8 Solution Table of Combination 2 of Example A 

To 

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 
Production 
Amount 

            

P 1 15 4,75     20  5 5 0 

P 2  5,25 14    20  14,75 14,75 0 

P 3   5,21     =5,21 - - 

P 4   0,79 5 1 10 
20 6,84 
5,79   0,79 

14,21 12,5 

P 5       0 0 0 

P 6      20 20 0 0 

Unsatisfied 
Demand 

15 
10 
5,25 

20  6  
5, 21 

5 1 
30 
10 

- - - 

 

 

Figure 27 The Network Flow of Combination 2-A based on Algorithm 

According to network flow in combination 2 of example A, demand of period 1 

is satisfied by production period 1. Demand of period 2 is satisfied by the 

production periods 1 and 2. Periods 2, 3, and 4 satisfy the demand of period 
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3. Moreover, production period 4 satisfies also demand of period 4, 5 and 6. 

Some demand of period 6 is satisfied by period 6. 

 

 

Figure 28 GAMS Result of Combination 2 - A 

 

 

Figure 29 The Network Flow of Combination 2-A according to GAMS 

 

When Table 8 and Figure 28 are compared and also Figures 27 and 29 are 

observed, the algorithm solution performs as optimal solution identified by 

GAMS software. Both optimal solution and algorithm find the same objective 
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value. The difference in decimal values is slight since decimal values are 

round up to provide simple calculation in the algorithm. 

 

 Combination 3 of Example A: 

 

Table 9 Solution Table of Combination 3 of Example A 

     To  

 

 

From 

P1 P2 P3 P4 P 5 P 6 
Unused 

Production 
Amount 

            

P1 15 4,75     20  5 5 0 

P2  5,25 14    20  14,75 14,75 0 

P3       0 - - 

P4   2,5     =2,5 0 0 

P5   3,5 5 1 10 
20 9,5 8,5    
3,5 

10,5 0 

P6      20 20 0 0 

Unsatisfied 
demand 

15 
10  
5,25 

20 
6   
2,5 

5 1 
30  
10 

- - - 

 

 

 

Figure 30 Initial Network Flow of Combination 3-A based on Algorithm 
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In this example, the period of   satisfies the demand by backlogging without 

using the production for its own period. Therefore, by knowing the value of   

the second part of the algorithm performs. 

 

Table 10 The Improved Solution Table of Combination 3 of Example A 

     To  

 

 

From 

P1 P2 P3 P4 P 5 P 6 
Unused 

Production 
Amount 

            

P 1 15 4,75     20  5 5 0 

P 2  5,25 14    20  14,75 14,75 0 

P 3       0 - - 

P 4    2,5    =2,5 0 0 

P 5   6 2.5 1 10 
20 9,5 8,5    
6 

10,5 0 

P 6      20 20 0 0 

Unsatisfied 
demand 

15 
10  
5,25 

20 
6    

5 1 
30  
10 

- - - 

 

 

 

Figure 31 The Network Flow of Combination 3-A according to algorithm 
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Figure 32 GAMS Result of Combination 3-A 

 

The objective function value identified by GAMS software is 2285 

approximately and our algorithm finds it different initially. If the optimal 

solution found by GAMS software and our improved table are checked, it is 

seen that the second part of the algorithm finds the optimal solution. Only 

decimal values change it slightly because of rounding up. Moreover, it can 

be said that Theorem 2 does not hold in both optimal solution and our 

algorithm. 

 

 

Figure 33 The Network Flow of Combination 3-A according to GAMS 
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 Combination 4 of Example A: 

 

Table 11 Solution Table of Combination 4 of Example A 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 1,5       =1,5 0 0 

P 2 10 10     20 10 0 0 

P 3       0 - - 

P 4 3,5  11,5 5   20 15 3,5 0 0 

P 5   8,5  1 10 20 9,5 8, 5 10,5 0 

P 6      20 20 0 0 

Unsatisfied 
demand 

15 10 20 5 1 30 - - - 

 

 

 

Figure 34 The Network Flow of Combination 4-A based on algorithm 

 

The result of the algorithm shows that production periods 1, 2 and 4 are used 

to satisfy the demand of period 1 and also productions in period 2, 4, 5 and 6 

satisfy their demand of period. Moreover, some of production in period 4 and 

5 are used for period 3. Additionally, period 5 satisfies the demand of period 

6.    
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Figure 35 GAMS Result of Combination 4-A 

 

When optimal solution and algorithm are compared, it is seen that both have 

same solution.  

 

 

Figure 36 The Network Flow of Combination 4-A according to GAMS 
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Example B  

We consider the parameters for this problem as: 

K=20;  

      ( )           ( )           ( )            ( )            ( )      , 

   ( )              for               ( )                  for        

      ( )              for       and     

                                       . 

Demands are different and 30, 5, 18, 10, 1, and 10 respectively. Thus, there 

are 3 full capacity production periods because of division of demand and 

capacity. 

 

 Combination 1 of Example B: 

 

Table 12 Solution Table of Combination 1 of Example B 

                     
To  

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 10 5 4,75    20  15   5 5 0 

P 3       0 0 0 

P 4   13,25 1,5    =14,75 0 0 

P 5    8,5 1 10 
20  9,5  
8,5 

10,5 0 

P 6       0 0 0 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 37 The Initial Network Flow of Combination 1-B based on Algorithm 

 

In the table, period of   which is period 4 satisfies the demand of period 3 by 

backlogging so the second part of algorithm performs to search a better 

solution. 

 

Table 13 The Improved Solution Table of Combination 1 of Example B 

                     
To  

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 10 5 4,75    20  15   5 5 0 

P 3       0 0 0 

P 4   4,75 10    =14,75 0 0 

P 5   8,5  1 10 
20  9,5  
8,5 

10,5 0 

P 6       0 0 0 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 38 The Network Flow of Combination 1- B based on Algorithm 

 

Second part of the algorithm helps to reach the optimal solution when 

network flows and solutions are compared. In this case, period 4 is firstly 

satisfies its own period demand and then it sends unused production to 

period 3 for backlogging. 

 

 

 

Figure 39 GAMS Result of Combination 1-B 
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Figure 40 The Network Flow of Combination 1- B according to GAMS 

Network flows of optimal solution and algorithm are same. The demand of 

period 1 is satisfied by production of periods 1 and 2. Period 2 also satisfies 

the demand of periods 2 and 3. Some part of demand in period 3 is satisfied 

by production of period 4 and 5.  Moreover, period 4 is also used for period 4. 

Remaining part of production in period 5 is used for demand of periods 5 and 

6. 

 

 Combination 2 of Example B: 

 

Table 14 Solution Table of Combination 2 of Example B 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 10 4,5      =14,5 0 0 

P 3       0 - - 

P 4  0,5 9,5 10   20 10 0,5 0 0 

P 5   8,5  1 10 20 9,5 8,5 10,5 0 

P 6       0 - - 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 41 The Initial Network Flow of Combination 2-B based on Algorithm 

 

As it can be seen in table the production of period of   satisfies the previous 

period demand although demand of its own period is not satisfied totally. 

Therefore, the second part of the algorithm checks for the better solution if 

exists. 

 

Table 15 The Improved Solution Table of Combination 2 of Example B 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 9,5 5      =14,5 0 0 

P 3       0 - - 

P 4 0,5  9,5 10   20 10 0,5 0 0 

P 5   8,5  1 10 20 9,5 8,5 10,5 0 

P 6       0 - - 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 42 The Network Flow of Combination 2-B based on Algorithm 

 

In combination 2 of example B, the demand of period 1 is satisfied by the 

production in periods 1, 2, and 4. Production of periods 2, 4 and 5 also satisfy 

their own demands. Moreover, period 3 is satisfied by some part of 

production in periods 4 and 5. Finally period 6 is satisfied by the production 

period 5. 

 

 

Figure 43 GAMS Result of Combination 2-B 

 

If the Figure 43 and Table 15 are compared, it is seen that the production 

amount for period   and the solutions are the same.  
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Figure 44 The Network Flow of Combination 2-B according to GAMS 

 

 

 

 Combination 3 of Example B: 

 

Table 16 Solution Table of Combination 3 of Example B 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 10 4      =14 0 0 

P 3       0 - - 

P 4       0 0 0 

P 5  1 18  1  20  19  1 0 0 

P 6    10  10 20  10 0 0 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 45 The Initial Network Flow of Combination 3-B based on Algorithm 

 

Initially in the algorithm production in period 2 is used for demand of periods 

1 and 2. However, period 2 performs backlogging without satisfying the 

demand of own period totally. Therefore, second part of the algorithm 

searches for better solution if exists. 

 

Table 17 The Improved Solution Table of Combination 3 of Example B 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 20      20 0 0 

P 2 9 5      =14 0 0 

P 3       0 - - 

P 4       0 - - 

P 5 1  18  1  20  19  1 0 0 

P 6    10  10 20  10 0 0 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 46 The Network Flow of Combination 3-B based on Algorithm 

 

Keeping values in the diagonal line of the table sometimes helps to minimize 

total costs for this type of cost structure. The algorithm already tends to 

provide this aim in its progress. In this case, second part of the algorithm 

forces the period especially partial production period to satisfy its own period 

firstly. If the diagonal line is checked, it is seen that the algorithm put values 

in diagonal line of the table as much as possible. In addition, when the 

solutions are observed for this sample problem, the algorithm finds the 

optimal solution. 

 

 

Figure 47 GAMS Result of Combination 3-B 
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Figure 48 The Network Flow of Combination 3-B according to GAMS 

When the final result of algorithm and optimal solution identified by GAMS 

software are investigated, it is observed that algorithm can find the optimal 

solution with the second part of it. Based on network flows, periods 1, 2, 5 

and 6 are used for satisfying demands of their periods. Moreover, period 2 

and 5 perform backlogging to satisfy the demand of period 1. Period 3 is 

satisfied by period 5 and period 4 is satisfied by period 6 with backlogging. 

  

 Combination 4 of Example B: 

 

Table 18 Solution Table of Combination 4 of Example B 

     To  

 

 

From 

P1 P2 P3 P4 P5 P6 
Unused 

Production 
Amount 

            

P 1 14,5       =14,5 0 0 

P 2       0 0 0 

P 3 2  18    20  2 - - 

P 4 10   10   20  10 0 0 

P 5 3,5 5   1 10 
20 9,5 8,5 
3,5 

10,5 0 

P 6       0 0 0 

Unsatisfied 
demand 

30 5 18 10 1 10 - - - 
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Figure 49 The Network Flow of Combination 4-B based on Algorithm 

 

In this case, algorithm finds the optimal solution at first. Some part of demand 

in period 1 is satisfied by period 1 and remaining part is satisfied by periods 

3, 4 and 5 by backlogging. Production periods 3, 4, and 5 are also used for 

satisfying their own demands. Moreover, period 5 satisfies the demand of 

period 2 by backlogging and it satisfies the demand of period 6 by holding 

inventory. 

 

 

Figure 50 GAMS Result of Combination 4-B 

 

Optimal objective function value is 3368 and it is same with algorithm 

objective. It can be seen and calculated from Table 18 and Figure 50. 
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Figure 51 The Network Flow of Combination 4-B according to GAMS 

 

 

4.7. Obtaining Y Values for Given X and Z 

 

Additionally, constraints (1) and (2) in model (P) can be combined and y can 

be written in terms of x and z. If we know the values of the decision variables 

x and z, y values can be calculated. 

 

    

{
  
 

  
 

 

(   ∑   

 

   

)∏(     )

 

   

 (∑         ∏ (     )

 

     

   

   

)            

     ∑   

 

   

                                                                                                              

   }
  
 

  
 

 

 

Proof:   

The inventory left at the beginning of period t is found the equation below. 

    ∑       

 

   

              ere                          

Thus,     can be calculated by      (                         )  

Then, the inventory left at the beginning of next period from the production at 

period i is found by the equation below. 
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     (        )                     ere            

Thus, when the values are written into the equation,        can be calculated 

by          (                         )(     )          

Moreover, the inventory left at the beginning of forward period from the 

production at period i is found by the equation which is below. 

       ((                         ) (      )        ) (        )         

If we continue in the same fashion, we will obtain the desired result. 

As a result, the condensed form is obtain from the combination of constraints 

4.1 and 4.2 in our model.□ 

 

Example derivation for obtaining y values:  The inventory left at the 

beginning of period 5 from the production in period 3 is processed by stages.  

First of all, the production is done for period 3. Then the demand for period 1, 

period 2, and period 3 are satisfied if there is backlogging. After this, the 

inventory left from period 3 is transformed to period 4 with some loss 

because keeping the product for one period makes some of them 

deteriorates. When period 4 is reached, the demand is met from the third 

period production which is inventory at hand. Then, the remaining products 

after meeting the demand are kept for period 5 with some loss. However, in 

this case the loss rate is different and high. Since keeping the products in 

inventory two periods causes a larger amount perished products than 

keeping them one period would. At last, the inventory left at the beginning of 

period 5 from the production in period 3 is found in this way. 

Firstly, we calculate the inventory left at the beginning of period 3.  

    (              ) 

Then, the inventory left at the beginning of period 3 is carried to period 4. 

However, some part of it is perished during period 3. Thus, the left at the 
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beginning of period 4 is found after some of them are used for demand of 

period 4. 

    (              )(     )      

Finally, the inventory left at the beginning of period 4 is carried to period 5. 

Again, some of inventory is perished according to deterioration rate. After 

satisfying demand of period 5, the inventory left at the beginning of period 5 

is found. 

    ((              )(     )     )(     )      

 

A more condensed form of this equation is shown as: 

    (   ∑   

 

   

)∏(     )

 

   

 (∑          ∏ (     )

 

     

   

   

)      

The example can be extended for the inventory left at the beginning of period 

6 from the production in period 3 as below.  

    (   ∑   

 

   

)∏(     )

 

   

 (∑          ∏ (     )

 

     

   

   

)      

 

Therefore, it can be seen that this provides the main equation which 

combines constraints 4.1 and 4.2 above. 
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Example C: 

 

For example, demands according to periods are considered as follows  

                                      The production costs are 

                                       While the capacity limit 

per period which is K = 20, and the backlogging and holding costs with 

deterioration rate are as below: 

      ( )           ( )           ( )            ( )            ( )      ; 

   ( )              for               ( )                  for        

      ( )              for       and      

 

Optimal objective function value of the problem which is the minimizing total 

costs equals to 1976 approximately.  

 

 

Figure 52 GAMS Result of Example C 
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Figure 53 The Network Flow of Example C according to GAMS 

 

Here conditions of Theorem 2 does not hold in the optimal solution identified 

by GAMS software since period 5 is satisfied from period 5 at the same time 

period 4 is satisfied by period 6. There is an intersection of z arcs, which was 

not observed in uncapacitated case.  

Based on Theorem 4 we can say that the optimal solution is composed of a 

number of connected components. We can identify these parts by (n, m, p, r), 

  ere t e production periods are n, …,m and t e demand periods are p,…r. 

This means demand of t e periods from p,…r are satisfied from t e 

production in periods n, …,m. T is part is connected meaning t at some 

production periods satisfy multiple periods and some periods are satisfied by 

multiple production periods and when the flow of demand is drawn, it is seen 

that there is not any period which can be separated from other periods.  

Therefore, Theorem 2 may not hold in the capacitated case. Meaning that if 

       are two production periods and      , for some    , then there can 

be        for all t, where k ≤ t ≤ n.   

 

Example D: 

 

Through this example, it is shown that the number of production periods and 

demand periods do not have to be equal in an optimal solution. The number 

of production periods may be more than the number of demand periods in a 

component for some cases. 
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Assume that demands are 17, 10 and 5 units for period 1, 2 and 3 

respectively. Production capacity is 20 units per period. By Theorem 4, there 

should be at least 2 full capacity production periods and remaining units 

should be produced at another suitable period which produces partial 

production between zero and the capacity. 

 

The production costs per unit are determined as below. 

                              

 

Moreover, the backlogging costs per unit are considered as follows. 

                             .  

 

The holding costs per period are                       

          for                       for        

          for       and     

 

 

 Combination 1 of Example D: 

 

Table 19 Solution Table of Combination 1 of Example D 

     To  

 

 

From 

P1 P2 P3 P4 
Unused 
Production 
Amount 

            

P 1 17  2,28  20    3   2,85 3 2,85 

P 2   19  20    19 20 0 

P 3   3,72 10  =14,22 0 0 

P 4     0 0 0 

Unsatisfied 
Demand 

17 0 
25   
22,72 
3,72 

10 
- - - 
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Figure 54 GAMS Result of Combination 1-D 

 

Optimal solution identified by GAMS software and solution of algorithm are 

consistent. The objective value is 1902. 

 

 

 

Example E:  

 

 

In this example, demand values are 15, 10, 20, 5, 1, and 30. Moreover, the 

production costs are assumed that    ( )       ( )        ( )  

      ( )       ( )      ( )    . Also, K= 20 units per period. 

Backordering costs and holding costs are period-pair dependent and also the 

cost matrices and deterioration rates are given below.  

The solution is included and it shows that Theorem 2 may not be hold in the 

solution for problems with period-pair dependent cost structure.   
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The feasible solution identified by GAMS solver shows that a demand period 

is satisfied by multiple production periods but Theorem 4 does not hold in the 

feasible solution. Since, there are two components and for each component 

there is not a unique partial production period which is between zero and the 

capacity. However, it should be considered that the result identified by GAMS 

solver below is not an optimal solution. 
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Figure 55  Feasible Solution for Example E in GAMS 

 

 

 

Example F 

 

Through this basic example, how dynamic programming algorithm will 

behave or solve a problem is mentioned. Consider a 3-period problem. 

  ( )        ( )         ( )         ( )         ( )        ( )     , 

K=15, 

      ( )            ( )           ( )            ( )            ( )       

   ( )                                 

      ( )                                  

      ( )                                        

 

Demands are 10, 12 and 15 units per period respectively. Therefore, we are 

looking for minimum total cost which is V(3,3). 

Dynamic Programming divides a problem into components with the equation 

below. 
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 (   )           
     

{ (       )   (       )}. 

Moreover, the possible combinations of each component are solved by the 

algorithm which does not guaranteed to find the optimal solution. Then, best 

combinations which give the minimum cost are selected for final solution. 

 

To find V(3,3) we have three alternative ways since some of them are 

infeasible which are shown as bold type. Before to figure out the value of 

V(3,3), V(2,2) should be explored firstly. In equations below, to find the value 

of V(2,2), V(1,1) should be explored at first since we know the value of V(0,0) 

which is zero and the components value can be find by the algorithm step by 

step. 

 

 V(3,3)=    

(

 
 

 (   )   (       )

 (   )   (       )

 (   )   (       )
 (   )   (       )
 (   )   (       ) )

 
 

 

 

 V(2,2)=    (
 (   )   (       )
 (   )   (       )

) 

 

 

 V(1,1)= (V(0,0)+P(1,1,1,1))  

 

The value of components identified by our algorithm: 

P(1,1,1,1) is 100. 

P(2,2,2,2) is 600. 

P(3,3,3,3) is 900. 

Component (2,3,2,3) has two combinations since one period produces at 

capacity, other period produces partial. So, P(2,3,2,3) is the minimum value 

of combinations which are 1332  and 1380. 

Component (1,3,1,3) has three combinations since any two periods produce 

at capacity and one of them produces partial. So, P(1,3,1,3) is the minimum  

value of combinations 1221,  1585,  and 1345. 
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Finally, the component (1,2,1,2) has two combinations and P(1,2,1,2) is the 

minimum value of 445  and 685. 

To select best components, we should solve the equations below. 

 

 

V(1,1)= (V(0,0)+P(1,1,1,1)) = 0+100= 100 

 

 

V(2,2)=    (
 (   )   (       )
 (   )   (       )

)={
           
         

 

 

 

V(3,3)=    (

 (   )   (       )
 (   )   (       )
 (   )   (       )

)={
             
              
           

 

 

 

In the end, 1221 is selected by dynamic programming since the component 

(1,3,1,3) gives the minimum results. The algorithm which gives minumum 

result is below and it gives the optimal solution whwn it is compared with the 

result of GAMS solver. The only difference is occured because of rounding 

decimal values up. 

 

 

Table 20 The Basic Table of the Algorithm for Example F 

  P1 P2 P3 Production 
amount 

P1 10 4,75  15 

P2  7,25 7,36 15 

P3   7,64        

Demand 10 12 15  
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4.8. Experimental Results and Algorithm Performance 

 

Theoretically, computational complexity of the algorithm is O(n9) time, since 

there are O(n4) components, each component has O(n3) possible 

combinations and the cost calculation for component and combination pair 

takes O(n2) time. This running time is a very high upper bound. O(n3) is 

calculated considering components with at most two empty periods. We 

ignore other combinations which have more than 2 empty periods. 

 

However, the algorithm generally terminates in fewer steps than the worst 

case we provided. Since, some components are infeasible so we do not 

consider all of them and also for cost calculation the algorithm generally does 

not have to check all cells one by one in the table while assigning values.  

Based on experimentation, the algorithm can be considered as well but it 

cannot always find the optimal solution. Therefore, we can say the algorithm 

serves an approximation solution for these complex problems. 6 data sets 

are generated to analyse the algorithm performances. The results are 

available in Tables 21, 22, 23, 24, 25 and 26. For all data sets, data are 

common except demands and at most 6-period problem is considered. Data 

sets differ by the demand values. The deterioration rate depends on age. 

Holding and backlogging costs are also nondecreasing concave and age-

dependent. Capacity is constant per period. Moreover, production costs are 

assumed general concave. Thus, the parameters for all data sets are 

considered as below.  

 

 Demand for data set 1 is in increasing order where demands are 

10, 15, 17, 20, 25, and 27 units per period respectively.  

 

 Demand of data set 2 is in decreasing order and demands are 21, 

17, 15, 12, 10, and 8 units per period respectively.  

 

 

 Demands are 16 units and 17 units per period for data set 3 and 4 

respectively.  
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 Demand of data set 5 is 13, 14, 15, 16, 19, and 25 units per period 

respectively. Demands are in increasing order for data set 1 but 

these values are assigned to analyse the performance of the 

algorithm when there exists a period where there is not any 

production. Since according to these values, for some 

combinations there exists a period where there is no production. 

 

 Demand of data set 6 is 15, 10, 20, 5, 1, and 30 units per period. 

Demand values fluctuate in this data set so they are not in 

increasing or decreasing order. 

 

The average gap 1 (GAP1) in the following tables is the average of 

percentage of gap based on total costs. The average gap 2 (GAP2) in the 

following tables is the average of percentage of gap based on holding, 

backlogging and production in period of   costs.  

 

 

GAP1i=  (
                                     

               
)     

 

 

GAP2i= 

(
(                                       )  (                                   )

(                                   )
)     

 

 

The production costs in equation GAP2 include the costs of production 

periods where there exists full production. Production in period    is not 

included in the equation GAP2. Since the production cost for this period may 

change and affect the total cost because of possibility of varying from 

solution to solution. 
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The following parameters are common for all data sets. 

 

K=20  

      ( )           ( )           ( )            ( )            ( )      , 

   ( )              for               ( )                  for        

      ( )              for       and     

                                         

 

 

 

 

 

 

 

Table 21 Result of Data Set 1 – increasing demand 

Component 

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 4 4 - - 

5x5 5 5 - - 

6x6 6 6 - - 
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Table 22 Result of Data Set 2 – decreasing demand 

Component 

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 4 4 - - 

5x5 20 20 - - 

6x6 30 26 0,175 2,36 

 

 

 

 

 

 

Table 23 Result of Data Set 3 – constant demand 1 

Component 

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 4 4 - - 

5x5 5 5 - - 

6x6 30 24 0,135 1,107 
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Table 24 Result of Data Set 4 – constant demand 2 

Component     

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 4 4 - - 

5x5 5 5 - - 

6x6 6 5 0,19 5,03 

 

 

 

 

 

 

 

Table 25 Result of Data Set 5 –increasing demand 2 

Component 

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 12 12 - - 

5x5 20 20 - - 

6x6 6 6 - - 
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Table 26 Result of Data Set 6 – fluctuate demand  

Component 

size 

Number of  

Combinations 

How many 

times optimal 

solution is 

identified 

Average 

GAP1 

(%) 

If not 

optimal 

Average 

GAP2 

(%) 

If not 

optimal 

2x2 2 2 - - 

3x3 3 3 - - 

4x4 4 4 - - 

5x5 5 5 - - 

6x6 6 5 0.19 7.2 

 

 

 

In tables 21, 22, 23, 24, 25, and 26 component numbers and sizes, number 

of cases where algorithm finds optimal solution, and the average gap based 

on total costs between solution of algorithm and optimal solution if exists and 

also average gap between algorithm and optimal solution while considering 

holding, backordering and production for period of    costs are shown.  

 

According to results, the algorithm performance can be considered as 

promising. The average gap is shown based on percentage. According to 

total demand, if there exists a period where there is no production, it can be 

said that the algorithm sometimes gives the approximation solution. 

However, when the demand is increasing order and there does not exist a 

period where production is not available, it can be said that the algorithm is 

promising. Since the average gap has been occurred generally if there exists 

a period where there is no production. The average gaps based on total cost 

in the tables are less than 1%. However, if it is considered that full capacity 

production periods are constant, t ey don’t c ange for bot  algorit m and 

optimal solution. Therefore, if the holding, backlogging and the production for 

period of     costs are compared for both algorithm and optimal solution 

results, the gap increases. Moreover, it can be said that according to results 
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we could not find a demand pattern to get optimal solution all the time with 

our algorithm. 

 

Additionally, it is observed that the algorithm performs well when the holding 

costs are expensive as much as backordering costs. In some cases, the 

costs may be considered in this way. Since the type of warehouses for 

perishable products especially for foods should be cold one and the cost of 

this type of warehouses may be expensive so holding inventory costs may be 

expensive as much as paying penalty for backlogging.  
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CHAPTER 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this study, dynamic lot sizing models are analysed. Products are 

considered as single and perishable. Furthermore, all costs are determined 

as nondecreasing concave. Backordering costs are included and assumed 

as age-dependent. Moreover, inventory holding costs are also age-

dependent and deterioration rate differs based on age. 

Besides general case, the problems that are uncapacitated and capacitated 

versions of general case are investigated. A mathematical model is 

developed to minimize total costs for both capacitated and uncapacitated 

versions.    

Additionally, it is observed that some structural properties that can be 

exploited for developing a solution approach for uncapacitated problems are 

not valid for capacitated problems. We define a different sub-problem and 

identify the structural properties of the optimal solution and the sub-problems. 

We show that DP is a valid approach to solve the sub-problems.  We devise 

an algorithm that finds good solutions to sub-problems, some of which are 

optimal. Objective values for the sub-problems found by the algorithm and 

GAMS are analysed. The algorithm finds optimal solution in most cases. 

Therefore, the algorithm can be promising for complex problems. However, 

there are some cases the algorithm cannot reach the optimal solution. 
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Therefore, it is appeared that this dynamic programming algorithm gives the 

approximate solution for the problems with these sub-problems.  

In experimental results, we considered data sets with different demand 

patterns to investigate the behaviour of our algorithm for finding optimal 

solution all the time but according to results of data sets we could not find 

such a relationship between the demand pattern and the performance of the 

algorithm. 

Finally, this study can be continued for future work by improving the algorithm 

to obtain an optimal solution for every time. As an improvement, after 

algorithm solves a problem and finds an initial solution, the position of some z 

values in the table can be changed by checking the cost table. This means 

that some additional steps may be included in the algorithm and these steps 

may help to find a cycle in the table of initial solution. Shifting some values as 

a cycle in the table by considering cost table may reduce the initial total costs 

and may help to find the optimal solution in the end. 
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