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Abstract: We obtain some analogues of the Hilbert formulas on the unit circle for α -hyperholomorphic function theory

when α is a complex number. Such formulas relate a pair of components of the boundary value of an α -hyperholomorphic

function in the unit circle with the other one. Furthermore, the corresponding Poincaré–Bertrand formula for the α -

hyperholomorphic singular integrals in the unit circle is presented.
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1. Introduction

The classical Hilbert formulas describing the relation between the boundary values in the unit circle of a pair

of conjugate harmonic functions are a well-known result in one-dimensional complex analysis. For exhaustive

information on the topic, we refer the reader to [7].

Let us denote by S the unit circle in the complex plane C and set f a limit function in S . Denote

g(θ) := f(eiθ), 0 ≤ θ < 2π , and g = g1 + ig2 . Then the real components g1 and g2 of g are related by the

following formulas, known as the Hilbert formulas:

M [g1] +H[g2] =g1,

M [g2]−H[g1] =g2,
(1)

where M and H are given by

H[g](θ) :=
1

2π

∫ 2π

0

cot
τ − θ

2
g(τ)dτ, θ ∈ [0, 2π), (2)

M [g] :=
1

2π

∫ 2π

0

g(τ)dτ, (3)

which are both defined on the linear space of real valued Hölder continuous functions C0,µ(S,R), µ ∈ (0, 1].

∗Correspondence: baruch.schneider@ieu.edu.tr

2010 AMS Mathematics Subject Classification: 31A10, 45E05, 47A75
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The integral H[g] (well defined on C0,µ(S,R), µ ∈ (0, 1]) is understood in the sense of Cauchy’s principal

value, generating the so-called Hilbert operator with (real) kernel
1

2π
cot

τ − θ

2
. Meanwhile, M [g] is a functional

that can be viewed as the average value of g .

Assume now that g ∈ kerM , and then the Hilbert formulas take the form

H[g2] =g1,

−H[g1] =g2.
(4)

The Hilbert operator (2) is a well-known transformation in mathematics and in signal processing; for

example, in geophysics and astrophysics it deals with input signals. Examples of this type of signals are seismic,

satellite, and gravitational data, and the Hilbert operator proves to be useful for a local analysis of them,

providing a set of rotation-invariant local properties: the local amplitude, local orientation, and local phase.

See, for example, [23].

Various analogues of the Hilbert formulas on the unit sphere have kept interest until our days. For

instance, in [11] there are introduced analogues for the case of solenoidal and irrotational vector fields, in [15]

are presented analogues for time-harmonic electromagnetic fields, and in [14] are presented analogues for the

time-harmonic relativistic Dirac bispinors theory. For the case of a half space there already exist works in that

direction; see for example, [8, 17].

The names of Bertrand [1] and Poincaré [16] are attached to the formula of change of integration order in

iterated singular integrals of Cauchy principal value type. It was previously obtained by Hardy [6] under certain

conditions. This formula, which has proved useful to the study of one-dimensional singular integral equations

and physical applications, takes the following form:

1

πi

∫
γτ

dτ

τ − t
· 1

πi

∫
γς

f(τ, ς)

ς − τ
dς = f(t, t) +

1

πi

∫
γς

dς · 1

πi

∫
γτ

f(τ, ς)

(τ − t)(ς − τ)
dτ,

or ∫
γτ

dτ

τ − t
·
∫
γς

f(τ, ς)

ς − τ
dς = −π2 f(t, t) +

∫
γς

dς ·
∫
γτ

f(τ, ς)

(τ − t)(ς − τ)
dτ, (5)

where γ is a simple closed smooth curve in R2 , t is a fixed point on γ , and f lies on some appropriate function
space.

The Poincaré–Bertrand formula for the unit circle S is simplified by assuming τ = eiθ, t = eiθ0 , and thus

dτ

τ − t
=

1

2
cot

θ − θ0
2

dθ +
i

2
dθ.

Consequently, we can rewrite (5) as∫ 2π

0

cot
θ0 − θ

2
dθ

∫ 2π

0

cot
θ − θ1

2
g(θ1) dθ1 = −4π2g(θ0) + 2π

∫ 2π

0

g(θ) dθ. (6)

Here the following have been used:

cot
θ − θ0

2
cot

θ1 − θ

2
= − cot

θ0 − θ1
2

(
cot

θ1 − θ

2
+ cot

θ − θ0
2

)
+ 1,
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∫ 2π

0

cot
θ − θ0

2
cot

θ1 − θ

2
dθ = 2π,

for θ0 ̸= θ1 .

Combining (2) and (3) in (6), we have

H[H[g](θ)](θ0) = g(θ0) +M [g].

If g ∈ kerM , then

H[H[g](θ)](θ0) = g(θ0).

There have already been considered extensions of the the Poincaré–Bertrand formula for problems with

different backgrounds. For example, Mitelman and Shapiro [12] established a Poincaré–Bertrand formula for

quaternion singular integrals of Cauchy type over a smooth Lyapunov surface, while Kytmanov [9] established

an extension for the Bochner–Martinelli integral over a smooth manifold. Another important extension was

achieved by Hang and Jiang [5] on smooth hypersurfaces in higher dimensions. For more recent references in

different contexts, see, for instance, [2, 10, 13, 18–20, 24].

The outline of this paper is as follows. We collect in Section 2 basic facts and results of the α -hyper-

holomorphic function theory in R2 , and Section 3 is devoted to the study of some analogues of the Hilbert

formulas on the unit circle for α -hyperholomorphic function theory, α being a complex number. Finally, the

corresponding Poincaré–Bertrand formula is derived.

2. Preliminaries

We start by giving a brief summary of some facts and results from α -hyperholomorphic function theory in R2

to be used in this paper. For more details, we refer the reader to [8] and the references therein.

Let Ω be a bounded domain in R2 with boundary γ and introduce the temporary notations Ω := Ω+

and Ω− := R2 \ (Ω+ ∪ γ).

Let H(C) be the set of complex quaternions, i.e. each quaternion a is represented in the form a =∑3
k=0 akik , with {ak} ⊂ C ; i0 = 1 stands for the unit and i1, i2, i3 stand for the quaternionic imaginary units.

Denote the complex imaginary unit in C by i as usual. By definition, i commutes with all the quaternionic

imaginary units i1, i2, i3 .

The set H(C) is a complex noncommutative, associative algebra with zero divisors. The involution

a → ā , called quaternionic conjugation, is defined by

ā :=
3∑

k=0

ak · īk = a0 −
3∑

k=1

ak · ik.

It satisfies ab = b̄ā . We use the Euclidean norm |a| in H(C), defined by |a| :=
√∑3

k=0|ak|2 . Writing for

a =
∑3

k=0 akik ∈ H(C), a0 =: Sc (a); a⃗ :=
∑3

k=1 akik =: V ect(a), we have a = a0 + a⃗ . We call a0 the scalar

part of the complex quaternion a and a⃗ the vector part of a . Then {V ect(a) : a ∈ H(C)} is identified with

C3 . This enables us to write ā = Sc (a)− a⃗ .

For any a, b ∈ H(C):

a b := a0 b0 − ⟨⃗a, b⃗⟩+ a0 b⃗+ b0 a⃗+ [⃗a, b⃗],
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where

⟨⃗a, b⃗⟩ :=
3∑

k=1

ak bk, [⃗a, b⃗] :=

∣∣∣∣∣∣∣
i1 i2 i3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ .
In particular, if a0 = b0 = 0 then a b := −⟨⃗a, b⃗⟩+ [⃗a, b⃗] .

Denote by S the set of zero divisors from H(C) and by GH(C) the subset of invertible elements

from H(C). If a /∈ S ∪ {0} then a−1 := ā
(aā) is the inverse of the complex quaternion a . Note that

GH(C) = H(C) \ (S ∪ {0}).

Typical points of the Euclidean space R2 will denoted by z := xi1 + yi2, ζ := ξi1 + ηi2, τ := τ1i1 + τ2i2 ,

etc.

We shall consider functions f : Ω −→ C of the form f = f0i0 + f1i1 + f2i2 + f3i3 , where the component

functions fk are C-valued functions. As usual, we denote by Cn(Ω,C), n ∈ N∪{0} the complex linear spaces

of n times continuously differentiable functions. For n ∈ N ∪ {0} set Cn(Ω,H(C)) := {f : Ω −→ H(C) | fk ∈
Cn(Ω,C)} .

On C2(Ω,H(C)) the two-dimensional Helmholtz operator with wave number λ ∈ C \ {0} is defined as

∆λ := ∆R2 + λ,

where ∆R2 := ∂2
1 + ∂2

2 is the Laplacian with ∂k :=
∂

∂xk
. Let α be the square root of λ , i.e. α2 = λ .

On C1(Ω,H(C)) the left- and right-operators ∂l and ∂r are defined according to the following rules:

∂l := i1∂1 + i2∂2; ∂̄l := ī1∂1 + ī2∂2;

∂r := ∂1M
i1 + ∂2M

i2 ; ∂̄r := ∂1M
ī1 + ∂2M

ī2 ,

where Ma[f ] := f a, aM [f ] := af , for any a ∈ H(C).
One can readily see that

∂l · ∂̄l = ∂̄l · ∂l = ∆R2 = ∂r · ∂̄r = ∂̄r · ∂r,

or

∂2
r = ∂2

l = −∆R2 .

Set
∂α := ∂l + α.

Therefore,

∆λ = −∂α · ∂−α = −∂−α · ∂α.

In analogy with the usual notion of a holomorphic function, consider the following definition of an α -

hyperholomorphic function in R2 .

A function f ∈ C1(Ω,H(C)) is said to be left α -hyperholomorphic if ∂αf ≡ 0 in Ω. Let Mα(Ω,H(C)) :=
{f ∈ C1(Ω,H(C))

∣∣ ∂αf ≡ 0 inΩ} . Similar definitions can be written for the right-operator but we confine the

discussion to the left one.
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It is known (see, e.g., [22]) that a fundamental solution θα of ∆λ is given by

θα(z) =


−i
4 H

(1)
0 (α|z|), α ̸= 0,

1
2π ln |z|, α = 0,

(7)

where H
(1)
ι is the Hankel function of the first kind of order ι = 0, 1, 2.

Let us show some properties of the Hankel functions H
(1)
ι (t) and H

(2)
ι (t), i.e. H

(1),(2)
ι (t), t ∈ C :

H
(1),(2)
0 (t)−H

(1),(2)
2 (t) = 2

d

dt
H

(1),(2)
1 (t),

−H
(1),(2)
1 (t) =

d

dt
H

(1),(2)
0 (t).

About the series expansion (at the origin) of H
(1)
0 , H

(1)
1 , and H1

2 , only the first term is of our interest; it is

given by:

H
(1)
0 (t) =

t→0
i
2

π
ln t+ 1 + i

2

π
(κ− ln 2) +O(t), (8)

H
(1)
1 (t) =

t→0
− i

1

π

2

t
+O(t), (9)

H
(1)
2 (t) =

t→0
− i

1

π

4

t2
+O(t), (10)

with t ∈ C , t ̸= 0 and where κ is the Euler number. The asymptotic expansion (at infinity) is given by:

H(1)
ι (z) =

√
2

πz
ei(z−(ι+1/2)(π/2))(Pι(z) + iQι(z)), −π < arg(z) < π,

where

Pι(z) ≈1− (r − 1)(r − 9)

2!(8z)2
+

(r − 1)(r − 9)(r − 25)(r − 49)

4!(8z)4
− · · ·,

Qι(z) ≈
(r − 1)

1!(8z)
− (r − 1)(r − 9)(r − 25)

3!(8z)3
+ · · ·,

and

r = 4ι2.

Recall that

H1
ι := Iι + iNι,

for each ι = 0, 1, 2, where

Iι(r) =
rι

2ιΓ(1/2)Γ(ι+ 1/2)

∫ π

0

eir cos θ sin2ι θdθ

is the Bessel function of the first kind with Γ denoting the gamma function and

Nι(r) =
Iι(r) cos ιπ − I−ι(r)

sin ιπ
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is the Bessel function of the second kind. For more information about properties of Hankel functions, see

[4, 22].

Let C0,µ(γ,H(C)) denote the class of H(C)-functions satisfying the µ -Hölder condition in γ ,

{f ∈ C0,µ(γ,H(C)) : |f(t1)− f(t2)| ≤ Lf · |t1 − t2|µ; ∀{t1, t2} ⊂ γ, Lf = const},

with the exponent 0 < µ ≤ 1. Here |f | means the Euclidean norm in C4 ≈ R8 while |t| is the Euclidean norm

in R2 .

The fundamental solution of the operator ∂α , the Cauchy kernel denoted by Kα , is given by formula

Kα(z) := −∂−α θα(z), z ∈ R2 \ {0},

and its explicit form can be seen, e.g., in [8]:

Kα(z) =

{
−iα
4

[
H

(1)
1 (α|z|) zst|z| +H

(1)
0 (α|z|)

]
, α ̸= 0,

−zst
2π|z|2 , α = 0,

(11)

where zst := xi1 + yi2 .

Notice that from expressions (8) and (9) one can conclude that

lim
α→0

−iα

4

[
H

(1)
1 (α|z|)zst

|z|
+H

(1)
0 (α|z|)

]
=

−zst
2π|z|2

.

The assumption α ∈ C(̸= 0) will be needed throughout the paper. The general case requires further

analysis, but we will not develop this point here.

According to the identity

στ = n⃗(τ) dsτ := n1(τ) i1 dsτ + n2(τ) i2 dsτ ,

where n⃗(τ) and dsτ denote respectively the outward unit normal to γ at τ and the element of arc-length

measure, we are in a position to specify the appearance of the unit normal vector to the boundary in the

denition of the Cauchy-type integrals of the α -hyperholomorphic function theory. To this end, one has

Kα[f ](z) := −
∫
γ

Kα(z − τ)στf(τ) = −
∫
γ

Kα(z − τ)n⃗(τ)f(τ)dsτ , z ∈ R2 \ γ, (12)

while

Sα[f ](t) := −2

∫
γ

Kα(t− τ)στf(τ) = −2

∫
γ

Kα(t− τ)n⃗(τ)f(τ)dsτ , t ∈ γ. (13)

The central formula establishing the relation between the boundary value Kα[f ]
± (if it existed) of the

Cauchy-type integral and it singular version Sα[f ] is the so-called Plemelj–Sokhotski formula:

Kα[f ]
±(t) = ±1

2
f(t) +

1

2
Sα[f ](t). (14)

Moreover, Sα is an involution operator on C0,µ (γ,H(C)), and Lp (γ,H(C)), p > 1:

S2
α = I. (15)
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In order for f to be a boundary value (i.e. a trace on γ ) of a function f̃ from Mα(Ω
+,H(C))∩C0,µ(Ω+∪

γ,H(C)), the following condition is necessary and sufficient:

f(t) = Sα[f ](t), ∀t ∈ γ. (16)

The interested reader is referred to [3, 8, 21] for further information.

3. Hilbert and Poincaré–Bertrand formulas on the unit circle

In this section, we suppose that γ is merely the unit circle in R2 , often denoted by S = S(0; 1), which is the

boundary of the unit ball B2 = B2(0; 1). We wish to illustrate as quickly and easily as possible that analogues

of the Hilbert and Poincaré–Bertrand formulas on the unit circle in R2 for α -hyperholomorphic function theory

with α being a complex number can be obtained.

One more structure of complex quaternions proved to be useful for our purposes. Let f ∈ C(S,H(C),
and then:

f =
3∑

k=0

fkik = (f0 + f3i3) + (f1 + f2i3)i1 =: F1 + F2i1.

The functions F1 , F2 are of the form a + bi3 with a , b usual complex numbers, and thus belong to

the (commutative) algebra of bicomplex numbers generated by the imaginary units i and i3 , which shall be

denoted by C(i)⊗C(i3). We shall call the functions F1 and F2 the bicomplex components (or coordinates) of

f . Conjugation with respect to i3 will be denoted as follows:

F̂1 := f0 − f3i3.

The corresponding operator will be denoted as Ẑ : Ẑ[F1] := F̂1 . It is clear that F1i1 = i1F̂1 ; i.e.

M i1 [F1] = i1Ẑ[F1] .

Define the following operators for f ∈ C0,µ(S,C(i)⊗ C(i3)):

Hα[f ](t) := −
∫
S

iα

2
H

(1)
0 (α|t− τ |)(τ1 + τ2i3)Ẑ[f ](τ)dsτ , (17)

Mα[f ](t) :=

∫
S

iα

4
H

(1)
1 (α|t− τ |)|t− τ |

(
1 + cot

(
Ξ

2

)
i3

)
f(τ)dsτ , (18)

which have to be understood in the sense of Cauchy’s principal value.

Definition 3.1 Uα(B2(0; 1);C0,µ(S,H(C))) , 0 < µ ≤ 1 , denotes the class of functions f̃ such that

1) f̃ ∈ Mα(B2(0; 1),H(C)) ;

2) there exists everywhere on S the limit lim
B2(0;1)∋x→t∈S

f̃(x) =: f(t) generating the function f in C0,µ(S,H(C)) .
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Theorem 3.2 (Analogue of the Hilbert formulas for α-hyperholomorphic functions). A function f = F1+F2i1

is the limit function of f̃ ∈ Uα(B2(0; 1);C0,µ(S,H(C)) , if, and only if, F1 and F2 are related by the following

formulas:

Mα[F1] +Hα[F2] = F1,

Mα[F2]−Hα[F1] = F2.
(19)

Furthermore, if f ∈ kerMα then

Hα[F2] = F1,

−Hα[F1] = F2.
(20)

Proof The Cauchy singular operator Sα[f ] on the unit circle can easily be shown to have the following form:

Sα[f ](t) =
iα

2

∫
S

[
H

(1)
1 (α|t− τ |) (t− τ)st

|t− τ |
+H

(1)
0 (α|t− τ |)

]
τstf(τ)dsτ ,

where (t− τ)st := (t1 − τ1)i1 + (t2 − τ2)i2 .

Observe that if Ξ is the angle between t and τ , then

(t− τ)stτst = 1− cos Ξ + sinΞi3 and |t− τ |2 = 2− 2 cos Ξ,

and we can write

Sα[f ] =
iα

2

∫
S

[
H

(1)
1 (α|t− τ |)|t− τ |1− cos Ξ + sinΞi3

2− 2 cos Ξ
+H

(1)
0 (α|t− τ |)τst

]
f(τ)dsτ

=
iα

2

∫
S

[
H

(1)
1 (α|t− τ |) |t− τ |

2

(
1 + cot

(
Ξ

2

)
i3

)
+H

(1)
0 (α|t− τ |)τst

]
f(τ)dsτ

=

∫
S
[Aα(t, τ) + Bα(t, τ)i1] f(τ)dsτ ,

where

Aα(t, τ) : =
iα

4
H

(1)
1 (α|t− τ |)|t− τ |

(
1 + cot

(
Ξ

2

)
i3

)
,

Bα(t, τ) : =
iα

2
H

(1)
0 (α|t− τ |)(τ1 + τ2i3).

In what follows, we regard f as being interpreted in terms of its bicomplex components F1 and F2 and

the next identities can be derived:

Sα[f ] =

∫
S
[Aα(t, τ) + Bα(t, τ)i1] f(τ)dsτ

=

∫
S
[Aα(t, τ) + Bα(t, τ)i1] (F1 + F2i1) (τ)dsτ

=

∫
S

[
Aα(t, τ)F1(τ)− Bα(t, τ)F̂2(τ)

]
dsτ

+

∫
S

[
Aα(t, τ)F2(τ) + Bα(t, τ)F̂1(τ)

]
i1dsτ .
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Then

Sα[f ] = (Mα[F1] +Hα[F2]) + (Mα[F2]−Hα[F1]) i1.

Recall that (16) is a necessary and sufficient condition for f to be a boundary value of a function f̃ from

Mα(B2(0; 1),H(C)) ∩ C0,µ(B2(0; 1) ∪ S,H(C)). Hence,

f = F1 + F2i1 = (Mα[F1] +Hα[F2]) + (Mα[F2]−Hα[F1]) i1,

From this equality, one gets the following relations:

Mα[F1] +Hα[F2] = F1,

Mα[F2]−Hα[F1] = F2.

If f ∈ kerMα , then

Hα[F2] = F1,

−Hα[F1] = F2.

2

Below we will see that the relation with the usual complex operators is more sophisticated. Notice that

formulae (19) have the same structure as those of the complex case (1).

Corollary 3.3 If f = F1 + F2i1 is the limit function of f̃ , then f is determined by

f = F1 + (Mα[F2]−Hα[F1]) i1

= (Mα[F1] +Hα[F2]) + F2i1.

In particular, if f ∈ kerMα , then

f = F1 −Hα[F1]i1

= Hα[F2] + F2i1.

That is, if f ∈ kerMα , then f is completely determined by any one of its bicomplex components.

Corollary 3.4 (Analogue of the Schwarz formulas for α-hyperholomorphic functions). If f = F1+F2i1 is the

limit function of f̃ , then f̃ is determined by

f̃ = Kα [F1 + (Mα[F2]−Hα[F1]) i1]

= Kα [(Mα[F1] +Hα[F2]) + F2i1] .

In particular, if f ∈ kerMα , then

f̃ = Kα [F1 −Hα[F1]i1]

= Kα [Hα[F2] + F2i1] .
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That is, if f ∈ kerMα , then f̃ is determined by any one of the limit functions of its bicomplex components.

From expressions (8) and (9), one can conclude that

lim
α→0

Mα[F ] =
1

2π

∫
S

(
1 + cot

(
Ξ

2

)
i3

)
F (τ)dsτ ,

= M [F ] +H[F ]i3

lim
α→0

Hα[F ] = 0,

where M and H are the usual operators from one-dimensional complex analysis defined in (2) and (3).

Applying (19) and (20) when α → 0, one obtains

lim
α→0

Mα[f0 + f3i3] = f0 + f3i3,

lim
α→0

Mα[f1 + f2i3] = f1 + f2i3,

i.e.

M [f0 + f3i3] +H[f0 + f3i3]i3 = f0 + f3i3,

M [f1 + f2i3] +H[f1 + f2i3]i3 = f1 + f2i3.

Therefore, we arrive at the following relations:

M [f0]−H[f3] = f0,

M [f3] +H[f0] = f3,
(21)

and

M [f1]−H[f2] = f1,

M [f2] +H[f1] = f2.
(22)

In order to understand how the usual case is embedded here we need to note that in the case α = 0 the
operator that defines the class of hyperholomorphic functions is the following:

i1
∂

∂x
+ i2

∂

∂y
= i1

(
∂

∂x
− i3

∂

∂y

)
.

Then, in order for a function f =
∑3

k=0 fkik = (f0 + f3i3) + (f1 + f2i3)i1 = F1 + F2i1 to be 0-

hyperholomorphic, it has to satisfy

i1

(
∂

∂x
− i3

∂

∂y

)
f = i1

(
∂

∂x
− i3

∂

∂y

)
(F1 + F2i1)

= i1

(
∂F1

∂x
− i3

∂F1

∂y
+

∂F2

∂x
i1 − i3

∂F1

∂y
i1

)
= i1

(
∂F1

∂z
+

∂F2

∂z
i1

)
= 0,

(23)
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i.e. f is a couple of antiholomorphic functions of the complex variable z = x+i3y but with values in C(i)⊗C(i3).
Furthermore, we have

F1 = f0 + f3i3 = Ref0 + iImf0 + (Ref3 + iImf3)i3

= (Ref0 + i3Ref3) + i(Imf0 + i3Imf3)

=: p1 + iq1,

and

F2 = f1 + f2i3 = Ref1 + iImf1 + (Ref2 + iImf2)i3

= (Ref1 + i3Ref2) + i(Imf1 + i3Imf2)

=: p2 + iq2.

From (23) one obtains

∂F1

∂z
=

∂p1
∂z

+ i
∂q1
∂z

= 0 ⇔ ∂p1
∂z

=
∂q1
∂z

= 0,

and
∂F2

∂z
=

∂p2
∂z

+ i
∂q2
∂z

= 0 ⇔ ∂p2
∂z

=
∂q2
∂z

= 0.

Hence, p1 , q1 , p2 , and q2 are also “usual” antiholomorphic complex functions.

Now, applying (21) and (22), we obtain

M [Ref0 + iImf0]−H[Ref3 + iImf3] = Ref0 + iImf0,

M [Ref3 + iImf3] +H[Ref0 + iImf0] = Ref3 + iImf3,

and

M [Ref1 + iImf1]−H[Ref2 + iImf2] = Ref1 + iImf1,

M [Ref2 + iImf2] +H[Ref1 + iImf1] = Ref2 + iImf2,

and we arrive at the following relations between the real components:

M [Ref0]−H[Ref3] = Ref0,

M [Ref3] +H[Ref0] = Ref3,
(24)

M [Imf0]−H[Imf3] = Imf0,

M [Imf3] +H[Imf0] = Imf3,
(25)

M [Ref1]−H[Ref2] = Ref1,

M [Ref2] +H[Ref1] = Ref2,
(26)
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M [Imf1]−H[Imf2] = Imf1,

M [Imf2] +H[Imf1] = Imf2.
(27)

Additionally, if f ∈ kerM , then

M [f ] = M [f0 + f1i1 + f2i2 + f3i3]

= M [f0] +M [f1]i1 +M [f2]i2 +M [f3]i3

= 0,

and thus
M [fk] = 0 ∀k ∈ N3 ∪ {0} ⇒ M [Refk + iImfk] = 0 ∀k ∈ N3 ∪ {0},

⇒ M [Refk] = 0 and M [Imfk] = 0 ∀k ∈ N3 ∪ {0}.

Therefore, we obtain

−H[Ref3] = Ref0,

H[Ref0] = Ref3,
(28)

−H[Imf3] = Imf0,

H[Imf0] = Imf3,
(29)

−H[Ref2] = Ref1,

H[Ref1] = Ref2,
(30)

−H[Imf2] = Imf1,

H[Imf1] = Imf2.
(31)

Finally we obtained a family of Hilbert formulas for the parameter α ̸= 0, but we can extend to the case

α = 0 and for this case the bicomplex Hilbert formulas have become four pairs of complex Hilbert formulas for

antiholomorphic functions. Compare these results with (1).

The Poincaré–Bertrand formula on the unit circle S in R2 and f ∈ C0,µ(S,H(C)) can be adapted from

[20, Theorem 3.5] as follows:

∫
Sτ

Kα(t− τ)στ

∫
Sζ

Kα(τ − ζ)σζf(ζ, τ) = (32)

=

∫
Sζ

∫
Sτ

Kα(t− τ)στ Kα(τ − ζ)σζ f(ζ, τ) +
1

4
f(t, t).
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Suppose that f(ζ, τ) = f(ζ) ∈ C0,µ(S,H(C)); then, from (32), we have:

∫
Sτ

Kα(t− τ)στ

∫
Sζ

Kα(τ − ζ)σζf(ζ) = f(t1, t2).

Therefore, we have ∫
Sτ
[Aα(t, τ) + Bα(t, τ)i1] dsτ

∫
Sζ
[Aα(ζ, τ) + Bα(ζ, τ)i1]f(ζ, τ) dsζ =

∫
Sζ

∫
Sτ
[Aα(t, τ) + Bα(t, τ)i1] dΓτ [Aα(ζ, τ) + Bα(ζ, τ)i1]f(ζ, τ) dΓζ +

1

4
f(t, t).

As before, let f = F1 + F2i1 , and then we have∫
Sτ

∫
Sζ
[Aα(t, τ)Aα(ζ, τ)F1(ζ, τ)− Bα(t, τ)B̂α(ζ, τ)F1(ζ, τ)−Aα(t, τ)Bα(ζ, τ)F̂2(ζ, τ)−

−Bα(t, τ)Âα(ζ, τ)F̂2(ζ, τ)] dsζ dsτ =
1

4
F1(t, t)+

+

∫
Sζ

∫
Sτ
[Aα(t, τ)Aα(ζ, τ)F1(ζ, τ)− Bα(t, τ)B̂α(ζ, τ)F1(ζ, τ)−Aα(t, τ)Bα(ζ, τ)F̂2(ζ, τ)−

−Bα(t, τ)Âα(ζ, τ)F̂2(ζ, τ)] dsτ dsζ ,∫
Sτ

∫
Sζ
[Aα(t, τ)Bα(ζ, τ)F1(ζ, τ) + Bα(t, τ)Âα(ζ, τ)F̂1(ζ, τ) +Aα(t, τ)Aα(ζ, τ)F2(ζ, τ)−

−Bα(t, τ)B̂α(ζ, τ)F2(ζ, τ)] dsζ dsτ =
1

4
F2(t, t)+

+

∫
Sζ

∫
Sτ
[Aα(t, τ)Bα(ζ, τ)F1(ζ, τ) + Bα(t, τ)Âα(ζ, τ)F̂1(ζ, τ) +Aα(t, τ)Aα(ζ, τ)F2(ζ, τ)−

−Bα(t, τ)B̂α(ζ, τ)F2(ζ, τ)] dsτ dsζ .

Remark 3.5 It is possible, and indeed desirable, to consider the analogous formulas in other spaces than Hölder

space, for example, the Banach space Lp(S,H(C)), p > 1 . If f ∈ Lp(S,H(C)), p > 1 then the Sokhotski–Plemelj

formulas, the Poincaré–Bertrand formula, and the Hilbert formulas are valid almost everywhere on S .
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