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To appropriately estimate the wind power output we need to invest more efforts 

in the determination of wind speed characteristics because such determination will 

play a valuable rule in the estimation approach. Following that, one of the most 

important distribution that has been implemented widely for modeling wind speed is 

Weibull distribution. This distribution is based mainly on statistical computations to 

model the wind speed in appropriate manner. Although it is used intensively in 
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practical applications, the accuracy of it might not be completely optimal for modeling 

all wind regimes. Therefore, a variety of distributions that might play an alternative 

approach or in some cases a replacement for the Weibull distribution might model the 

wind speed in optimal way. In our research, we make use of other distributions which 

will be utilized as a different approaches from Weibull distribution for instance, 

Lognormal, Burr type XII, Generalized Extreme value, Gumbel, Gamma, Inverse 

Gaussian, and Rayleigh as alternatives to Weibull distribution. The main goal of our 

study is to define a suitable distribution, which provides the adequate realization of the 

inconstant behavior of the wind speed that might exist in different regimes. In the 

implementation section, several sets of data have been captured from Iraqi 

Meteorological Organization and Seismology – Ministry of Transportation for the 

previous ten years. To determine a convenient wind speed distribution, a variety of 

tests has been selected. 

 

Keywords: The cumulative distribution function (cdf), the probability density function 

(pdf), Weibull distribution, Maximum likelihood, wind speed, model selection criteria.  
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RÜZGAR HIZI DAĞILIMLARININ PERFORMANSININ 

KARŞILAŞTIRILMASI: MERKEZ VE GÜNEY IRAK ÖRNEĞİ 

 

 

 

OTHMAN SAFAA AL-SHALASH 

 

 

 

Uygulamalı İstatistik, Yüksek Lisans Programı 

 

Tez Danışmanı: Dr. Öğr. Üyesi. Cemal Murat ÖZKUT 

 

Temmuz, 2020 

 

 Rüzgar enerjisi üretimini uygun şekilde tahmin etmek için rüzgar hızı 

karakteristiklerinin belirlenmesi için daha fazla çaba harcamamız gerekir, çünkü bu tür 

bir tespit tahmin yaklaşımında önemli bir rol oynamaktadır. Bunu takiben, rüzgar 

hızının modellenmesi için yaygın olarak uygulanan en önemli dağılımlardan biri 

Weibull dağılımıdır. Bu dağılım esas olarak rüzgar hızını uygun şekilde modellemek 

için istatistiksel hesaplamalara dayanmaktadır. Pratik uygulamalarda yoğun olarak 
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kullanılmasına rağmen, doğruluğu tüm rüzgar rejimlerini modellemek için tamamen 

uygun olmayabilir. Bu nedenle, alternatif bir yaklaşım olabilecek veya bazı 

durumlarda Weibull dağılımının yerini alabilecek çeşitli dağılımlar, rüzgar hızını en 

uygun şekilde modelleyebilir. Araştırmamızda, Weibull dağılımından farklı bir 

yaklaşım olarak kullanılacak diğer dağılımlardan yararlanıyoruz (Lognormal, Burr tip 

XII, Genelleştirilmiş Aşırı değer, Gumbel, Gama, Ters Gauss, Genelleştirilmiş Aşırı 

değer, ve Rayleigh). Çalışmamızın temel amacı, farklı rejimlerde var olabilen rüzgar 

hızının tutarsız davranışının yeterli şekilde gerçekleştirilmesini sağlayan Weibull 

dağılımına alternatif olarak uygun bir dağılım tanımlamaktır. Uygulama bölümünde 

geçtiğimiz on yıl boyunca Irak Meteoroloji Örgütü ve Sismoloji - Ulaştırma 

Bakanlığı'ndan çeşitli veriler toplandı. Uygun rüzgar hızı dağılımını belirlemek için 

çeşitli testler seçildi. 

 

Anahtar Kelimeler: Weibull dağılımı, kümülatif dağılım fonksiyonu (cdf), olasılık 

yoğunluk fonksiyonu (pdf), Maksimum olasılık, rüzgar hızı, model seçim kriterleri. 
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CHAPTER 1: INTRODUCTION 

 

 The energy requirements in our current study have been increased accordingly. 

This rise is strongly connected with the evolution of the technologies as well as the 

continuous increase in the population. Through the decades, we used a traditional 

approach to fulfil the energy requirements, which is based entirely of fossil fuels. 

 

 However, due to the environment pollution and climate change that has been 

arisen from the extensive usage of fossil fuels see Bilir, L., Devrim, Y. and Imir, M. 

(2015), Hepbasli, A. and Ozgener, O. (2004), based on that, many countries in the 

world intentionally invested in the renewable energy sources of the wind due to the 

fact this energy is considered a sustainable, clean, and cheap see Gani et al. (2016).  

 

All around the world the wind energy has become the center of attention as the 

suitable renewable energy see Alavi, O., Mohammadi, K. and Mostafaeipour, A. 

(2016). For instance, multiple countries started already to produce electricity like, 

India, United States, Spain, Denmark, and Germany used the renewable source of 

energy, such us wind, to generate the electricity in clean way see Ahmed, A. S. (2010), 

and Bilir, L., Devrim, Y. and Imir, M. (2015).  

 

The most important key factors for the wind energy system are represented by 

choosing the location after lengthy examination, so that we can determine exactly 

where the facility might be installed. The second factor is the understanding of the 

wind speed attribute Akgul, F., Arslan, T. and Senoglu, B. (2016), Ozay, C., and 

Celiktas. M. S.  (2016). 

 

 Statistical distributions are essential to define the characteristics of the 

inconstant behavior of the wind speed. Regarding this, the modeling of the wind speed 

is based entirely in multiple scenarist on the Weibull distribution, see Bilir, L., Devrim, 
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Y. and Imir, M. (2015), Jowder, F. (2009), Costa Rocha .et al. (2012),  Khahro et al. 

(2014),  Bagiorgas et al. (2015), and Akdağ, S. and Güler, Ö. (2018).  

 

Consequently, the first aim of our research will contrast the different 

distributions such as Rayleigh, Lognormal, Gumbel, Inverse Gaussian, Burr type XII, 

Generalized Extreme value, Gamma and Weibull in which we can determine the most 

promising one of those distributions in modelling wind speed.  

 

We are encouraged to choose these distributions because they are applicable 

alternatives for the Weibull distribution, which has been used extremely in wind speed 

studies. Additionally, these distributions have been preferred in our study because they 

can model the datasets by taking into account the skewness and heavy tail.  

 

The second aim that we have focused on was taking eight different stations in 

Iraq. These locations are distributed closely from each other where the wind speed 

performance is most attractive. More specifically, we acquired a multiple datasets for 

multiple locations and then we will try to study the attribute of each dataset to 

determine the wind speed characteristics correctly.  

 

 It is clear that Weibull distribution used to interpret and understand the 

behavior and characteristics of wind speeds that has been used widely, due to its 

properties that can be comprehended easily. 

 

Based on that,  the accuracy of each modeling distribution which is related 

more or less to the nature or the location of the wind regimes see  Akgul, F., Arslan, 

T. and Senoglu, B. (2016), Gugliani, et al. (2017), Kantar, Y. and Usta, I. (2015), 

Ouarda, T. B., Charron, C., and Chebana, F. (2016). However, the aforementioned 

modeling systems have relative limitations when modeling the wind speed is faced 

with calm or extreme wind motions.  
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Furthermore, another concern of modeling the wind speed is associated with 

kurtosis as well as skewness see Chang, T. (2011), and Arslan, T., Acitas, S. and 

Senoglu, B. (2017). Hence, a wide range of the distributions have been implemented 

to realize the attribute of the wind speed for example, Beta, Nakagami, Gamma, 

Inverse Gaussian, generalized Gamma, Inverse Weibull (IW) , lognormal, Gumbel, 

Kappa, truncated normal, Wakaby, log-logistic, Rayleigh, and Inverse Gamma (IG). 

 

The remaining sections of our research will be sorted in the following manners. 

In chapter 2, we made literatures review. In chapter 3, we will touch briefly the 

equations of the multiple distributions. In chapter 4, we evaluate our model by 

considering multiple criteria. In chapter 5, we will present the case study and examine 

the data of the wind speed that will be studied in our research.  In chapter 6, results 

and discussions of our research are explained thoroughly. Lastly, we present our 

conclusion. 
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CHAPTER 2: LITRATURE REVIEW 

  

Other authors examined other literatures that are related to the wind energy and 

wind speed characteristics for example Mahmood, F., Resen, A. and Khamees, A., 

(2020), who used Weibull distribution as a model to analyze the wind speed in AL 

Salman station, Iraq.  

 

In addition, Hassoon A., (2013), was concerned with the assessment of wind 

energy in north of Iraq. They test five different locations and these data analyzed by 

using Weibull distribution. 

 

Subsequently, Shu, Z., Li, Q. and Chan, P. (2015), were relied mainly on 

defining wind speed behavior on the Weibull distribution in Hong Kong. They were 

able through investigation and research in five different locations within six years by 

using Weibull model to discover that the annual average parameter scale is between 

(2.85 - 10.19) and the annual rate for shape parameter was between (1.65-1.99). 

 

 In the same context, Kidmo et al. (2015), in the Garoua region, Cameron. The 

authors used a Weibull model to explain the characteristics of wind speed. In order to 

predict Weibull parameters, they tested several methods such as Empirical Method, 

Energy Pattern Factor method, Moment Method Graphical Method, Modified 

Maximum Likelihood Method (MMLE) and Maximum Likelihood Method (MLE). 

They examined these predictions for Weibull parameters by utilizing several criteria’s 

such as (coefficient of correlation, Kolmogorov-Smirnov (KS), root mean square error 

(RMSE), and chi-square) tests. The authors realized that the best prediction was with 

the Moment Method and Energy Pattern Factor method. 

 

Furthermore, Shittu, O. and Adepoju, K. (2014), tried to utilize an 

Exponentiated Weibull distribution in the area located in South Western Nigeria as an 
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alternative to Weibull distribution, which is considered as the most common 

distributions used in the interpretation of wind speed performance. The authors 

compared the performance of the two distributions systematically. 

 

 Hence, the values that have been shown from the use of two selection criterion 

such as likelihood function and Akaike information criterion (AIC), where the best fit 

for the data of wind speed. The criteria values for Exponentiated Weibull distribution 

were always lower than Weibull values over the Year, except one month only. This 

result encouraged the authors to consider Exponentiated Weibull distribution as a 

successful alternative to Weibull distribution. 

 

From another point of view, the authors Zaharim et al. (2009) used a group of 

methods, which enables them to assess the wind speed data in comparative manner. 

This assessment took place in the Engineering Faculty, University Kebangsaan 

Malaysia. Additionally, they utilized the two-parameter Weibull distribution as well 

as lognormal distribution to model the data of wind speed. The results showed them 

that the two-parameter Weibull distribution is more reliable than Lognormal 

distribution.  

 

On the other hands, the authors Carta, J., Ramírez, P. and Velázquez, S., 

(2009), and Morgan et al. (2011), have tried to sort out the modeling performance of 

wind speed by using a set of distributions. They grasped a very significant realization 

that the Weibull distribution might not be useful in all wind regimes. Following that, 

they determined a unique factor that need to be adhered to reduce the expected amount 

of errors in the wind estimation. 

 

Brano et al. (2011) examined the speed characteristics in Palermo, Italy. Such 

examination was possible by the utilization of the following distributions: Rayleigh, 

Weibull, Gamma, Inverse Gaussian, Person (Type 5), Burr Type XII and Lognormal 

distributions. The authors demonstrated that one type of distribution, which is called 

Burr type XII distribution, was suitable for this area. 
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Further research was conducted by Amaya-Martínez, P., Saavedra-Montes, A. 

and Arango-Zuluaga, E. (2014), which took into account four common distributions, 

which are Lognormal, Weibull, Gamma, and Rayleigh. The authors carried out this 

study in the Aburra Valley, Colombia in five different stations to test the mentioned 

common distributions previously to realize which one of the distributions express the 

best fit for the data of the five sites of interest. The results showed that the Lognormal 

distribution got the first rank in three different locations, while the Weibull distribution 

came in second place as the best fit for the data. As for the Gamma distribution, it came 

third in only one location.  

 

 On the contrary, Mohammadi, K., Alavi, O. and McGowan, J. (2017), studied 

the wind speed characteristics in Ontario, Canada. They were constrained with one 

distribution, which was Birnbaum-Saunders (BS) distribution to compare its validity 

against varies distribution in this regimes. They concluded that BS distribution was the 

most convenient one. 

 

 Barcale, A., Carpinelli, G. and De Falco, P. (2017), utilized the inverse Burr 

distribution to estimate the wind speed characteristics. Moreover, Jung, C. and 

Schindler, D. (2017), took another approach by combining one component distribution 

and mixture distributions in which they can model the wind speed globally. They 

reached a conclusion that Weibull distribution has proven to be the best in handful 

regimes.  

 

 In addition to that, Arslan, T., Acitas, S. and Senoglu, B. (2017), used power 

Lindley PL distributions and Generalized Lindley GL. They emphasized that GL 

distribution is best fitting for test purpose and PL distribution was chosen to classify 

the power density error. 
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2.1 Parameters estimation method 

  

There are multiple estimation methods to predict the parameters of 

distributions such as Empirical Method, Moment Method, least square method, 

Graphical Method, weighted least square method, Modified Maximum Likelihood 

Method (MMLE) and Maximum Likelihood Method (MLE). Following that we will 

explain each of these methods in simple manner in the following sections, for 

additional information see Pobocikova, I. and Sedliackova, Z. (2014), Teimouri, M., 

M, S. and Nadarajah, S., (2013), and Al-Fawzan, M., (2000). 

 

Through the following methods, we will use an example, which will explain 

the Weibull distribution estimation parameters more effectively, the pdf and cdf for 

Weibull as below respectively: 

𝑓(𝑥) =
𝑐

𝜎
 (

𝑥

𝜎
)𝑐−1 𝑒−(

𝑥
𝜎

)𝑐

        (2.1) 

𝐹(𝑥) = 1 − 𝑒
−(

𝑥𝑐

𝜎𝑐)
                 (2.2)             

2.1.1 Graphical methods 

 

These methods have been utilized due to the fact that they are simple to 

implement and fast to get the result. Although , it is simple and fast but it suffers a high 

percentage of error in the results. One of the most common graphical method is 

Weibull probability plotting. Weibull palpability plotting is based mainly on the 

logarithmic transformation. The equation (2.2) will be transformed to logarithmic 

function, which seen below: 

ln[− ln(1 − 𝐹(𝑥))] = 𝑐𝑙𝑛(𝑥) − 𝑐𝑙𝑛(𝜎)                (2.3)                      

To determine the Weibull scale and shape parameters we will draw 𝑙𝑛(𝑥) versus 

ln[− ln(1 − 𝐹(𝑥))] so that we can acquired the straight line in the graph. Thus, each 

zero presence on the graph will be ignored to get line of the best fit. The c is defined 

as the slope of the line and the value of the term(−𝑐𝑙𝑛(𝑘)) is defined as the y-intercept. 
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2.1.2 Least Squares Method 

 

This method is another technique, which has been utilized to estimate several 

problem in the fields of engineering and mathematics. However, this method is not 

pure to estimate the parameters. To estimate the weibull parameters we will use the 

LSM and that is demonstrate in the following equations.  

 

To convert equation (2.2) to linear formula, it will undergo a two logarithmic 

computation, and then we will get: 

ln[− ln(1 − 𝐹(𝑥))] = 𝑐𝑙𝑛(𝑥) − 𝑐𝑙𝑛(𝜎)                (2.3)      

where, ln [− ln(1 − F(x)) = Y, and ln(𝑥) = 𝑋 , let 𝐵1 = 𝑐 and 𝐵0 = −𝑐𝑙𝑛(𝜎), then 

we can rewrite the equation (2.3) as follows: 

𝑌 = 𝐵1𝑋 + 𝐵0        (2.4) 

Now let 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛) will be defined as the order statistics of 

𝑋1, 𝑋2, … … . . , 𝑋𝑛 and let 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛)be the observations, which are 

ordered. The mean rank is used to assess the values of the CDF function as in the 

following equation: 

𝐹̂(𝑥(𝑖)) =
𝑖

𝑛 + 1
         (2.5) 

where i is defined as the 𝑖𝑡ℎsmallest value of 𝑥(1), 𝑥(2), … , 𝑥(𝑛), i= 1, 2… n. The 

estimate 𝐵̂1 and  𝐵̂0 of the regression, parameters  𝐵1 𝑎𝑛𝑑 𝐵0 minimize the equation 

as below: 

𝑄(𝐵0, 𝐵1) = ∑(𝑌𝑖 − 𝐵0 − 𝐵1ln 𝑥𝑖)
2

𝑛

𝑖=1

             (2.6) 

The estimate 𝐵̂0 and 𝐵̂1 of the parameters 𝐵0 𝑎𝑛𝑑 𝐵1are givern by: 

𝐵̂1 =
𝑛 ∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1 ln [−ln (1 − 𝐹̂(𝑥𝑖)))] − ∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1 ∑ ln (−ln (1 − 𝐹̂(𝑥𝑖)))]𝑛

𝑖

𝑛 ∑ 𝑙𝑛2𝑥(𝑖)
𝑛
𝑖=1 − (∑ 𝑙𝑛𝑥(𝑖)

𝑛
𝑖=1 )

2    (2.7) 

𝐵̂0 =
1

𝑛
∑ ln [−ln (1 − 𝐹̂(𝑥𝑖)))] −

𝑛

𝑖=1

𝐵̂1

1

𝑛
∑ ln 𝑥(𝑖)

𝑛

𝑖=1

     (2.8) 
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where 𝐵̂1 = 𝑐̂ and 𝜎̂ = exp (
ln [− ln(1−𝐹̂(𝑥𝑖))−𝑐̂

1

𝑛
∑ ln 𝑥(𝑖)

𝑛
𝑖=1

𝑐̂𝑛
) 

2.1.3 Weighted least square method  

  

This method is commonly applied in the field of estimated parameters because 

it is remarkably simple for the estimation. Additionally the calculation of the 

estimation can be obtained very easily by using closed-form formula. The estimate 𝐵̂1 

and 𝐵̂0of the regression, parameters  𝐵1 𝑎𝑛𝑑 𝐵0 minimize the function: 

𝑄(𝐵0, 𝐵1) = ∑ 𝑤𝑖(𝑌𝑖 − 𝐵0 − 𝐵1ln 𝑥𝑖)2

𝑛

𝑖=1

       (2.9) 

Let, 𝑤𝑖 the weight factor, which is described in the equation as bellows: 

𝑤𝑖 = [(1 − 𝐹̂(𝑥𝑖))ln (1 − 𝐹̂(𝑥𝑖))]
2

         (2.10) 

The predict 𝐵̂1  and 𝐵̂0 of the parameters 𝐵1 𝑎𝑛𝑑 𝐵0 are givern by: 

 

𝐵̂1 =
∑ 𝑤𝑖

𝑛
𝑖=1 ∑ 𝑤𝑖𝑙𝑛𝑥𝑖

𝑛
𝑖=1 ln [−ln (1 − 𝐹̂(𝑥𝑖)))] − ∑ 𝑤𝑖𝑙𝑛𝑥𝑖

𝑛
𝑖=1 ∑ 𝑤𝑖ln (−ln (1 − 𝐹̂(𝑥𝑖)))]𝑛

𝑖

∑ 𝑤𝑖
𝑛
𝑖=1 ∑ 𝑤𝑖𝑙𝑛

2𝑥(𝑖)
𝑛
𝑖=1 − (∑ 𝑤𝑖𝑙𝑛𝑥(𝑖)

𝑛
𝑖=1 )

2      (2.11) 

𝐵̂0 =
∑ 𝑤𝑖ln [−ln (1 − 𝐹̂(𝑥𝑖)))] −𝑛

𝑖=1 𝐵̂1
1
𝑛

∑ 𝑤𝑖 ln 𝑥(𝑖)
𝑛
𝑖=1

𝐵̂1 ∑ 𝑤𝑖
𝑛
𝑖=1

      (2.12) 

 where 𝐵̂1 = 𝑐̂ and 𝜎̂ = exp (
∑ 𝑤𝑖

𝑛
𝑖=1 ln [− ln(1−𝐹̂(𝑥𝑖))−𝑐̂ ∑ 𝑤𝑖ln 𝑥(𝑖)

𝑛
𝑖=1

𝑐̂ ∑ 𝑤𝑖
𝑛
𝑖=1

) 

2.1.4 Method of Moments 

 

This method is one of the most promising techniques that has been 

implemented widely to estimate the parameters. Let 𝑥1, 𝑥2, … … . . , 𝑥𝑛 be a set of data, 

by using 𝑣𝑚, which is the mean, and sigma, which is the standard deviation of Weibull 

distribution to estimate parameters for moment method. To solve the moment method 

we can use the iteration techniques by the following equation: 

𝜎 =
𝑣𝑚

Γ(1 + 1/𝑐)
           (2.13) 
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We can obtain the standard deviation sigma from the equation below: 

𝑠𝑖𝑔𝑚𝑎 = 𝜎[Γ (1 +
2

𝑐
) − Γ2(1 + 1/𝑐)]2         (2.14) 

where the gamma function is written as below: 

Γ(𝑥) = ∫ 𝑡𝑥−1exp (−𝑡)𝑑𝑡
∞

0

          (2.15) 

2.1.5 Modified Maximum likelihood Estimation Method (MMLE) 

 

This method is restricted only for the data of wind speed, which is visible in 

the Weibull distribution format.  (MMLE) uses numerical iteration to estimate the 

parameters such us for Weibull distribution. Furthermore, the shape and scale 

parameters can be estimated by the following equations: 

𝑐 = [
∑ 𝑥𝑖

𝑐ln (𝑥𝑖)𝑓(𝑥𝑖)
𝑛
𝑖=1

∑ 𝑥𝑖
𝑐𝑓(𝑥𝑖)

𝑛
𝑖=1

−
∑ ln (𝑥𝑖)𝑓(𝑥𝑖)

𝑛
𝑖=1

𝑓(𝑥 ≥ 0)
]

−1

          (2.16) 

𝜎 = [
∑ 𝑥𝑖

𝑐𝑓(𝑥𝑖)𝑛
𝑖=1

𝑓(𝑥 ≥ 0)
]

−1

               (2.17) 

Here, 𝑓(𝑥) is the probability density function when 𝑥 ≥ 0, 𝑓(𝑥𝑖) is Weibull frequency. 

2.1.6 Empirical Method 

 

This method is considered a special case of the moment method, where the 

Weibull parameters c and σ can be shown by the equations below: 

𝑐 = (𝑠𝑖𝑔𝑚𝑎/𝑣𝑚)−1.089         (2.18) 

𝜎 =
𝑣𝑚

Γ(1 + 1/𝑐)
             (2.19) 

where, 𝑣𝑚 the mean and sigma be the standard deviation of Weibull distribution. 
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2.1.7 Maximum likelihood Estimation method (MLE) 

 

This method is one of most promising method, which will be used to maximize 

the likelihood function by taking into account several significant parameters. 

 

 Historically, Pierre-Simon Laplace, Carl Friedrich Gauss, Francis Ysidro 

Edgeworth and Thorvald N. Thiele were the first scientists who using the maximum 

likelihood estimation method, for more information see Edgeworth, F., (1908). 

 

However, the use of maximum likelihood estimation increased widely between 

1912 and 1920 when R. A. Fisher considered careful analysis of the maximum 

likelihood estimation see Pfanzagl, J. and Hamböker, R., (1994). It is worth noting, 

that the first person to represent the maximum likelihood estimation is the scientist R. 

A. Fisher in 1922, when he made many researches and developments on the way until 

he reached the current form see Aldrich, J. (1997). 

 

It is worth to note that many authors recommended using this method                

(maximum likelihood estimation) to determine the parameters due to its distinctive 

characteristics which are represented through efficiency, consistency and asymptotic 

normality. Additionally, the maximum likelihood estimation is considered to be 

feasible when the sample size is not small see Pobocikova, I. and Sedliackova, Z., 

(2014). 

 

Now, we are going to introduce this method briefly just to realize and 

understanding the process. Maximum likelihood estimation (MLE) is a procedure to 

predict parameters of a distribution, besides making test hypothesis for parameters, 

which are estimated. In addition, like any method, maximum likelihood estimation 

need two fundamental components. The first one is a mathematical model, which 

describe the distribution of the variables of the data set. The second one is a set of data 

that is obviously important for any statistical analysis. 
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We can define the parameters as an unknown quantity, which are belong to 

model, which describes the distribution in database. In general, the aim of maximum 

likelihood estimation (MLE) method is to consider the parameters of our model, which 

provides the best interpretation for the data. Consequently, in data analysis, three 

different steps are used in maximum likelihood estimation. Firstly, the parameters 

estimation for distributions. Secondly, making test hypothesis for those parameters. 

Lastly, on the same data that are used to estimate parameters, making comparison on 

two models.  

 

In the estimation part, it is probably best to set an example for the estimation 

process to be clear and easy to understand. Suppose that the variable 𝑋𝑖 in a data set is 

normally distributed, n is the number of observation and assume we tried to estimate 

the normal distribution parameters, which are Standard Deviation and Mean. 

𝐿(𝑋𝑖) =
1

𝜎√2𝜋
𝑒−

1
2

(
𝑋𝑖−𝜇

𝜎
)

2

                         (2.20) 

where, 𝜇 is sign to Mean, 𝜎 is sign to the standard deviation of the distribution. 

Suppose that the observations (𝑥1,𝑥2,………..𝑥𝑛) are independent so we can write the 

joint likelihood as follows: 

𝑓(𝑥1, 𝑥2, … … … , 𝑥𝑛|𝜃) = 𝑓(𝑥1|𝜃)𝑓(𝑥2|𝜃) … … … … … 𝑓(𝑥𝑛|𝜃)         (2.21) 

where, 𝜃 is unknown parameters and 𝑓(𝑥𝑖|𝜃) are a probability density functions 

according to ith of observations. It is normal to denote to 𝑓(𝑥1, 𝑥2, … … … , 𝑥𝑛|𝜃) by 

L(X) so we have got: 

𝐿(𝑥) = ∏ 𝐿(𝑋𝑖)

𝑛

𝑖=1

                    (2.22) 

Now, we have to maximize the function with respect to unknown parameters , 𝜇 and 

𝜎 by taking the first derivative to equation respecting to unknown parameters and 

equate them to zero , such that : 

𝜕𝐿(𝑥)

𝜕𝜇
= 0 ,

𝜕𝐿(𝑥)

𝜕𝜎
= 0                    

 

Before going to take derivatives, we should use Logarithm function for 

maximum likelihood estimation method because of three reasons to deal with log 
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function instead of deal with likelihood function directly. First, the log function is a 

monotonic increasing function. Second, log likelihood simplifies the comparison with 

derivative calculation of likelihood function because log likelihood is a series of sums 

while the likelihood is series of products. Third, likelihoods functions are often (but 

not always) quantities between 0 and 1. Hence, taking the products of a large number 

of fractions can be affected by marked rounding and truncation error, even with the 

most modern computers. So, to come back to our example after taking Logarithm to 

equation (2.22) we will get: 

𝐿𝑜𝑔(𝐿(𝑥)) = ∑ 𝐿𝑜𝑔(𝐿(𝑥𝑖))

𝑛

𝑖=1

        (2.23) 

By substituting ( 2. 20) in ( 2. 23) we can get: 

𝐿𝑜𝑔(𝐿(𝑥)) = ∑(
1

2
log(2𝜋) −

1

2
log (𝜎2

𝑛

𝑖=1

) −
1

2
(

𝑥𝑖 − 𝜇

𝜎
)

2

 )        

𝐿𝑜𝑔(𝐿(𝑥)) = (
𝑛

2
log(2𝜋) −

𝑛

2
log (𝜎2) −

1

2
∑ (

𝑥𝑖 − 𝜇

𝜎
)

𝑛

𝑖=1

2

 )       (2.24) 

Finally, taking the derivative is the next step respecting to 𝜇 and 𝜎 and equate them 

to zero we will get: 

𝜇̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
                            (2.25) 

𝜎̂ = √
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1

𝑛
                         (2.26) 

where, 𝜇̂ is The estimator of  𝜇, 𝜎̂ is the estimator of 𝜎. 

 

It is worth noting that the solution to derivatives is almost very difficult or in 

other words, the solution of these derivatives requires a great effort to solve them. 

Interestingly, the result in the previous example showed the ease of finding to 

statistical expressions 𝜇̂ and 𝜎̂ which are almost rare and unusual. 

 

As a result, many numerical methods and techniques have been used to find 

Maximum likelihood estimators, and these popular and widely used methods such as, 

Bisection method, Newton-Raphson method, and secant method. 
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CHAPTER 3: WIND SPEED DISTRIBUTIONS 

 

 In this part from our research, we will talk briefly about the probability density 

functions (pdf) and cumulative distribution function (cdf) for each distributions, which 

are used in this study. It worth to note that statistical distributions has a significance 

by interpreting the wind speed in appropriate way.  

3.1 Weibull distribution 

 

Weibull distribution (WD) is used to describe various kinds of observed 

failures of data. In addition, these models have several use cases in reliability and 

survival data, likewise in reliability engineering see (Pham, 2007). 

 

It is worth noting that Weibull distribution have a lot of applications that we 

will mention some of them are as follows: wind speed data analysis see Al-Hasan, M. 

and Nigmatullin, R., (2003), Earthquake magnitude see Huillet, T. and Raynaud, H., 

(1999), Survival data see Carroll, K., (2003), Environment radioactivity see Dahm, H., 

Niemeyer, J. and Schröder, D. (2002), and in nature see Fleming, R., (2001). 

 

 As we mentioned above, Weibull distribution has been considered the 

prevalent statistical distribution in which it models the speed of the wind because it 

was proven in many cases in which it was realized to be optimal in the nature, see 

Acker et al. (2007), Ahmed Shata A.S., Hanitsch R. (2006), and Akpinar EK, Akpinar 

S. (2005). The pdf as well as cdf written in the following way: 

𝑓(𝑥) =
𝑐

𝜎
 (

𝑥

𝜎
)𝑐−1 𝑒−(

𝑥

𝜎
)𝑐

          (3.1)                  

 𝐹(𝑥) = 1 − 𝑒
−(

𝑥𝑐

𝜎𝑐)
                 (3.2)             

 where, x >0 and 𝜎 >0. c will interpreted as shape. 𝜎 will interpreted as scale. To 

maximize the joint likelihood function we utilized the ML estimation method to 
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estimate unknown of Weibull distribution parameters. ln L function is considered as 

below: 

ln 𝐿 = 𝑛𝑙𝑛𝑐 − 𝑛𝑐𝑙𝑛𝜎 + (𝑐 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− 𝜎−𝑐 ∑(𝑥𝑖
𝑐)

𝑛

𝑖=1

          (3.3) 

Then, we have to take derivatives of ln L function for c as well as for 𝜎. Afterwards, 

the equations will be equalized to zero. As a result, the ML has been acquired. 𝑐 ̂ will 

be acquired from the next equations, which are solved iteratively: 

 =
𝑛

𝑐
+ ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

−
𝑛 ∑ 𝑥𝑖

𝑐𝑙𝑛𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝑐𝑛

𝑖=1
𝑐
^ = 0             (3.4) 

After this, by incorporating 𝑐 ̂ into next equation we obtained 𝜎 hat as follows: 

 =  
1

𝑛
∑ 𝑥𝑖

𝑐̂

𝑛

𝑖=1

𝜎
^            (3.5) 

Figure 1: Performance the pdf s of Weibull distribution 1. 

 

By examining figure 1, we can see the performance of distribution when scale 

parameter getting higher and the shape parameter kept as a constant. Following that, it 

will lead that the distribution gets stretched out to the right and its height decreases, 

while maintaining its location.  When the scale parameter went down and the shape 
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parameter kept constant, it will derive that, the height of the distribution to be increase 

and pushes it to the left. 

 

 

 

 

 

 

 

 

Figure 2: Performance the pdf s of Weibull distribution 2. 

 

 By looking into figure 2, we be able to realize that the shape parameter is 

effected clearly on the attribute of Weibull distribution when the values of shape 

parameters are chosen differently. Moreover, in some literatures the shape parameter 

is called as slope parameter.  

 

In fact, new distribution equations can be obtained by simply changing some 

values of the shape parameters, for example, exponential distribution is considered as 

a special case of Weibull distribution, which can be acquired when the shape parameter 

is equal to 1. In addition, Rayleigh distribution is also considered as a special case from 

Weibull distribution when the value of the shape parameter equal to 2. Furthermore, 

when the values of the shape parameter are between 3 and 4 will be approximately 

symmetric.   
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3.2 Rayleigh distribution 

 

Rayleigh distribution is one of the most popular distributions used in statistical 

analysis, especially in the analysis of positive skewed data. In addition to this, Rayleigh 

distribution has become widely used in many applications, particularly oceanography 

applications and communication theory applications. It has been used to describe the 

instantaneous peak power of signals. However, it appears historically, Lord Rayleigh 

used the Rayleigh distribution initially in the areas of acoustics and optics.  

 

The widespread use of Rayleigh encouraged many physicists and engineers to 

pay attention to this distribution and use it in modeling wave propagation, artificial 

radar images, radiation, etc. 

   

 In the same context, Rayleigh has been used extensively to model the 

characteristics that define the speed of the wind see Bidaoui, et al. (2019), and Akgul, 

F., Arslan, T. and Senoglu, B. (2016). The Rayleigh distribution, which is a 

distribution of continuous probability density function and it is special case of Weibull 

distribution with a fixed shape parameter value equal to 2. It is named after the English 

Lord Rayleigh. The Probability density function and the Cumulative distribution 

function for Rayleigh distribution are demonstrated as follows respectively: 

𝑓(𝑥) =  (
𝑥

𝜎2
) 𝑒

−
𝑥2

2𝜎2         (3.6) 

𝐹(𝑥) = 1 − 𝑒
−

𝑥2

2𝜎2            (3.7) 

 where, x >0 and 𝜎 >0. Here, 𝜎 is scale parameter. To estimate the unknown parameter, 

ln L function is considered as below: 

ln 𝐿 = −2𝑛𝑙𝑛𝜎 + ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− ∑(
𝑥𝑖

2

𝜎2
)

𝑛

𝑖=1

                   (3.8) 
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Then, we have to take derivatives of ln L function for 𝜎. Afterwards, the equation will 

be equalized to zero. As a result, the ML equation has been acquired. 𝜎 ̂ will be 

acquired from the next equation: 

𝜎̂ = √
1

2𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

                               (3.9) 

 

Figure 3: Performance the pdf s of Rayleigh distribution. 

 

In figure 3, we realize the performance of Rayleigh distribution when scale 

parameter getting higher, the distribution gets stretched out to the right and its height 

will be decreased. 

3.4 Lognormal Distribution 

 

 Lognormal distribution is known in some fields as the Galton distribution, and 

it is one of the continuous distributions used to model continuous random variables 

that are often greater or equal to zero. 
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Lognormal distribution has many applications in fields that are almost 

extensive and we will mention here some of them. Lognormal distribution was found 

useful in applications of environmental sciences, applications of chemicals, medicine, 

and economics. In the same context, the lognormal distribution was a respectable 

distribution in financial applications see Black, F., Scholes, M. (1973). 

 

The lognormal distribution is distinguished by its use in the modeling of data 

that has been distributed normally, regardless of whether it is a little or more skewed 

see Ginos, (2009). 

 

On the other hands, lognormal distribution has been considered the prevalent 

statistical distribution in which it models the speed of the wind see Ivana, P., Zuzana, 

S. and Mária, M. (2017), Ginos, (2009). Furthermore, the pdf and cdf for lognormal 

distribution written in the following way: 

𝑓(𝑥) =
1

𝑥√2𝜋𝜎2
𝑒−(ln(𝑥)−𝜇)2/2𝜎2)        (3.10) 

𝐹(𝑥) = Φ (
ln(𝑥) − 𝑚

𝜎
)                       (3.11) 

 Here  𝜇 and 𝜎 mean and standard deviation, while Φ is the standard normal (standard 

Lognormal) distribution cdf. The ln L function is written as demonstrated below: 

ln 𝐿 = −
𝑛

2
ln(2𝜋𝜎2) − ∑ ln(𝑥𝑖)

𝑛

𝑖=1

− ∑
ln(𝑥𝑖)

2

2𝜎2
+

𝑛

𝑖=1

∑
ln(𝑥𝑖)𝜇

𝜎2
−

𝑛

𝑖=1

𝑛𝜇2

2𝜎2
         (3.12) 

After that, derivatives are taken for ln L function for 𝜇 as well as 𝜎.  Afterwards, the 

equations will be equalized to zero. As a result, the likelihoods equations can been 

written as follows: 

=
∑ ln(𝑥𝑖)

𝑛
𝑖=1

𝑛𝜇
^                                                          (3.13) 

=  
∑ (ln(𝑥𝑖) − ∑

ln(𝑥𝑖)
𝑛

𝑛
𝑖=1 )

2
𝑛
𝑖=1

𝑛𝜎
^                        (3.14) 
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Figure 4: Performance the pdf s of Liognormal distribution. 

 

In figure 4, we observe that the performance of probability density functions 

will become almost normal when the Mean parameter is equal to 0 and standard 

deviation is going down. While the performance of probability density function gets 

stretched out to the right and its height will be decreased when the standard deviation 

be bigger. 

3.5 Inverse Gaussian distribution 

 

 Inverse Gaussian distribution is one of the distributions belonging to the family 

of two-parameter continuous distributions such that 𝜇 is Mean parameter and 𝜆 is 

considered as the shape parameter. Inverse Gaussian distribution is also known by the 

name of Wald distribution. For an optimal use of the inverse Gaussian distribution, 

there are some conditions that must be met by the data. In particularly, the data must 

be non-negative and positively skewed. 
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 Furthermore, Inverse Gaussian distribution (IG) utilized as an alternative to 

weibull distribution especially in recent decades for modelling wind speed data see 

Philippe D., (2015). The pdf as well as cdf written in the following way: 

𝑓(𝑥) = √
𝜆 

2𝜋𝑥3
 𝑒

−𝜆(𝑥−𝜇)2

2𝜇2𝑥                  (3.15) 

𝐹(𝑥) = ∫ √
𝜆 

2𝜋𝑥3
 𝑒

−𝜆(𝑥−𝜇)2

2𝜇2𝑥 𝑑𝑥
𝑣

0

         (3.16) 

Here,  𝜇 and 𝜆 mean and shape respectively. To find the ML estimates of parameters 

of Inverse Gaussian, which are unknown, we derive log function to maximize 

likelihood function as listed below: 

ln 𝐿 =
𝑛

2
ln (

𝜆

2𝜋
) −

3

2
∑ ln(𝑥𝑖)

𝑛

𝑖=1

− ∑
𝜆(𝑥𝑖 − 𝜇)2

2𝜇2𝑥𝑖

𝑛

𝑖=1

           (3.17) 

Next, derivatives are taken for ln L function for µ as well as  𝜆 .  Afterwards, the 

equations will be equalized to zero. As a result, ML equations has been obtained in the 

following way: 

=
𝑛𝜆

𝜇3
 (

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
− 𝜇)𝜇

^                           (3.18) 

=
𝑛

2

1

𝜆
−

1

2𝜇2𝜆
^  ∑

(𝑥𝑖 − 𝜇)2

𝑥𝑖

𝑛

𝑖=1

             (3.19) 

 

In figure 5, we observe that the performance of probability density distributions 

when the parameter 𝜇 be a constant and standard deviation parameter 𝜆 is increased 

the pdf gets stretched out to the right Additionally, the effective appears that the height 

of pdf is increase when the parameter 𝜇 be a constant and standard deviation parameter 

𝜆 is decrease. 
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Figure 5: Performance the pdf s of IG distribution. 

3.6 Generalized extreme value distribution 

 

Generalized extreme value distribution (GEV) is a distribution that belongs to 

the continuous probability distributions family. It has been noted that the generalized 

extreme value distribution (GEV) is called Fisher - Tippett distribution in some books 

and articles, according to Ronald Fisher and L. C. C. Tippett. Those authors were able 

to obtain three different forms of generalized extreme value distribution (GEV). 

 

For generalized extreme value distribution (GEV), there are wide applications 

in different fields, including for example, its uses in hydrology - where generalized 

extreme value distribution is utilized to illustrate the daily rainfall - . On the other hand, 

GEV is used for financial transfer and insurance modeling, as well as  it is considered 

one of the best methods used to analyze financial risks through special criteria for 

example the value at risk, see Moscadelli, M., (2004), and Guégan, D., Hassani, B.K. 

(2014). 

 

 Broadly speaking, Generalized extreme value distributions have been widely 

used for fitting the distributions of extreme wind speed see Cheng, E. and Yeung, C. 
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(2002), and Sarkar et al. (2019). The pdf as well as cdf for GEV obtained in the 

following way respectively: 

 

𝑓(𝑥) =
1

𝜎
[1 + 𝑐 (

𝑥 − 𝜇

𝜎
)]

−1−1/𝑐

𝑒−[1+𝑐(𝑥−𝜇/𝜎)]−1/𝑐
, 𝑐 ≠ 0, 𝜎 ≠ 0 ,

−∞ < 𝜇 < ∞      1 + 𝑐 (
𝑥 − 𝜇

𝜎
) > 0,              (3.20) 

𝐹(𝑥) = 𝑒−[1+𝑐(𝑥−𝜇/𝜎)]−1/𝑐
𝑐 ≠ 0, 𝜎 ≠ 0 ,

−∞ < 𝜇 < ∞      1 + 𝑐 (
𝑥 − 𝜇

𝜎
) > 0                (3.21) 

Here, 𝑐 is the shape, 𝜇 is the location and 𝜎 is the scale parameters. The logarithm 

likelihood (ln L) function is written as follows: 

ln 𝐿 = −𝑛𝑙𝑛𝜎 −
𝑐 + 1

𝑐
∑ 𝑙𝑛𝑧𝑖 − ∑ 𝑧𝑖

−1/𝑐

𝑛

𝑖=1

𝑛

𝑖=1

                           (3.22) 

where, 𝑧𝑖 = 1 + 𝑐(𝑥𝑖 − 𝜇/𝜎). Then, by taking derivatives for ln L function with 

respect to unknown parameters 𝑐, 𝜇 and 𝜎 and equating them to zero, then we obtained 

non-linear system equations as follows: 

−
𝑐 + 1

𝑐𝜎
∑(𝑥𝑖 − 𝜇)𝑧𝑖

−1

𝑛

𝑖=1

−
1

𝑐2
∑ 𝑙𝑛𝑧𝑖𝑧𝑖

−
1
𝑐 +

1

𝑐𝜎
∑(𝑥𝑖 − 𝜇)𝑧𝑖

−1−
1
𝑐 = 0

𝑛

𝑖=1

𝑛

𝑖=1

     (3.23) 

𝑐 + 1

𝜎
∑ 𝑧𝑖

−1 −
1

𝜎
∑ 𝑧𝑖

−1−1/𝑐 = 0

𝑛

𝑖=1

𝑛

𝑖=1

                                                                   (3.24) 

−
1

𝜎
+

𝑐 + 1

𝜎2
∑(𝑥𝑖 − 𝜇)𝑧𝑖

−1 −
1

𝜎2
∑(𝑥𝑖 − 𝜇)𝑧𝑖

−1−
1
𝑐 = 0

𝑛

𝑖=1

𝑛

𝑖=1

                          (3.25) 

Finally, to solve the preceding non-linear system equations we used the iterative 

method simultaneously. 
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Figure 6: Performance the pdf s of GEV distribution. 

 

In Figure 6, it represents the performance of probability density functions when 

location parameter = zero, scale parameter = one, and shape parameter takes a different 

values (0.4,-0.4, -0.2). 

3.7 Gamma distribution 

 

In statistics and probability theory, gamma distribution is a two-parameter 

distribution that belongs to continuous probability distributions and which has special 

cases such as Erlang distribution, exponential distribution, and CHI square 

distribution. Based on that, it has gained great importance and it is related to the 

aforementioned distributions and Normal distributions.  

 

The Gamma distribution with two parameters (shape and scale) is one of the 

widely used distributions, especially in economics as well as in many other application 

fields. For example, modeling waiting times. In another example of applications, 

gamma distribution has been utilized in life tests, where the waiting time to death is a 

random variable (Hogg, 1978). 
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On the other hand, gamma distribution was also used in oncology, where it was 

found that the age distribution has been already followed by gamma distribution as 

cases of cancer, Belikov, A., (2017). In neuroscience, the use of gamma distribution 

was famous for its use in this field to describe the distribution of inter-spike intervals 

see Wright et al. (2014). 

 

Following that, the gamma distribution is the most widely utilized distribution 

for modelling wind speed encountered in nature see Morgan et al.(2011), and Ivana, 

P., Zuzana, S. and Mária, M. (2017). The pdf and the cdf for Gamma distribution are 

obtained as follows respectively: 

𝑓(𝑥) =
1

Γ(𝑐)𝜎𝑐
𝑥𝑐−1𝑒−𝑥/𝜎                                                  (3.26) 

𝐹(𝑥) =
1

Γ(𝑐)𝜎𝑐
𝛾 (𝑐,

𝑥

𝜎
)                                                      (3.27) 

where, 𝑥 > 0, 𝑐 > 0, 𝑎𝑛𝑑 𝜎 > 0, 𝑐 will be the shape parameter ,𝜎 will be the scale 

parameter. Γ(. ) will be considered as gamma function . 𝛾(. ) will be considered as the 

lower incomplete gamma function . The Log likelihood function  (ln L) can be  written 

in the  following way: 

ln 𝐿 = −𝑛𝑙𝑛Γ(𝑐) − 𝑛𝑐𝑙𝑛𝜎 + (𝑐 − 1) ∑ 𝑙𝑛𝑥𝑖 − ∑ (
𝑥𝑖

𝜎
)

𝑛

𝑖=1

𝑛

𝑖=1

                   (3.28) 

Then, by taking derivatives of ln L function with respect to 𝑐 and 𝜎 and equating them 

to zero, the 𝑐̂ is obtained by solving this equation: 

𝜓(𝑐) + 𝑙𝑛 (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛𝑐
) −

1

𝑛
∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

= 0                                                      (3.29) 

 

Now, to find the ML estimates of c we will utilize an iterative method. 𝜓(𝑐)will 

be considered as  digamma, which is designated for the Gamma function to be the 

logarithmic derivative, and c most be positive 𝑐 > 0.the second estimated parameter 𝜎̂ 

is found by inserting 𝑐̂ into next equation: 
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𝜎̂ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛𝑐̂
                                               (3.30) 

 

Figure 7: Performance the pdf s of Gamma distribution.  

 

In figure 7, we can see the effective on probability density functions when 

shape and scale parameters take a different values. By examining figure (10), we can 

see the performance of distribution when shape parameter getting higher and the scale 

parameter kept as a constant. Following that, it will lead that the distribution gets 

stretched out to the right and its height decreases.   

3.8 Gumbel distribution 

 

 Another alternative are used to describe the wind speed characteristics is 

Gumbel distribution. Initially, Gumbel distribution has utilized to describe one of the 

minimum distribution or maximum distribution of several different samples of 

distributions and all of this is implied by the theory of probabilities and statistics. 
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It is worth to note that The Gumbel distribution is a special case of the 

generalized extreme value distribution and there are three different types of Extreme 

Value Distribution, firstly, Gumbel distribution has been identified as most common 

Extreme value distribution in modeling the pollution degree, which might entail a valid 

result for the coming future.  

 

Secondly, Fréchet Distribution has been utilized to model a wide range of 

applications in which it determines the maximum values in each form of data. Thirdly, 

the Weibull distribution is a very rich distribution due to the fact that it is used widely 

in the real world. 

 

We clearly realized that Gumbel distribution has many practical applications. 

More specifically, the Extreme value represents the best option in analyzing the 

variables of the maximum values of the amount of daily, monthly or yearly rains and 

the volume of river discharge.  

 

At the same context, the Gumbel distribution is named after Emil Julius 

Gumbel (1891–1966), and that is through the article he published that explained and 

described the distribution see Gumbel E.J. (1941). It is widely used as an extreme value 

distribution, which is used in modeling extreme wind speeds see Xiao et al. (2006), 

and Kang, D., Ko, K. and Huh, J., (2015). 

 

The pdf as well as the cdf for Gumbel distribution are obtained as follows 

respectively: 

𝑓(𝑥) =
1

𝜎
𝑒−(

𝑥−𝜇
𝜎

)𝑒−𝑒
−(

𝑥−𝜇
𝜎

)

, −∞ < 𝑥 < ∞, , −∞ < 𝜇 < ∞, 𝜎 > 0              (3.31) 

𝐹(𝑥) = 𝑒−𝑒
−(

𝑥−𝜇
𝜎

)

 , −∞ < 𝑥 < ∞, , −∞ < 𝜇 < ∞, 𝜎 > 0                               (3.32) 

https://www.statisticshowto.datasciencecentral.com/frechet-distribution/
https://en.wikipedia.org/wiki/Emil_Julius_Gumbel
https://en.wikipedia.org/wiki/Emil_Julius_Gumbel
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 Here, 𝜇 and 𝜎 are the location and scale parameters respectively. To maximize the 

joint likelihood function we utilized the ML estimation method to estimate unknown 

parameters of Gumbel distribution. ln L function is showed as below: 

ln 𝐿 = −𝑛𝑙𝑛𝜎 − ∑ 𝑟𝑖

𝑛

𝑖=1

− ∑(𝑒−𝑟𝑖)

𝑛

𝑖=1

                                                                    (3.33) 

Here,  𝑟𝑖 = ((𝑥𝑖 − 𝜇)/𝜎 .Then, we have to take derivatives of ln L function for our 

parameters 𝜇 as well as 𝜎. Afterwards, the equations will be equalized to zero. As a 

result, ML equations has been obtained in the following way: 

𝑛

𝜎
−

1

𝜎
∑ 𝑒−𝑟𝑖

𝑛

𝑖=1

= 0                                                               (3.34) 

−
𝑛

𝜎
+

1

𝜎
∑ 𝑟𝑖

𝑛

𝑖=1

−
1

𝜎
∑ 𝑟𝑖𝑒

−𝑟𝑖

𝑛

𝑖=1

= 0                                    (3.35) 

Then, equations (3.43) and (3.35) are solved at the same time iteratively by using 

numerical methods. 

 

Figure 8: Performance the pdf s of Gumbel distribution. 
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In Figure 8, we can see the effective on probability density functions of Gumbel 

distribution when location and scale parameters take different values. 

3.10 Burr type XII distribution 

 

 Burr type XII distribution is a member of a system of continuous distributions 

introduced by Irving w. Burr (1942).The importance of it is to model a heavy tailed 

data in simple way when compared with other distributions. Additionally, it has a 

greater flexibility, which enables it to be used by many applications. For instance, in 

deduction premium modeling see Burnecki, K., Härdle, W. and Weron, R. (2004). On 

the other hand, the three parameters Burr type XII distribution has been applied in time 

modeling for the survival of breast cancer patients in Gaza - Palestine for more 

information see Okasha, M. and Matter, M., (2015). 

 

  In the same context, The Burr Type XII distribution can be used to model the 

lifetime data see Feroze, N., and Aslam M., (2013). Recently, Burr family distribution 

have been used to characterize wind speed see Ouarda, T. B., Charron, C., and 

Chebana, F. (2016), Chiodo, E. and De Falco, P., (2016), Barcale, A., Carpinelli, G. 

and De Falco, P. (2017). The pdf as well as cdf written in the following way: 

𝑓(𝑥) =
𝑐𝑘

𝛼
 (

𝑥

𝛼
)𝑐−1 [1 + (

𝑥

𝛼
)

𝑐

]−𝑘−1                                      (3.36) 

𝐹(𝑥) = 1 − [1 + (
𝑥

𝛼
)

𝑐

]
−𝑘

                                                     (3.37) 

where c >0 and k >0 are the shape parameters and α is the scale parameter of the 

distribution. To find the maximum likelihood estimates (MLE) of parameters, which 

are unknown, ln L function is drafted as next: 

ln 𝐿 = 𝑛𝑙𝑛𝑐 + 𝑛𝑙𝑛𝑘 − 𝑛𝑐𝑙𝑛𝛼 + (𝑐 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− (𝑘 + 1) ∑(1 +
𝑥𝑖

𝑐

𝛼𝑐
)

𝑛

𝑖=1

       (3.38) 

Next, derivatives are taken for ln L function for µ as well as  𝜆 .  Afterwards, the 

equations will be equalized to zero. As a result, ML equations has been obtained in the 

following way: 
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 =
𝑛

𝑘
− ∑(1 + (

𝑥𝑖

𝛼
)𝑐)

𝑛

𝑖=1

𝑘
^                                                                                              (3.39) 

 =
𝑛

𝑐
− 𝑛𝑙𝑛𝛼 + ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− (𝑘 + 1)[∑[
(
𝑥𝑖

𝛼 )𝑐

1 + (
𝑥𝑖

𝛼 )𝑐

𝑛

𝑖=1

𝑐
^ ]𝑙𝑛

𝑥𝑖

𝛼
]                                (3.40) 

 =
−𝑛𝑐

  𝛼𝑐
−

𝑐(𝑘 + 1)

𝛼𝛼
^  [∑

(
𝑥𝑖

𝛼 )
𝑐

1 + (
𝑥𝑖

𝛼 )
𝑐

𝑛

𝑖=1

]                                                                   (3.41) 

Here, we solve Equations (3.39), (3.40) and (3.41) simultaneously by using iterative 

techniques.  

 

 

 

 

 

 

 

 

By checking figure 9, we can see the performance of distribution when scale 

parameter (α) getting higher and the shape parameters (c and k) kept as a constant 

(c=5, k=2). Following that, the distribution gets stretched out to the right and its height 

decreases, while maintaining its location.  When the scale parameter went down and 

kept the shape parameters kept constant, it will lead that, the distribution is getting rise 

and pushes it to the left. 

 

 

Figure 9:  Performance the pdf s of Burr type XII distribution. 
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CHAPTER 4: MODEL EVALUATION 

 

In following section, we will consider the selection criteria’s which are used 

for the purpose of determining the probability density function which gives as the 

suitable model for the data of wind speed.  

 

1. The first criteria is R square (coefficient of determination), It is the most common 

model from other models which is used to measure the amount of variance of 

observe data, which is explained by model. The equation of R square as bellows: 

𝑅2 =
∑ (𝐹𝑖̂ − 𝐹̅̂)2𝑛

𝑖=1

∑ (𝐹𝑖̂ − 𝐹̅̂)2𝑛
𝑖=1 − ∑ (𝐹𝑖̂ −

𝑖
𝑛 + 1)2𝑛

𝑖=1

 ,                                           (4.1) 

2.  The second criteria is root mean square error, It is one of the widely selection forms 

used to examine the suitability of a pdf for the data. RMSE is used to measure the 

difference between the observe and predicted value. The equation of RMSE as 

follows: 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑(𝐹𝑖̂ −

𝑖

𝑛 + 1
)2

𝑖=1

𝑛

]

1/2

,                                                           (4.2) 

3.  The third criteria is Akaike information that is used to estimate the distance 

between unknown likelihood function of our data and the fitted likelihood function 

of our model. AIC equation as bellows: 

𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2𝑝 ,                                                                                   (4.3) 

4. The fourth criteria is Bayesian information that is used to test which distribution 

has the suitable model for the data of wind speed. It worth to note that the BIC 

corrects the negative likelihood function by adding the number of estimated 

parameters multiplied by the logarithmic function of the sample size. On the other 

hand, AIC depends primarily on the number of estimated parameters as well as on 

the estimated negative likelihood function. The BIC equation as follows:  

𝐵𝐼𝐶 = −2𝑙𝑛𝐿 + 𝑝𝑙𝑛 𝑛,                                                                               (4.4) 
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5.  Finally, Kolmogorov-Smirnov (KS) test has been developed by Kolmogorov in 

1933 and Smirnov in 1939. It is used extensively in goodness of fit many problem 

such us suitability of fit. The Kolmogorov-Smirnov test used to calculate the biggest 

difference between the observing and forecasting distributions. The KS equation 

written as follows:  

𝐾𝑆 = max
1≤𝑖≤𝑛

|𝐹𝑖̂ −
𝑖

𝑛 + 1
|,                                                                            (4.5) 

where 𝐹𝑖̂ will be the estimated cdf, 𝐹̅̂ =
1

𝑛
∑ 𝐹̅̂𝑛

𝑖=1 , n will be the sample size, p will be 

the number of parameters which are estimated. It is important to be aware that for 𝑅2 

the higher value should be stated for best modeling. On the other hands, the lower 

value for RMSE, AIC, BIC, and KS should be stated for best fit. For further details, 

check Ouarda, T. B., Charron, C., and Chebana, F. (2016), and Dookie et al. (2018). 
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CHAPTER 5: CASE STUDY 

 

Iraq is a suitable region for wind energy investment. In terms of location and 

climate, Iraq is located in the Arabian Peninsula, which is within the low-pressure area 

and under the influence of the Siberian airspace extension from the northern region 

through Turkey and from the northeast and eastern side through Iran in winter. In 

addition, Iraq is subject to the influence of the low air, which is semi-stable. This semi- 

stable airflow, which came from northwest India and central Asia towards the north 

and northwest part in Iraq during summer season. Therefore, these characteristics 

make Iraq an attractive area to winds. Additionally, the renewable energy that is based 

on the wind will decrease the reliant on fossil sources drastically.  

 

The geographical layout in Iraq is interesting, because of the astronomical 

location, as well as with regard to land (land mass known as Eurasia). Thus, merits 

help the authorities’ invest heavily in the winds energy.  

 

On the other hand, In theory, Iraq is surrounded by five seas, represented by the 

Caspian Sea from the northeast, the Black Sea in the north, the Mediterranean Sea in 

the west, the Red Sea in the southwest, the Arabian Gulf and the Arabian Sea, where 

Iraq has a coast estimated at 58 km on the Arabian Gulf. 

 

  As previously noted, the wind energy in Iraq has a very good prospect Darwish, 

A. and  Sayigh, A. M. (1988) this is because of the distinguished location of Iraq, its 

geographical location, its  astronomical location, and its location in relation to land 

and water . As a result, the stations in Baghdad, Najaf, Hilla, Amara-Hai, Diwaniya, 

Nasiriya, Amara, and Basra from Iraq will be studied. 
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5.1 Dataset of wind speed 

 

     The average wind speed observation have been captured from Iraqi 

Meteorological Organization and Seismology – Ministry of Transportation, daily for 

the previous ten years starting from 2008 to 2018 at the heights of 10 m. The map is 

depicted in figure 10, which indicate the stations that are dispersed as well as close 

from each other’s. 

5.2 Geographical and Statistical Information 

 

     We can recognize the information, which concerns the geography of the reigns 

in Table 1, such us height from the surface of the sea, longitude, and latitude. Table 2, 

provides some important descriptive statistics which are calculated for the wind speed 

especially with regards mean, variances, maximum and number of observation, 

kurtosis, and skewness. 

 

In chart 1, it reveals that Basra has attained the first position according the 

average speed of the wind. Regarding the average speed of the wind, Najaf station has 

the last position.  On the other hand, the average of wind speed in stations Hilla, 

Diwaniya and Amara –Hai were less than the average of the wind speed in Nasiriya 

and Amara.  

 

With respect to the variance chart 1 of wind speeds, the highest variance was 

observed in Basra and succeeded by Amara and Amara-Hai.  At the same time, the 

lowest value of variance is observed in Najaf station. Consequently, the wind speed 

for this station is monolithic. 
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Chart 1: Mean and Variance for all stations. 

       

  Chart 2 has exhibited as anticipated a positive value of skewness. More 

spasificly, that Amara has attained the first position and Basra station has the last 

position according the skewness. Moreover, the values of skewness for Hilla and 

Diwaniya are greater than one while the skewness value for Baghdad, Amara-Hai, 

Nasiriya, and Najaf are less than one. 

 

  Regarding kurtosis chart 2, all the stations presented kurtosis with values less 

than three, which mean the distributions of the wind speeds are Platykurtic. On the 

other hand, wind speed data that has been recorded at Basra and Najaf has the smallest 

kurtosis values, while the speed of the wind data in Amara and Hilla has got the biggest 

value for the kurtosis respectively. 
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Chart 2: The Skewness and Kurtosis for all stations. 

 

  

Regarding the maximum value of wind speed in chart 3, the highest result was 

observed in Basra. On the other hand, Najaf has the lowest regarding the maximum 

value of the wind speed. 

 

 

Chart 3: The Maximum of Observation for all stations. 
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Figure 10: Locations for stations under investigation (Source: Google map). 

 

 

Table 1: The numerical geographical values for the stations. 

Stations Latitude Longitude height(m) 

Baghdad 33 18 44 24 31.7 

Najaf 31 57 44 19 53 

Hilla 32 27 44 27 27 

Amara-Hai 32 08 46 02 17 

Diwaniya 31 57 44 57 20 

Nasiriya 31 01 46 14 5 

Amara 31 50 47 10 9.5 

Basra 30 31 47 47 2 
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 Table 2: Statistical values of the wind speed of our station under investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Station Mean variance Skewness kurtosis max n years 

Baghdad 3.1992281 1.9493867 0.8269595 1.2026706 12 4016 2008-2018 

Hilla 1.7402688 2.0398418 1.2200897 2.2708627 10.3 4018 2008-2018 

Amara-Hai 2.9033375 2.363656 0.9805087 1.374023 11 4015 2008-2018 

Amara 3.2186857 3.0638931 1.4515589 2.739842 12.6 3987 2008-2018 

Diwaniya 1.8326109 1.9704962 1.2287695 2.7616458 11.9 4014 2008-2018 

Nasiriya 3.0925206 2.0317795 0.8838016 1.7327211 11.4 4011 2008-2018 

Najaf 1.6075162 1.6757812 0.9453684 0.7665373 7.5 4018 2008-2018 

Basra 3.9815274 4.6462334 0.7338766 0.4919403 13 3627 2008-2018 
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CHAPTER 6: RESULT AND DISCUSSIONS 

 

 First, the maximum likelihood is acquired to estimate the unknown parameters 

of our set distributions for wind speed datasets, which are collected at Baghdad, Najaf, 

Hilla, Amara- Hai, Diwaniya, Nasiriya, Amara, and Basra stations in Iraq. These 

stations were taken for the purpose of comparison regarding the performance of wind 

speed. In our research, we take into account Weibull, Generalized Extreme value 

(GEV), Lognormal, Gamma, Rayleigh Burr type XII, Gumbel, and Inverse Gaussian, 

distributions to model the speed of the wind optimally. 

 

Following that, Table 3 reveals the values, which are calculated of estimated 

parameters. On the other side, the results of the tests that have been found and used in 

our investigations such us, maximum likelihood function, R square, Akaike 

information criterion, root mean square error (RMSE), Bayesian information criterion, 

Kolmogorov-Smirnov test are presented in Table 4. In the same context, Figures 11-

18 are depicted with probability density functions that they acquired by the model 

selection criteria to see the performance of distributions. Figures 19-26 will compare 

the attribute of Weibull distribution with the most promising one.  
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Figure 11: The histogram of Najaf station with suited densities. 

 

Figure 12: The histogram of Baghdad station with suited densities. 
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Figure 13: The histogram of Hilla station with suited densities. 

 

Figure 14: The histogram of Amara- Hai station with suited densities. 
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Figure 15: The histogram of Amara station with suited densities. 

 

Figure 16: The histogram of Basra station with suited densities. 
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Figure 17: The histogram of Nasiriya station with suited densities. 

 

Figure 18: The histogram of Diwaniya station with suited densities. 
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Through the look at the Figures 11-18, we can notice that Weibull might not 

be the best fit in all stations and that each station has its suitable distribution.  

 

In Najaf station, the results shows that, Lognormal distribution was performing 

more efficient with BIC, AIC and ln L than the remaining distributions. In addition to 

that, Weibull distribution has a good logical performance with 𝑅2, while Gumbel 

distribution has reasonable performance with RMSE. On the other hand, the GEV 

distribution ranked firstly with KS test. The remaining distributions have 

unsatisfactory results in this station. 

 

 Following that, in Baghdad station, we found Lognormal distribution has an 

effective performance based on the result of RMSE and KS tests, while Burr 

distribution showed a strong performance according to 𝑅2 and demonstrates superior 

execution as stated in lowest value of AIC, BIC and the highest value of ln L. On the 

other hand, the residual distributions have less performance for modeling wind speed 

in Baghdad station. 

 

 According Hilla station, it is easy to realize that Weibull has a good 

performance with the highest 𝑅2. Furthermore, the lowest values of AIC, BIC and KS 

test was observed in Lognormal distribution. In addition, the results show that the 

Gumbel and Inverse Gaussian have a reasonable performance inconformity with 

RMSE and ln L respectively. 

 

 In Diwaniya station, the Lognormal obviously has an excellent performance 

to the lowest of, AIC, BIC, and the highest value of ln L, whereas, Weibull performs 

was better regarding of 𝑅2. In the same station, the results appear that Gumbel 

distribution has the best attribute based on RMSE value, while GEV distribution get 

the first rank according to KS test. 
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 In Amara- Hai station, lognormal demonstrates reasonably great modeling 

performance with highest ln L and lowest of AIC, BIC, while the Gumbel introduced 

good performance with lowest RMSE, whereas Rayleigh distribution shows better 

performance with KS test. Moreover, GEV distribution takes top rate based on the 

highest value of 𝑅2. 

 

Finally, Amara, Basra and Nasiriya stations, they displayed clearly an 

outstanding performance than the other distributions regarding Lognormal in 

accordance with lowest AIC, BIC and highest ln L. Interestingly, the outcomes of 

Amara station displayed that the Gumbel shows better performance with RMSE, 

besides that, Burr has revealed a good performance according to the highest 𝑅2 and 

the best result of KS test went to Rayleigh distribution.   

 

  On the other hand, Basra station constituted that Gumbel has acquired a 

second rank of performance based on RMSE and 𝑅2, while GEV has preferable 

performance due to the result of KS test. On the contrary, Nasiriya station portrayed 

that Rayleigh and Gumbel have a significant performances because of KS and RMSE 

values. Burr also reveals best performance with 𝑅2. 

 

 It can be argued that the wind speed characteristics that we have observed 

through our experiment might relatively be different from each other regardless the 

locations adjacency. Based on the foregoing interpretation of the results in Table 4, 

Weibull Distribution is commonly used to explain most models of wind speed, though 

its performance was not distinguished in most stations under investigation. As noted, 

The Lognormal ranked first in its performance for wind speed modeling, -especially 

in Diwaniya, Najaf , Basra, Amara, Amara- Hai, Nasiriya, and Hilla- where it achieved 

the best results in most tests as the best performance. 

 

Furthermore, the performance of Burr type XII Distribution dominated on all 

distributions according to the values of (𝑅2, ln L, AIC, and BIC) in Baghdad station.  
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Weibull, burr type XII and Generalized Weibull distributions, have achieved 

significant  performance in wind speed modeling based on the results of 𝑅2. On the 

other hand, Rayleigh, GEV and Lognormal, their performance in wind speed modeling 

was respectable according to 𝐾𝑆 test values. 

 

 In the end, the distributions Gamma, and Inverse Gaussian, did not perform 

well enough for modeling wind speed in the environment that we have tested for our 

case study. 

Figure 19: The performance of Weibull with lognormal distributions in Najaf station. 
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Figure 20: The performance of Weibull with Burr type XII distributions in Baghdad 

station. 

 

Figure 21: The performance of Weibull with lognormal distributions in Hilla station. 
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Figure 22: The performance of Weibull with lognormal distributions in Amara- Hai 

station. 

 

Figure 23: The performance of Weibull with Lognormal distributions in Amara 

station. 
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Figure 24: The performance of Weibull with Lognormals distribution in Basra 

station. 

 

Figure 25: The performance of Weibull with Lognormal distributions in Nasiriya 

station. 
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Figure 26: The performance of Weibull with Lognormal distributions in Diwaniya 

station.
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Table 3: The maximum likelihood estimates of parameters of wind speed distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stations 

parameter Distributions 
Basra Amara Nasiriya Diwaniya 

Amara-

hai 
Hilla Baghdad Najaf 

1.9774 1.9770 2.3271 1.6956 2.0188 1.54525 2.431828 1.568146 shape( c) 
Weibull distribution. 

4.5342 3.6568 3.5145 2.3463 3.2999 2.2135 3.614 2.050 scale (σ) 

3.2142 2.5933 2.4159 1.7410 2.3285 1.6990 2.4697 1.5594 scale (σ) Rayleigh distribution. 

13.2866 2.9112 4.5358 3.1839 4.8603 4.5404 4.5944 8.5284 alpha 

Burr type XII dist. 2.0968 3.3185 2.9256 2.1562 2.4291 1.7771 3.0386 1.6505 shape( c) 

10.2642 1.0704 2.8092 2.6275 3.2697 4.3036 2.7717 11.2523 shape (k) 

5.1487 4.1990 3.8671 2.8093 3.7415 2.7313 3.9907 2.4976 location (ϻ) 
Gumbel dist. 

2.4835 2.3509 1.8124 1.8862 1.9174 1.8575 1.7393 1.4965 scale (σ) 

3.2133 3.9516 4.6897 2.6803 3.5676 2.2009 5.1250 2.1841 shape( c) 
Gamma distribution. 

1.2491 0.8162 0.6639 0.7779 0.8177 0.9008 0.6250 0.8404 scale (σ) 

0.0309 0.1424 0.0480 0.1007 0.0128 0.1692 0.0541 0.1408 shape( k) 
Generalized extreme value 

dist. 
1.7397 1.1437 1.1638 0.9000 1.1825 0.8932 1.1598 0.8483 scale (σ) 

3.0533 2.3846 2.4980 1.4684 2.2166 1.3040 2.5928 1.2200 location (ϻ) 

1.2261 1.0391 1.0254 0.5368 0.9246 0.4403 1.0634 0.3612 mean (ϻ) 
Lognormal dist. 

0.6191 0.5150 0.4999 0.6636 0.5748 0.7382 0.9713 0.7476 S. D.(σ) 

4.0136 3.2252 3.1135 2.0851 2.9171 1.9825 3.2032 1.8355 scale (ϻ) 
inverse Gaussian dist. 

8.2601 10.6050 10.4180 3.7297 7.1300 2.7969 12.4880 2.5334 shape (σ) 
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Table 4: List of criteria’s (𝑅2, lnL, AIC, BIC, RMSE, and KS) values for the wind speed distributions.

Station Criteria Weibull Rayleigh Burr XII 
 

Gumbel Gamma GEV Lognormal I. Gaussian 

Najaf RMSE 0.4792 0.4611 0.4384 0.3434 0.4397 0.4432 0.4372 0.4362 

 R^2 0.3354 0.3233 0.3108 0.3141 0.3126 0.3166 0.3119 0.3104 

 lnL -5176.5 -22665 -5172.7 -6942.9 -5155 -25120 -3481.3 -5264.4 

 AIC 10357 45332 10351 13890 10314 50247 6966 10533 

 BIC 10369 45338 10370 13902 10326 50265 6978.9 10545 

 KS 0.9978 0.9847 0.9713 1.9678 0.9680 0.9607 0.9804 0.9853 

Baghdad RMSE 0.4745 0.3716 0.3970 0.3785 0.3938 0.3926 0.3258 0.3871 

 R^2 0.3011 0.3117 0.3467 0.2649 0.3433 0.3413 0.2137 0.3345 

 lnL -6874.1 -152210 -6800.1 -8619.2 -6809.7 -75002 -7834.5 -7026 

 AIC 13752 304430 13606 17242 13623 150010 15673 14056 

 BIC 13765 304430 13625 17255 13636 150030 15686 14069 

 KS 0.9985 0.9913 0.9901 1.9985 0.9910 0.9927 0.9066 0.9968 

Hilla RMSE 0.4629 0.4288 0.4098 0.3571 0.4093 0.4136 0.4088 0.4077 

 R^2 0.3574 0.3489 0.3400 0.2557 0.3395 0.3441 0.339 0.3366 

 lnL -5476.1 -31575 -5447.6 -7221.9 -5430.1 -21288 -3723.5 -3520.3 

 AIC 10956 63153 10901 14444 10864 42583 7451 11045 

 BIC 10968 63159 10920 14460 10877 42601 7463.4 11057 

 KS 0.9943 0.9943 0.9917 1.9610 0.9931 0.9878 0.9856 0.9901 

Amara- Hai RMSE 0.4781 0.3920 0.3993 0.3720 0.3969 0.4010 0.3921 0.3881 

 R^2 0.3115 0.3351 0.3449 0.2705 0.3425 0.3472 0.3383 0.3326 

 lnL -7058.6 -120530 -7008.3 -8780.4 -7006.7 -312990 -5161.5 -7283.6 

 AIC 14121 241070 14023 17565 14017 625880 10327 14571 

 BIC 11434 241070 14023 17577 14030 625900 1033.9 14584 

 KS 0.9985 0.9787 0.9832 1.9637 0.9853 0.9812 0.9869 0.9870 
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Table 4 (Cont’d): List of criteria’s (𝑅2, lnL, AIC, BIC, RMSE, and KS) values for the wind speed distributions.

Station Criteria Weibull Rayleigh Burr XII Gumbel Gamma GEV Lognormal I. Gaussian 

Diwaniya RMSE 0.4199 0.3930 0.3833 0.3575 0.3805 0.3841 0.3761 0.3731 

 R^2 0.3763 0.3557 0.3614 0.2333 0.3574 0.3637 0.3592 0.3565 

 lnL -5449.6 -34434 -5372 -70970 -5378.1 -35187 -3689.1 -5524.8 

 AIC 10903 68869 10750 14198 10760 70374 7382.2 11054 

 BIC 10916 68875 10769 14210 10773 70398 7394.6 11066 

 KS 0.9991 0.9912 0.9894 1.9912 0.9909 0.9893 0.9897 0.9918 

Nasiriya RMSE 0.4806 0.3948 0.4194 0.3464 0.4140 0.4141 0.4069 0.4020 

 R^2 0.2944 0.2914 0.3187 0.2870 0.3149 0.3143 0.3112 0.3067 

 lnL -6850.9 -138670 -6767.4 -8440 -6800.8 -83844 -4983.8 -7112.2 

 AIC 13706 277330 13541 16884 13606 167690 9971.7 14228 

 BIC 13718 277430 13560 16897 13618 167710 9984 14241 

 KS 0.9985 0.9894 0.9878 1.9612 0.9886 0.9845 0.9876 0.9871 

Amara RMSE 0.5207 0.4104 0.4293 0.3455 0.4230 0.4283 0.4255 0.4236 

 R^2 0.2315 0.3004 0.3194 0.2670 0.3135 0.3181 0.3152 0.3129 

 lnL -7427 -183410 -7176.1 -9130.2 -7214.1 -29296 -5150.9 -7150.2 

 AIC 14858 366820 14358 18264 14432 58599 10306 14304 

 BIC 14871 366820 14377 18277 14445 58618 10318 14317 

 KS 0.9985 0.9776 0.9929 1.9633 0.9920 0.9953 0.9969 0.9977 

Basra RMSE 0.5791 0.4756 0.4771 0.3024 0.4763 0.4789 0.4697 0.4656 

 R^2 0.2111 0.2675 0.2689 0.3878 0.2686 0.2704 0.2637 0.2591 

 lnL -7588.1 -388020 -7582.9 -9298.3 -7602.3 -118580 -5992.6 -7924.1 

 AIC 15180 776040 15172 18601 15209 237170 11989 15852 

 BIC 15193 776050 15190 18613 15221 237190 12002 15865 

  KS 0.9911 0.9911 0.9911 1.9284 0.9936 0.9884 0.9947 0.9947 
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6.1 Conclusion 

 

  Calculating the susceptibility and determining the characteristics of wind speed 

largely depends on the appropriate statistical distributions. In our study, 8 wind 

distributions were used as follows: Weibull, Rayleigh, Burr type XII, Gumbel, 

Gamma, Inverse Gaussian, Generalized Extreme value, and Lognormal. These 

distributions were used for their high ability to demonstrate wind speed modeling. We 

were clearly able to see that Weibull distribution, which is widely defined and widely 

used, remains unable to model all wind speed regimes. For these reasons, we have 

relied on the use of alternative distributions. 

 

As it is mentioned in the previous section, from Table 4 it is easy to note that 

Lognormal distribution was the best model for wind speed performance, while Burr 

type XII distribution ranked second in its ability to model wind speed. Likewise, 

Weibull, Gumbel, Rayleigh and GEV distributions had a good and reasonable 

performance at most stations. The performance of Gamma, and Inverse Gaussian   

were not sufficient in explaining the wind speed regimes. Consequently,   we reached 

a conclusion that each region has its own characteristics and some distributions, which 

capable to characterize the performance of wind speed, in each region appropriately.  
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