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Abstract. This paper aims to study convex analysis on some “generalized

domains,” in particular, the domain of the product of closed subsets of reals.

We introduce the basic concepts and derive analytic properties regarding con-
vex subsets of mixed domains and convex functions defined on convex sets in

mixed domains. The results obtained may open an avenue for modeling and

solving a new type of optimization problems that involve both discrete and
continuous variables at the same time.

1. Introduction and preliminaries. Discrete and continuous analyses and opti-
mizations are closely related, yet they are usually treated separately. Stefan Hilger
[15] reasoned that there must be an underlying mathematical structure to explain
when and why the theories behind the two settings coalesce or differ, and, hence,
introduced the theory of time scales in order to unify the seemingly disparate fields
of discrete and continuous analyses. The introduction of “Hilger derivative” (delta
derivative) on time scales further enables mathematicians to combine differential
and difference equations within the framework of dynamic equations on time scales
(see for instance [5], [8], [9], [21], [22], and references therein). Many topics of mod-
ern mathematics such as the oscillation theory, control theory, and stability theory
have been restudied in the new context. Our reference list is by no means com-
plete, but we would like to particularly mention that the oscillation theory on time
scales has been studied in [10] and [11]; the control theory and variational problems
on time scales can be found in [14], [16], and [17]; some applications of dynamic
equations on time scales to economics are documented in [6] and [23]; the stability
theory for delay dynamic equations on time scales has been treated in [2], [4], and
[5]; the integral equations on time scales are studied in [1], [3] and [18]; and the Fell
topology for dynamic equations on time scales is determined in [24]. In our view,
the time scale systems might best be employed in engineering applications where
both of the discrete time and continuous time systems are used. A simultaneous
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presentation of the two theories under the umbrella of time scales might provide a
new perspective and easiness for modeling and solving optimization problems on a
general domain.

The notion of convexity for functions of one variable on a time scale has been
introduced in [13]. However, to the best of our knowledge, the notions of convexity
for functions of several variables and convexity for the subsets in a product space of
different time scales have not been seriously investigated. In this paper, we intend to
formally study convexity related notions such as convex combination, hyperplane,
supporting hyperplane, convex hull, subgradient, epigraph and hypograph for sets
and functions in products of time scales. We also intend to introduce a framework
of convex optimization on time scales for modeling and solving problems with both
discrete and continuous variables. Hopefully, our work is not only a generalization
of existing theory but also an initial step for the development of new models and
algorithms.

We now introduce some basic definitions and examples in time scale calculus.
They can be found in [8] and [9] in which a comprehensive review on time scales is
given.

It is important to mention that, throughout this work, we assume that a time
scale, denoted T, has the topology inherited from the standard topology on the real
numbers R. Moreover, we denote the set of integer numbers by Z, natural numbers
by N and positive natural numbers by N0.

Definition 1 (Time scale T). An arbitrary nonempty closed subset T of real num-
bers is called a time scale.

Definition 2 (Operators on time scales). Let T be a time scale. The forward jump
operator σ : T→ T and backward jump operator ρ : T→ T are defined by

σ(t) = inf {s ∈ T : s > t} ,
and

ρ(t) = sup {s ∈ T : s < t} ,
respectively. Moreover, the forward step-size function µ : T→[0,∞) and backward
step-size function ν : T→[0,∞) are defined by

µ(t) = σ(t)− t,
and

ν(t) = t− ρ(t),

respectively.

In the following table, we illustrate the operators σ, ρ, µ, and ν on some particular
time scales:

T σ(t) ρ(t) µ(t) ν(t)

R t t 0 0
Z t+ 1 t− 1 1 1
hZ t+ h t− h h h
qN qt t/q (q − 1)t (q − 1) tq
2N 2t t/2 t t/2

N2
0 (
√
t+ 1)2 (

√
t− 1)2 2

√
t+ 1 2

√
t− 1

Table 1
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Figure 1. Points of time scales

The points of a time scale, t ∈ T, can be classified in the following manner:

t is right scattered if t < σ(t)
t is right dense if t = σ(t)
t is left scattered if ρ(t) < t
t is left dense if ρ(t) = t
t is isolated if ρ(t) < t < σ(t)
t is dense if ρ(t) = t = σ(t)

Table 2

Figure 1 depicts classification of the points of some time scales.

Definition 3 (Time scale interval). Let T be a time scale, for any a, b ∈ R and
a < b, the time scale interval [a, b]T is defined by

[a, b]T = [a, b] ∩ T.

The intervals [a, b)T, (a, b]T and (a, b)T are defined similarly.

The sets Tκ and Tκ are derived from the time scale T as follows: If T has a
left-scattered maximum M , then Tκ = T−{M}. Otherwise Tκ = T. If T has a
right-scattered minimum m, then Tκ = T−{m}. Otherwise Tκ = T.

Definition 4 (Delta and nabla derivatives). Let T be a time scale. The delta
derivative f∆ of a function f : T→ R is defined at a point t ∈ Tκ by

f∆(t) := lim
s→t

f(σ(t))− f(s)

σ(t)− s
, where s→ t, s ∈ T\ {σ(t)} .

The nabla derivative f∇ of a function f : T→ R is defined at a point t ∈ Tκ by

f∇(t) := lim
s→t

f(ρ(t))− f(s)

ρ(t)− s
, where s→ t, s ∈ T\ {ρ(t)} .

Note that the delta and nabla derivatives of a function defined on time scales were
first introduced by Hilger [15] with the intention to unify discrete and continuous
analyses.
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Example 1. Let qZ be the time scale
{
qk : k ∈ Z

}
∪ {0} with q > 1. The following

table shows the derivatives of f on some time scales:

T ρ(t) σ(t) f∇(t) f∆(t)
R t t f ′(t) f ′(t)
Z t− 1 t+ 1 ∆−f(t) ∆+f(t)

qZ t/q qt D−q f(t) D+
q f(t)

where ∆−f(t) = f(t)− f(t− 1), ∆+f(t) = f(t+ 1)− f(t),

D+
q f(t) :=

f(qt)− f(t)

(q − 1)t
(1.1)

and

D−q f(t) :=
f(t)− f(t/q)

(q − 1)t/q
.

Based on the above definitions, in the rest of this paper, we study the notion of
convexity for the sets in the products of time scales and for the functions defined
on the product of time scales. The conventional concepts of convex combination,
hyperplane, supporting hyperplane, convex hull, subgradient, epigraph, hypograph
and etc. are generalized in later sections. We also extend our findings to treat some
convex optimization problems on mixed domains.

2. Convexity on mixed domains. In this section, we introduce the convexity
notion for the sets in products of closed subsets of reals (time scales).

2.1. Right and left convex combinations on T. Let us start with the convex
combination of elements in a time scale.

Definition 5. Let T be a time scale, a, b ∈ T and λ ∈ [0, 1]. The right and left
convex combinations of the elements a and b are defined by

K+(a, b;λ) := max {s ∈ T : s ≤ a+ λ(b− a)}

and

K−(a, b;λ) := min {s ∈ T : s ≥ a+ λ(b− a)} ,
respectively. If x1, x2, ..., xm are m elements in T and λ1, λ2, ..., λm ∈ [0, 1] with
Σmi=1λi = 1, then the right and left convex combinations of x1, x2, ..., xm are defined
by

K+(x1, x2, ..., xm;λ1, λ2, ..., λm) = max
{
s ∈ T : s ≤

∑m
i=1λix

i
}

and

K−(x1, x2, ..., xm;λ1, λ2, ..., λm) = min
{
s ∈ T : s ≥

∑m
i=1λix

i
}
,

respectively.

The next result follows directly from the definition.

Corollary 1. Let T be a time scale and a,b ∈ T. Then, the following are true:

(i)

K±(a, b; 0) = a and K±(a, b; 1) = b;

(ii)

K±(a, b;λ) ∈
{

[a, b]T if a < b
[b, a]T if a > b

for any λ ∈ [0, 1];
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(iii) If a+ λ(b− a) ∈ T for some λ ∈ [0, 1], then

K±(a, b;λ) = a+ λ(b− a);

(iv) If K+(a, b;λ) = K−(a, b;λ) for some λ ∈ [0, 1], then a+ λ(b− a) ∈ T and

K±(a, b;λ) = a+ λ(b− a);

(v) If xi = a ∈ T for all i = 1, 2, ...,m, then

K±(x1, x2, ..., xm;
1

m
,

1

m
, ...,

1

m
) = a.

Example 2. Let T = Z, then

K+(a, b;λ) = ba+ λ(b− a)c

and

K−(a, b;λ) = da+ λ(b− a)e
for a, b ∈ Z and λ ∈ [0, 1], where b.c and d.e indicate the greatest integer and the
least integer functions, respectively.

Example 3. If T = R, then K±(a, b;λ) = a + λ(b − a) for any a, b ∈ R and
λ ∈ [0, 1].

2.2. Right and left convex combinations on T1 ×T2 × ...×Tn. Hereafter, we
use the notation Λn to denote the product T1 ×T2 × ...×Tn of the time scales Ti,
i = 1, 2, ..., n, and ej to represent the j-th unit vector whose j-th coordinate is 1
and other coordinates are 0. For any two elements

x1 := (x1
1, x

1
2, ..., x

1
n) =

n∑
j=1

x1
jej

and

x2 := (x2
1, x

2
2, ..., x

2
n) =

n∑
j=1

x2
jej

of Λn and λ ∈ [0, 1], the right and left convex combinations K±(x1, x2;λ) of x1 and
x2 are defined by

K±(x1, x2;λ) =

n∑
j=1

K±j (x1
j , x

2
j ;λ)ej

=
(
K±1 (x1

1, x
2
1;λ),K±2 (x1

2, x
2
2;λ), ...,K±n (x1

n, x
2
n;λ)

)
,

where

K+
j (x1

j , x
2
j ;λ) = max

{
s ∈ Tj : s ≤ x1

j + λ(x2
j − x1

j )
}

and

K−j (x1
j , x

2
j ;λ) = min

{
s ∈ Tj : s ≥ x1

j + λ(x2
j − x1

j )
}
,

are the right and left convex combinations on the time scales Tj , j = 1, 2, ..., n,
respectively. In general, if

xi =

n∑
j=1

xijej , i = 1, 2, ...,m
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are elements of Λn and λ1, λ2, ..., λm ∈ [0, 1] are scalars such that Σmi=1λi = 1, then
the right and left convex combinations of x1, x2, ..., xm are defined, respectively, by

K+(x1, x2, ..., xm;λ1, λ2, ..., λm) :=

n∑
j=1

K+
j (x1

j , x
2
j , ..., x

m
j ;λ1, λ2, ..., λm)ej

and

K−(x1, x2, ..., xm;λ1, λ2, ..., λm) :=

n∑
j=1

K−j (x1
j , x

2
j , ..., x

m
j ;λ1, λ2, ..., λm)ej ,

where

K+
j (x1

j , x
2
j , ..., x

m
j ;λ1, λ2, ..., λm) := max

{
s ∈ T : s ≤

∑m
i=1λix

i
j

}
and

K−j (x1
j , x

2
j , ..., x

m
j ;λ1, λ2, ..., λm) := min

{
s ∈ T : s ≥

∑m
i=1λix

i
j

}
are right and left convex combinations on Tj , respectively, for j = 1, 2, ..., n.

Example 4. Let Λ2 = Z× Z and x1 = (0, 0), x2 = (−1, 2) and x3 = (1, 2). Then

K+

(
x1, x2;

1

2

)
=

(⌊
−1

2

⌋
, b1c

)
= (−1, 1) ,

K−
(
x1, x2;

1

2

)
=

(⌈
−1

2

⌉
, d1e

)
= (0, 1) ,

K+

(
x1, x3;

1

2

)
=

(⌊
1

2

⌋
, b1c

)
= (0, 1) ,

K−
(
x1, x3;

1

2

)
=

(⌈
1

2

⌉
, d1e

)
= (1, 1) .

Observe that the right convex combination K+
(
x1, x2; 1

2

)
of the points x1 and x2

does not lie on the line joining the points x1 and x2, i.e. here the line y = −2x.
Similarly, K−

(
x1, x3; 1

2

)
does not lie on the line y = 2x joining x1 and x3.

From the above given example and the definition of right and left convex combi-
nations in Λn, we have the next result.

Remark 1. The right and left convex combinations K±(x1, x2;λ) of two points x1

and x2 in Λn don’t have to lie on the straight line joining x1 and x2. However, if
x1 + λ(x2 − x1) ∈ Λn for a scalar λ ∈ [0, 1], then

K±(x1, x2;λ) = x1 + λ(x2 − x1).

2.3. Right-convex set, left-convex set, and convex set. Using the concepts
of convex combinations, we now define convex sets in the product of time scales.

Definition 6 (right/left-convex set). Let S be a subset of Λn. The set S is said
to be right-convex in Λn if and only if K+(x1, x2, ..., xm;λ1, λ2, ..., λm) ∈ S for all
x1, x2, ..., xm ∈ S and λ1, λ2, ..., λm ∈ [0, 1] with

∑m
i=1 λi = 1. The set S ⊂ Λn is

said to be left-convex in Λn if and only if K−(x1, x2, ..., xm;λ1, λ2, ..., λm) ∈ S for
all x1, x2, ..., xm ∈ S and λ1, λ2, ..., λm ∈ [0, 1] with

∑m
i=1 λi = 1.

Definition 7 (Convex set). The set S ⊂ Λn is said to be convex in Λn if and
only if

∑m
i=1 λix

i ∈ S for all x1, x2, ..., xm ∈ S and λ1, λ2, ..., λm ∈ [0, 1] such that∑m
i=1 λi = 1 and

∑m
i=1 λix

i ∈ Λn.

This definition can alternatively be stated as below.
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Figure 2. Above given three-point set is not convex in Z×Z even
though it contains all Z × Z points lying on the lines joining its
elements

Figure 3. The set consisting of black points is a convex set in Z× Z

Definition 8. Let S be a subset of Λn. Denote by convRn(S) the convex hull of S
in Rn. The set S is said to be convex in Λn if and only if a + λ(b − a) ∈ S for all
a, b ∈ convRn(S) ∩ Λn and λ ∈ [0, 1] such that a+ λ(b− a) ∈ Λn.

Hence, we arrive at the following result:

Corollary 2. Let S be a subset of Λn. The set S is convex if and only if convRn(S)∩
Λn = S (see Figure 2 and Figure 3).

Lemma 1. If A is a convex set in Rn, then

convRn(A ∩ Λn) ∩ Λn = A ∩ Λn. (2.1)

Proof. Notice that A ∩ Λn ⊂ convRn(A ∩ Λn) ∩ Λn is always true, since A ∩ Λn ⊂
convRn(A ∩ Λn). If A is convex in Rn, then

A ∩ Λn = convRn(A) ∩ Λn ⊃ convRn(A ∩ Λn) ∩ Λn.

This along with the preceding corollary leads to the next result.

Theorem 1. If A is a convex set in Rn, then A ∩ Λn is convex in Λn.

Corollary 3. Every right (left)-convex set is convex, but this is not conversely true.

Proof. Suppose that S is a right convex set and a, b ∈ convRn(S) ∩ Λn. Then S is
convex because

a+ λ(b− a) = K+(a, b;λ) ∈ S
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Figure 4. The sets S−, S+, and S, respectively

for any λ ∈ [0, 1] such that a + λ(b − a) ∈ Λn. Similar argument can be applied
to a left convex set. Next example shows that convexity may not imply right/left-
convexity.

Example 5. Let Λ2 = Z× Z and S be the subset of Λ2 consisting of the points
x1 = (0, 0), x2 = (−1, 2), x3 = (1, 2), x4 = (0, 1) and x5 = (0, 2). Define the sets
S± by

S+ =
{
x1, x3, x4, x5

}
,

and
S− =

{
x1, x2, x4, x5

}
.

Evidently,
S = S+ ∪ S− =

{
x1, x2, x3, x4, x5

}
.

Then the set S+ is right-convex but not left-convex, since

K−
(
x1, x3;

1

2

)
=

(⌈
1

2

⌉
, d1e

)
= (1, 1) /∈ S+.

The set S− is left-convex but not right-convex, since

K+

(
x1, x2;

1

2

)
=

(⌊
−1

2

⌋
, b1c

)
= (−1, 1) /∈ S−.

The same arguments show that the set S is neither right-convex nor left-
convex. However, the sets S± and S are convex, since convRn(S±) ∩ Λn = S± and
convRn(S) ∩ Λn = S (see Figure 4).

2.4. Convex hull.

Definition 9. The convex hull of a set S in Λn, denoted by convΛn(S), is the
collection of all convex combinations of elements of S in Λn. In other words, x ∈
convΛn(S) if and only if

x = Σmi=1λix
i ∈ Λn

for some integer m > 0, λi ∈ [0, 1] ∈ R such that Σmi=1λi = 1, and x1, x2, ..., xm ∈ S.

Using Theorem 1 and Definition 9, we have the following results:

Corollary 4. For any set S in Λn,

convΛn(S) = convRn(S) ∩ Λn.
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Figure 5. The set S consisting of black points surrounded by
outer rectangle is a convex set in Z×Z. The black points lying be-
tween outer and inner rectangles are the points of convex boundary
cbdyΛn(S). The black points surrounded by inner rectangle belong
to the convex interior cintΛn(S) of S

Corollary 5. Let S ⊂ Λn, then S is convex in Λn if and only if S = convΛn(S).

Lemma 2. A set S in Λn is convex in Λn if and only if there is a convex set C in
Rn such that S = C ∩ Λn.

Proof. The necessity part of the proof follows from Theorem 1. For the sufficiency
part, if S is assumed to be a convex set in Λn, then S = convRn(S)∩Λn, by Corollary
5. Choosing C = convRn(S) as a convex set, we complete the proof.

Corollary 6. convΛn(S) is the intersection of all convex sets in Λn containing S.

Corollary 7. convΛn(S) is the smallest convex set in Λn containing S.

2.5. Convex-closure, convex-interior, convex-boundary. We now define more
details of a convex set in the product of time scales.

Definition 10. Let S ⊂ Λn be a convex set in Λn. The convex-closure, convex-
interior and convex-boundary, denoted by cclΛn(S), cintΛn(S) and cbdyΛn(S), re-
spectively, are defined by

cclΛn(S) = convRn(S) ∩ Λn,

cintΛn(S) =

◦
̂convRn(S) ∩ Λn,

and

cbdyΛn(S) = ∂convRn(S) ∩ Λn,

respectively, where convRn(S) ,

◦
̂convRn(S), and ∂convRn(S) indicate the closure,

interior and boundary of convRn(S) in Rn, respectively (see Figure 5).
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Remark 2. The convex-interior cintΛn(S) and convex-closure cclΛn(S) of a set S
in Λn are different from the interior intΛn(S) and closure clΛn(S) of S in Λn with
the subspace topology inherited from the standard topology on Rn. Moreover,

cintΛn(S) ⊂ intΛn(S) ⊂ S
and

S ⊂ clΛn(S) ⊂ cclΛn(S).

Notice that for a convex set S in Rn we have

cclRn(S) = clRn(S) = S,

cintRn(S) = intRn(S) =
◦
S

and
cbdyRn(S) = ∂S.

Corollary 8. Let S ⊂ Λn be a convex set in Λn. Then cclΛn(S) is closed in Λn

and cintΛn(S) is open is Λn. Furthermore, cclΛn(S) is closed in Rn (since Λn is
closed in Rn).

Corollary 9. Let S ⊂ Λn be a convex set in Λn. Then the convex-closure cclΛn(S)
and the convex-interior cintΛn(S) are convex sets in Λn.

2.6. Minimum distance from a point to a convex set. The concept of min-
imum distance is introduced in this subsection. Let us start with a well known
result:

Theorem 2. Let S be a nonempty, closed convex set in Rn and y /∈ S. Then, there
is a unique point x ∈ S with the minimum distance from y. Furthermore, x is the
minimizing point if and only if

〈y − x, x− x〉 ≤ 0 for all x ∈ S. (2.2)

However, for convex sets in a time scale, we may not have a unique minimizing
point x satisfying the inequality (2.2).

Example 6. Let Λ2 = Z × Z and S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
Choose Y = (3, 1). We see that B = (2, 3) is the minimizing point in convex set
S in Λ2. However, Bis not the unique minimizing point and A = (1, 2)is another
minimizing point with 〈Y −B,A−B〉 = 1 ≥ 0 (see Figure 6).

To guarantee the uniqueness of the minimizing point satisfying Ineq. (2.2), we
need to impose some conditions on y /∈ S. The following lemma known as the
Weierstrass‘ Theorem which will be used to prove propositions later.

Lemma 3. Let A be a nonempty and compact set in Rn and f : A → R be con-
tinuous on A. Then the problem min {f(x) : x ∈ A} attains its minimum, that is,
there exists a minimizing point to this problem.

Theorem 3. Let S be a nonempty closed set in Λn and y /∈ S be a point in Rn.
Then there exists a point x ∈ S with minimum distance from y. Furthermore, if
x ∈ S is the minimizing point and y /∈ S is a vector satisfying

〈y − (λx+ (1− λ)x), x− x〉 6= 0, for all λ ∈ (0, 1) and x ∈ S − {x} , (2.3)

then the minimizing point x ∈ S is unique and

〈y − x, x− x〉 ≤ 0 for all x ∈ S. (2.4)
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Figure 6. A and B are the minimizing points

Conversely, if y /∈ S is any vector in Rn and the inequality (2.4) holds, then x is
the unique minimizing point.

Proof. First, we show the existence of a minimizing point. Since S 6= ∅, there exists
a point x̂ ∈ S, and we can confine our attention to the set

Ŝ = S ∩ {x ∈ S : ‖y − x‖ ≤ ‖y − x̂‖}

in seeking the closest point. In other words, the closest point problem

inf {‖y − x‖ : x ∈ S}

is equivalent to

inf
{
‖y − x‖ : x ∈ Ŝ

}
.

The compactness of Ŝ along with Lemma 3 lead to the existence of the minimizing
point x ∈ S, which is closest to the point y ∈ Rn − S.
Suppose that x ∈ S is the minimizing point and y /∈ S is a vector satisfying (2.3).
Then (2.3) says there is not any λ ∈ (0, 1) such that

0 = 〈y − (λx+ (1− λ)x), x− x〉 = λ 〈y − x, x− x〉+ (1− λ) 〈y − x, x− x〉 ,

for all x ∈ S − {x}. This shows that 〈y − x, x− x〉 and 〈y − x, x− x〉 cannot have
opposite signs. Since

inf {‖y − x‖ : x ∈ S} = ‖y − x‖
and

‖y − x‖2 = ‖y − x‖2 + ‖x− x‖2 + 2 〈y − x, x− x〉 ,
we find

‖x− x‖2 + 2 〈y − x, x− x〉 ≤ 0 for all x ∈ S.
Therefore,

〈y − x, x− x〉 < 0 for all x ∈ S − {x} .
Consequently,

〈y − x, x− x〉 ≤ 0 for all x ∈ S − {x}
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and (2.4) follows.
Conversely, if y ∈ Rn − S is any vector and (2.4) holds, then

‖y − x‖2 = ‖y − x‖2 + ‖x− x‖2 + 2 〈y − x, x− x〉
implies

‖y − x‖2 ≥ ‖y − x‖2 for all x ∈ S.
This shows that x is the minimizing point. For the uniqueness of x, let us assume
that there is an x′ ∈ S such that ‖y − x′‖ = ‖y − x‖. Since

‖y − x′‖2 = ‖y − x‖2 + ‖x′ − x‖2 + 2 〈y − x, x− x′〉 ,
we have

0 = ‖x− x′‖2 + 2 〈y − x, x− x′〉
= 〈x− x′, x− x′〉+ 〈y − x, x− x′〉+ 〈y − x, x− x′〉
= 〈y − x′, x− x′〉+ 〈y − x, x− x′〉

and hence,

〈y − x′, x− x′〉 = −〈y − x, x− x′〉 = 〈y − x, x′ − x〉 ≤ 0.

On the other hand, we have

‖y − x‖2 = ‖y − x′‖2 + ‖x′ − x‖2 + 2 〈y − x′, x′ − x〉
and

‖x′ − x‖2 = 2 〈y − x′, x− x′〉 ≤ 0.

This is possible only if x′ = x. The proof is complete.

Different from Theorem 2, in Theorem 3 we ruled out the convexity condition
on the set S ⊂ Λn. Next, we prove that Theorem 2 follows from Theorem 3 as a
corollary.

Corollary 10. If Λn = Rn, S is a convex set in Rn and x ∈ S is a point such that

‖y − x‖ = min {‖y − x‖ : x ∈ S} for y ∈ Rn − S,
then condition (2.3) is automatically satisfied.

Proof. If S is convex in Rn, then x+λ(x−x) ∈ S for any x ∈ S−{x} and λ ∈ [0, 1].
Since x is the minimizing vector we have

‖y − x+ λ(x− x)‖2 ≥ ‖y − x‖2 . (2.5)

Also,

‖y − (x+ λ(x− x))‖2 = ‖y − x‖2 + λ2 ‖x− x‖2 − 2λ 〈y − x, x− x〉 . (2.6)

From (2.5) and (2.6), we get

2λ 〈y − x, x− x〉 ≤ λ2 ‖x− x‖2 for any 0 ≤ λ ≤ 1. (2.7)

Dividing (2.7) by any such λ > 0 and letting λ→ 0+, we have

〈y − x, x− x〉 ≤ 0. (2.8)

Together with

〈y − x, x− x〉 = 〈y − x, x− x〉+ 〈x− x, x− x〉 , (2.9)

we know 〈y − x, x− x〉 cannot be positive. Also, we know

〈y − x, x− x〉2 + 〈y − x, x− x〉2 6= 0 for all x ∈ S − {x} . (2.10)
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Otherwise, ‖x− x‖ = 0, i.e. x = x, which contradicts the assumption of x ∈ S−{x}.
Combining conditions (2.8-2.10), we have

〈y − (λx+ (1− λ)x), x− x〉 = λ 〈y − x, x− x〉+ (1− λ) 〈y − x, x− x〉 < 0

for all λ ∈ (0, 1) and x ∈ S − {x} .

2.7. Hyperplane, half-space and supporting hyperplane. We now study the
separation properties of convex sets in Λn.

Definition 11 (Hyperplane, halfspace). For a given nonzero vector p ∈ Rn and a
scalar α ∈ R, when the following set

H := {x ∈ Λn : 〈p, x〉 = α}
is nonempty, we call it a hyperplane in Λn. The vector p is called the normal vector
of the hyperplane. We also define two half-spaces H+ and H− as follows

H+ := {x ∈ Λn : 〈p, x〉 ≥ α} ,

H− := {x ∈ Λn : 〈p, x〉 ≤ α} .

For a fixed x ∈ Λn, H+ and H− are sometimes particularly referred to as:

H+ := {x ∈ Λn : 〈p, x− x〉 ≥ α} ,
H− := {x ∈ Λn : 〈p, x− x〉 ≤ α} .

Definition 12 (Supporting hyperplane). Let S be a nonempty convex set in Λn

and x ∈ cbdyΛn(S). A hyperplane

H := {x ∈ Λn : 〈p, x− x〉 = 0}
is called a supporting hyperplane of S at x, if either S ⊂ H+, i.e., 〈p, x− x〉 ≥ 0
for all x ∈ S, or S ⊂ H−, i.e., 〈p, x− x〉 ≤ 0 for all x ∈ S.

Theorem 4. Let S be a nonempty closed set in Λn and y ∈ Rn − S an arbitrary
vector satisfying (2.3). Then there exists a nonzero vector p ∈ Rn and a scalar α
such that

〈p, x〉 ≤ α < 〈p, y〉 for all x ∈ S.

Proof. By Theorem 3, we know the existence of a minimizing vector x ∈ S such
that

〈y − x, x− x〉 ≤ 0 for all x ∈ S.
Letting p = y − x 6= 0 and α = 〈p, x〉 = 〈y − x, x〉 , we have

〈p, x〉 = 〈y − x, x〉 ≤ 〈y − x, x〉 = α.

On the other hand,

〈p, y〉 − α = 〈y − x, y〉 − 〈y − x, x〉 = ‖y − x‖ > 0.

The proof is complete.

In the conventional case we have the following result:

Theorem 5. [7, p. 49] Let A be a nonempty convex set in Rn and x ∈ ∂A. Then,
there exists a hyperplane that supports A at x, i.e., there exists a nonzero vector
p ∈ Rn such that pT (x− x) ≤ 0 for every x ∈ cl(A).

Analogously, we obtain the following result for Λn:
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Theorem 6. Let S be a nonempty convex set in Λn and x ∈ cbdyΛn(S). Then,
there exists a hyperplane that supports S at x, i.e., there exists a nonzero vector
p ∈ Rn such that pT (x− x) ≤ 0 for all x ∈ cclΛn(S).

Proof. Notice that

cclΛn(S) = convRn(S) ∩ Λn

and

cbdyΛn(S) = ∂convRn(S) ∩ Λn.

If x ∈ cbdyΛn(S), then x ∈ ∂convRn(S) ∩ Λn. Since the set A = convRn(S) is
convex in Rn, we know, by Theorem 5, there exists a hyperplane that supports A
at x. This means there is a nonzero vector p in Rn such that pT (x− x) ≤ 0 for any

x ∈ cl(A) = convRn(S), especially for those x ∈ convRn(S) ∩ Λn = cclΛn(S).

Again, in the conventional case we have the following result:

Theorem 7. [7, p. 49] [7, Theorem 2.4.8] Let A1 and A2 be nonempty convex sets
in Rn such that A1 ∩A2 = ∅. Then there exists a hyperplane that separates A1 and
A2, i.e., there exists a nonzero vector p in Rn such that

inf {〈p, x〉 : x ∈ A1} ≥ sup {〈p, x〉 : x ∈ A2} .

Analogously, we have the following result for Λn:

Theorem 8. Let S1 and S2 be nonempty convex sets in Λn such that S1 ∩ S2 = ∅.
Then there exists a hyperplane that separates S1 and S2, i.e., there exists a nonzero
vector p in Rn such that

inf {〈p, x〉 : x ∈ S1} ≥ sup {〈p, x〉 : x ∈ S2} . (2.11)

Proof. Since convRn(S1) and convRn(S2) are convex in Rn, we have a nonzero vector
p ∈ Rn such that

inf {〈p, x〉 : x ∈ convRn(S1)} ≥ sup {〈p, x〉 : x ∈ convRn(S2)} , (2.12)

by Theorem 7. Using the convexity of sets, we have

S1 = convRn(S1) ∩ Λn and S2 = convRn(S2) ∩ Λn.

Together with (2.12), we have

inf {〈p, x〉 : x ∈ S1} ≥ inf {〈p, x〉 : x ∈ convRn(S1)}
≥ sup {〈p, x〉 : x ∈ convRn(S2)}
≥ sup {〈p, x〉 : x ∈ S2} .

This shows (2.11) and completes the proof.

3. Convex functions on Λn. After defining convex sets in Λn, we turn our at-
tention to the convex functions defined on Λn.

Definition 13. Let S be a convex set in Λn. The function f : S → R is said to be
convex if and only if

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi) (3.1)

for all xi ∈ S, i = 1, 2, ...,m, and λi ∈ [0, 1], , i = 1, 2, ...,m, such that
∑m
i=1 λi = 1

and
∑m
i=1 λixi ∈ Λn.
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Observe that, for a convex function f : S → R the inequality

f(a+ λ(b− a)) ≤ f(a) + λ(f(b)− f(a)), (3.2)

holds for all a, b ∈ S and λ ∈ [0, 1] such that a + λ(b − a) ∈ Λn. However, the
converse of this statement may not be true. To illustrate this we give the following
example:

Example 7. Let Λ2 = Z× Z; S = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0), (1, 1)}. De-
fine the function f : S → R as follows: f(−1, 0) = f(0,−1) = f(1, 0) = f(0, 1) = 1,
f(0, 0) = 0, and f(1, 1) = −3. Then (3.1) does not hold, e.g. in the case when
λ1 = λ2 = λ3 = 1/3 we have

−1 +
2

3
< f

(
1

3
(−1, 0) +

1

3
(0,−1) +

1

3
(1, 1)

)
= f(0, 0) = 0.

However, the inequality (3.2) is satisfied for all a, b ∈ S and λ ∈ [0, 1] such that
a+ λ(b− a) ∈ Z× Z.

Remark 3. In [13, Definition 3.1] the inequality (3.2) is given as a necessary and
sufficient condition for the convexity of the function f : [a, b]T → R on a time
scale interval [a, b]T. However, Example 7 shows that the inequality (3.2) is only a
necessary condition for the convexity of a function defined on the products of time
scales. Moreover, in one dimensional case (see [13]) there is no need for defining
convexity of the domain of a convex function f : [a, b]T → R since every time scale
interval [a, b]T = [a, b] ∩ T is convex in T. However, in multidimensional case one
has to define the notion of convexity of a set before defining convexity of a function.

The next result follows from the definition of convex function immediately.

Corollary 11. Let S be a convex set in Λn. If the function f : Rn → R is convex

on convRn(S) then the restricted function f̂ := f |S is convex on S.

3.1. Epigraph and hypograph. The convex functions on Λn can also be charac-
terized by the epigraphs and hypographs.

Definition 14. Let S be a nonempty set in Λn and f : S → R be a function. The
epigraph of f , denoted by epif , is a subset of Λn × R defined by

epif := {(x, y) : x ∈ S, y ∈ R, y ≥ f(x)} .

The hypograph of f , denoted by hypf , is a subset of Λn × R defined by

hypf := {(x, y) : x ∈ S, y ∈ R, y ≤ f(x)} .

Theorem 9. Let S be a nonempty convex set in Λn and f : S → R be a function.
Then f is convex on S if and only if epif is convex in Λn × R.

Proof. Let f be a convex function on S ⊂ Λn and (xi, yi) ∈ epif for all i =
1, 2, ...,m. Then, for each i = 1, 2, ...,m we have

yi ≥ f(xi).

Suppose λi ∈ (0, 1), i = 1, 2, ...,m, are scalars such that
∑m
i=1 λi = 1 and

∑m
i=1 λixi ∈

Λn. Then
m∑
i=1

λiyi ≥
m∑
i=1

λif (xi) ≥ f

(
m∑
i=1

λixi

)
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Therefore,
m∑
i=1

λi(xi, yi) ∈ epif.

This shows that
convRn+1(epif) ∩ (Λn × R) = epif

which means epif is convex.
Conversely, if epif is convex, then for the elements (xi, f(xi)) ∈ epif , i = 1, 2, ...,m,
and for the scalars λi ∈ (0, 1) i = 1, 2, ...,m, such that

∑m
i=1 λi = 1 and

∑m
i=1 λixi ∈

Λn, we have
m∑
i=1

λi(xi, f(xi)) ∈ epif.

That is,
m∑
i=1

λif (xi) ≥ f

(
m∑
i=1

λixi

)
.

Hence f is convex.

3.2. Subgradient. Once convex functions on Λn are defined, we can study the
first order information by the subgradients.

Definition 15. Let S be a nonempty convex set in Λn and f : S → R be a convex
function on S. Then ξ ∈ Rn is called a subgradient of f at x ∈ S if

f(x) ≥ f(x) + ξT (x− x) for all x ∈ S.

Similarly, let f : S → R be a concave function on S (i.e., −f is convex on S). Then
ξ ∈ Rn is called the subgradient of f at x ∈ S if

f(x) ≤ f(x) + ξT (x− x) for all x ∈ S.

Theorem 10. Let S be a nonempty convex set in Λn and f : S → R be a convex
function on S. Then, for x ∈ cintΛn(S), there exists a vector ξ such that the
hyperplane

H =
{

(x, y) : y = f(x) + ξT (x− x)
}

supports epif at (x, f(x)). In particular,

f(x) ≥ f(x) + ξT (x− x) for all x ∈ S,
i.e., ξ is a subgradient of f at x.

Proof. Theorem 9 implies that epif is convex. Noting that (x, f(x)) belongs to the
boundary of epif , by Theorem 6, there exists a nonzero vector (ξ0, η) ∈ Rn × R
such that

ξT0 (x− x) + η(y − f(x) ≤ 0 for any (x, y) ∈ epif. (3.3)

Here η must be nonpositive. Otherwise, the above inequality may cause a contra-
diction by choosing y to be sufficiently large. We now show that η < 0. If not, i.e.,
η = 0, then

ξT0 (x− x) ≤ 0 for all x ∈ S. (3.4)

Take any x′ ∈ convRn(S), then there exist scalars λi ≥ 0, i = 1, 2, ...,m, and
x1, x2, ..., xm ∈ S such that

∑m
i=1 λi = 1 and

x′ =

m∑
i=1

λixi.
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Applying (3.4), we have

ξT0 (x′ − x) =

m∑
i=1

λiξ
T
0 (xi − x) ≤ 0.

This means

ξT0 (x− x) ≤ 0 for all x ∈ convRn(S). (3.5)

Since x ∈ cintΛn(S) =

◦
̂convRn(S) ∩ Λn, there exists a λ > 0 such that x + λξ0 ∈

convRn(S). That is,

λξT0 ξ0 ≤ 0.

This leads to ξ0 = 0 and (ξ0, η) = (0, 0) which contradicts the fact that (ξ0, η) is a
nonzero vector. Therefore, η < 0. Denoting ξ0/ |η| by ξ and dividing the inequality
(3.3) by |η|, we get

ξT (x− x)− y + f(x) ≤ 0 for any (x, y) ∈ epif. (3.6)

In particular, the hyperplane H =
{

(x, y) : y = f(x) + ξT (x− x)
}

supports epif at

(x, f(x)). By letting y = f(x) in (3.6), we get f(x) ≥ f(x)+ξT (x−x) for all x ∈ S.
This completes the proof.

Theorem 11. Let S be a nonempty convex set in Λn and f : S → R. If for every
point x ∈ cintΛn(S) there exists a subgradient vector ξ such that

f(x) ≥ f(x) + ξT (x− x) for all x ∈ S,

then f is convex on cintΛn(S).

Proof. Let xi ∈ cintΛn(S) for all i = 1, 2, ...,m and λi ∈ (0, 1), i = 1, 2, ...,m be
scalars such that

∑m
i=1 λi = 1 and

∑m
i=1 λixi ∈ Λn. By Corollary 9, we know

cintΛn(S) is convex and
m∑
i=1

λixi ∈ cintΛn(S).

By our assumption, there is a subgradient ξ of f at
∑m
i=1 λixi. In particular, for

each j = 1, 2, ...,m we have

f(xj) ≥ f(

m∑
i=1

λixi) + ξT (x1 −
m∑
i=1

λixi).

Since
∑m
j=1 λjβ = β for a β =

∑m
i=1λixi we obtain

m∑
j=1

λjf(xj) ≥ f(

m∑
i=1

λixi) + ξT (

m∑
j=1

λjxj −
m∑
j=1

λj

m∑
i=1

λixi)

= f(

m∑
i=1

λixi) + ξT (

m∑
j=1

λjxj −
m∑
i=1

λixi)

= f(

m∑
i=1

λixi)

and the result follows.
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3.3. Minima and maxima of a convex function. For convex functions defined
on Λn, we now study their minimum or maximum solutions.

Definition 16. For a given function f : Λn → R and a given set S ⊂ Λn, consider
the following problem:

minimize f(x) subject to x ∈ S. (3.7)

A point x ∈ S is called a feasible solution to the problem. If x ∈ S and f(x) ≥ f(x)
for all x ∈ S, then x is called an optimal solution or a global optimal solution. The
collection of optimal solutions are called alternative optimal solutions.

Theorem 12. Let f : Λn → R be a convex function and S be a nonempty convex
set in Λn. The point x ∈ S is an optimal solution to the problem (3.7) if and only
if f has a subgradient ξ at x such that

ξT (x− x) ≥ 0 for all x ∈ S.

Proof. Suppose that ξT (x − x) ≥ 0 for all x ∈ S, where ξ is a subgradient of f at
x. By the convexity of f , we have

f(x) ≥ f(x) + ξT (x− x) ≥ f(x) for all x ∈ S.
Hence x is an optimal solution to the problem.
To show the converse, suppose that x is an optimal solution to the problem (3.7)
and we construct the following two sets in Λn × R :

D1 := {(x− x, y) : x ∈ Λn and y > f(x)− f(x)}
D2 := {(x− x, y) : x ∈ S and y ≤ 0} .

One may easily verify that both of D1 and D2 are convex. Moreover, D1 ∩D2 = ∅.
Otherwise, there would exist a point (x, y) such that

x ∈ S and 0 ≥ y > f(x)− f(x).

This contradicts the assumption of x being an optimal solution to the problem. By
Theorem 8, there is a hyperplane that separates D1 and D2, i.e., there exists a
nonzero vector (ξ0, η0) and a scalar α such that

ξT0 (x− x) + ηy ≤ α, for x ∈ Λn and y > f(x)− f(x) (3.8)

ξT0 (x− x) + ηy ≥ α, for x ∈ S and y ≤ 0. (3.9)

If we let x = x and y = 0 in (3.9), it follows that α ≤ 0. Next, let x = x and
y = ε > 0 in (3.8). It follows that ηε ≤ α. Since this is true for every ε > 0, we
have η ≤ 0 and α ≥ 0. Consequently, η ≤ 0 and α = 0. If η = 0, then, from (3.8),

ξT0 (x− x) ≤ 0 for all x ∈ Λn. (3.10)

Let r > 0 be a sufficiently large real number such that

x ∈
◦

̂convRn(Hr),

where the set Hr := B(x, r) ∩ Λn. Since

ξT0 (x− x) ≤ 0 for all x ∈ Hr,

we have
ξT0 (x− x) ≤ 0 for all x ∈ convRn(Hr). (3.11)

On the other hand, there exists a scalar c > 0 such that

x = x+ cξ0 ∈ convRn(Hr).
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Together with (3.11), we have

0 ≥ ξT0 (x− x) = c ‖ξ0‖2 .

Hence, ξ0 = 0. Since (ξ0, η) 6= (0, 0), we must have η < 0. Dividing (3.8) and (3.9)

by −η, and denoting ξ = − ξ0η , we get the following inequalities

y ≥ ξT (x− x), for x ∈ Λn and y > f(x)− f(x), (3.12)

ξT (x− x) ≥ y, for x ∈ S and y ≤ 0. (3.13)

By letting y = 0 in (3.13), we get ξT (x − x) ≥ 0 for all x ∈ S. From (3.12), it is
obvious that

f(x)− f(x) + ε ≥ ξT (x− x) for all x ∈ Λn and ε > 0.

Taking limit as ε→ 0, we have

f(x) ≥ f(x) + ξT (x− x) for all x ∈ Λn.

Therefore, ξ is a subgradient of f at x with the property that ξT (x− x) ≥ 0 for all
x ∈ S. This completes the proof.

Corollary 12. Under the assumptions of Theorem 12, if S ⊂ Λn is convex with

cintΛn(S) =

◦
̂convRn(S) ∩ Λn 6= ∅, (3.14)

then x ∈ cintΛn(S) is an optimal solution to the problem (3.7) if and only if there
exists a zero subgradient of f at x.

Proof. The previous theorem says that x ∈ cintΛn(S) ⊂ S is an optimal solution to
the problem (3.7) if and only if f has a subgradient ξ at x such that ξT (x − x) ≥
0 for any x ∈ S. Consequently, the linearity of the inner product implies that

ξT (x− x) ≥ 0 for all x ∈ convRn(S). (3.15)

Since x ∈
◦

̂convRn(S), there exists a positive real c such that x = x−cξ ∈ convRn(S).

By (3.15), we have −c ‖ξ‖2 ≥ 0. Hence we have ξ = 0.

4. Differentiable convex functions. In this section, we study the differentiabil-
ity of convex functions on time scales and use it for solving optimization problems.

4.1. Uniqueness of the subgradient. First, we recall the following uniqueness
result in the conventional continuous calculus:

Lemma 4. [7, Lemma 3.3.2] Let A be a nonempty set in Rn and f : A → R be

convex. If f is differentiable at x ∈
◦
A, then the set of subgradients of f at x is the

singleton

{grad f(x)} :=

{(
∂f(x)

∂1x1
, ...,

∂f(x)

∂nxn

)}
,

i.e., grad f(x) is the only vector such that

f(x) ≥ f(x) + (grad f(x))T (x− x), for all x ∈ A. (4.1)

In order to show the above result may not be true in time scales, we first prove
the next lemma.
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Lemma 5. Let f : [a, b]T → R be a convex function. Then

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(y)− f(s)

y − s
, (4.2)

for any t, u, s, y ∈ [a, b]T satisfying t ≤ u < s < y. If f is ∆−differentiable and

∇−differentiable at x ∈
◦

̂convRn [a, b]T ∩ T, then

f∇(x) ≤ f∆(x), (4.3)

where f∆(x) and f∇(x) are the delta and nabla derivatives of f , respectively.

Proof. Ineq. (4.2) follows directly from the definition of convexity. The equality
holds in (4.3), if x is right and left dense. In other cases, we can get (4.3) from (4.2)
by making the following substitutions:
(i) t = ρ(x), s = x, y = σ(x), if x is right and left scattered;
(ii) t = ρ(x), s = x, and y = x + h for h > 0 being sufficiently small, if x is left
scattered and right dense;
(iii) t = x − h for h > 0 being sufficiently small, s = x, and y = σ(x), if x is right
scattered and left dense.

The next theorem shows that the subgradient may not be unique for convex
functions defined on arbitrary time scales.

Theorem 13. Let f : [a, b]T → R be a convex function on a time scale interval

[a, b]T with the property that x ∈
◦

̂convRn [a, b]T ∩ T 6= ∅. Then the set

∂f(x) := {ξ ∈ R : f(x) ≥ f(x) + ξ(x− x) for all x ∈ [a, b]T}

contains f∆(x) and f∇(x) for all x ∈
◦

̂convRn [a, b]T ∩ T. Moreover, every function
ϕ : [a, b]T → R satisfying

f∇(x) ≤ ϕ(x) ≤ f∆(x) (4.4)

belongs to ∂f(x) for any x ∈
◦

̂convRn [a, b]T ∩ T, and vice versa.

Proof. If x = x, then the proof is easy. Hence we may assume that x 6= x. When
x > x, if the point x ∈ [a, b]

κ
T is right scattered, then we know x ≥ σ(x) and

f(x)− f(x)

x− x
≥ f(σ(x))− f(x)

σ(x)− x
= f∆(x),

by the convexity of f . If the point x ∈
◦

̂convRn [a, b]T ∩ T is right dense, then, for
sufficiently small h > 0, we have x ≥ x+ h and

f(x)− f(x)

x− x
≥ f(x+ h)− f(x)

h
.

Taking the limit as h→ 0 gives the desired result.

When x < x, if the point x ∈
◦

̂convRn [a, b]T ∩ T is right scattered, then

f(σ(x))− f(x)

σ(x)− x
≥ f(x)− f(x)

x− x
.

Using the formula f(σ(x)) = f(x) + (σ(x)− x)f∆(x), we get

f(x) ≥ f(x) + f∆(x)(x− x)
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as desired. If the point x ∈
◦

̂convRn [a, b]T ∩ T is right dense then, for sufficiently
small h > 0, we have x+ h > x > x and

f(x+ h)− f(x)

x+ h− x
≥ f(x)− f(x)

x− x
.

Simplifying the last inequality leads to

f(x+ h)− f(x)

h
≥ f(x)− f(x)

x− x
.

Taking limit on both sides as h→ 0 and multiplying by x− x, we have

f(x) ≥ f(x) + f∆(x)(x− x). (4.5)

One may similarly show that

f(x) ≥ f(x) + f∇(x)(x− x), (4.6)

for any x ∈
◦

̂convRn [a, b]T∩T and x ∈ [a, b]T. This shows that any function satisfying

(4.4) belongs to ∂f(x) for every x ∈
◦

̂convRn [a, b]T ∩ T.

Now, suppose we have ϕ ∈ ∂f(x) for all x ∈
◦

̂convRn [a, b]T ∩ T. If x ∈
◦

̂convRn [a, b]T ∩ T is right or left dense, then either

ϕ(x) = lim
h→0+

f(x+ h)− f(x)

h
or

ϕ(x) = lim
h→0−

f(x+ h)− f(x)

h
.

Hence, the proof follows from the fact that

f∇(x) ≤ lim
h→0±

f(x+ h)− f(x)

h
≤ f∆(x).

Suppose that the point x ∈
◦

̂convRn [a, b]T∩T is isolated. Then substituting x = σ(x)
in (4.5) leads to

f∆(x)(σ(x)− x) = f(σ(x))− f(x) ≥ ϕ(x)(σ(x)− x).

Therefore, ϕ(x) ≤ f∆(x). On the other hand, by substituting x = ρ(x) into (4.6),
we get

f∇(x)(ρ(x)− x) = f(ρ(x))− f(x) ≥ (ρ(x)− x)ϕ(x).

Dividing both sides by ρ(x)− x, we have ϕ(x) ≥ f∇(x).

4.2. Subgradient of a convex function on Λn. In this subsection, we character-
ize convex functions in terms of subgradients on the product of time scales. First,
note that the following definitions can be found in [21] and [22].

Definition 17. Let Ti, i ∈ {1, 2, ..., n}, be time scales and f : Λn → R be a
function. The partial ∆-derivative of f with respect to xi ∈ Tκi is defined by

∂f(x)

∆ixi
:= lim

si→xi

si 6=σ(xi)

f(x1, x2, ..., σi(xi), xi+1, ..., xn)− f(x1, x2, ..., si, xi+1, ..., xn)

σi(xi)− si
,

(4.7)
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where σi : Ti → Ti is the forward jump operator on the i − th time scale Ti.
Similarly, the partial ∇-derivative of f : Λn → R is defined by

∂f(x)

∇ixi
:= lim

si→xi

si 6=ρ(xi)

f(x1, x2, ..., ρi(xi), xi+1, ..., xn)− f(x1, x2, ..., si, xi+1, ..., xn)

ρi(xi)− si
,

(4.8)
where ρi : Ti → Ti is the backward jump operator on the i− th time scale Ti.

In preparation for the next result, let’s define the set
n⋃
i=1

Bi(x, h
±
i )

as a frame at the point x = (x1, x2, ..., xn) in Λn, where

Bi(x, h
±
i ) =

sei +

n∑
j=1
j 6=i

xje
j : s ∈ N±i (x, h±i )

 , (4.9)

ei, i = 1, 2, ..., n, are the unit vectors whose components are determined by

eij = δij =

{
1 i = j
0 i 6= j

;

the sets N±i (x, h±i ), i = 1, 2, ..., n, given by

N+
i (x, h+

i ) :=

{
{xi, σi(xi)} if µi(xi) > 0
[xi, xi + h+

i ) if µi(xi) = 0
, where h+

i > 0,

and

N−i (x, h−i ) :=

{
{ρi(xi), xi} if νi(xi) > 0
(xi − h−i , xi] if νi(xi) = 0

where h−i > 0,

are the sets in the time scale Ti.
In order for the partial derivatives ∂f(x)

∆ixi
and ∂f(x)

∇ixi
given by (4.7) and (4.8) to be

well defined at a point x = (x1, x2, ..., xn) ∈ S one has to assume that
n⋃
i=1

Bi(x, h
±
i ) ⊂ S (4.10)

to guarantee that the vectors (x1, x2, ..., σi(xi), xi+1, ..., xn) and (x1, x2, ..., si, xi+1,
..., xn), s ∈ N±i (x, h±i ), i = 1, 2, ..., n, are in S. Notice that the condition (4.10) also
implies x ∈ cintΛn(S).

Then we are ready to state our next result.

Theorem 14. Let S be a nonempty convex set in Λn. Let f : S → R be a function

such that the partial derivatives ∂f(x)
∆ixi

∣∣∣
x=x

and ∂f(x)
∇ixi

∣∣∣
x=x

, i = 1, 2, ..., n, exist at

any point x = (x1, x2, ..., xn) ∈ cintΛn(S) satisfying (4.10).

1. If f is convex on S, then there exist scalars λi(x) ∈ [0, 1], i = 1, 2, ..., n, such
that the vector

ξ(x) :=

n∑
i=1

(
λi(x)

∂f(x)

∆ixi

∣∣∣∣
x=x

+ (1− λi(x))
∂f(x)

∇ixi

∣∣∣∣
x=x

)
ei (4.11)

is a subgradient of f at any point x ∈ cintΛn(S) satisfying (4.10), i.e.,

f(x) ≥ f(x) + ξ(x)T (x− x) for all x ∈ S. (4.12)
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2. Suppose that

cintΛn(S) =

{
x ∈ S :

n⋃
i=1

Bi(x, h
±
i ) ⊂ S

}
. (4.13)

Then f is convex on cintΛn(S) provided that for any x ∈ cintΛn(S) there exist
scalars λi(x) ∈ [0, 1], i = 1, 2, ..., n, such that the vector ξ(x) defined by (4.11)
is a subgradient of f at x.

Proof. By Theorem 11, we know that f : S → R is convex on cintΛn(S) if for each
point x ∈ cintΛn(S) there exists a subgradient vector ξ(x) such that

f(x) ≥ f(x) + ξ(x)T (x− x) for all x ∈ S. (4.14)

Hence the second part of the proof can be seen from (4.13) and the existence of

partial derivatives ∂f(x)
∆ixi

∣∣∣
x=x

and ∂f(x)
∇ixi

∣∣∣
x=x

, i = 1, 2, ..., n.

For the first part, we let f be convex. Then by Theorem 10 we know that for
any x ∈ cintΛn(S) satisfying (4.10) there is a subgradient vector

ξ(x) = (ξ1(x), ξ2(x), ..., ξn(x)) (4.15)

of f at x. Define functions gi : Ti → R by

gi(s) = f(x1, x2, ..., xi−1, s, xi+1, ..., xn), i = 1, 2, ..., n.

Obviously, gi is convex for every i. Substituting

x = (x1, x2, ..., xi−1, s, xi+1, ..., xn)

into (4.14), we have

gi(s) ≥ gi(xi) + ξi(x)(s− xi)
for all s ∈ Ixi , where

Ixi
:= {s ∈ Ti : (x1, x2, ..., xi−1, s, xi+1, ..., xn) ∈ S} .

The condition (4.10) implies that

xi ∈
◦

̂convRn(Ixi
) ∩ Ti.

This means ξi(x) is a subgradient for the convex function gi at xi ∈
◦

̂convRn(Ixi
)∩Ti.

From Theorem 13, we further know the existence of a scalar λi(x) ∈ [0, 1] such that

ξi(x) = λi(x)
∂f(x)

∆ixi

∣∣∣∣
x=x

+ (1− λi(x))
∂f(x)

∇ixi

∣∣∣∣
x=x

. (4.16)

The proof is complete.

Notice that if the point x = (x1, x2, ..., xn) ∈ S mentioned in Theorem 14 is a
point having dense components, i.e., σi(xi) = ρi(xi) = 0 for all i = 1, 2, ..., n, then

∂f(x)

∆ixi

∣∣∣∣
x=x

=
∂f(x)

∇ixi

∣∣∣∣
x=x

=
∂f(x)

∂xi

∣∣∣∣
x=x

, (4.17)

and the inequality (4.12) turns into (4.1). Therefore, Theorem 14 leads to the
following result.
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Corollary 13. Let S be a nonempty convex set in Λn and x = (x1, x2, ..., xn) ∈
cintΛn(S) a point satisfying (4.10) and σi(xi) = ρi(xi) = 0 for all i = 1, 2, ..., n.. Let

f : S → R be a function such that the partial derivatives ∂f(x)
∆ixi

∣∣∣
x=x

and ∂f(x)
∇ixi

∣∣∣
x=x

exist for all i = 1, 2, ..., n. If f is convex on S, then

gradf(x) :=

n∑
i=1

∂f(x)

∂ixi

∣∣∣∣
x=x

ei

is a subgradient for f at x, i.e.,

f(x) ≥ f(x) + gradf(x)T (x− x) for all x ∈ S.

Remark 4. For a convex function defined on a convex subset S of the product of
time scales T1, T2, ...,T2, the vectors

grad∆f (x) =

n∑
i=1

∂f(x)

∆ixi

∣∣∣∣
x=x

ei (4.18)

and

grad∇f (x) =

n∑
i=1

∂f(x)

∇ixi

∣∣∣∣
x=x

ei (4.19)

may not be subgradients at a point satisfying (4.10). To see this, one may consider

the convex function f(x1, x2) = (x1 − x2 − 1/2)
2

defined on Z× Z with

grad∆f (x1, x2)
T

= (2x1 − 2x2, 2x2 − 2x1 + 2)

and

grad∇f (x1, x2)
T

= (2x1 − 2x2 − 2, 2x2 − 2x1) .

It is easy to see that neither grad∆f (x1, x2) nor grad∇f (x1, x2) is subgradient for

f at the point (0, 0). However, for λ = 1 and λ̂ = 0, the vector

ξ(x1, x2) = [λ (2x1 − 2x2) + (1− λ) (2x2 − 2x1 + 2)] e1

+
[
λ̂ (2x1 − 2x2 − 2) +

(
1− λ̂

)
(2x2 − 2x1)

]
e2

is a subgradient of f at any point (x1, x2) with x1 = x2. It turns out that Theorem
13 has no straightforward generalization to the multidimensional case.

4.3. A necessary and sufficient condition for optimality. The next theorem
provides a necessary and sufficient condition for the existence of an optimal solution
to the problem (3.7).

Theorem 15. Let S be a convex set in Λn and f : S → R a convex function

with the partial derivatives ∂f(x)
∆ixi

∣∣∣
x=x

and ∂f(x)
∇ixi

∣∣∣
x=x

, i = 1, 2, ..., n, at the point

x ∈ cintΛn(S) satisfying (4.10). Then x is an optimal solution to the problem (3.7)
if and only if there exist scalars λi(x) ∈ [0, 1] such that

ξ(x) :=

n∑
i=1

(
λi(x)

∂f(x)

∆ixi

∣∣∣∣
x=x

+ (1− λi(x))
∂f(x)

∇ixi

∣∣∣∣
x=x

)
ei (4.20)

is a zero subgradient for f at x.
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Proof. Corollary 12 says that x ∈ cintΛn(S) is an optimal solution to the problem
(3.7) if and only if there exists a zero subgradient ξ(x) of f at x. By Theorem 14,
the existence of the zero subgradient vector ξ(x) is equivalent to the existence of
scalars λi(x) ∈ [0, 1] such that ξi(x) defined by (4.16) is zero for each i = 1, 2, ..., n,
and ξ(x) given by (4.20) is a subgradient for f at x. This completes the proof.

If Λn = Rn, then (4.17) holds, and hence, the vector ξ(x) defined by (4.16)
coincides with gradf . Thus, we can deduce the conventional condition for optimality
from Theorem 15.

Remark 5. By Theorem 15, optimality of the point x ∈
⋃n
i=1Bi(x, h

±
i ) ⊂ S implies

that
∂f(x)

∇ixi

∣∣∣∣
x=x

≤ 0 ≤ ∂f(x)

∆ixi

∣∣∣∣
x=x

for all i = 1, 2, ..., n. (4.21)

If x ∈ S is a point such that σi(xi) = ρi(xi) = 0 for all i = 1, 2, ..., n, then (4.17)
holds for all i = 1, 2, ..., n, and hence, the condition (4.21) turns into a sufficient
condition guaranteeing optimality of x. However, in the case when σi(xi) = ρi(xi) =
0 is not true for any i = 1, 2, ..., n, the condition (4.21) is only a necessary condition
for optimality of x. Using the condition (4.21) one may find the critical points which
are candidates to be optimal solution to the problem (3.7). To guarantee optimality
of such a point x one has to make sure that f has a zero subgradient ξ(x) of the
form (4.20) at x.

Example 8. Let Λ2
0 = Z× Z; S0 = {(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0), (1, 1)}.

Define the function f0 : S0 → R as follows: f0(−1, 0) = f0(0,−1) = f0(1, 0) =
f0(0, 1) = 1, f0(0, 0) = 0, and f0(1, 1) = −1. Obviously, f0 is convex on the convex
set S0 in Z× Z. Even though, the condition (4.21) holds at the point x = (0, 0), f0

does not attain its minimum at x = (0, 0). This is because f0 has no zero subgradient
at the point x = (0, 0).

Hereafter, we will explore the additional assumptions that makes the condition
(4.21) the necessary and sufficient condition for the optimality of the point x ∈ S.

Theorem 16. Let S be a convex set in Λn and f : S → R a convex function with

the partial derivatives ∂f(x)
∆ixi

∣∣∣
x=x

and ∂f(x)
∇ixi

∣∣∣
x=x

, i = 1, 2, ..., n, at the point x ∈ S.

Suppose that there exists a frame
⋃n
i=1Bi(x, h

±
i ) at x satisfying (4.10). Suppose

also that grad∆f and grad∇f , defined by (4.18) and (4.19), are subgradients for f
at x ∈ S. Then x is an optimal solution to the problem (3.7) if and only if (4.21)
holds.

Proof. Since

f(x) ≥ f(x) + grad∆f(x)T (x− x) for all x ∈ S
and

f(x) ≥ f(x) + grad∇f(x)T (x− x) for all x ∈ S,
we obtain

f(x) ≥ f(x) +
(
λgrad∆f(x)T + (1− λ)grad∇f(x)T

)
(x− x)

for all x ∈ S and λ ∈ [0, 1]. This and Corollary 12 shows that the necessary and
sufficient condition for x to be an optimal solution to the problem (3.7) is that the
inequality (4.21) holds.
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Example 9. Let Λ2 = Z × Z and f : Λ2 → R be defined by f(x1, x2) = (x1 −
1/3)2 + (x2 − 1/4)2. It is easy to verify that the vectors

grad∆f(x1, x2)T =

(
2x1 +

1

3
, 2x2 +

1

2

)
and

grad∇f(x1, x2)T =

(
2x1 −

5

3
, 2x1 −

3

2

)
are subgradients for f at the point (0, 0). Since the inequality (4.21) holds at the
point (0, 0), the optimal solution to the problem (3.7) is (0, 0) whenever S = Z×Z.

In the next theorem we make the following assumptions:

A.1. Let f : S ⊂ Λn → R be a function on a convex set S ⊂ Λn such that f is a
restriction of a convex function F : convRn(S)→ Rn to the set S.

A.2. All partial derivatives

∂F

∂xi

∣∣∣∣
x=x

, i = 1, 2, ..., n

exist at the points of

◦
̂convRn(S).

Theorem 17. Let S be a convex set in Λn and x ∈ S a point such that (4.10)
and (4.21) hold. Suppose that (A.1-A.2) hold. If gradF (x)T = 0, then x ∈ S is an
optimal solution to the problem (3.7).

Proof. The proof follows from the classical result Lemma 4 and the fact that f is a
restriction of a convex function F .

Example 10. Let Λ2 = R × Z and f : Λ2 → R be defined by f(x1, x2) = (x1 −
x2 − 1/3)2. The function f is the restriction of convex differentiable function F :
R× R→ R, f(x1, x2) = (x1 − x2 − 1/3)2, to R× Z. f attains its minimal value 0
over the set S∗ = {(x1, x2) : x1 − x2 = 1/3} since gradF (x)T = 0, for all x ∈ S∗.

In the next result besides A.1 and A.2 we also make the following assumption:

A.3. The vector

Ωf(x) :=

n∑
i=1

ωi(x)ei (4.22)

defined by

ωi(x) :=


∂f(x)
∆ixi

∣∣∣
x=x

if ∂F
∂xi

∣∣∣
x=x

< 0

0 if ∂F
∂xi

∣∣∣
x=x

= 0

∂f(x)
∇ixi

∣∣∣
x=x

if ∂F
∂xi

∣∣∣
x=x

> 0

, i = 1, 2, ..., n (4.23)

is a subgradient for f at x ∈ S whenever gradF (x)T 6= 0.

Notice that Ωf(x) = gradf(x)T if Λn = Rn.

Theorem 18. Let S be a convex set in Λn and x ∈ S a point such that (4.10)
holds. Suppose (A.1-A.3). Then x is an optimal solution to the problem (3.7) if
and only if (4.21) holds.
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Proof. By Lemma 4 and (A.1-A.3) we have

f(x) ≥ f(x) +
[
λgradF (x)T + (1− λ)Ωf(x)

]
(x− x) (4.24)

for all x ∈ S and λ ∈ [0, 1]. (4.24), (4.22-4.23), and Corollary 12 shows that x is an
optimal solution to the problem (3.7) if and only if (4.21) holds.

Remark 6. The above theorem offers a procedure for the determination of an
optimal solution by solving at most 2n inequalities in n variables instead of solving
a system of n equations in n variables.

Example 11. Let the function f : T1 × T2 → R be defined by

f(x1, x2) = (x1 − x2 − 1/2)2.

Obviously, f is a restriction of the convex function F (x1, x2) = (x1 − x2 − 1/2)2

with the partial derivatives

∂F

∂x1
= − ∂F

∂x2
= 2(x1 − x2 − 1/2).

In the following we consider several time scales of T1 and T2 such that the function
f(x1, x2) attains its minimum over the product T1 × T2

Case 1. If T1= T2 = R, then

∂f

∆1x1
=

∂f

∇1x1
= 2

(
x1 − x2 −

1

2

)
= − ∂f

∆2x2
= − ∂f

∇2x2
.

Obviously,

Ω1f(x) = gradF (x)

is a subgradient for f at any point of R2. The condition (4.21) turns into conven-
tional condition for optimality and we know that f attains its minimum over the
set

S∗1 =

{
(x1, x2) ∈ R× R : x1 − x2 −

1

2
= 0

}
.

Consequently,

min
(x1,x2)∈R×R

f(x1, x2) = 0.

Case 2. If T1= Z and T2 = R, then the inequality (4.21) implies that

∂f

∆1x1
= 2x1 − 2x2 ≥ 0 ≥ ∂f

∇1x1
= 2x1 − 2x2 − 2

and
∂f

∆2x2
=

∂f

∇2x2
= −2

(
x1 − x2 −

1

2

)
= 0.

Therefore,

S∗2 =

{
(x1, x2) ∈ Z× R : x1 − x2 − 1 ≤ 0 ≤ x1 − x2 and x1 − x2 −

1

2
= 0

}
=

{
(x1, x2) ∈ Z× R : x1 − x2 −

1

2
= 0

}
is the set of critical points. Since ∂F

∂x1

∣∣∣
x

= ∂F
∂x2

∣∣∣
x

= 0 for x ∈ S∗2 and

Ω2f(x) = (0, 0)
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Figure 7. Upper line is the line x1 = x2 and lower line is the line
x1 − x2 − 1 = 0. Black dots are the elements of S∗2

is a subgradient for f at every point x of S∗2 , the set S∗2 becomes the set of all
alternative solutions to the problem (3.7) and the minimum value of f over Z× R
is

min
(x1,x2)∈Z×R

f(x1, x2) = 0

(see Figure 7).
Case 3. If T1= T2 = Z, then the condition (4.21) implies that

∂f

∆1x1
= 2x1 − 2x2 ≥ 0 ≥ ∂f

∇1x1
= 2x1 − 2x2 − 2

and
∂f

∆2x2
= 2x2 − 2x1 + 2 ≥ 0 ≥ ∂f

∇2x2
= 2x2 − 2x1.

Hence we obtain the set

S∗3 = {(x1, x2) ∈ Z× Z : 2x1 − 2x2 ≥ 0 ≥ 2x1 − 2x2 − 2}
= {(x1, x2) ∈ Z× Z : x1 = x2}
∪ {(x1, x2) ∈ Z× Z : x1 − x2 = 1}

as the set of critical points. Since ∂F
∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= −1 for all x ∈ {(x1, x2) ∈
Z× Z : x1 = x2} we have

Ω+
3 f(x) =

(
∂f

∆1x1
,
∂f

∇2x2

)
= (2x1 − 2x2, 2x2 − 2x1)
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Figure 8. Upper line is the line x2 = x1 and lower line is the line
x2 − x1 + 1 = 0. Black dots are the elements of S∗3

for x ∈ {(x1, x2) ∈ Z×Z : x1 = x2}. Obviously Ω+
3 f(x) is a subgradient for f at each

point of the set {(x1, x2) ∈ Z× Z : x1 = x2}. Similarly, since ∂F
∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= 1

for all x ∈ {(x1, x2) ∈ Z× Z : x1 − x2 = 1} we have

Ω−3 f(x) =

(
∂f

∇1x1
,
∂f

∆2x2

)
= (2x1 − 2x2 − 2, 2x2 − 2x1 + 2)

for x ∈ {(x1, x2) ∈ Z × Z : x1 − x2 = 1}. Since Ω−3 f(x) is a subgradient for f at
each point of the set (x1, x2) ∈ {Z× Z : x1 − x2 = 1}, the set S∗3 becomes the set of
alternative solutions and the value

min
(x1,x2)∈Z×Z

f(x1, x2) =
1

4

is the minimum value of f over Z× Z (see Figure 8).
Case 4. If T1= Z and T2 = 2N = {2n : n ∈ N}, then the condition (4.21) implies

that
∂f

∆1x1
= 2x1 − 2x2 ≥ 0 ≥ ∂f

∇1x1
= 2x1 − 2x2 − 2

and
∂f

∆2x2
= 3x2 − 2x1 + 1 ≥ 0 ≥ ∂f

∇2x2
=

3

2
x2 − 2x1 + 1.

Hence,

S∗4 =
{

(x1, x2) ∈ Z× 2N : x1 = x2

}
∪
{

(x1, x2) ∈ Z× 2N : x1 − x2 = 1
}



218 MURAT ADIVAR AND SHU-CHERNG FANG

is the set of critical values. Since ∂F
∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= −1 for all x ∈ {(x1, x2) ∈ Z×

2N : x1 = x2} and ∂F
∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= 1 for all x ∈ {(x1, x2) ∈ Z×2N : x1−x2 = 1}
we obtain

Ω+
4 f(x) =

(
∂f

∆1x1
,
∂f

∇2x2

)
= (2x1 − 2x2,

3

2
x2 − 2x1 + 1)

and

Ω−4 f(x) =

(
∂f

∇1x1
,
∂f

∆2x2

)
= (2x1 − 2x2 − 2, 3x2 − 2x1 + 1)

as the subgradients for f at the elements of the sets {(x1, x2) ∈ Z × 2N : x1 = x2}
and {(x1, x2) ∈ Z × 2N : x1 − x2 = 1}, respectively. Consequently, S∗4 is the set of
alternative solutions and

min
(x1,x2)∈Z×2N

f(x1, x2) =
1

4

is the minimum value of f over the set Z× 2N (see Figure 9).

Figure 9. Black dots are the elements of S∗4

Case 5. If T1= Z and T2 = 1
3Z = {n/3 : n ∈ Z}, then the condition (4.21)

implies that
∂f

∆1x1
= 2x1 − 2x2 ≥ 0 ≥ ∂f

∇1x1
= 2x1 − 2x2 − 2

and
∂f

∆2x2
= 2x2 − 2x1 +

4

3
≥ 0 ≥ ∂f

∇2x2
= 2x2 − 2x1 +

2

3
.
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Solving these inequalities for (x1, x2) ∈ Z× 1
3Z leads to

S∗5 =

{
(x1, x2) ∈ Z× 1

3
Z : 2x2 − 2x1 +

4

3
= 0

}
∪
{

(x1, x2) ∈ Z× 1

3
Z : 2x2 − 2x1 +

2

3
= 0

}
as the set of critical points. Since Since ∂F

∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= 1/6 for all x ∈

{(x1, x2) ∈ Z × 1
3Z : 2x2 − 2x1 + 4

3 = 0} and ∂F
∂x1

∣∣∣
x

= − ∂F
∂x2

∣∣∣
x

= −1/6 for all

x ∈ {(x1, x2) ∈ Z× 1
3Z : 2x2 − 2x1 + 2

3 = 0} we obtain

Ω+
5 f(x) =

(
∂f

∇1x1
,
∂f

∆2x2

)
= (2x1 − 2x2 − 2, 2x2 − 2x1 +

4

3
)

and

Ω−5 f(x) =

(
∂f

∆1x1
,
∂f

∇2x2

)
= (2x1 − 2x2, 2x2 − 2x1 +

2

3
)

as the subgradients for f at the elements of the sets {(x1, x2) ∈ Z× 1
3Z : 2x2−2x1 +

4
3 = 0} and {(x1, x2) ∈ Z× 1

3Z : 2x2− 2x1 + 2
3 = 0}, respectively. Consequently, S∗5

is the set of alternative solutions and

min
(x1,x2)∈Z×Z/3

f(x1, x2) =
1

36

is the minimum value of f over Z× 1
3Z.

5. Optimization on time scales. In this section we propose the linear program-
ming (LP) and the quadratic programming (QP) problems on time scales. We
start with an extension of LP problem.

5.1. LP problem on time scales. Consider the problem

minimize

n∑
i=1

cixi

s.t.

n∑
j=1

aijxj ≤ bi for i = 1, 2, .., n

x = (x1, ..., xn) ∈ T1 × T2 × ...× Tn (5.1)

where the coefficients ci, aij , bi, for all i, j ∈ {1, 2, ..., n}, are real numbers and
Tj , j = 1, 2, ..n, are time scales. It is obvious that the problem (5.1) becomes the
standard LP problem when Tj = R, for i = 1, 2, .., n, and an integer programming
problem when Tj = Z, for i = 1, 2, .., n .

Since there are many time scales other than R and Z, the problem (5.1) lead to
different type of optimization problems.
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Given a linear function f(x1, x2, ..., xn) =
∑n
i=1 cixi defined on a convex region

A in Rn, we know by Corollary 11 that the restriction f |Λn : A∩Λn → R of f into
A ∩ Λn is convex on A ∩ Λn. Moreover, we have

Ωg(x) = grad∆g(x) = grad∇g(x) = gradf(x) =

n∑
i=1

ciei,

where g = f |Λn and grad∆g(x) and grad∇g(x) are defined as in (4.18) and (4.19),
respectively. Then Theorem 14 leads to the next result.

Theorem 19. Let S be a convex set in Λn and f : convRn(S)→ R a linear function.
Then, for each x ∈ cintΛn(S) satisfying (4.10)

grad∆f(x) = grad∇f(x) = gradf(x)

holds and ξ(x) = gradf(x) is a subgradient for f at x, i.e.,

f(x) ≥ f(x) + gradf(x)T (x− x) for all x ∈ S.

Notice that the next result is well known in the literature for conventional con-
tinuous optimization.

Theorem 20. [7, p. 103] Let f : Rn→ R be a convex function and A be a nonempty
convex set in Rn. If f is differentiable, then x ∈ A is an optimal solution to the
problem

minimize f(x) subject to x ∈ A
if and only if

(gradf(x))T (x− x) ≥ 0 for all x ∈ A.
Furthermore, if A is open, then x ∈ A is an optimal solution if and only if

gradf(x) = 0.

We have a parallel result for linear optimization on time scales:

Remark 7. Let A be a convex set in Rn such that cintΛn(A ∩Λn) 6= ∅. It is clear
that S := A∩Λn is convex in Λn. Given a linear function f : Rn → R, it is evident
that x∗ ∈ S is a solution to the problem

minimize f(x) subject to x ∈ S (5.2)

if and only if x∗ is a solution to the problem

minimize f(x) subject to x ∈ convRn(S).

By replacing A with convRn(S) in Theorem 20, we arrive at the conclusion that
x ∈ S is an optimal solution to the problem (5.2) if and only if

(gradf(x))T (x− x) ≥ 0 for all x ∈ S.

In Figure 10, we illustrate an application of Remark 7 to an integer linear pro-
gramming problem(ILP).

Example 12. Consider the following LP on time scales:

max 3x+ 5y
s.t. 2x− y ≤ 14

x+ y ≤ 16
x− y ≤ 10

x ∈ R+ ∪ {0} and y ∈ 2N ∪ {0}

.
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Figure 10. The region bounded by the black lines is the polytope
A. The black dots surrounded by the dashed rectangle are the
elements of the convex set S = A∩(Z×Z) in Z×Z. The triangular
point is the point x at which grad f makes an acute angle with all
vectors pointing from x towards elements of S. The grey line is the
hyperplane whose lower halfplane contains S.

Obviously, the optimal solution (x∗, y∗) to this problem is (8, 8), where the optimal
value of f(x, y) = 3x+5y is 64 and the gradf = (3, 5) makes an obtuse angle with all
vectors pointing from (x∗, y∗) towards any point of the feasible domain (see Figure
11).

The above example indicates that linear optimization on time scales not only
may unify linear programming (LP) and integer programming (IP) but also may
provide more general perspective for constructing new models for solving problems.

5.2. QP problem on time scales. Consider the following quadratic optimization
problem over time scales:

minimize f(x) =
1

2
xTQx+ cTx

s.t. Ax ≤ b
x ∈ T1 × T2 × ...× Tn, (5.3)

whereQ is an n×n symmetric and positive semidefinite matrix, c is an n-dimensional
column vector, A is anm×n constraint matrix, b is anm-dimensional column vector,
and T1, T2,...,Tn are time scales. Letting Ti = R for all i = 1, 2, ..., n, we obtain
standard linearly constrained convex quadratic programming problem. Letting Ti =
Z for all i = 1, 2, ..., n, we obtain a convex quadratic integer programming problem.
Choosing different time scales in (5.3), we may get hybrid quadratic programming
problems.
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Figure 11. The feasible domain for the above given LP consists
of four parallel lines bounded by the constraints

We would like to particularly point out that the study of optimization on time
scales may provide easiness and new algorithms for solving problems besides the
generalization. To illustrate our point, let us consider the following unconstrained
optimization problem:

minimize f(x) =
1

2
xTQx+ cTx

for x ∈ Tn,

where Q and c are defined as in (5.3) and T is a time scale. If we let T = {ρ(0), 0, 1,
σ(1)}, ρ(0) < 0, 1 < σ(1) and S = Tn, then we have cintTn (S) = {0, 1}n 6= ∅. It
is easy to see that f(x) is convex and S is also convex in Tn. Hence we can apply
Theorem 18 to (5.3) to check the existence of an optimal solution. Consequently,
we know

x = (x1, x2, ..., xn) ∈ cintTn (S) = {0, 1}n

is an optimal solution to the problem (5.3) if and only if x is an element of the set

S∗ = ∩ni=1

{
x ∈ {0, 1}n :

∂f(x)

∇ixi

∣∣∣∣
x=x

≤ 0 ≤ ∂f(x)

∆ixi

∣∣∣∣
x=x

}
,

where

∂f(x)

∆ixi

∣∣∣∣
x=x

=

{
fi(1)− fi(0) if xi = 0
fi(σ(1))−fi(1)

σ(1)−1 if xi = 1
, (5.4)

∂f(x)

∇ixi

∣∣∣∣
x=x

=

{
fi(0)−fi(ρ(0))
−ρ(0) if xi = 0

fi (1)− fi (0) if xi = 1
, (5.5)

and

fi(s) = f (x1, ...,xi−1, s, xi+1, ...,xn) ,
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provided Ωf(x) is a subgradient for f at any x ∈ S∗. On the other hand, if the
problem (5.3) has an optimal solution x ∈ cintTn (S) = {0, 1}n, then the problem

minimize f(x) =
1

2
xTQx+ cTx

for x ∈ {0, 1}n (5.6)

has the same optimal solution. Hence, we have derived a sufficient condition for the
optimal solutions to the problem (5.6).

Corollary 14. Let f be a function such that the set

S∗ = ∩ni=1

{
x ∈ {0, 1}n :

∂f(x)

∇ixi

∣∣∣∣
x=x

≤ 0 ≤ ∂f(x)

∆ixi

∣∣∣∣
x=x

}
, (5.7)

is non-empty and Ωf defined by (4.22) is a subgradient for f at every x ∈ S∗. Then
every element in S∗ is an optimal solution to the problem (5.6), and vice versa.

Example 13. Define ρ(0) = −1, σ(1) = 2 to obtain the time scale T = {−1, 0, 1, 2}.
Let

Q =

 2 0 0
0 6 0
0 0 6

 and c =

 −1
−4
−4

 .
Evidently, Q is a symmetric and positive definite matrix and f is convex on the
convex set S = Tn. Consider the problem

minimize f(x) = −x1 − 4x2 − 4x3 + x2
1 + 3x2

2 + 3x2
3

s.t. x1, x2, x3 ∈ {0, 1} . (5.8)

By (5.4-5.5), we have

∂f(x)

∇1x1
= 2x1 − 2,

∂f(x)

∆1x1
= 2x1,

∂f(x)

∇2x2
= 6x2 − 7,

∂f(x)

∆2x2
= 6x2 − 1,

and
∂f(x)

∇3x3
= 6x3 − 7,

∂f(x)

∆3x3
= 6x3 − 1.

Since

S∗1 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇1x1
≤ 0 ≤ ∂f(x)

∆1x1

}
= {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)},

S∗2 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇2x2
≤ 0 ≤ ∂f(x)

∆2x2

}
= {(0, 1, 0) , (1, 1, 0) , (0, 1, 1) , (1, 1, 1)} ,

and

S∗3 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇3x3
≤ 0 ≤ ∂f(x)

∆3x3

}
= {(1, 0, 1) , (0, 0, 1) , (0, 1, 1) , (1, 1, 1)} ,

we obtain

S∗ = S∗1 ∩ S∗2 ∩ S∗3 = {(0, 1, 1) , (1, 1, 1)} .
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Since

gradf(0, 1, 1)T = (−1, 2, 2)

and

gradf(1, 1, 1)T = (1, 2, 2)

we have

Ωf(0, 1, 1) =

(
∂f(x)

∆1x1
,
∂f(x)

∇2x2
,
∂f(x)

∇3x3

)
(0,1,1)

= (2x1, 6x2 − 7, 6x3 − 7)(0,1,1)

= (0,−1,−1)

and

Ωf(1, 1, 1) =

(
∂f(x)

∇1x1
,
∂f(x)

∇2x2
,
∂f(x)

∇3x3

)
(1,1,1)

= (2x1 − 2, 6x2 − 7, 6x3 − 7)(1,1,1)

= (0,−1,−1)

which are the subgradients of f at (0, 1, 1) and (1, 1, 1), respectively. By Corollary
14, we can deduce that (0, 1, 1) and (1, 1, 1) are optimal solutions to the problem
(5.8) at which the function f(x) = −x1 − 4x2 − 4x3 + x2

1 + 3x2
2 + 3x2

3 attains a
minimum value of −2.

Note that the existence of an optimal solution to the problem (5.6) is guaranteed
by the existence of an element of the set S∗ defined by (5.7). However, one may
easily find a convex function f(x) = 1

2x
TQx + cTx such that the setting T =

{−1, 0, 1, 2} in Example 13 does not work for finding at least one element of S∗. In
such cases, we can redefine the time scale T = {ρ(0), 0, 1, σ(1)} to show that S∗ 6= ∅.

Example 14. Let

Q =

 2 0 0
0 8 0
0 0 8

 and c =

 −1
−16
−16

 .
for the following quadratic optimization problem:

minimize f(x) = −x1 − 16x2 − 16x3 + x2
1 + 4x2

2 + 4x2
3

s.t. x1, x2, x3 ∈ {0, 1} . (5.9)

We consider two cases:
Case 1. (S∗ = ∅ ) Let T = {−1, 0, 1, 2}. From (5.4-5.5), we have

∂f(x)

∇2x2
= 8x2 − 20 and

∂f(x)

∆2x2
= 8x2 − 12.

This implies that

S∗2 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇2x2
≤ 0 ≤ ∂f(x)

∆2x2

}
= ∅.

Hence we have S∗ = ∅. In this case, Corollary 14 yields no optimal solution for
(5.9).
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Case 2. (S∗ 6= ∅) Set ρ(0) = −4 and σ(1) = 5 to define the time scale T =
{−4, 0, 1, 5}. From (5.4-5.5), we have

∂f(x)

∇1x1
=

{
1
4

(
x2

1 − (x1 − 4)
2
)
− 1 if x1 = 0

2x1 − 2 if x1 = 1
,

∂f(x)

∆1x1
=

{
2x1 if x1 = 0
1
4

(
(x1 + 4)

2 − x2
1

)
− 1 if x1 = 1

,

∂f(x)

∇2x2
=

{ (
x2

2 − (x2 − 4)
2
)
− 16 if x2 = 0

8x2 − 20 if x2 = 1
,

∂f(x)

∆2x2
=

{
8x2 − 12 if x2 = 0(

(x2 + 4)
2 − x2

2

)
− 16 if x2 = 1

,

∂f(x)

∇3x3
=

{ (
x2

3 − (x3 − 4)
2
)
− 16 if x3 = 0

8x3 − 20 if x3 = 1
,

∂f(x)

∆2x2
=

{
8x3 − 12 if x3 = 0(

(x3 + 4)
2 − x2

3

)
− 16 if x3 = 1

,

and, consequently,

∂f(x)

∇1x1
=

{
−5 if x1 = 0
0 if x1 = 1

,
∂f(x)

∆1x1
=

{
0 if x1 = 0
5 if x1 = 1

,

∂f(x)

∇2x2
=

{
−32 if x2 = 0
−12 if x2 = 1

,
∂f(x)

∆2x2
=

{
−12 if x2 = 0
8 if x2 = 1

,

∂f(x)

∇3x3
=

{
−32 if x3 = 0
−12 if x3 = 1

,
∂f(x)

∆2x2
=

{
−12 if x3 = 0
8 if x3 = 1

.

Therefore, we have

S∗1 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇1x1
≤ 0 ≤ ∂f(x)

∆1x1

}
= {(0, 0, 0) , (0, 0, 1) , (0, 1, 0) , (0, 1, 1) , (1, 0, 0) , (1, 0, 1) , (1, 1, 0) , (1, 1, 1)},

S∗2 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇2x2
≤ 0 ≤ ∂f(x)

∆2x2

}
= {(0, 1, 0) , (1, 1, 0) , (0, 1, 1) , (1, 1, 1)} ,

and

S∗3 =

{
(x1, x2, x3) ∈ {0, 1}3 :

∂f(x)

∇3x3
≤ 0 ≤ ∂f(x)

∆3x3

}
= {(1, 0, 1) , (0, 0, 1) , (0, 1, 1) , (1, 1, 1)} .

Consequently, we obtain the optimal set

S∗ = S∗1 ∩ S∗2 ∩ S∗3 = {(0, 1, 1) , (1, 1, 1)}

at which the function f(x) = −x1−16x2−16x3 +x2
1 +4x2

2 +4x2
3 attains a minimum

value of −24.
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The previous examples lead to an open problem to be answered.
Open problem. Given an n × n symmetric and positive semi definite matrix Q
and an n × 1 column vector c. Is there always a time scale T = {ρ(0), 0, 1, σ(1)}
such that the set S∗ defined by (5.7) is non-empty?

6. Concluding remarks. The purpose of this paper is two fold: First, we intro-
duce the fundamental concepts of convexity of sets and functions defined on time
scales and derive their analytic properties for further analysis. Second, we pro-
pose a new problem of optimization on time scales for system modeling with both
continuous and discrete variables. Before our work, time scale systems have been
considered only for the generalization of differential, difference, q-difference and
h-difference equations by using dynamic equations containing ∆-derivative of the
functions. This paper is the first work in which sets in the product of time scales are
investigated in terms of their convexity properties. Different from the convexity no-
tion in continuous calculus, several researchers (e.g., [12] and [19]) have defined the
concept of discrete convexity to explain the convexity of a subset in Z×Z× ...×Z.
Our notion of convexity describes a much more general mathematical structure in
the product of time scales. Theorem 15 provides a necessary and sufficient condition
for optimality which enables us to handle different type of optimization problems on
time scales. It may open an avenue for future research on time scales with analogues
results of Lagrange multipliers and Karush-Kuhn-Tucker conditions.
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