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ABSTRACT 
 

 

 

A NEW RNA-SEQ DATA CLASSIFIER BASED ON QUANTILE 

TRANSFORMATION 
 

 

 

Koçhan, Necla 

 

 

 

PhD in Applied Mathematics and Statistics 

 

Advisor: Prof. Dr. G. Yazgı Tütüncü 

 

January, 2020 

 

Recently in cancer research, true classification of the sub-type of a patient with a 

particular cancer, leads a better predictive and a customized treatment for that 

patient. Therefore, classification of a patient to a cancer sub-type has a crucial 

importance and can be done by using genetic information. Most of the existing 

classifiers assume that genes are independent; however, this is not a realistic 

approach for real RNA-Seq classification problems. For this reason, in this thesis a 

new classifier, which incorporates the dependence structure between genes into a 

model, is proposed. The dependency between genes is first modelled by sample 

covariance matrix and then by local covariance matrix. The local covariance matrix 

is estimated by the local dependency approximation. The classification algorithm is 

coded in R programming language and a new classification package for RNA-Seq 

data is developed. The performance of this new classifier is compared with the 

existing classifiers over real RNA-Seq data sets, in terms of classification error rates. 
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ÖZET 
 

 

 

KUANTİL TRANSFORMASYON TABANLI YENİ BİR RNA-

SEKANS VERİ SINIFLANDIRICISI 
 

 

 

Koçhan, Necla 

 

 

 

Uygulamalı Matematik ve İstatistik Doktora Programı 

 

Advisor: Prof. Dr. G. Yazgı Tütüncü 

 

Ocak, 2020 

 

Son zamanlarda kanser araştırmalarında, bilinen bir kanser tipi olan bir hastanın 

o kanserin çeşidine göre doğru sınıflandırılması o hasta için daha iyi tahminlere 

dayanan ve kişiye özel tedavi sağlamaktadır. Bu nedenle, hastanın kanser 

çeşidine göre sınıflandırılması çok önemlidir ve bu, genetik bilgi kullanılarak 

yapılabilinmektedir. Mevcut sınıflandırıcıların çoğu genlerin bağımsız olduğu 

varsayımına dayanmaktadır; ancak, bu varsayım asıl RNA-Sekans sınıflandırma 

problemleri için gerçekçi bir yaklaşım değildir. Bu nedenle, bu tezde, genler 

arasındaki bağımlılık yapısını dikkate alan yeni bir sınıflandırıcı önerilmektedir. 

Genler arasındaki bağımlılık önce kovaryans matrisi ve daha sonra lokal 

kovaryans matrisi ile modellenmektedir. Lokal kovaryans matrisi, lokal 

bağımlılık fonksiyonu kullanılarak tahmin edilmektedir. Sınıflama algoritması R 

programlama dilinde kodlanmış olup RNA-Sekans verileri için yeni bir sınıflama 

paketi geliştirilmiştir. Yeni sınıflandırıcının performansı, gerçek RNA-Sekans 

verileri kullanılarak mevcut sınıflandırıcılar ile sınıflandırma hataları açısından 
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karşılaştırılmıştır. 

 

Anahtar Kelimeler: Karesel diskriminant analizi, RNA-Sekanslama, gen ifadesi, 

bağımlılık, lokal kovaryans matrisi, sınıflama. 
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CHAPTER 1: INTRODUCTION  

 

Classification on the basis of RNA sequencing data is an important problem of 

modern personalized medicine, particularly for disease diagnosis and 

personalized treatment. For instance, breast cancer has several distinct types 

where some types respond better to certain treatments and some respond worse. 

Thus, it is important to know what type of breast cancer a patient has so that the 

right treatment can be assigned. One approach is to perform RNA sequencing on 

a cancer sample from the patient and use the gene expression profile as data for 

classifying what type of cancer the patient has. Knowing the gene expression 

profile inside a cell gives us important insights into biological processes, e.g. the 

mechanisms of disease or individual’s susceptibility to a certain cancer type. To 

know the mechanisms of the disease allows the treatment to be personalized and 

increases the survival chance of the patient. 

 

One can measure gene expression profiles using various high-throughput 

technologies such as microarray and next generation RNA sequencing (RNA-

Seq) technologies. Recently, RNA-Seq has become very popular and widely 

applied approach in molecular biology studies due to the many advantages. 

Unlike microarray technologies, RNA-Seq, for instance, can discover the novel 

transcripts. It can also measure the tens of thousands of genes simultaneously 

which reduces the sequencing cost (Fu et al., 2009; Haas and Zody, 2010). With 

these advantages, gene expression data are being generated in large output. Thus, 

an impressive data analysis task is required to efficiently extract significant 

amount of biological information from the huge and fast-growing gene 

expression data. 

 

There are two main goals in gene expression data analysis: (1) to identify dif-

ferentially expressed genes related to the condition (e.g. tumor and non-tumor 

samples) (2) to develop a classification model for diagnostic purpose. In this 

thesis, we focus on the second goal. More precisely, in this thesis, our aim is to 

determine whether a patient has a disease or not (e.g. tumor or non-tumor) or 

whether a patient has a specific type of a disease (e.g. type of a breast cancer). 

We note here that we have only considered the case where we have just two 
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classes, that is we focused on binary classification problems. 

 

In order to construct a successful classification model, which can be applied on 

RNA-Seq data, powerful statistical methods are required. Those methods should 

be able to overcome the problems arises from the high dimensional RNA-Seq 

data, detect the most informative and minimal gene set to be used in 

classification and to classify patients correctly. Since RNA-Seq counts the 

number of reads mapped on to genes and measures gene expression levels on 

discrete scale, many machine learning algorithms cannot be directly applied to 

RNA-Seq data. Thus, some researchers log-transformed read counts in order to 

remove the discrete structure of the data and then applied several machine 

learning algorithms such as k-Nearest Neighbor (kNN), Support Vector 

Machines (SVMs) and logistic regression on log-transformed counts (Zararsiz et 

al., 2017a; Zararsiz et al., 2017b; Tan et al., 2014). 

 

On the other hand, some researchers modelled the data more directly. For this 

purpose, discrete distributions two of which are Poisson and Negative Binomial 

(NB) are considered for RNA-Seq data modelling and data classification 

methods. Witten (2011) developed a classifier called Poisson Linear 

Discriminant Analysis (PLDA) assuming that RNA-Seq data comes from 

Poisson distribution. It is mentioned in Witten’s paper that Poisson distribution 

based model can be extended to the Negative Binomial model in order to 

improve the classification performance when we have biological replicates in the 

data (Witten, 2011). The reason behind that is when there are biological 

replicates (multiple individuals) in the data; the variance of the data exceeds its 

mean. Therefore, the data is not distributed Poisson anymore. As a consequence, 

Dong et al. (2016) proposed a new classifier called Negative Binomial Linear 

Discriminant Analysis (NBLDA) for RNA-Seq data which assumes that data 

comes from Negative Binomial distribution. 

 

When we have biological replicates in the data it is of importance to investigate 

the mean variance relationship of the counts before classification or linear 

modelling. Recently, mean variance modeling at the observational level (voom) 

method is proposed by Law et al. (2014) in order to estimate the mean variance 
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relationship of the log-transformed counts. It is shown that mean variance trend 

is more precise after voom transformation which enables Gaussian classification 

method become applicable (Zararsiz, 2015). Given these advantages, Zararsiz et 

al. (2017b) incorporated voom method into the Diagonal Linear Discriminant 

Analysis (DLDA) and proposed a new classifier called voomDLDA (voom based 

DLDA) for RNA-Seq data which may contain biological replicates. 

 

Note here that all the aforementioned classification models assume that genes 

(measurement on the features) are independent (Dong et al. 2016; Witten, 2011; 

Zararsiz, 2015). However, since genes are highly correlated with each other on 

the same pathway or network, the strong independence assumption is not 

realistic for RNA-Seq problems and this may result in low performance in RNA-

Seq data classification. Therefore, researchers have focused on the classification 

models for RNA-Seq data incorporating the dependency between genes. Sparse 

Quadratic Discriminant Analysis (SQDA) and Gaussian copula approach are 

recently proposed RNA-Seq classification methods of this type (Sun and Zhao, 

2015; Zhang, 2017). Zhang (2017) modelled counts with multivariate Gaussian 

copula whereas Sun and Zhao (2015) modelled log-transformed counts with the 

multivariate normal distribution. It has shown that incorporating the dependence 

structure into the model increases the performance of RNA-Seq data 

classification. 

 

In this thesis, we proposed a new classifier called quantile transformation 

Quadratic Discriminant Analysis (qtQDA) using RNA-Seq expression profiles. 

The proposed classifier incorporates dependence structure between genes into 

the classification model. There are three important contributions while classi-

fying samples given their gene expression profiles. The first contribution is that 

instead of transforming the counts, e.g. using a log transformation, and 

modelling those log-transformed counts we transform the counts using a quantile 

transformation to be used in the classification of a new sample. The second 

contribution is to use a novel application of a powerful regularization technique 

for covariance matrix estimation. We use an R package called “corpcor” for this 

purpose (readers are referred to Shafer and Strimmer (2005) for more details). 

With the help of this package, we guarantee that estimated covariance matrix is 
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symmetric and positive definite and therefore can be used in the calculation of 

posterior probabilities. To the best of our knowledge, this is the first time this 

regularization technique is used in classification problems. The last contribution 

is the estimation of covariance matrix where we use two different techniques: 

simple covariance matrix estimation and local covariance matrix estimation. We 

claim that class-specific covariance matrices estimated by using local 

dependence function may improve the covariance matrix estimation and this may 

affect the classification performance of RNA-Seq data. 

 

The rest of the thesis is organized as follows. In Chapter 2, some preliminaries 

are presented and some basic concepts are overviewed. In Chapter 3, some of 

powerful machine learning algorithms together with specialized RNA-Seq data 

classifiers are summarized. In Chapter 4, a new approach to RNA-Seq data 

classification, which is called qtQDA classifier, is given in details. Moreover, 

not only applications of the proposed method but also results are given within 

the same chapter. In chapter 5, a new local covariance matrix estimation 

technique is explained and then applied on real data sets. The results are 

analyzed under different covariance matrix estimations. 
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CHAPTER 2: RNA SEQUENCING AND DISCRIMINANT ANALYSIS 

 

In this chapter, we first introduce some basic concepts and important terms in 

molecular biology in order to understand RNA sequencing experiments. Then we 

explain RNA-Seq experiments and the structure of the data set obtained from the 

RNA sequencing experiments. After that, we give two discrete models, which 

are based on discrete distributions for RNA-Seq data sets. Lastly, we explain the 

discriminant analysis which can be used for any classification problems. 

 

2.1 Basic Concepts and Terms 

 

DNA which stands for deoxyribonucleic acid is a molecule containing 

inheritable information of any organism. It stores all the genetic instructions 

which are necessary in the development, functioning and growth of all 

organisms. The genetic information is coded as a sequence of nucleotides: 

Adenine (A), Thymine (T), Cytosine (C) AND Guanine (G). DNA molecule 

consists of two strands that coil around each other in a double helix form 

(Watson and Crick, 1953). These two strands, each of which stores the same 

biological information are bonded together according to “base pairing rules” (A 

with T and C with G). See Figure 2.1 

 

RNA which stands for ribonucleic acid is a single-stranded molecule and has 

important biological roles in the coding, decoding, regulation, carrying the in-

formation and expression of genes. It can be seen from the Figure 2.1 that it 

consists of the same nucleobases as DNA except Thymine which is displaced by 

Uracil (U). There are several types of RNA existing in the cell such as 

messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA) and 

micro RNA (miRNA) for different purposes. 

 

cDNA is called complementary DNA which is synthesized from a single-

stranded mRNA produced by reverse transcription. 

 

Gene is a segment of DNA, which encodes a functional RNA or protein product, 

that is, it encodes the instructions for building proteins which performs the 
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biological functions of the cell (Slack, 2014). 

 

 
Figure 2.1. The detailed structure of DNA and RNA (Source: MacKenzie, 2010) 

 

Genome is the genetic information contains all the hereditary information of an 

organism. The genome includes both coding and non-coding regions which are 

called exon and intron, respectively. 

 

Transcription is the initial step of gene expression. Since DNA never leaves the 

nucleus, it creates an RNA in order to deliver the information stored in DNA to 

outside of the nucleus. Then a particular segment of DNA is copied into RNA by 

the RNA polymerase enzyme. The non-coding segments, known as introns, in 

RNA sequence are removed by splicing and the remaining coding sequences, 

known as exons, are combined together in the mRNA. See Figure 2.2. 

 

Translation As soon as mRNA leaves the nucleus translation initiates with 

ribosome attachment to the mRNA molecule. Then mRNA is decoded by tRNA 

in order to produce a specific amino acid or polypeptide chain. See Figure 2.2 

 

Technical replicates refer to repeated measurements that use the same biological 

sample (Figure 2.3). They are used to accurately measure the variability arises 

from the experiments that is, they tell us how accurately genes are measured. See 
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(Klaus, 2015) for more details. 

 

 
Figure 2.2. Transcription and translation processes (Source: Özdoğan, 2018) 

 

Biological replicates refer to parallel measurements that use biologically differ-

ent samples, which are used to measure the biological variation between 

different samples. See Figure 2.3. Using biological replicates in the experiments 

enables us to determine whether the experimental effect is biologically relevant 

or not. See (Klaus, 2015) for more details. 

 

 
Figure 2.3. Technical replicates vs biological replicates (Source: Klaus, 2015) 

 

2.2 Next Generation RNA Sequencing 

 

It is known that there exists nearly 25,000 genes in the human genome. The 

expression level of all these genes can be measured simultaneously using a 

variety of sophisticated techniques. Currently the most popular technique is next-
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generation RNA sequencing which was first introduced in 2008 (Mortazavi et 

al., 2008; Holt and Jones, 2008). Since then the popularity of RNA-Seq has 

increased due to the many advantages such as unprecedented sequencing speed, 

cost-effectiveness, accuracy in genomic analysis, high resolution etc. 

(AbuElQumsan, 2018; Mardis 2008; Wang et al., 2009; Metzker, 2010). 

 

 
Figure 2.4. A workflow of RNA Sequencing (Source: adopted from University of 

Gothenburg Institute of Biomedicine Lecture Notes) 

 

The first step in the technique is to convert all RNA samples to be sequenced 

into cDNA fragments (a cDNA library). Adapters are then attached to the end of 

the fragments which include functional elements that allow sequencing. The 

cDNA library is then analyzed by NGS and short sequences (reads) are 

produced. Sequencing depth (the depth to which the library is sequenced) varies 
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depending on techniques which the output data will be used for. Then those 

reads are aligned and mapped to a reference gene/genome. After all, the number 

of reads mapped to corresponding gene is recorded as an output in the data 

matrix. See Figure 2.4 for the RNA-Seq workflow. 

 

2.3 RNA-Seq Data 

 

After RNA sequncing process, we obtain 𝑝𝑝 × 𝑛𝑛 dimensional count matrix 𝑋𝑋 =

�𝑥𝑥𝑖𝑖𝑖𝑖�1 ≤ 𝑖𝑖 ≤ 𝑝𝑝, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛� given in Figure 2.5. Note here that each row indicates 

the expression patterns of genes and each column indicates the expression 

profiles of samples, and 𝑥𝑥𝑖𝑖𝑖𝑖 is the expression level of 𝑖𝑖𝑡𝑡ℎ gene in the 𝑗𝑗𝑡𝑡ℎ sample. 

It can be seen from Figure 2.5 thta each gene is denoted by a row vector, i.e., 

𝑋𝑋𝑖𝑖 = [𝑥𝑥𝑖𝑖,1 𝑥𝑥𝑖𝑖,2 ⋯ 𝑥𝑥𝑖𝑖,𝑛𝑛]  and each sample is denoted by a column vector, i.e., 

𝑋𝑋𝑖𝑖 = [𝑥𝑥1,𝑖𝑖 𝑥𝑥2,𝑖𝑖 ⋯ 𝑥𝑥𝑝𝑝,𝑖𝑖]𝑇𝑇, where T denotes the transpose of a matrix. The total 

number of counts for sample j, which is defined as the librray size is denoted by 

𝑋𝑋.𝑖𝑖 where 𝑋𝑋.𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑝𝑝
𝑖𝑖=1 . The total number of counts mapped to 𝑖𝑖𝑡𝑡ℎ gene is 

represented by 𝑋𝑋𝑖𝑖. where 𝑋𝑋𝑖𝑖. = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1  and the total sum of the number of counts 

within the data is denoted by 𝑋𝑋.. where 𝑋𝑋.. = ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1 . Moreover, there exists 

another term called size factor for the 𝑗𝑗𝑡𝑡ℎ sample, 𝑠𝑠𝑖𝑖 and it can be estimated by 

𝑠𝑠𝑖𝑖 = 𝑋𝑋.𝑗𝑗

𝑋𝑋..
 in order to scale read counts due to the different sequencing depth.  

 

   Sample 1 Sample 2 … Sample j … Sample n  

𝑋𝑋 = 

Gene 1  𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑖𝑖 … 𝑥𝑥1𝑛𝑛  

  𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑖𝑖 … 𝑥𝑥2𝑛𝑛  

⋮  ⋮ ⋮ ⋱ ⋮  ⋮  

Gene i  𝑥𝑥𝑖𝑖1 𝑥𝑥2𝑝𝑝 … 𝑥𝑥𝑖𝑖𝑖𝑖 … 𝑥𝑥𝑖𝑖𝑛𝑛  

⋮  ⋮ ⋮  ⋮ ⋱ ⋮  

Gene p  𝑥𝑥𝑝𝑝1 𝑥𝑥𝑝𝑝2 … 𝑥𝑥𝑝𝑝𝑖𝑖 … 𝑥𝑥𝑝𝑝𝑛𝑛  
 

Figure 2.5. Gene Expression Data Matrix 

 

Let us now consider the cervical cancer data (Witten, 2010) represented in Table 
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2.1 as an example for an RNA-Seq data matrix. The RNA-Seq data matrix of 

cervical cancer which is composed of read counts is obtained after some pre-

processing. It can be seen from the Table 2.1 that there are 58 samples. The first 

29 of the samples are tumor while the rest of the samples are non-tumor and each 

sample consists of 714 genes. The first element of the matrix, 𝑥𝑥11  =  865 is the 

number of reads of gene “let-7a” for the first sample. Moreover, this first sample 

is non-tumor and 𝑋𝑋.1  =  22,449 represents the library size of the first sample 

(Sample 1), which is the total number of reads for that sample. 

 

Table 2.1. RNA-Seq data matrix of cervical cancer data (Source: Zararsiz, 2015). 

 
 

2.4 Notations 

 

In this section we introduce some notations which will be utilized throughout the 

thesis. 

 

• X: 𝑝𝑝 × 𝑛𝑛  dimensional data matrix where p and n are the number of genes 

and samples, respectively.  

• 𝑋𝑋𝑖𝑖𝑖𝑖 : number of reads/counts mapped to gene i in sample j. 

• 𝑿𝑿(𝒌𝒌) = �𝑋𝑋1
(𝑘𝑘) 𝑋𝑋2

(𝑘𝑘) … 𝑋𝑋𝑝𝑝
(𝑘𝑘)�

𝑇𝑇
: a data matrix from the kth class where 

𝑋𝑋𝑖𝑖
(𝑘𝑘) is the vector of counts fort he ith gene from the kth class. 

• 𝑋𝑋𝑖𝑖𝑖𝑖
(𝑘𝑘): the number of reads that mapped to ith gene in the jth sample 

belongs to the kth class. 
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• 𝑿𝑿𝒋𝒋 = [𝑋𝑋1𝑖𝑖 𝑋𝑋2𝑖𝑖 … 𝑋𝑋𝑝𝑝𝑖𝑖] : the vector of counts of each gene for the jth 

sample or the transpose of the jth column of the data matrix X. 

• 𝐾𝐾: the number of distinct classes (biological conditions). 

• 𝒀𝒀 = �𝑌𝑌𝑖𝑖𝑖𝑖: 𝑗𝑗 = 1, … ,𝑛𝑛� is an n-dimensional vector containing class labels of 

n observations. 

• 𝑌𝑌𝑖𝑖 ∈ {1, … ,𝐾𝐾}  the class label of jth sample. 

• 𝐶𝐶𝑘𝑘 = �𝑗𝑗:𝑌𝑌𝑖𝑖 = 𝑘𝑘� : the index set of samples from the kth class. 

• 𝒙𝒙∗ : a new observation to be classified. 

• 𝑌𝑌∗: unknown class label of 𝒙𝒙∗ that will be predicted. 

• 𝜋𝜋𝑘𝑘 the prior probability of an observation belonging to the class k. 

• Ʃ𝒌𝒌: variance-covariance matrix fort he kth class. 

• 𝐿𝐿𝑖𝑖 = 𝑋𝑋.𝑖𝑖: library size for the jth sample or total counts across all genes in 

the jth sample. 
 

2.5 Discrete Models Proposed for RNA-Seq Data 

 

Due to the discrete structure of RNA-Seq data, researchers have considered 

modelling RNA-Seq data under the assumption that counts follow a family of 

discrete distributions. In this section of thesis, we give two models where counts 

are assumed to be drawn from Poisson and Negative Binomial distributions 

accordingly. 

 

2.5.1 Poisson Model 

 

Poisson based model was the first discrete model considered for RNA-Seq 

studies (Marioni et al., 2008, Bullard et al., 2010, Wang et al., 2010; Witten et 

al., 2010). Since biological replicates may cause overdispersion in the data, 

Poisson based models are only valid when there is only technical replicates (no 

biological replicates) in the data. Poisson based models assume that counts are 

drawn from Poisson distribution: 

 

                                                 𝑋𝑋𝑖𝑖𝑖𝑖~Poisson�𝜇𝜇𝑖𝑖𝑖𝑖�, 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑖𝑖                                  (2.1) 
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where 𝑔𝑔𝑖𝑖 is total number of counts for ith gene and 𝑠𝑠𝑖𝑖 is the total number of 

counts for jth sample satisfying ∑ 𝑠𝑠𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1. It is obvious that 

 

𝐸𝐸�𝑋𝑋𝑖𝑖𝑖𝑖� = Var�𝑥𝑥𝑖𝑖𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖 

 

2.5.2 Negative binomial model  

 

Poisson distribution can be implemented when there are only technical replicates 

in the data. However, when we have biological replicates in the data variance 

exceeds mean that is data becomes overdispersed. Therefore, another model, a 

negative binomial model, has been proposed (Robinson, McCarthy and Smyth, 

2010; Anders and Huber, 2010). Moreover, it has been proved in (Dong et al., 

2016) that if there are no biological replicates then the data follows Poisson 

distribution. Therefore, we assume that marginal distributions of the counts are 

negative binomial which is given as: 

 

                                                 𝑋𝑋𝑖𝑖𝑖𝑖~NB�𝜇𝜇𝑖𝑖𝑖𝑖 ,𝛷𝛷𝑖𝑖�, 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑖𝑖                                    (2.2) 

 

where 𝜇𝜇𝑖𝑖𝑖𝑖 and 𝛷𝛷𝑖𝑖 are the mean parameter of ith gene in the jth sample and 

dispersion parameter for gene i, respectively. Then, expectation and variance can 

be easily calculated as: 

 

𝐸𝐸�𝑋𝑋𝑖𝑖𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖 

 

Var�𝑥𝑥𝑖𝑖𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖2 𝛷𝛷𝑖𝑖 > 𝜇𝜇𝑖𝑖𝑖𝑖 

 

It is obvious to see that variance of the counts exceeds mean when we assume 

that the counts are marginally negative binomial which is the case when we have 

biological replicates in the data. Now assume that there are no biological 

replicates in the data. Then the dispersion will be zero and the mean of the 

counts will be equal to variance of the counts, i.e counts will be marginally 

Poisson distributed. 
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2.6 Discriminant Analysis 

 

Discriminant analysis is a statistical technique that is used to analyze data when 

we have categorical dependent variable such as types of a disease (e.g. types of 

breast cancer). Linear Discriminant Analysis (LDA) is the generalization of 

Fisher’s linear discriminant analysis which was originally proposed by Fisher 

(1936). There exist many applications of LDA in various fields such statistical 

data analysis, pattern recognition and machine learning (Duda et al., 2001). It 

can be used either for dimensionality reduction or classification. For the 

classification purpose, the objective is to develop a discriminant function that 

can differentiate between classes (dependent categorical variable). Thus, it 

enables us to observe significant differences among the classes. 

 

Let X  be a random variable for the data and Y  be a random variable for the class 

labels. Assume that we have 𝑘𝑘 ∈ {1,2, … ,𝐾𝐾} different classes with prior 

probabilities 𝜋𝜋𝑘𝑘 such that ∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1. Assume that 𝑓𝑓𝑘𝑘(𝑥𝑥) is class conditional 

density of a sample x that belongs to the class k and 𝑛𝑛𝑘𝑘 is the number of 

observations in the kth class. In order to assign a new observation, 𝒙𝒙∗ to one of K 

distinct classes, posterior probabilities Pr(𝑌𝑌 =  𝑘𝑘|𝑋𝑋 = 𝒙𝒙) are required to be 

computed or estimated. Hence, by Bayes theorem, the posterior probabilities can 

be estimated as follows: 

 

                                                Pr(𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝒙𝒙) = 𝑓𝑓𝑘𝑘(𝒙𝒙)𝜋𝜋𝑘𝑘
∑ 𝑓𝑓𝑗𝑗(𝒙𝒙)𝜋𝜋𝑖𝑖𝐾𝐾
𝑗𝑗=1

                                 (2.3) 

 

which is equivalent to say that 

 

                                                Pr(𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝒙𝒙) ∝  𝑓𝑓𝑘𝑘(𝒙𝒙)𝜋𝜋𝑘𝑘                                   (2.4) 

 

The equation (2.4) is called Bayes’ rule. 

 

According to Linear Discriminant Analysis (LDA), it is assumed that class 

conditional density is multivariate normal, i.e. 
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    𝑓𝑓𝑘𝑘(𝒙𝒙) = Pr(𝑌𝑌 = 𝑘𝑘|𝑋𝑋 = 𝒙𝒙) = 1
(2𝜋𝜋)𝑝𝑝/2𝜎𝜎1/2 exp �− 1

2
(𝒙𝒙 − 𝜇𝜇𝑘𝑘)𝑇𝑇Ʃ−1(𝒙𝒙 − 𝜇𝜇𝑘𝑘)�      (2.5) 

 

where 𝜇𝜇𝑘𝑘 represents the class-specific mean vector and and Ʃ represents 

covariance matrix. After replacing Equation (2.5) into the Equation (2.3) 

and applying some algebra, we get the following linear discriminant 

function: 

 

                                             𝛿𝛿𝑘𝑘LDA(𝒙𝒙∗) = (𝒙𝒙∗)𝑇𝑇Ʃ�−1�̂�𝜇𝑘𝑘 + log 𝜋𝜋�𝑘𝑘                               (2.6) 

 

where 

 

�̂�𝜇𝑘𝑘 = ∑ 𝒙𝒙𝒋𝒋
𝑛𝑛𝑘𝑘

 𝑛𝑛𝑘𝑘
𝑖𝑖=1  (sample mean vector for class k) 

Ʃ� = 1
𝑛𝑛
∑ ∑ �𝒙𝒙𝒋𝒋 − �̂�𝜇𝑘𝑘��𝒙𝒙𝒋𝒋 − �̂�𝜇𝑘𝑘�

𝑇𝑇𝑛𝑛𝑘𝑘
𝑖𝑖=1

𝐾𝐾
𝑘𝑘=1  (sample pooled variance-covariance matrix) 

𝜋𝜋�𝑘𝑘 = 𝑛𝑛𝑘𝑘
𝑛𝑛

 where 𝑛𝑛𝑘𝑘 is the number of observations in class k and n is the total 

number of samples in the training. 

 

The parameters are estimated from the training data set by applying Maximum 

Likelihood Estimator. Then, a new observation 𝒙𝒙∗ is assigned to the class which 

maximizes the discriminant function given in Equation (2.6). 

 

Note here that if we assume genes are independent which means covariances or 

off diagonals are assumed to be zero then we only need to estimate the diagonal 

covariance matrices. Then the resulting discriminant function is called Diagonal 

Linear Discriminant Analysis (DLDA) and given by 

 

                                   𝛿𝛿𝑘𝑘DLDA(𝒙𝒙∗) = −∑ (𝒙𝒙𝒊𝒊
∗−�̅�𝑥𝑖𝑖𝑘𝑘)2

𝑠𝑠𝑖𝑖
2

𝑝𝑝
𝑖𝑖=1 + 2 log 𝜋𝜋�𝑘𝑘                             (2.7) 

 

where 𝒙𝒙𝒊𝒊∗ is the ith element of the new observation 𝒙𝒙∗, 𝑠𝑠𝑖𝑖2 is sample variance of  

ith gene and is sample mean of ith gene in kth class. 

 

Quadratic Discriminant Analysis (QDA) is the generalization of LDA where we 
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assume that covariance matrices are different for each class. Therefore, it is 

essential to estimate covariance matrices separately for each class. Since we 

estimate class-specific covariance matrices and we incorporate the dependence 

structure into the model using class-specific covariance matrices, we use QDA in 

the proposed model. This is important because class-specific covariance matrices 

together with the dependence structure may contain particular information for 

each class which may increase the performance of the classification. 
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CHAPTER 3: DISCRETE AND MACHINE LEARNING METHODS 

FOR RNA-SEQ DATA CLASSIFICATION 

 

In this chapter, we summarize not only a number of machine learning algorithms, 

which are widely applied on RNA-Seq data but also discrete model based 

statistical algorithms, which are only proposed for RNA-Seq data classification. 

 

3.1 Machine Learning Methods Applied on RNA-Seq Data 

 

3.1.1 k-Nearest Neighbour Algorithm 

 

k-Nearest Neighbor (kNN) algorithm is one of the mostly applied supervised 

machine learning algorithms used in variety of applications such as face recogni-

tion, pattern recognition, bioinformatics, etc. (Altman, 1992; Yao and Ruzzo, 

2006). There are many advantages of kNN. For instance, it is one of the simplest 

and easiest machine learning algorithms that can be implemented on many data 

sets. However, there exist many disadvantages of kNN such as high memory re-

quirement (since it stores almost all of the training data) and being sensitive to 

outliers. Additionally, it can perform pretty slowly when the dimension of the 

data increases. 

 

Basically, kNN algorithm is based on distance which can be also seen as 

similarity or proximity in the literature. Thus, it is crucial to find out the 

appropriate distance to be used in the algorithm. Although Euclidean distance is 

the most commonly used distance in kNN there are other distances such as 

Hamming, Pearson, Mahalanobis distances that can be used in kNN algorithm 

depending on the structure of the data. 

 

k in kNN represents the number of points closest to the new point that has to be 

classified. For instance, if 𝑘𝑘 =  3 then the algorithm selects three closest points 

in the neighborhood of the new point (green dot in Figure 3.1) and assigns the 

new point to the class of closest point (red triangles in Figure 3.1). 
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Figure 3.1. An example of kNN algorithm when 𝑘𝑘 = 3 

 

3.1.2 Support Vector Machines 

 

Support Vector Machine (SVM), which was developed by Vapnik (2000) is not 

only a powerful but also a widely used supervised machine learning algorithm. It 

has been applied to quite a few areas such as pattern recognition, image process-

ing, text categorization, medicine, biological sciences, etc. 

 

What SVM does is to identify an ideal decision boundary in order to separate 

classes and this ideal decision boundary, which is also called ideal separation 

hyper-plane is determined according to the maximum margin principle. In other 

words, the algorithm chooses the decision boundary which maximizes the 

distance between classes according to the maximum margin principle. The 

vectors which define the hyper-planes are called support vectors. 

 

If the data set we are working on is linearly separable then SVM performs very 

efficiently and produces a hyper-plane that utterly splits the vectors into two 

classes, which do not overlap. However, perfect separation is not always the case 

which may result in producing many possible hyper-planes. In that situation, 

SVM searches for the hyper-plane, which minimizes misclassification rate and 

maximizes the margin simultaneously (Sayad, 2019). If the data set is linearly 

non-separable then SVM utilizes kernel functions which transform the data into a 

high dimensional feature space to make it linearly separable. See Figure 3.2. 
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Figure 3.2. Kernel method (Source: Wilimitis, 2018) 

 

Assuming that 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒋𝒋 are two vectors then two commonly applied kernel 

types, polynomial and Gaussian radial basis kernels, are defined as follows: 

 

• Polynomial: 𝜙𝜙�𝒙𝒙𝒊𝒊, 𝒙𝒙𝒋𝒋� =  �𝒙𝒙𝒊𝒊.𝒙𝒙𝒋𝒋�
𝑑𝑑

 where d is the degree of the polynomial 

• Gaussian radial basis: 𝜙𝜙�𝒙𝒙𝒊𝒊, 𝒙𝒙𝒋𝒋� = exp �−γ�𝐱𝐱𝐢𝐢 — 𝐱𝐱𝐣𝐣�
2
�  where γ > 0. 

 

3.1.3 Logistic Regression Classifier 

 

Logistic regression simply is a statistical model which uses a logistic function to 

propose a prediction model for a binary dependent variable with two possible 

values such as “1” and “2”. We note here that it can be further extended to the 

cases where the dependent variable has more than two possible values. Logistic 

regression has many applications in many areas such as machine learning, 

engineering, economics, medicine, etc. We mentioned earlier that we will focus 

on binary classification problems. Thus, we explain binary logistic regression 

which uses binomial distribution. For more details we refer to (Tan, 2014; 

Friedman, 2010). 

 

Given the notations in Section 2.4, assume that 𝐾𝐾 =  2. Then class-conditional 

probabilities that jth observation 𝑿𝑿𝒋𝒋  belongs to class “1” and “2” are modeled as 

 

                Pr�𝑌𝑌𝑖𝑖 = 1�𝑿𝑿𝒋𝒋� = 1

1+𝑒𝑒𝛼𝛼+𝑿𝑿𝒋𝒋
𝑻𝑻𝛽𝛽

;  Pr�𝑌𝑌𝑖𝑖 = 2�𝑿𝑿𝒋𝒋� = 𝑒𝑒𝛼𝛼+𝑿𝑿𝒋𝒋
𝑻𝑻𝛽𝛽

1+𝑒𝑒𝛼𝛼+𝑿𝑿𝒋𝒋
𝑇𝑇𝛽𝛽

                        (3.1) 
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Where 𝛼𝛼 and 𝛽𝛽 are unknown scalar and vector of length p respectively. Equation 

(3.1) can also be written as “logistic” or “log-odds” transformation: 

 

                                                   log Pr�𝑌𝑌𝑗𝑗=1�𝑿𝑿𝒋𝒋�
Pr�𝑌𝑌𝑗𝑗=2�𝑿𝑿𝒋𝒋�

= 𝛼𝛼 + 𝑿𝑿𝒋𝒋𝑻𝑻𝛽𝛽                                       (3.2) 

 

Then the corresponding log-likelihood is given as follows: 

 

                               𝑙𝑙(𝛼𝛼,𝛽𝛽) = ∑ �𝑐𝑐𝑖𝑖�𝛼𝛼 + 𝑿𝑿𝒋𝒋𝑻𝑻𝛽𝛽� − log �1 + 𝑒𝑒𝛼𝛼+𝑿𝑿𝒋𝒋
𝑻𝑻𝛽𝛽��𝑛𝑛

𝑖𝑖=1                  (3.3) 

 

where 𝑐𝑐𝑖𝑖 = 𝐼𝐼�𝑌𝑌𝑖𝑖 = 1�. One can apply MLE in order to estimate the unknown 

parameters 𝛼𝛼 and 𝛽𝛽. The maximum likelihood estimates of 𝛼𝛼 and 𝛽𝛽, 𝛼𝛼� and �̂�𝛽, are 

obtained by maximizing the Equation (3.3). Once unknown parameters are 

estimated a new observation is then assigned to a particular class according to 

the following probability function: 

 

                                                 Pr(𝑌𝑌∗ = 1|𝒙𝒙∗) = 1
1+𝑒𝑒𝛼𝛼�+𝛽𝛽𝑇𝑇𝒙𝒙∗

                                      (3.4) 

 

Generally, a cutoff point, 0 ≤  𝑡𝑡 ≤  1, is chosen in order to assign the new 

observation into one of the classes, roughly speaking we assign the new 

observation into the class 1 if Pr (𝑌𝑌∗  =  1|𝒙𝒙∗)  >  𝑡𝑡 and into the class 2 

otherwise. 

 

Indeed, logistic regression classifier is not applicable in high dimensional data 

classification problems, as the parameter estimation becomes unstable and may 

contain infinite elements (Tan et al., 2014). Hence, to overcome this problem 

some regularized version of logistic regression classifiers are developed. One 

way is to regularize Equation (3.3) by adding a penalty term, which is a convex 

penalty function 𝑃𝑃(𝛽𝛽). The penalized log-likelihood function is defined as 

follows: 

 

                   𝑙𝑙(𝛼𝛼,𝛽𝛽) = ∑ �𝑐𝑐𝑖𝑖�𝛼𝛼 + 𝑿𝑿𝒋𝒋𝑻𝑻𝛽𝛽� − log �1 + 𝑒𝑒𝛼𝛼+𝑿𝑿𝒋𝒋
𝑻𝑻𝛽𝛽��𝑛𝑛

𝑖𝑖=1 − 𝜆𝜆𝑃𝑃(𝛽𝛽)            (3.5) 
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where 𝜆𝜆 is a non-negative tuning parameter and can be chosen by cross 

validation. 

 

We note here that ridge and lasso penalties are two commonly applied penalties 

in the literature. 𝑃𝑃(𝛽𝛽) = ‖𝛽𝛽‖2  is a ridge penalty (Hoerl and Kennard, 1970) and 

𝑃𝑃(𝛽𝛽) = ‖𝛽𝛽‖1  is a lasso penalty (Tibshirani, 1996). We also note that GLMnet 

package uses the lasso penalty in the log-likelihood function.  

 

3.2 Discrete Methods Applied on RNA-Seq Data 

 

3.2.1 Poisson Linear Discriminant Analysis 

 

Poisson Linear Discriminant Analysis (PLDA) was proposed by Witten (2011) 

for RNA-Seq data classification. The model assumes that genes are independent 

and counts are marginally Poisson distributed as described before in Section 

2.5.1. 

 

Since samples are drawn from K distinct classes then (2.1) is extended where the 

class specific Poisson model for RNA-Seq data is defined as follows: 

 

                                   �𝑋𝑋𝑖𝑖𝑖𝑖 |𝑌𝑌𝑖𝑖  =  𝑘𝑘� ~ Poisson�𝜇𝜇𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖�, 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑖𝑖                       (3.6) 

 

where 𝑠𝑠𝑖𝑖 is the size factor for the jth sample, 𝑔𝑔𝑖𝑖  =  𝑋𝑋𝑖𝑖.  is the total number of read 

counts for the ith gene and 𝑑𝑑𝑘𝑘𝑖𝑖 is the term permits ith gene to be differentially 

expressed in the kth class. Then the probability mass function of 𝑋𝑋𝑖𝑖𝑖𝑖  =  𝑥𝑥𝑖𝑖𝑖𝑖 in 

model (3.6) is 

 

                                 Pr�𝑋𝑋𝑖𝑖𝑖𝑖  =  𝑥𝑥𝑖𝑖𝑖𝑖  � 𝑌𝑌𝑖𝑖  =  𝑘𝑘) = 𝑒𝑒−𝜇𝜇𝑖𝑖𝑗𝑗𝑑𝑑𝑘𝑘𝑖𝑖
�𝜇𝜇𝑖𝑖𝑗𝑗𝑑𝑑𝑘𝑘𝑖𝑖�

𝑥𝑥𝑖𝑖𝑗𝑗

𝑥𝑥𝑖𝑖𝑗𝑗!
                      (3.7) 

 

Since genes areassumed to be independent in PLDA, by substituting (3.7) in 

Bayes’ rule given in (2.4) one can obtain the following discriminant function for 

PLDA: 
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Pr(𝑌𝑌∗ = 𝑘𝑘|𝒙𝒙∗) = log �𝑒𝑒−𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖
(𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖)𝒙𝒙

∗

𝒙𝒙∗!
𝜋𝜋𝑘𝑘�

= �−𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ �𝑥𝑥𝑖𝑖log(𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖)
𝑝𝑝

𝑖𝑖=1

+ log𝜋𝜋𝑘𝑘 −� log 𝑥𝑥𝑖𝑖

𝑝𝑝

𝑖𝑖=1

 

 

which can be simplified to the following discriminant function: 

 

                       𝛿𝛿𝑘𝑘PLDA(𝒙𝒙∗) = ∑ 𝑥𝑥𝑖𝑖∗ log𝑑𝑑𝑘𝑘𝑖𝑖 − 𝑠𝑠∗ ∑ 𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖
𝑝𝑝
𝑖𝑖=1 + log𝜋𝜋𝑘𝑘

𝑝𝑝
𝑖𝑖=1                     (3.8) 

 

where 𝑠𝑠∗ is the size factor for the new observation. A new observation 𝒙𝒙∗ is then 

assigned to the class which maximizes the discriminant score given in (3.8). See 

(Witten, 2011) for details and for the estimation of the parameters included in 

the PLDA discriminant function. 

 

3.2.2 Negative-Binomial Linear Discriminant Analysis 

 

It is known that RNA-Seq data follows negative binomial distribution when there 

exist biological replicates in the data set (Witten, 2011; Dong et al., 2016; 

Zararsiz et al., 2017a; Robinson and Smyth, 2008). The reason for this 

assumption is the fact that the variability of biological replicates leads to 

overdispersion in the data, which means variance of the data exceeds mean of the 

data in most of the cases. Given this information, Dong et al. (2016) introduced a 

new linear discriminant analysis, Negative Binomial Linear Discriminant 

Analysis (NBLDA), which uses the negative binomial distribution (see Section 

2.5.1) as class conditional densities instead of Poisson distribution to cope with 

the overdispersion arising from the biological replicates. 

 

Since samples are drawn from K different classes, (2.2) is extended where the 

class specific negative binomial model for RNA-Seq data is defined as follows: 

 

                                   �𝑋𝑋𝑖𝑖𝑖𝑖 |𝑌𝑌𝑖𝑖  =  𝑘𝑘� ~ NB�𝜇𝜇𝑖𝑖𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖 ,𝛷𝛷𝑖𝑖�, 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑖𝑖                        (3.9) 

 

where 𝑠𝑠𝑖𝑖 is the size factor for the jth sample, 𝑑𝑑𝑘𝑘𝑖𝑖 is the term permits ith gene to 
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be differentially expressed in the kth class, 𝑔𝑔𝑖𝑖  =  Xi.  and 𝛷𝛷𝑖𝑖  >  0 is the total 

number of reads and dispersion parameter for the ith gene, respectively. Then the 

probability mass function of 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖   in model (3.9) is  

 

           Pr�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑘𝑘�𝑌𝑌𝑖𝑖 = 𝑘𝑘� = 𝛤𝛤�𝑥𝑥𝑖𝑖𝑗𝑗+𝛷𝛷𝑖𝑖
−1�

𝑥𝑥𝑖𝑖𝑗𝑗!𝛤𝛤�𝛷𝛷𝑖𝑖
−1�

� 𝑠𝑠𝑗𝑗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖𝛷𝛷𝑖𝑖
1+𝑠𝑠𝑗𝑗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖𝛷𝛷𝑖𝑖

�
𝑥𝑥𝑖𝑖𝑗𝑗
� 1
1+𝑠𝑠𝑗𝑗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖𝛷𝛷𝑖𝑖

�
𝛷𝛷𝑖𝑖
−1

          (3.10) 

 

Since genes are assumed to be independent in PLDA, by replacing (3.10) into 

(2.4) (Bayes’ rule) we get the following discriminant function for NBLDA: 

 

    𝛿𝛿𝑘𝑘NBLDA(𝒙𝒙∗) = ∑ 𝑥𝑥𝑖𝑖∗�log𝑑𝑑𝑘𝑘𝑖𝑖 − log�1 + 𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖𝛷𝛷𝑖𝑖��
𝑝𝑝
𝑖𝑖=1                       

                                                     −∑ 𝛷𝛷𝑖𝑖
−1 log(1 + 𝑠𝑠∗𝑔𝑔𝑖𝑖𝑑𝑑𝑘𝑘𝑖𝑖𝛷𝛷𝑖𝑖)

𝑝𝑝
𝑖𝑖=1 + log𝜋𝜋𝑘𝑘            (3.11) 

 

where s* is the size factor for the new observation. The new observation, x* is 

then assigned to the class that maximizes the discriminant function, Equation 

(3.11) The dispersion parameter in NBLDA classifier is estimated by a shrinkage 

method which is proposed by Yu et al. (2013). See (Yu et al., 2013; Dong et al., 

2016) for more details about NBLDA and the estimation of dispersion parameter. 

 

3.2.3 Voom Based Diagonal Linear Discriminant Analysis 

 

Voom is a variance modelling at the observational level method which was pro-

posed by Law et al. (2014). Voom estimates the mean variance relationship from 

the log transformed counts. Additionally it provides precision weights (Ritchie et 

al., 2015) for the downstream analysis. It is shown that voom method has a 

number of advantages such as performing the best in controlling the type-I error 

and giving lowest false discovery rate. In order to take the advantage of the 

voom method in RNA sequencing data classification, Zararsiz et al. (2017b) 

integrated the voom method into DLDA classifier given in Equation (2.7) and 

they called the new classifier as voomDLDA. 

 

Differently from PLDA and NBLDA, voomDLDA has the following 

discriminant score (Zararsız et al., 2017b): 
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                       𝛿𝛿𝑘𝑘voomDLDA(𝒙𝒙∗) = −∑
�𝑧𝑧𝑖𝑖

∗−�̅�𝑧𝑤𝑤𝑖𝑖𝑘𝑘�
2

𝑠𝑠𝑤𝑤𝑖𝑖
2 + 2 log𝜋𝜋𝑘𝑘

𝑝𝑝
𝑖𝑖=1                             (3.12) 

 

The notations used in (3.12) are as follows: 

 

𝑧𝑧𝑖𝑖∗: log-cpm values for the new observation defined by  

 

𝑧𝑧𝑖𝑖∗ = log2 �
𝑥𝑥𝑖𝑖∗ + 0.5
𝑋𝑋.∗ + 1

× 106� 

 

where 𝑋𝑋.∗ is the library size for the new observation 

𝑠𝑠𝑤𝑤𝑖𝑖2 : weighted pooled variance of ith gene where  𝑛𝑛𝑘𝑘 is the number of 

observations in kth class and it is claculated as follows: 

 

𝑠𝑠𝑤𝑤𝑖𝑖2 = �(𝑛𝑛𝑘𝑘 − 1)𝑠𝑠𝑤𝑤𝑖𝑖𝑘𝑘
2

𝐾𝐾

𝑖𝑖=1

/(𝑛𝑛 − 𝑘𝑘) 

 

𝑠𝑠𝑤𝑤𝑖𝑖𝑘𝑘
2 :weighted variance of ith gene in kth class where 𝑗𝑗𝑘𝑘, … , 𝑗𝑗𝑘𝑘+1 − 1 belong to 

the kth class and it is evaluated as follows: 

 

𝑠𝑠𝑤𝑤𝑖𝑖𝑘𝑘
2 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑖𝑖𝑘𝑘+1−1
𝑖𝑖=𝑖𝑖𝑘𝑘

�∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑖𝑖𝑘𝑘+1−1
𝑖𝑖=𝑖𝑖𝑘𝑘

�
2
− ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

2𝑖𝑖𝑘𝑘+1−1
𝑖𝑖=𝑖𝑖𝑘𝑘

� 𝑤𝑤𝑖𝑖𝑖𝑖�𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧�̅�𝑤𝑖𝑖𝑘𝑘�
2

𝑖𝑖𝑘𝑘+1−1

𝑖𝑖=𝑖𝑖𝑘𝑘

 

 

where 𝑤𝑤𝑖𝑖𝑖𝑖 are estimated precision weights 

 

𝑧𝑧�̅�𝑤𝑗𝑗𝑘𝑘: the class specific weighted mean for the class k, which is defined by  

𝑧𝑧�̅�𝑤𝑗𝑗𝑘𝑘 =
�∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑖𝑖𝑘𝑘+1−1
𝑖𝑖=𝑖𝑖𝑘𝑘 zik�

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑖𝑖𝑘𝑘+1−1
𝑖𝑖=𝑖𝑖𝑘𝑘

�  
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CHAPTER 4: THE MODEL 

 

In this chapter, we explain the proposed model, qtQDA, in details. We also give 

the implementation of the proposed model on real RNA-Seq data sets and 

compare the proposed model with a number of existing classifiers in the 

literature. 

 

4.1 General Structure of The Model 

 

qtQDA is a new classifier for RNA-Seq data based on a model where genes are 

assumed to be dependent and marginally negative binomial distributed as it is 

given in Section 2.5.1. The proposed classifier integrates quantile transformation 

with QDA in order to incorporate the dependency between genes into the model. 

 

The main steps of the qtQDA classification algorithm are given as follows: 

 

i. Preprocess: Filter the RNA-Seq data and get the data ready for the next 

steps of the algorithm. 

 

ii. Gene Selection: Select most informative genes to be used for downstream 

analysis using edgeR pipeline as explained in Section 4.2.2. 

 

iii. Parameter Estimation I: Estimate the parameters of negative binomial 

marginal of each gene selected in the second step of the algorithm using 

“estimateDisp” function from edgeR package. The parameters are 

estimated using Generalized Linear Model(s) (GLMs) which is described 

in Section 4.2.3. 

 

iv. Quantile transformation: Use inverse quantile transformation as 

elaborated in the Section 4.2.4 to transform negative binomially dis-

tributed variable to the multivariate normally distributed variable with 

mean 0 and class-specific variance-covariance matrices Ʃ𝑘𝑘. 

 

v. Parameter Estimation II: Estimate the class-specific covariance 
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matrices and apply a regularization technique to guarantee that covariance 

matrices are symmetric and positive definite See Section 4.2.5 for more 

details.  

 

vi. Classification step: 

 Apply inverse quantile transformation to a new observation given in 

Section 4.2.6 and develop a discriminant function based on QDA. 

 Assign the new observation to the class that gives the highest 

discriminant score which is developed in Section 4.2.6. 

 

These steps are repeated until all new observations are classified. 

 

4.2 qtQDA model  

 

We assume that counts follow negative binomial distribution which is given in 

Section 2.5.1. Then the class specific model for negative binomially distributed 

counts is defined as follows: 

 

                                                      𝑋𝑋𝑖𝑖𝑖𝑖
(𝑘𝑘)~NB�𝜇𝜇𝑖𝑖𝑖𝑖

(𝑘𝑘),𝛷𝛷𝑖𝑖
(𝑘𝑘)�                                           (4.1) 

 

where 𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘) and 𝛷𝛷𝑖𝑖

(𝑘𝑘) are class specific mean for ith gene in the jth sample and 

class specific dispersion for ith gene. 

 

We now explain the steps of the algorithm in the following sections. 

 

4.2.1 Preprocess 

 

Since genes with low counts can effect the classification algorithm, genes with 

very low counts across all libraries have been filtered. Only genes that are 

expressed at a count per million (cpm) above 0.025 (median library size in cpm) 

in at least 453 samples (average counts for each gene across all samples with 

library size above 0.025 cpm) are considered in the downstream analysis. After 

filtering, number of genes reduced from 52580 to 16296 for HapMap data and 
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62706 to 36841 for Prostate cancer data. Since cervical cancer data only has 714 

genes, we kept all genes for the downstream analysis. 

 

4.2.2 Gene Selection 

 

It is mentioned previously that tens of thousands of genes are measured 

simultaneously with the advent of RNA-Seq technology. However, it is essential 

to select the significant genes, which are informative for the purpose of class 

prediction. Although Witten (2011) introduced a screening method in order to 

detect informative genes it is only applicable to counts that has Poisson 

marginals. Since we assume that the counts are marginally negative binomial, we 

apply edgeR pipeline (Robinson et al., 2008; Robinson et al., 2010) which is 

suitable for negative binomially distributed RNA-Seq data to select 

distinguishing genes. What edgeR does is to pursue the following process: (1) 

filter genes with very low counts across samples; (2) perform a Likelihood Ratio 

Test (LRT) to the remaining genes in order to test for Differentially Expressed 

(DE) genes; (3) make a list of DE genes where DE genes are sorted by LRT 

score; (4) select the top p genes from the list. 

 

4.2.3 Parameter Estimation I 

 

In order to apply the proposed classifier in practice we first need to estimate the 

parameters of negative binomial marginals (i.e. means and dispersions) for all 

genes selected in the previous step of the algorithm and for each class, 

accordingly. 

 

Means of genes are estimated by the methodology given in edgeR package which 

uses Generalized Linear Models (GLMs). GLMs are extension of classical linear 

models (Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989). The reason 

for applying GLM theory is the fact that it can correctly specify mean-variance 

relationship for read counts (Mccarthy et al., 2012). Note to mention that it is 

considerably fast. 
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Let 𝑋𝑋𝑖𝑖𝑖𝑖
(𝑘𝑘)~NB�𝜇𝜇𝑖𝑖𝑖𝑖

(𝑘𝑘),𝛷𝛷𝑖𝑖
(𝑘𝑘)�  denotes the number of reads mapped to gene i in the jth 

sample from the kth class. Then for each gene, GLM theory is used in order to fit 

a generalized log-linear model: 

 

         log 𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝐷𝐷𝑖𝑖𝑇𝑇𝛼𝛼 + log 𝐿𝐿𝑖𝑖 = [0 … 1 0 … 0]

⎣
⎢
⎢
⎡𝛼𝛼𝑖𝑖

(1)

⋮
𝛼𝛼𝑖𝑖

(𝑘𝑘)

⋮ ⎦
⎥
⎥
⎤

+ log 𝐿𝐿𝑖𝑖 = 𝛼𝛼𝑖𝑖
(𝑘𝑘) + log 𝐿𝐿𝑖𝑖           (4.2) 

 

and 𝐷𝐷𝑖𝑖𝑇𝑇 is the jth row of the design matrix which can also be seen vector of 

covariates (groups or classes), α is a vector of coefficients coming from 

regression and 𝐿𝐿𝑖𝑖  =  𝑋𝑋.𝑖𝑖 is library size for the jth sample (the total read counts 

across all genes in the sample). The estimate for means are then obtained by  

 

�̂�𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝐿𝐿𝑖𝑖exp�𝛼𝛼�𝑖𝑖

(𝑘𝑘)�. 

 

Dispersion parameter for each gene is estimated by using the Cox-Reid Adjusted 

Profile Likelihood (APL) function (Cox and Reid, 1987; McCarthy et al., 2012; 

Chen et al., 2014) which is given as follows: 

 

                                    APL𝑖𝑖�𝛷𝛷𝑖𝑖
(𝑘𝑘)� = 𝑙𝑙�𝛷𝛷𝑖𝑖

(𝑘𝑘)� − 1
2

log det�𝐼𝐼𝑖𝑖
(𝑘𝑘)�                             (4.3) 

 

where 𝑙𝑙(. ) represents log-likelihood function and 𝐼𝐼𝑖𝑖
(𝑘𝑘) represents the Fisher 

information matrix of 𝛼𝛼�𝑖𝑖
(𝑘𝑘). One can simply maximize the Equation (4.3) in order 

to estimate dispersion. However, Chen et al. (2014) applied an empirical Bayes 

approach where information is shared between genes (Robinson et al., 2010; 

McCarthy et al., 2012) and this leads to better estimates for dispersion 

parameters. The edgeR package consists three different dispersion estimates: 

common, trended and tagwise using different variations of APL function. See 

(Chen et al., 2014) for more details.  
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4.2.4 Quantile transformation 

 

It is known that genes are highly correlated which means there is a strong depen-

dence between genes. Hence, we use quantile transformation to incorporate the 

dependence between genes. This approach uses the following proposition from 

the probability theory (Lange, 2010; p 432): 

 

Proposition 4.1 Let X be a random variable with distribution function F(x). 

 

(i) If F(x) is continous then U=F(X) is uniformly distributed on [0,1]. 

 

(ii) Even if F(x) is not continous, the inequality 𝑃𝑃𝑃𝑃(𝐹𝐹(𝑋𝑋) ≤ 𝑡𝑡) ≤ 𝑡𝑡 is stil true 

for all 𝑡𝑡 ∈ [0,1]. 

 

(iii) If 𝐹𝐹−1(𝑦𝑦) = 𝑖𝑖𝑛𝑛𝑓𝑓{𝑥𝑥:𝐹𝐹(𝑥𝑥) ≥ 𝑦𝑦} for any 0 < 𝑦𝑦 < 1, and if U is uniform 

on [0,1], then 𝐹𝐹−1(𝑈𝑈) has distribution function 𝐹𝐹(𝑥𝑥). 

 

With the help of Proposition 4.1, we propose the following process to generate 

𝑿𝑿(𝑘𝑘):  

 

1. Assume that 𝑍𝑍(𝑘𝑘)~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎, Ʃ𝑘𝑘) where 𝑍𝑍𝑖𝑖𝑖𝑖  ~ 𝑀𝑀(0,1). 

 

2. If Φ is the standard normal distribution function and 𝐹𝐹𝑘𝑘 is the 

NB�𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘),𝛷𝛷𝑖𝑖

(𝑘𝑘)� distribution function then the ith component of the transformed 

random variable  

 

                                                      𝑋𝑋𝑖𝑖𝑖𝑖
(𝑘𝑘) = 𝐹𝐹𝑘𝑘−1 �Φ�𝑍𝑍𝑖𝑖𝑖𝑖

(𝑘𝑘)��,                                        (4.4) 

 

has the distribution function 𝐹𝐹𝑘𝑘(𝑥𝑥) which is negative binomial with parameters 

𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘) and 𝛷𝛷𝑖𝑖

(𝑘𝑘).  

 

We call this process as quantile transformation. Due to the discreteness of the 
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negative binomial random variable there may exist ambiguity while calculating 

the inverse probabilities. In order to remove this ambiguity of 𝐹𝐹𝑘𝑘−1(𝑥𝑥) we apply 

the following equation: 

 

                              𝐹𝐹𝑘𝑘−1(𝑞𝑞) = inf{𝑥𝑥: 𝐹𝐹𝑘𝑘−1(𝑥𝑥)Fk(x) > q},𝑞𝑞 ∈ [0,1].                         (4.5) 

 

In our model, inverse of the quantile transformation is applied. More precisely, 

we transform marginally negative binomial distribution into the underlying 

MVN distribution with mean 0 and covariance matrix Ʃ𝑘𝑘 .One can observe that 

dependence structure between the components of 𝑿𝑿(𝑘𝑘) is involved in the model 

with Ʃ𝑘𝑘  after the transformation. One can also observe that each class has a 

different covariance matrix that may result in better predictions and hence high 

performance in classification. Having a different covariance matrix for each 

class is also suggested by Sun and Zhao (2015) due to the fact that different 

disease type leads to “rewiring” of genetic networks.  

 

4.2.5 Parameter Estimation II 

 

After applying inverse of the quantile transformation we obtain a new data ma-

trix 𝒁𝒁(𝑘𝑘) where 𝒁𝒁(𝑘𝑘) ~ MVN(𝟎𝟎,Ʃ𝑘𝑘) is jth column of the new data matrix 𝒁𝒁(𝑘𝑘). 

Therefore, we need to estimate the covariance matrices Ʃ𝑘𝑘 for each class so that 

we can apply QDA. For that purpose, we use the simple Standard covariance 

matrix estimate method which is given by  

 

                                    Ʃ�𝑘𝑘 = 1
𝑛𝑛−1

∑ �𝒁𝒁𝑖𝑖
(𝑘𝑘) − 𝒁𝒁�(𝑘𝑘)��𝒁𝒁𝑖𝑖

(𝑘𝑘) − 𝒁𝒁�(𝑘𝑘)�
𝑇𝑇

𝑛𝑛
𝑖𝑖=1                          (4.6) 

 

where 𝒁𝒁�(𝑘𝑘) = ∑ 𝒁𝒁𝑖𝑖
(𝑘𝑘)/𝑛𝑛𝑛𝑛

𝑖𝑖=1 .  However, this simple standard estimate is not 

appropriate in our model due to the high dimensional RNA-Seq data. In other 

words, if we have the number of genes greater than or equal to the number of 

samples, which is highly likely to occur in RNA-Seq data, then the standard 

covariance matrix estimate is neither invertible nor positive definite (Tong et al., 

2014). 
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To cope with this problem, we regularize the estimated covariance matrix using a 

powerful regularization technique developed by Schafer and Strimmer (2005) 

and Opgen-Rhein and Strimmer (2007). We implement their technique via 

corpcor package in R (Strimmer, 2008). Note that the regularization method 

developed in (Strimmer, 2005) also improves the estimate of covariance matrix 

and affects the classification of samples at gene expression level. The main idea 

in corpcor method is to shrink empirical correlation estimates 𝜌𝜌�𝑖𝑖𝑖𝑖 towards zero 

and the empirical variance estimates �̂�𝑠𝑖𝑖 towards their median in order to obtain 

the improved estimates �𝜌𝜌�𝑖𝑖𝑖𝑖, �̃�𝑠𝑖𝑖� of the corresponding correlation and covariance 

matrices: 

 

𝜌𝜌�𝑖𝑖𝑖𝑖 = (1 − 𝜆𝜆)𝜌𝜌�𝑖𝑖𝑖𝑖 

�̃�𝑠𝑖𝑖 = 𝜆𝜆2𝑠𝑠median + (1 − 𝜆𝜆2)�̂�𝑠𝑖𝑖 

 

where the corresponding shrinkage intensities are estimated using 

 

�̂�𝜆1 =
∑ Var� �𝜌𝜌�𝑖𝑖𝑖𝑖�𝑖𝑖≠𝑖𝑖

∑ 𝜌𝜌�𝑖𝑖𝑖𝑖2𝑖𝑖≠𝑖𝑖
    and    �̂�𝜆2 =

∑ Var� (𝑠𝑠𝑖𝑖)
𝑝𝑝
𝑖𝑖=1

∑ (𝑠𝑠𝑖𝑖 − 𝑠𝑠median)2𝑝𝑝
𝑖𝑖=1

 

 

where 𝑠𝑠median is the median of the empirical variances. Once the shrinkage is 

applied, the regularized covariance matrix estimate turns out to be positive 

definite. In other words, all eigenvalues are different from zero and well-

conditioned (invertible). Since the shrinkage intensity estimates are evaluated 

analytically, it is computationally very fast and does not require any tuning 

parameters. To the best of our knowledge corpcor method has not been used for 

the classification of RNA-Seq data up to now. 

 

4.2.6 Classification 

 

Let 𝒙𝒙∗  =  �𝑥𝑥1∗, … , 𝑥𝑥𝑝𝑝∗�
𝑇𝑇
 be a new observation where 𝑥𝑥1∗, … , 𝑥𝑥𝑝𝑝∗  are the components 

of the observed sample and 𝑌𝑌∗, where 𝑌𝑌∗ ∈  {1, … ,𝐾𝐾} be the unknown class label. 

Before proceeding to the classification step we need to quantile transform the 

new observation. For this purpose, we apply inverse of the quantile transfor-
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mation to the each component of 𝒙𝒙∗ in order to get a new vector 𝒛𝒛∗(𝒌𝒌) which is 

given as follows:  

 

                                                        𝑧𝑧𝑖𝑖∗
(𝑘𝑘) = 𝛷𝛷−1{𝐻𝐻𝑘𝑘(𝑥𝑥𝑖𝑖∗)}.                                       (4.7) 

 

where 𝒛𝒛𝒊𝒊∗ is ith component of 𝒛𝒛∗(𝒌𝒌) and 𝐻𝐻𝑘𝑘 is a continuity-corrected version of 𝐹𝐹𝑘𝑘, 

which is defined by  

 

𝐻𝐻𝑘𝑘(𝑥𝑥𝑖𝑖∗) = Pr(𝑋𝑋 < 𝑥𝑥𝑖𝑖∗) + 0.5 × Pr(𝑋𝑋 = 𝑥𝑥𝑖𝑖∗), 

 

where 𝑋𝑋 ~ NB�𝜇𝜇𝑖𝑖𝑖𝑖
(𝑘𝑘),𝛷𝛷𝑖𝑖

(𝑘𝑘)�  is a negative binomial random variable (Routledge, 

1994). Here 𝒛𝒛∗(𝑘𝑘), which represents the transformed vector of the new 

observation 𝒙𝒙∗ for class k is a new variable from the MVN(𝟎𝟎,Ʃ𝑘𝑘). We use the  

“zscoreNBinom” function from the edgeR package in order to transform 𝑥𝑥𝑖𝑖∗ to 

𝑧𝑧𝑖𝑖∗
(𝑘𝑘). 

 

After the transformation process, we apply the quadratic discriminant analysis 

explained in Section 2.6 to classify the new observation 𝒙𝒙∗. By Bayes theorem, 

the posterior probability of the new observation belonging to the kth class is 

given by 

 

                                      Pr (Y∗ =  k|𝐱𝐱∗) ∝ 𝑓𝑓𝑘𝑘�𝒛𝒛∗
(𝑘𝑘)�πk,                                         (4.8) 

 

where πk is the prior probablity estimated from the training set as follows: 

 

𝜋𝜋� = �
𝐼𝐼�𝑌𝑌𝑗𝑗=𝑘𝑘�
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

, 

 

where I is the indicator function that defines the class of each observation, n is 

the total number of samples in all classes, 

and 𝑓𝑓𝑘𝑘 is the density  
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𝑓𝑓𝑘𝑘(𝒖𝒖) =
1

(2𝜋𝜋)𝑚𝑚/2|Ʃ𝑘𝑘|1/2 exp �−
1
2
𝒖𝒖𝑇𝑇Ʃ𝑘𝑘−1𝒖𝒖�, 

 

evaluated at 𝒛𝒛∗(𝑘𝑘) Then by replacing the density into (4.8) and taking the 

logarithm of the resulting function we obtain the following quadratic 

discriminant function for the proposed model:  

 

                                         𝛿𝛿𝑘𝑘
qtQDA(𝒙𝒙∗) = −1

2
𝒗𝒗𝑘𝑘𝑇𝑇𝒗𝒗𝑘𝑘 + log𝜋𝜋𝑘𝑘                                    (4.9) 

 

Where 𝒗𝒗𝑘𝑘 = Ʃ𝑘𝑘
−1/2𝒛𝒛∗(𝑘𝑘). We assign 𝒙𝒙∗ to the class which maximizes the 

discriminant funtion given in (4.9). 

 

4.3 Application on Real RNA-Seq data  

 

4.3.1 Experimental Data Sets 

 

In this section we give the details of the real RNA-Seq data which are publicly 

available: 

 

• Cervical cancer data (Witten, 2010): Cervical cancer data consists of two 

classes: tumor and non-tumor. Each class has equal number of samples (29 

samples) and each sample is composed of 714 microRNAs. 

 

• Prostate cancer data (Kannan et al., 2011): Similar to cervical cancer data, 

prostate cancer data set consists of two distinct classes with 30 patients where 20 

samples are cancer patients while 10 samples are benign matched controls. 

 

• HapMap data (Montgomery, 2010; Pickrell, 2010): HapMap data which is 

quite different than the first two data sets is a data set used for ancestry 

estimation. Although HapMap data contains five different groups we will focus 

on just two of them which are CEU representing the UTAH residents with 

Northern and Western European Ancestry and YRI representing the Yoruba in 

Ibadan, Nigeria. Of all, 91 samples are from CEU while 89 samples from YRI 
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and each sample consists of 52,580 genes. 

 

We note that the aforementioned data are widely used RNA-Seq data in the 

literature (Tan et al., 2014; Witten, 2011; Dong et al., 2016). 

 

4.3.2 Implementation of Existing Classifiers 

 

In this section we compare the performance of qtQDA model not only with some 

of powerful machine learning classifiers but also with specialized RNA-Seq 

classifiers that are given as follows: 

 

• SVM (e1071) 

• kNN (e107l) 

• Logistic regression (glmnet) 

• PLDA (PoiClaClu) 

• NBLDA (Dong et al., 2016) 

• voomDLDA (MLSeq) 

• SQDA (SQDA) 

 

We note here that the information given in brackets are corresponding R 

packages of classifiers used for our analysis. 

 

We now give the implementation details of these classifiers. Let us start with 

machine learning classifiers. We used the same R package e1071 for both SVM 

where kernel is chosen as radial basis and kNN where 𝑘𝑘 =  1, 3, 5. Like NBLDA 

classifier (Dong et al., 2016), both classifiers were applied on log-transformed 

counts. The reason for doing this is that, in real data sets, the number of genes is 

very large and gene expression levels may show enormously different distribu-

tions (Dong et al., 2016). For logistic regression we used the glmnet package 

available in R, which uses the GLMnet method developed by Friedman (2010). 

For PLDA, NBLDA and voomDLDA, RNA-Seq classifiers, we used “deseq” 

normalization. For the last RNA-Seq classifier, SQDA we used SQDA package 

after log-transforming the counts. 
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4.3.3 Evaluation of the performance of classifiers 

 

In order to compare the proposed model with existing models we need to 

evaluate the performance of each classification, roughly speaking we need to 

measure how close the predictions of the newly observed samples to the true 

class label of those samples. Indeed, we need to estimate the (true) error rate 

which can also be seen as Classification Error Rate (CER) in the literature. Once 

misclassification error rates are calculated we can then decide which model 

generates the best results for any given data set. 

 

There exist many methods such as cross-validation, probability inequalities and 

bootstrap to estimate the misclassification error rate (Wasserman, 2010; Efron, 

1983). In this thesis, we apply bootstrapping method to estimate the MER, the 

error rate where we observe false classifications, due to its simplicity and 

promising error rate estimate (Efron, 1983). 

 

We now explain the bootstrapping procedure we follow. First of all, we 

randomly divide data into two sets: training set consisting of 70% of the data; 

test set consisting of 30% of the data. We then train the model using the training 

set. Finally, we test the model using the test set and compute the MER. To 

calculate the MER, we use confusion matrix given in Table 4.1: 

 

Table 4.1. Confusion matrix 

Predicted class 
Actual Class 

Positive Negative Total 

Positive TP FP/Type I error TP+FP 

Negative FN/Type II error TN FN+TN 

Total TP+FN FP+TN 𝑀𝑀test 

*TP: True Positive, FP: False Positive, TN: True Negative, FN: False Negative, 𝑀𝑀test  : number 

of samples in the test set. 
 

CER is computed as follows: 
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CER =
FP + FN
𝑀𝑀test

, 

 

which is equivalent to say that the number of misclassified samples is divided by 

the number of samples in the test set. We repeat the whole process 1000 times 

and average the CER’s obtained from each iteration in order to estimate the true 

MER of the classification model for different number of genes. 

 

4.4 Results 

 

In this section, we compared and analyzed the results. We applied the proposed 

method on three well-known RNA-Seq data sets and compared the proposed 

method with the classifiers given in Section 4.3.2. Using the procedure detailed 

in section 4.2.2 we selected 𝑝𝑝 =  100, 200, 300, 500, 700 DE genes for which the 

error rates are estimated. We implemented other methods as recommended in 

their R documentations with the tuning parameters explained in Section 4.3.2. 

 

The comparison results and the minimum error rates are given in Figure 4.1 and 

Table 4.2, respectively. It is obvious to see that qtQDA achieves the lowest error 

rate when the number of genes is 200 and 100 for the cervical cancer data and 

prostate cancer data, respectively. See Table 4.2. Interestingly, for the cervical 

cancer data, qtQDA outperforms all the other classifiers we compare with 

regardless of the number of genes. See Figure 4.1. For the HapMap data, qtQDA 

is comparable to SVM, kNN and logistic regression classifiers. On the other 

hand, we point out that if we are working on genomic data or medical based data 

instead of applying SVM or kNN we would prefer qtQDA or logistic regression 

classifiers as they assign samples to one of the classes with a probability score. 

The probability score may play an important role for further diagnostic 

procedures that can be associated with different risks. 
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                        (a)                                                    (b) 

 
(c) 

Figure 4.1. Classification error rate as a function of the number of genes chosen 

for classification of the (a) Cervical Cancer, (b) Prostat Cancer and (c) HapMap 

data sets 

 

Table 4.2. Minimum error rate achieved for each classifier in each data set. 

Method Cervical Cancer Prostate Cancer HapMap 

qtQDA 0.0125 (200) 0.0203 (100) 0.0018 (300) 

SVM 0.0276 (100) 0.0364 (100) 0.0014 (500) 

kNN 0.0277 (100) 0.0523 (200) 0.0009 (200) 

GLMnet 0.0406 (200) 0.0341 (300) 0.0009 (500) 

PLDA 0.0608 (100) 0.1609 (100) 0.0123 (100) 

NBLDA 0.0402 (200) 0.0634 (200) 0.0058 (100) 

voomDLDA 0.0425 (100) 0.1076 (300) 0.0029 (100) 

SQDA 0.0318 (100) 0.0483 (100) 0.0046 (300) 

* The number of genes used to obtain the minimum error rate is reported in brackets. 
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4.5 Discussion 

 

In this thesis, we proposed a new classifier qtQDA using RNA-Seq expression 

profiles which incorporate dependence structure between genes. The proposed 

model basically integrates quantile transformation with quadratic discriminant 

analysis for the RNA-Seq data classification. Therefore, instead of applying log-

transformation to the counts we use quantile transformation and then apply 

quadratic discriminant analysis where we have class specific covariance 

matrices. 

 

Although it has been shown that classifiers making unrealistic assumptions, i.e. 

assuming that genes are independent, can perform well for microarray data sets 

(Dudoit et al., 2002) our results point out the significance of the dependence 

structure between genes for RNA-Seq data classification problems. 

 

The proposed model has two fundamental advantages over existing classifiers. 

The first advantage is that the model does not include any tuning parameters that 

have to be determined by cross-validation. This simplifies the application of the 

algorithm in practice. The second advantage is that it is computationally faster 

than the recently proposed RNA-Seq classifiers; SQDA method (Sun and Zhao, 

2015) and the Copula method (Zhang, 2017) which incorporate the dependency 

between genes into the model. Since the method proposed by Zhang (2017) has 

no publicly available package or the algorithm we could not implement their 

classification approach. However, it is stated in the paper that this Gaussian 

copula based classifier uses a complicated Bayesian approach in combination 

with Metropolis-Hasting algorithm and Gibbs sampling. Thus, Zhang (2017) 

acknowledges that the required time for the computations is time consuming 

even in C++ programming language which is known as one of the fast 

programming languages. 

 

Moreover, we focused on classifying samples at gene expression levels and we 

evaluated the classification performance only in terms of error rate not the spar-

sity, which is the number of genes used in classification process. We applied 

edgeR pipeline for gene selection which simply selects informative genes for 
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distinguishing between classes. On the other hand, developing a sparse version 

of the proposed classifier, qtQDA identifying less informative genes and 

reducing their impact in the classification model to zero can be further studied. A 

sparse version of qtQDA may lead to more efficient classification and high 

accuracy in the performance of the classification. 
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CHAPTER 5: A NEW LOCAL COVARIANCE MATRIX ESTIMATION 

FOR qtQDA 

 

Dependence relation between random variables in a data set is one of the broadly 

studied topic in statistical data analysis particularly in data classification as it 

can effect the performance of the classification model. The dependence relation 

can be incorporated either by covariance matrices or copula functions. In this 

thesis, we focus on the true estimation of covariance matrices which are used in 

the classification model. The simplest way of estimating the covariance matrix is 

to use Maximum Likelihood Estimator (MLE). However, since the medical or 

biological data sets contain highly correlated variables, the sample covariance 

matrix estimated by MLE may not reflect the true dependence relation between 

variables and this may lead to false inferences. 

 

There exist a few approaches proposed recently in order to improve the 

covariance matrix estimation (Matteoli et al., 2010; Velasco-Forero et al., 2015). 

Caefer and Rotman (2009), for instance, proposed a quasi-local estimation 

approach for the covariance matrix which is estimated locally. They define 

dependence regions where variance of neighbours surrounding the reference 

point is used. Like Caefer and Rotman’s approach, Oruc and Ucer (2009) 

constructed local dependence map with the help of a new methodology called 

local dependence function. This new approach has the capability of identifying 

three regions which are positive, negative and zero dependence. Application of 

the new approach on real medical data sets has shown that dependence structure 

based on local dependence functions is more informative. 

 

Since it is known that RNA-Seq data sets consist of a large number of genes, the 

dependence structure of those genes is critical and important for classification of 

new samples. On the other hand, a new observation might have an individual 

impact on the estimation of the covariance matrix which may lead to a better 

classification performance. Therefore, in this part of the thesis, we propose a 

new approach for covariance matrix estimation which can be applied in qtQDA. 

We call this new approach local covariance matrix estimate. We have shown that 

implementing local covariance matrix in qtQDA model increases classification 
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accuracy on real gene expression data sets. We note here that, the local covari-

ance matrix is estimated for each new sample. Thus, qtQDA classifier turns to an 

adaptive algorithm and we redefine qtQDA as L-qtQDA, i.e. Local-quantile 

transformed Quadratic Discriminant Analysis. 

 

5.1 Local Dependence Functions for Multivariate Normal 

Distributions 

 

In this section, we give some preliminaries/definitions about local dependence 

functions. 

 

5.1.1 The Local Dependence Function 

 

Let 𝐹𝐹(x,𝑦𝑦) be the joint cumulative distribution function and 𝑓𝑓 (𝑥𝑥,𝑦𝑦) be the joint 

probability density function of a continuous bivariate random variable (𝑋𝑋,𝑌𝑌). 

Assume that 𝐹𝐹𝑋𝑋(x), 𝑓𝑓𝑋𝑋(𝑥𝑥) are marginal and probability density functions of X; 

𝐹𝐹𝑌𝑌(y), 𝑓𝑓𝑌𝑌(y) are marginal and probability density functions of Y. Then given a 

pair of random variables (X, Y), correlation coefficient between X, Y is given as 

 

                                              𝜌𝜌(𝑋𝑋,𝑌𝑌) = 𝐸𝐸(𝑋𝑋−𝐸𝐸𝑋𝑋)(𝑌𝑌−𝐸𝐸𝑌𝑌)
�𝐸𝐸(𝑋𝑋−𝐸𝐸𝑋𝑋)2�𝐸𝐸(𝑌𝑌−𝐸𝐸𝑌𝑌)2

                                    (5.1) 

 

Basically, Pearson correlation coefficient measures the linear dependence 

between the pair of random variables (𝑋𝑋,𝑌𝑌) and it is also called the measure 

association (Bairamov and Kotz, 2000; Bairamov et al., 2003). However, the 

level of association may vary locally. In order to measure the local dependency 

between random variables X and Y, Bairamov and Kotz (2000) defined a new 

local dependence function as follows: 

 

                      𝐻𝐻(𝑥𝑥,𝑦𝑦) = 𝐸𝐸�𝑋𝑋−𝐸𝐸(𝑋𝑋|𝑌𝑌=𝑦𝑦)��𝑌𝑌−𝐸𝐸(𝑌𝑌|𝑋𝑋=𝑥𝑥)�

�𝐸𝐸�𝑋𝑋−𝐸𝐸(𝑋𝑋|𝑌𝑌=𝑦𝑦)�2��𝑌𝑌−𝐸𝐸(𝑌𝑌|𝑋𝑋=𝑥𝑥)�2
                                    (5.2) 

 

which is derived from the Equation (5.1) with the help of replacing the 

expectations EX and EY  by the conditional expectations 𝐸𝐸(X |𝑌𝑌 =  y) and 
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𝐸𝐸(Y|X =  x), respectively. The local dependence function 𝐻𝐻(x, y) represents the 

dependence between X and Y at the point (𝑥𝑥,𝑦𝑦). It can be interpreted that the 

local dependence function can identify the impact of X on Y “conditionally on X 

and Y being in a neighbourhood of the point (𝑥𝑥,𝑦𝑦)” (Bairamov and Kotz, 2000; 

Bairamov et al., 2003). 

 

Let 𝜀𝜀𝑋𝑋(𝑦𝑦)  =  𝐸𝐸𝑋𝑋 − 𝐸𝐸(𝑋𝑋|𝑌𝑌 =  𝑦𝑦) and 𝜀𝜀𝑌𝑌(𝑥𝑥) =  𝐸𝐸𝑌𝑌 −  𝐸𝐸(𝑌𝑌|𝑋𝑋 =  𝑥𝑥). After some 

simplifications the local dependence function can be rewritten as follows: 

 

                                          𝐻𝐻(𝑥𝑥, 𝑦𝑦) = Cov(𝑋𝑋,𝑌𝑌)+𝜀𝜀𝑋𝑋(𝑦𝑦)𝜀𝜀𝑌𝑌(𝑥𝑥)

�𝜎𝜎𝑋𝑋+𝜀𝜀𝑋𝑋
2 (𝑦𝑦)�𝜎𝜎𝑌𝑌+𝜀𝜀𝑌𝑌

2(𝑥𝑥)
                                       (5.3) 

 

If we divide both numerator and denominator by 𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌  then we obtain  

 

                                          𝐻𝐻(𝑥𝑥, 𝑦𝑦) = ρ+𝜑𝜑𝑋𝑋(𝑦𝑦)𝜑𝜑𝑌𝑌(𝑥𝑥)

�1+𝜑𝜑𝑋𝑋
2 (𝑦𝑦)�1+𝜑𝜑𝑌𝑌

2(𝑥𝑥)
                                          (5.4) 

 

where 𝜌𝜌 = Cov(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

, 𝜑𝜑𝑋𝑋(𝑦𝑦) = 𝜀𝜀𝑋𝑋(𝑦𝑦)
𝜎𝜎𝑋𝑋

, 𝜑𝜑𝑌𝑌(𝑥𝑥) = 𝜀𝜀𝑌𝑌(𝑥𝑥)
𝜎𝜎𝑌𝑌

. 

 

We now give the properties of local dependence function in the following 

lemma. See Bairamov and Kotz (2000) and Bairamov et al. (2013) for more 

details. 

 

Lemma 5.1 Let (𝑋𝑋,𝑌𝑌) be a pair of random variables and 𝐻𝐻(𝑋𝑋,𝑌𝑌) be the local 

dependence function given in (5.2). Then the local dependence function has the 

following properties: 

 

(i) If X and Y are independent then 𝐻𝐻 (𝑥𝑥,𝑦𝑦) =  0  for any (𝑥𝑥,𝑦𝑦) ∈  𝑀𝑀𝑋𝑋𝑌𝑌. 

(ii) |𝐻𝐻 (𝑥𝑥,𝑦𝑦) | ≤ 1, for all (𝑥𝑥,𝑦𝑦) ∈  𝑀𝑀𝑋𝑋𝑌𝑌. 

(iii) If |𝐻𝐻 (𝑥𝑥,𝑦𝑦) | = 1 for some  (𝑥𝑥,𝑦𝑦) ∈  𝑀𝑀𝑋𝑋𝑌𝑌 then 𝜌𝜌 ≠ 0. 

(iv) Let 𝐸𝐸(𝑋𝑋|𝑌𝑌 =  𝑦𝑦) and 𝐸𝐸(𝑌𝑌|𝑋𝑋 =  𝑥𝑥) are differentiable funtions. If 

|𝐻𝐻 (𝑥𝑥,𝑦𝑦) | = 0 for any (𝑥𝑥, 𝑦𝑦) ∈  𝑀𝑀𝑋𝑋𝑌𝑌 then 𝐸𝐸(𝑋𝑋|𝑌𝑌 =  𝑦𝑦) or 𝐸𝐸(𝑌𝑌|𝑋𝑋 =  𝑥𝑥) or both 

are constant. 
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(v) Let |𝜌𝜌| = 1 and assume that |𝐻𝐻 (𝑥𝑥,𝑦𝑦) | = 1 at a point (𝑥𝑥,𝑦𝑦) then 

𝜀𝜀𝑋𝑋(𝑦𝑦) = 𝜀𝜀𝑌𝑌(𝑥𝑥) up to a sign. 

(vi) The point (𝑥𝑥∗,𝑦𝑦∗) satisfying 𝜑𝜑𝑋𝑋(𝑦𝑦∗) = 𝜑𝜑𝑌𝑌(𝑥𝑥∗) = 0 is a saddle point of H 

and 𝐻𝐻(𝑥𝑥∗,𝑦𝑦∗) = 𝜌𝜌. 

 

One can estimate the local dependence function from the data at hand. Let 

(𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖), 𝑖𝑖 =  1, 2, … ,𝑛𝑛 be the data set. Assuming that 𝜙𝜙 is an integrable kernel 

function with short tails and ℎ𝑛𝑛 → 0 is a width sequence tending zero at 

approximate rates, Nadaraya (1964) and Watson (1964) proposed the following 

estimates for the regression functions 𝐸𝐸(𝑋𝑋 |𝑌𝑌 =  𝑦𝑦) and 𝐸𝐸(𝑌𝑌 |𝑋𝑋 =  𝑥𝑥): 

 

𝐴𝐴𝑋𝑋
(𝑛𝑛)(𝑦𝑦) =

∑ 𝑿𝑿𝒊𝒊𝝓𝝓�
𝒚𝒚−𝒀𝒀𝒊𝒊
𝒉𝒉𝒏𝒏

�𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ 𝝓𝝓�𝒚𝒚−𝒀𝒀𝒊𝒊𝒉𝒉𝒏𝒏
�𝒏𝒏

𝒊𝒊=𝟏𝟏
     and     𝐴𝐴𝑌𝑌

(𝑛𝑛)(𝑥𝑥) =
∑ 𝒀𝒀𝒊𝒊𝝓𝝓�

𝒙𝒙−𝑿𝑿𝒊𝒊
𝒉𝒉𝒏𝒏

�𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ 𝝓𝝓�𝒙𝒙−𝑿𝑿𝒊𝒊𝒉𝒉𝒏𝒏
�𝒏𝒏

𝒊𝒊=𝟏𝟏
 

 

Using Nadaraya and Watson’s estimates, Bairamov and Kotz (2000) suggested 

the following estimate for the local dependence function 

 

                              𝐻𝐻𝑛𝑛(𝑥𝑥, 𝑦𝑦) =
𝜌𝜌(𝑛𝑛)+

�𝑋𝑋�−𝐴𝐴𝑋𝑋
(𝑛𝑛)(𝑦𝑦)��𝑌𝑌�−𝐴𝐴𝑌𝑌

(𝑛𝑛)(𝑥𝑥)�

𝑠𝑠𝑋𝑋𝑠𝑠𝑌𝑌

�1+
�𝑋𝑋�−𝐴𝐴𝑋𝑋

(𝑛𝑛)(𝑦𝑦)�
2

𝑠𝑠𝑋𝑋
2

�1+
�𝑌𝑌�−𝐴𝐴𝑌𝑌

(𝑛𝑛)(𝑥𝑥)�
2

𝑠𝑠𝑌𝑌
2

                                   (5.5) 

 

where 

 

𝜌𝜌(𝑛𝑛) is an estimate for Pearson correlation coefficient, 

 

𝑋𝑋� =
1
𝑛𝑛
�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,𝑌𝑌� =
1
𝑛𝑛
�𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

𝑠𝑠𝑋𝑋2 =
1

𝑛𝑛 − 1
�(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2
𝑛𝑛

𝑖𝑖=1

, 𝑠𝑠𝑌𝑌2 =
1

𝑛𝑛 − 1
�(𝑌𝑌𝑖𝑖 − 𝑌𝑌)2
𝑛𝑛

𝑖𝑖=1

. 
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5.2 A new estimate of local dependence function 

 

Since in qtQDA model we estimate the covariance matrix, using Bairamov and 

Kotz’s estimate given in Equation (5.5) we suggest the following estimate for the 

local dependence function  

 

                                              𝐻𝐻�(𝑛𝑛)(𝑥𝑥,𝑦𝑦) = 𝑠𝑠𝑋𝑋𝑠𝑠𝑌𝑌𝐻𝐻�(𝑛𝑛)(𝑥𝑥,𝑦𝑦)                                      (5.6) 

 

Now, it turns to figure out the optimal kernel function and the optimal banwidth 

which improves the true covariance matrix estimate. It is given in (Silverman, 

1986) that the optimal choice for h (i.e., the bandwidth that minimises the mean 

integrated squared error) is 

 

                                      ℎ𝑛𝑛 = �4𝜎𝜎�
5

3𝑛𝑛
�
1/5

≈ 1.06𝜎𝜎�𝑛𝑛−1/5                                            (5.7) 

 

where 𝝈𝝈� is the standard deviation of the samples. This approximation is called 

Gaussian approximation, known also as Silverman’s rule of thumb (Silverman, 

1986). Note here that, Silverman’s rule of thumb approximation is used for 

downstream analysis. For the kernel function, we applied the triangular kernel 

function given in Equation (5.8): 

 

                                                  𝜙𝜙(𝑢𝑢) = 1 − |𝑢𝑢|, |𝑢𝑢| ≤ 1                                         (5.8) 

 

5.3 Results 

 

In this section of the thesis, we compare the performance of the proposed model 

with sample covariance matrix and covariance matrix estimated by local 

dependence function on two real RNA-Seq data sets: cervical cancer and 

HapMap data given in Section 4.3.1. We implement the same algorithm and the 

same process for gene selection explained in Chapter 3.2. The whole procedure 

is repeated 300 times for different number of genes (20, 50, 100, 200, 300, 500) 

and the misclassification error rate is computed by bootstrapping method 

described in Section and then we average the error error rates from each iteration 
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to estimate the true error rate of misclassification. 

 

The comparison results are given in Table 5.1, Figure 5.1 and Figure 5.2. We 

obviously see that L-qtQDA where we estimate covariance matrix by local 

dependence function performs generally better than qtQDA where we estimate 

covariance matrix by MLE for both cervical cancer data and HapMap data. Even 

though qtQDA achieves the lowest error rate at 200 genes for cervical cancer 

data L-qtQDA achieves the lowest error rate at 50 genes. 

 

Table 5.1. Classification error rates for cervical cancer and HapMap data sets 

Data # of genes qtQDA L-qtQDA 

Cervical Cancer 

20 0.0367 0.0372 

50 0.0280 0.0265 

100 0.0126 0.0124 

200 0.0117 0.0122 

300 0.0161 0.0159 

500 0.0189 0.0170 

HapMap 

20 0.0172 0.0166 

50 0.0064 0.0057 

100 0.0448 0.0434 

200 0.0120 0.0116 

300 0.0074 0.0073 

500 0.0106 0.0109 

 

5.4 Discussion 

 

While working on cancer prediction, one of the pivotal steps is to incorporate the 

true/accurate covariance matrix into the classification model. This chapter covers 

a new approach for estimating the class-specific covariance matrices by using 

local dependence fuction to be used in RNA-Seq data classification and the 

impact of differently estimated covariance matrices on RNA-Seq data 

classification. Assuming that the dependencies between genes are locally defined 

rather than complete dependency, this study illustrates that the effectiveness of 
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locally estimated covariance is higher than simple covariance matrix on real 

RNA-Seq data classification. 

 

 
Figure 5.1. Classification error rate as a function of the number of genes chosen 

for classification of the cervical cancer 

 

 
Figure 5.2. Classification error rate as a function of the number of genes chosen 

for classification of the HapMap data 

 

Underlining that this thesis solely utilizes triangular kernel function and Gaus-

sian banwidth in local dependency calculation, we note that implementation of 

different kernel functions and a different optimal banwidth selection may 

improve classification performances. The only disadvantage of the L-qtQDA is 

that the algorithm is computationally intensive due to the estimation of the local 
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covariance matrices. Nevertheless, we believe that this new estimation technique 

will be useful for classification of RNA-Seq profiles or other genomic studies. 
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CHAPTER 6: CONCLUSION AND FURTHER STUDIES 

 

In this thesis, we proposed a new classifier, quantile transformed Quadratic 

Discriminant Analysis (qtQDA), using RNA-Seq expression profiles which 

incorporate dependence structure between genes. The proposed model basically 

integrates quantile transformation with quadratic discriminant analysis for the 

RNA-Seq data classification. Therefore, instead of applying log-transformation 

to the counts we use quantile transformation and then apply quadratic 

discriminant analysis where we have class specific covariance matrices. While 

we quantile transform the data, which is assumed to be marginally negative 

binomial but dependent, we used the sophisticated edgeR methodology for the 

parameter estimation of negative binomial marginals. To the best of our 

knowledge, edgeR has only been used for discovering the differentially 

expressed genes. Thus, we appear to be the first to use edgeR methodology 

directly at the classification stage of RNA-Seq classification problems. For the 

estimation of class specific covariance matrices we used two different 

techniques: Maximum Likelihood Estimator (MLE) and local dependence 

function estimator. We proposed a new covariance estimator based on local 

dependence function and compare it with MLE. In either case a powerful 

regularization technique which can be applied by corpcor package and has never 

been used for RNA-Seq data classification before is applied so that QDA can be 

performed on the quantile transformed data. 

 

In order to increase the performance of the classification one of the crucial steps 

in the proposed algorithm is the gene selection step. The gene selection approach 

we implemented is obviously a very simple approach to select genes which are 

informative for distinguishing between classes. Hence, developing a sparse 

version of qtQDA, which can detect less informative genes and reduce their 

effect to zero can be further investigated. We expect even a better performance 

in real RNA- Seq data classification. 

 

Dependency between genes can be modelled either with copula functions or 

multivariate distribution functions. In this thesis, we incorporated the 

dependency between genes into the model with the help of Multivariate Normal 
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distribution. Multivariate normal distribution does not only simplifies the 

algorithm but also enables us to implement Gaussian QDA. On the other hand, it 

is known that copula functions are powerful functions which describe the 

dependency between variables. Although Zhang (2016) developed a new RNA-

Seq classifier via Gaussian copula functions there is no publicly available 

package or the algorithm that we could implement the classification approach 

described in (Zhang, 2016). Thus, in the future study, improving a classifier via 

different copula functions (including Gaussian copula functions) will be 

explored. The impact of different copula functions can be compared and 

analyzed. Additionally, an R package for Copula based RNA-Seq data 

classification can be further written and published. 

 

Last but not least the proposed classification algorithm can be extended for 

multi-class classification problems and can then be compared with the existing 

classifiers. 
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