
J Heuristics (2018) 24:617–644
https://doi.org/10.1007/s10732-018-9370-4

All Colors Shortest Path problem on trees

Mehmet Berkehan Akçay1 · Hüseyin Akcan1 ·
Cem Evrendilek2

Received: 25 September 2017 / Revised: 5 March 2018 / Accepted: 28 March 2018 /
Published online: 30 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Given an edge weighted tree T (V, E), rooted at a designated base vertex
r ∈ V , and a color from a set of colorsC = {1, . . . , k} assigned to every vertex v ∈ V ,
All Colors Shortest Path problem on trees (ACSP-t) seeks the shortest, possibly non-
simple, path starting from r in T such that at least one node from every distinct color
in C is visited. We show that ACSP-t is NP-hard, and also prove that it does not have
a constant factor approximation. We give an integer linear programming formulation
of ACSP-t. Based on a linear programming relaxation of this formulation, an iterative
rounding heuristic is proposed. The paper also explores genetic algorithm and tabu
search to develop alternative heuristic solutions for ACSP-t. The performance of all
the proposed heuristics are evaluated experimentally for a wide range of trees that are
generated parametrically.

Keywords NP-hardness · Inapproximability · Integer linear programming · Linear
programming relaxation · Genetic algorithm · Tabu search

B Hüseyin Akcan
huseyin.akcan@ieu.edu.tr

Mehmet Berkehan Akçay
berkehan.akcay@ieu.edu.tr

Cem Evrendilek
cem.evrendilek@ieu.edu.tr

1 Department of Software Engineering, Izmir University of Economics, 35330 Izmir, Turkey

2 Department of Computer Engineering, Izmir University of Economics, 35330 Izmir, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-018-9370-4&domain=pdf
http://orcid.org/0000-0002-5145-7778

618 M. B. Akçay et al.

1 Introduction

In this paper, the All Colors Shortest Path problem on trees (ACSP-t) is introduced
and explored with respect to its computational characteristics. ACSP-t is a variant of
the All Colors Shortest Path (ACSP) problem first introduced in Bilge et al. (2015).
While ACSP operates on graphs, ACSP-t operates on trees. Given an edge weighted,
rooted tree with each node assigned apriori to a color from a set of known colors,
ACSP-t aims at finding the shortest, possibly non-simple, path starting from the root
and visiting every color at least once.

Constraining the input specifically to trees in ACSP-t is strongly motivated by both
a theoretical interest and the wealth of real world applications. It is well known that
many computational problems lend themselves to polynomial time solutions when
the input is restricted to trees. Interestingly enough, however, we prove in this paper
that this is not the case for ACSP-t. Given the fact that ACSP is known to be NP-hard
(Bilge et al. 2015), ACSP-t also turns out to be NP-hard contrary to the expectations,
as demonstrated in this paper. Besides, in many real world applications, the underlying
network infrastructure is naturally modeled by a tree instead of a full fledged graph.
Examples of such networks are road networks, data networks, and aggregation trees
in wireless sensor networks. Moreover, employing instead a tree spanning the nodes
of a graph is a common approach to reduce the infrastructure cost.

One typical scenario whereACSP-t finds application is related to item collection. In
this scenario, an agent located at a specific base location is assumed to collect instances
of known items with one or more instances of each item distributed randomly among
known locations connected in the form of a tree. The objective is to collect at least
one instance of each item by traveling the minimum distance from the base location.
Once the agent has them all, it needs not move any further.

In anothermotivational scenario, we have amobile agent which explores an outdoor
area where various terrain types exist. These terrain types might be muddy terrains,
roads, sand, meadows, forests with different types of trees, swamps, lakes, etc. The
map of the area is known, and the objective of the mobile agent would be, starting
from an initially known position, to explore the area, and to collect sensor readings
from each of the available terrain types by following the shortest path.

Our main contributions in this paper are:

1. We formally define a computationally unique problem, namely ACSP-t, which is
a generic problem finding an application in many domains.

2. We show that ACSP-t is NP-hard, which is quite an interesting result considering
that many computational problems lend themselves to polynomial time solutions
when the input graph is restricted to a tree.

3. We prove that there is no constant factor approximation algorithm for ACSP-t.
4. An Integer Linear Programming (ILP) formulation of ACSP-t is provided.
5. Several heuristic solutions based on iterative rounding of a Linear Programming

(LP) relaxation, genetic algorithm, and tabu search are developed for ACSP-t.
6. We conduct an intense experimental study to perform a comparative analysis of

the proposed heuristics.

123

All Colors Shortest Path problem on trees 619

7. Through experimentation, we observe and report a correlation between the node
to color ratio and the difficulty of different instances of the problem.

The rest of the paper is organized as follows: In Sect. 2, we discuss the related work
and position our paper with respect to the state of the art. In Sect. 3, we introduce the
problem formally and prove its NP-hardness along with an inapproximability result.
The ILP formulation of the problem and a heuristic based on its relaxation to LP is
presented in Sect. 4. In Sect. 5, two metaheuristic solutions for ACSP-t are developed
based on genetic algorithm and tabu search. In Sect. 6, we present and compare the
results of all the proposed heuristics. Finally, the paper is concluded in Sect. 7.

2 Related work

The ACSP problem on general graphs has been shown to be NP-hard and not to
admit a constant factor approximation algorithm in Bilge et al. (2015). Restricting
the underlying graph to a tree is generally expected to change the computational
characteristic of the problem so that it lends itself to a polynomial time solution.
Contrary to the expectations, ACSP-t is shown to remain NP-hard in this paper.

Although there are several similar problems examined in the literature, ACSP-t is
computationally unique. Generalized Minimum Spanning Tree (GMST) introduced
by Myung et al. (1995) is probably the closest problem. Given an undirected graph
G = (V, E) with its vertex set partitioned into m clusters GMST is defined to be
the problem of finding the Minimum Spanning Tree that visits exactly one node from
every cluster. This problem has been shown to be NP-hard in Myung et al. (1995).
Some inapproximability results for it are presented by Pop (2004). In Feremans et al.
(2002), Pop et al. (2006, 2001), Integer Linear Programming formulations of GMST
are also proposed. Feremans et al. (2002) study the polytope associatedwith theGMST
problem. A recent study in Pop et al. (2018) proposes a two level solution to GMST
advancing the state of the art.GMST problemwhen the underlying graphs is restricted
to trees has been studied by Pop, and has been shown to be NP-hard in Pop (2002).
Another variant by Dror et al. (2000), called l-GMST, relaxesGMST, and allows more
than one node from every cluster to be visited. They also present different heuristic
solutions including a genetic algorithm. Although l-GMST appears similar to ACSP-t,
they differ computationally in variousways. In Fig. 1, solutions of l-GMST andACSP-t
for a given problem instance are presented. Each node, in this figure, is labeledwith i/c
where i corresponds to the node and c to the color assigned to it. The tree is rooted at r
towhich color 0 is assigned. All the edgeweights are assumed to be equal to one.When
the given figure is viewed as an instance of l-GMST, the optimal solution is the subtree
enclosed in a dashed rectanglewith a cost of 4 as shown in thefigure. The best that could
be obtained from this optimal as also a solution to ACSP-t when the subtree is appro-
priately interpreted will have a cost of 7. Yet, the optimal solution to ACSP-t as shown
to the right of Fig. 1 has cost 5. It is observed through this simple construction that the
shape of the solution, in other words, whether the minimum cost combinatorial struc-
ture that is sought is a tree or a walk has a considerable impact on how it is computed.

Another problem similar to ACSP-t is the Generalized/Group Steiner Tree Problem
(GSTP) introduced by Reich and Widmayer (1990). GSTP is defined on a complete,

123

620 M. B. Akçay et al.

l-GMST cost = 4

r/0

3/3

7/4

6/3

5/3

4/4 2/2 1/1

8/1

1 1 1 1

1

1

1

1

r/0

3/3

7/4

6/3

5/3

4/4 2/2 1/1

8/1

1 1 1 1

1

1

1

1

ACSP-t cost = 7

r/0

3/3

7/4

6/3

5/3

4/4 2/2 1/1

8/1

1 1 1 1

1

1

1

1

ACSP-t cost = 5

Fig. 1 The optimal solution to the l-GMST instance shown in the rectangular area (left), the corresponding
solution to the correspondingACSP-t instance as obtained from the solution above (middle), and the optimal
solution to the corresponding ACSP-t instance (right)

edge weighted, undirected graphG with a subset of nodes S partitioned intom clusters
to find the minimum cost tree in G that contains at least one node from each cluster.
This NP-hard problem is shown to be a direct generalization of the set cover problem
in Ihler (1992), Klein and Ravi (1995), and Slavik (1997). Ihler et al. (1999) show that
the problem is NP-hard even on trees. Garg et al. (2000) introduce a polylogarithmic
approximation algorithm for this problem. In Halperin et al. (2003), GSTP is proved
to be not approximable to within �(log2−ε n) unless NP admits a quasi-polynomial
time Las Vegas algorithm.

The Generalized Traveling Salesman Problem (GTSP) formulated by Labordere
(1969) is another problem that has similar features to the ACSP-t problem. Given a
graph with the vertex set partitioned into m disjoint clusters, GTSP is, then, finding
the shortest Hamiltonian tour containing exactly one or at least one node from each
cluster. Laporte and Nobert (1983) prove that “exactly one” version corresponds to
“at least one” node version when the distance matrix is Euclidean. They also develop
the first ILP formulation for GTSP. A dynamic programming formulation is proposed
as a solution procedure in Srivastava et al. (1969). In Laporte et al. (1987), an ILP
formulation to this problem is presented when the distance matrix is asymmetrical.
A hybrid diploid genetic based algorithm for solving GTSP has also been proposed
in Pop et al. (2017). Lien et al. (1993) show that a given instance of GTSP can be
transformed into an instance of the standard Traveling Salesman Problem (Lawler
1985) efficiently with the same number of nodes.

3 Definition and computational complexity of ACSP-t

In this section, we give a formal definition of the ACSP-t problem, prove its NP-
hardness, and make some observations leading to an inapproximability result for
ACSP-t.

123

All Colors Shortest Path problem on trees 621

Definition 1 Given a tree T (V, E) rooted at r ∈ V , a functionw : E → R
+ assigning

positive weights to the edges, and another function color : V → C mapping vertices
in V = {1, . . . , n} to colors in C = {1, . . . , k}, ACSP-t is then to find the shortest,
possibly non-simple, path starting from the root r ∈ V such that every distinct color
gets visited at least once.

For instances of ACSP-t where each node is colored with a distinct color (k = n),
the problem reduces to finding a shortest non-simple path that traverses all the nodes
in the tree. In that case, the solution can be found in polynomial time as suggested by
Proposition 1 below.

Proposition 1 Given an edge weighted tree T (V, E) rooted at a node r ∈ V , a
shortest possibly non-simple path � starting at r and visiting all the nodes can be
constructed by a depth-first traversal initiated at r in such a way that the nodes on the
way to the leaf farthest away from r are visited last in �. Furthermore, the length of
� is strictly less than twice the cost of the tree T .

Proof The depth-first traversal has the effect of traversing every edge in T twice with
the exception of the edges on the way from the root r to the last visited leaf, which
are traversed only once. The total length of any such path is thus 2 · ∑

e∈E we −∑
e∈�′ we, where �′ is the unique path from r to the leaf that gets visited last. This

expression is obviously minimized when the second term is maximized since the first
term corresponds simply to the cost of the tree T irrespective of the order in which
the nodes are visited.

As there exists at least one edge that is visited exactly once given that the return
to the base is not performed upon hitting the last leaf node in T , the second term is
always non-zero. ��

We prove that ACSP-t is NP-hard by a polynomial time reduction from the Hitting
Set Problem (HSP) (Garey and Johnson 1979). HSP is known to be NP-hard (Garey
and Johnson 1979), and also a variant of the well-known Set Cover (SC) problem
(Vazirani 2001).

HSP: Given X = {x1, x2, . . . , xn} as a base set, k ∈ N+, and a collection of m sets
S1, S2, . . . , Sm with Si ⊆ X , the objective of HSP is to find Y ⊂ X such that |Y | ≤ k
and ∀i Si ⋂ Y �= ∅ hold.

A given instance of HSP can be transformed into the corresponding instance of
ACSP-t as follows. The color set C is initialized to have n + m + 1 colors as
C = {c0, c1, . . . , cn+m}. We first create the root r such that color (r)= c0. For each
xi ∈ X , two new nodes xi and x ′

i are created, with the same color, ci , assigned to
both as color(xi) = color(x ′

i) = ci . Lastly, for each Si ∈ {S1, . . . , Sm} in the given
instance ofHSP, we create |Si | nodes. This replication of the nodes ensures that a tree
structure is maintained in the subsequent construction. For each element x j ∈ Si , the
corresponding node Si, j is created (Si, j = x j iff x j ∈ Si). All the nodes Si, j for a
given i , are colored by the same color cn+i .

Once the nodes with the corresponding colors are created, the tree in the corre-
sponding instance of ACSP-t is constructed by connecting them as shown in Fig. 2.

123

622 M. B. Akçay et al.

Fig. 2 Reduction from Hitting Set to ACSP-t

Each node xi is connected to the root r with an edge of cost (weight, distance) one
while node x ′

i is connected to r with an edge of cost zero. For each node Si, j , an edge
between Si, j and x j as its parent is created with weight zero.

All the colors must be visited at least once. The color 0 is visited at the root r . For
colors c1 through cn , either xi or x ′

i can be visited. As there are no edges from nodes
x ′
i to any S j,i for j ∈ {1 . . .m}, however, at least one or more nodes, without a prime,
labeled xi must be visited in order to get to the colors cn+1 through cn+m .

This transformation is obviously polynomial in the size of the givenHSP instance.A
total of 1+ 2n +mn nodes including the root are created in the worst case, assuming
each Si covers all the elements in the base set X . So the entire transformation to
construct the corresponding tree takes O(mn) time which is directly proportional to
the size of S = {S1, S2, . . . , Sm} in the given instance of HSP.

Lemma 1 A given instance of HSP has a solution with size less than or equal to k
if and only if the corresponding instance of ACSP-t has a solution of path length less
than or equal to 2k − 1.

Proof (If part): If there is a solution P in the corresponding instance of ACSP-t,
obtained through the transformation described, with path length less than or equal to
2k − 1, then by choosing Y = {xi |xi ∈ P} we obtain a hitting set with size less than
or equal to k.

(Only if part): If a hitting set Y with |Y | ≤ k exists in the given instance of HSP , a
DFS (Depth First Search) traversal of the subtree starting at r constrained to the nodes
xi ∈ Y , and their descendants only, has a cost less than or equal to 2k − 1. ��
Theorem 1 ACSP-t is NP-hard.

Proof The transformation is polynomial. This coupled with Lemma 1 readily proves
the theorem. ��

It is shown in Ihler et al. (1999) that l-GMST, referred to as theCLASSTREE problem
there, does not admit a constant factor polynomial time approximation algorithm, even
when the underlying graph is restricted to be a tree. Equipped with this knowledge, we

123

All Colors Shortest Path problem on trees 623

can make the following similar observation for ACSP-t, in the same way it has been
previously formulated for ACSP in Bilge et al. (2015).

Observation 2 For a given valid instance I of l-GMST on trees (l-GMST-t),

OPTl-GMST-t(I) ≤ min
J∈V {OPTACSP-t(I j)} < 2 ∗ OPTl-GMST-t(I)

where I j is the corresponding instance of ACSP-t obtained by designating j ∈ V as
the root.

Proof Weprove the two inequalities separately for the given expression.Let us assume,
by contradiction, that OPTl-GMST-t(I) > min j∈V {OPTACSP-t(I j)}. In this case, l-
GMST-t can simply adopt the solution that gives the minimum over all such instances
for ACSP-t. All it takes is to cast the non-simple path to a tree by disregarding any
duplicate edges, and hence a contradiction.

Let us assume the latter inequality does not, once more, hold, and

min
j∈V {OPTACSP-t(I j)} ≥ 2 ∗ OPTl-GMST-t(I).

But we know that the optimal solution of l-GMST-t is a tree spanning all colors, and a
DFS traversal of all nodes in it gives a non-simple path with length strictly less than
twice the cost of this tree. This obviously is at least as good as a solution to one of the
instances I j of ACSP-t, contradicting the assumption. ��
Theorem 3 There is no constant factor polynomial time approximation (apx) for
ACSP-t unless P = N P.

Proof Let us assume, contrary to the theorem, that there is such an algorithm apxACSP-t
satisfying apxACSP-t(I) ≤ c ∗ OPTACSP-t(I) for all valid instances I , and a constant
c > 1. Now, given an instance I of l-GMST-t, let us feed I j obtained by designating
j as the root in the corresponding ACSP-t instance into apxACSP−t for each j ∈ V .
We know, by Observation 2, that OPTl-GMST-t(I) ≤ minJ∈V {OPTACSP-t(I j)} <

2 ∗ OPTl-GMST-t(I).
As ∀ j ∈ V apxACSP-t(I j) ≤ c ∗ OPTACSP-t(I j) holds by the assumption made,

min
j∈V {apxACSP-t(I j)} ≤ c ∗ min

j∈V {OPTACSP-t(I j)} < 2 ∗ c ∗ OPTl-GMST-t(I)

is readily obtained. This, by definition, indicates the existence of a 2c approximation
for l-GMST-t, and hence a contradiction as it certainly takes polynomial time to run
apxACSP−t n times to record the minimum over all the possible instances of ACSP-t,
each of which is rooted at a distinct node. ��

4 Integer linear programming formulation of ACSP-t

In this section, an ILP formulation is first developed for ACSP-t. Then, we relax it to
LP and propose a heuristic based on iterative rounding of this LP relaxation.

123

624 M. B. Akçay et al.

4.1 ILP model

In order to give a compact ILP formulation, we transform each undirected edge {i, j} ∈
E into two directed edges (i, j) and (j, i). The binary variable xi, j is then set to 1 if and
only if the directed edge (i, j) is visited in the solution. Both of these directed edges
(i, j) and (j, i) are assigned the sameweightw{i, j}.We also introduce twomore nodes
as the source and the sink. While the source is denoted by 0, the sink is numbered as
n + 1. These two nodes are assigned to a brand new color 0. We add a directed edge
(0, r) from the source to the original root of weight zero, as well as edges (i, n+1) for
all i ∈ V each with a weight of zero. This ensures that the sink node n + 1 is the last
node visited in any feasible solution. When all the colors are visited, the edge to node
n+1 is taken, and the path terminates. Now the transformed instance hasC ′ = C∪{0},
V ′ = V ∪ {0, n + 1}, E ′ = {(0, r)} ∪ {(i, n + 1)|i ∈ V } ∪ {(i, j), (j, i)|{i, j} ∈ E},
and the weight and color functions, using the same notation as before, have been
augmented so that color(0) = color(n + 1) = 0, w0,r = 0, wi,n+1 = 0 ∀i ∈ V , and
finally wi, j = w j,i = w{i, j} ∀{i, j} ∈ E .

The ILP formulation then follows:

minimize
∑

(i, j):(i, j)∈E ′
xi, jwi, j (4.1)

subject to

∑

j :(j,i)∈E ′
x j,i −

∑

j :(i, j)∈E ′
xi, j = 0, ∀i ∈ V (4.2)

∑

(i, j):(i, j)∈E ′∧color(j)=c

xi, j ≥ 1, ∀c ∈ C (4.3)

xparent (parent (i)),parent (i) ≥ xparent (i),i , ∀i ∈ V − {r} (4.4)

xi, j ∈ {0, 1}, ∀(i, j) ∈ E ′ (4.5)

Our objective function in 4.1 computes the length of a feasible path in an effort to
minimize it. The result is the sum of the costs of the selected edges. In order to restrict
the shape of the solution to a continuous single non-simple path, Constraints (4.2) are
used to ensure that the number of the edges that enter into a node is equal to the number
of the edges that leave. In order to overcome the difficulty of dealing with exceptional
nodes such as the root r and the last node on a feasible path, the source and the sink
have been introduced. Constraints (4.3) ensure that each color is visited at least once.
Constraints (4.4) are used to enforce the connectivity of the nodes. It is actually a class
of sub-tour elimination constraints. This class of constraints ascertains that a node
cannot be visited before its parent. It should be noted that, for all i ∈ V − {r}, the
parent (i) is assumed to be already defined and unique. The parent of the root, on the
other hand, is set to be the source node (parent (r) = 0) for Constraints (4.4) to work
correctly. Constraints (4.5) dictate that all the decision variables are either 0 or 1 in
any feasible solution.

123

All Colors Shortest Path problem on trees 625

This ILP formulation is readily relaxed to an LP formulation by replacing the
integrality constraints (4.5) with a weaker constraint class (4.6) as shown below to
ensure that each variable is in the [0, 1] interval.

0 ≤ xi, j ≤ 1, ∀(i, j) ∈ E ′ (4.6)

4.2 LP-relaxation based heuristic

We propose a LP relaxation based iterative rounding heuristic. In the heuristic which
we name LP-iterative, the rounding of variables are done in a decreasing order of their
values iteratively. We find the largest xi, j with a non-integral value, round it to 1, and
add xi, j = 1 to the current LP modal before a subsequent call to LP is issued. This
process is repeated until all xi, j values become either 0 or 1. In the worst case, LP is
called O(n) times. If there are edges with equal xi, j values, we break the ties in favor
of those minimizing the distance/#colors ratio where distance is the total distance
to get to this edge, and #colors is the number of distinct colors on this path.

5 Metaheuristic algorithms

In this section, we present two metaheuristic approaches for solving the ACSP-t prob-
lem. In Sect. 5.1, we propose a genetic algorithm based heuristic for ACSP-t while, in
Sect. 5.2, we present another heuristic based on tabu search.

5.1 Genetic algorithm based heuristic

The Genetic Algorithm based heuristic for ACSP-t (GA) is presented in four stages, as
typical of any genetic algorithm, namely, chromosome encoding, crossover, mutation,
and solution construction. The details of these stages are summarized below.

For encoding a chromosome representing a feasible solution for a given ACSP-t
instance, we use an array of size k, where k is equal to the number of colors. The root
r and its corresponding color are not included in the chromosome, since the root is
always a part of the solution. Therefore, a chromosome is simply a list of nodes with
distinct colors to be visited. Given a chromosome representation, we should be able
to efficiently compute the corresponding shortest path. This shortest path obviously
corresponds, by Proposition 1, to a depth-first traversal of the minimum cost subtree
spanning all the nodes specified in the chromosome representation along with the
root. The minimum cost subtree, on the other hand, is simply the union of all the paths
connecting the nodes in the chromosome to the root.

The second stage of GA is the crossover stage. In this stage, the Roulette Wheel
Selection algorithm (Goldberg 1989) is used to find the two parent chromosomes.
With a predetermined probability, the two nodes with the same color in the parents
are swapped to perform the crossover. This operation is repeated for each individual
color and therefore completed in time linear in the number of colors. As the output of
the crossover stage, two child chromosomes are created from the two parents.

123

626 M. B. Akçay et al.

input: ACSP-t instance identified with T (V,E) rooted at r.
output: Best cost path in population
1: function GA(T, r)
2: Population ← {};
3: for i = 1 to populationSize do
4: chromosome ← createChromosome(T);
5: calculateFitness(T,r,chromosome);
6: Population ← Population ∪ chromosome;
7: end for
8: for i = 1 to iterationsize do
9: selectedParents ← rouletteWheelSelection(Population);
10: children ← Crossover(selectedParents);
11: for each child c in children do
12: r ← random(0,1) ;
13: if r < mutationRate then
14: mutate(c) ;
15: end if
16: calculateFitness(T,r,c);
17: end for
18: remove the 2 worst chromosomes from Population;
19: Population ← Population ∪ children;
20: end for
21: bestSolution ← best solution in Population;
22: formPath(T,r,bestSolution);
23: end function

Fig. 3 Genetic algorithm based heuristic for ACSP-t (GA)

In the mutation phase, with a predefined mutation probability, a subset of the colors
are selected randomly and the nodes with that particular color in the chromosome are
replaced with another random node of the same color.

The last stage of the genetic algorithm is the solution generation stage. Upon the
completion of the iterations in the genetic algorithm, the chromosome with the best
fitness value is selected as a solution to the given ACSP-t instance.

The pseudo-code of GA is given in Fig. 3. The population is generated in lines
3–7. The algorithm iterates as many times as dictated by iterationSize global to the
algorithm. Parent chromosomes are selected using the Roulette Wheel Selection algo-
rithm in line 9 and crossover is performed in line 10. Two of the worst chromosomes
are removed from the population in line 18 and the newly created child chromosomes
are added to the population in line 19. Finally, when the iterations are over, the best
chromosome is selected in line 21 and the solution is generated in line 22 using a
depth-first search traversal as already described.

5.2 Tabu search based heuristic

The proposed tabu search based heuristic is called Tabu. A feasible solution denoted
by s in Tabu is represented as an array of size k, where k is the number of distinct
colors. A(s) denotes the set of selected nodes for the particular solution s. Therefore,
each node in the solution array is a node with a distinct color. The shortest path

123

All Colors Shortest Path problem on trees 627

input: ACSP-t instance identified with T (V,E) rooted at r
output: Best cost path
1: function Tabu(T, r)
2: colorselectionFrequency[i] = 0 ∀i ∈ V ;
3: tabuList ← ∅;
4: tabuTenure ← ∅;
5: initialSolution ← createInitialSolution(T) ;
6: bestSolution ← initialSolution;
7: for i = 0 to iterationSize do
8: sc ← selectColors();
9: update colorselectionFrequency for all colors in sc;
10: bestCandidate ← neighborhoodSearch(T,sc,initialSolution);
11: if cost(bestCandidate) ¡ cost(bestSolution) then;
12: bestSolution ← bestCandidate;
13: end if
14: initialSolution ← bestCandidate;
15: update tabulist ;
16: update tabuTenure;
17: end for
18: formPath(T,r,bestSolution);
19: end function

Fig. 4 Tabu search based heuristic for ACSP-t (Tabu)

corresponding to this representation can be found using a depth-first traversal as in
GA.

The crux of Tabu is the neighborhood search, which is performed in two steps:
identifying the colors for which the nodes are to be changed and then finding the new
paths passing through these new candidate nodes. In the iterative neighborhood search,
a lower cost solution is sought using the tabu mechanism. First, a total of c colors is
selected from the possible set of all colors and the search is restricted to the nodes
having these colors only, denoted by Nc(s). The selection frequency for each color
is maintained and the colors are selected with probability proportional to the inverse
of their selection frequencies. As a result, a frequently selected color is given a lower
chance for selection on the next iteration.

In our implementation, the neighborhood size is selected as N 3(s). Therefore, all
(|cp|−1)× (|cq |−1)× (|cr |−1) solutions are evaluated as possible neighbors where
|ci | denotes the number of nodes with color ci , and cp, cq , cr are three distinct colors.
By evaluating the neighbors, a candidate list of the nodes is generated, among which
the lowest cost solution is selected. A node is included in the candidate list if the move
is not a tabu, or the move meets the aspiration criteria. In this version of the algorithm,
a simple aspiration criteria is employed in which the tabu moves are accepted if the
particular move leads to a solution better than the best solution known. After selecting
this best candidate, the tabu list and the tabu tenure are updated to reflect the changes.

The pseudocode of the Tabu Search algorithm is given in Fig. 4. The input to the
algorithm is an instance of the ACSP-t as a rooted tree, and the output is a valid
feasible solution to the problem. Lines 2–4 initializes the parameters. Initial solution
is created in line 5, and best solution is initialized in line 6. The algorithm iterates for a
predefined number of iterations specified by iterationSize. In each iteration, the colors
to be modified are selected in line 8 and the color selection frequencies are updated

123

628 M. B. Akçay et al.

in line 9. The neighborhood search is performed in line 10 and the best solution is
updated in lines 11–12. In lines 14–16, the initial solution, the tabu list, and the tabu
tenure are updated. Finally, the corresponding shortest, possibly, non-simple path is
formed in line 18.

6 Experimental study

In this section, we present an experimental evaluation of the heuristics proposed,
based on LP-relaxation, genetic algorithm, and tabu search for the ACSP-t problem.
All algorithms are implemented using C++ on a computer with an Intel i7 2.79 GHz
CPU, 8 GB 1333 MHz DDR 3 RAM, and running on Windows 7 operating system.
For solving ILP and LP models, IBM ILOG CPLEX Optimizer (2015) is used. We
conduct our experiments with several types of datasets parametrically generated. The
details of the datasets used for the experimentation are presented in Sect. 6.1 and the
experimental results are reported in Sect. 6.2. A discussion of the experimental results
are then given in Sect. 6.3.

6.1 Datasets

In addition to the number of the nodes and the colors, the trees used in our experiments
are classifiedbasedon twomain criteria, namely the bushiness type and the edgeweight
distribution. When the number of nodes in a tree is fixed, the bushiness corresponds to
the average branching factor and has a direct impact on the height of the tree generated.
Three different bushiness types are considered in this paper as listed below:

1. Random (R): It is used to generate the trees in which the branching factor of the
nodes are randomly selected. When the bushiness type is random, the branching
factor is set to a random value between 5 and 20 for each individual node. The tree
height is determined dynamically in this case.

2. Deep (D): The deep trees with a low average branching factor are generated. For
deep trees, the branching factor is set to 2 for all the nodes, and a balanced deep
tree is created.

3. Shallow (S): It is used to generate the trees with a relatively small height and a
high average branching factor that is fixed between 9 and 20 for all the nodes in
the tree.

For each bushiness type, four different types of edge weight distributions are used:

1. randomly distributed edge weights (R),
2. all edge weights are set to one (1),
3. decreasing weights from the root to the leaves (D),
4. increasing weights from the root to the leaves (I).

The weights associated with the edges for each edge weight distribution are pre-
sented in Table 1. Furthermore, in the experiments, in order to observe the effect of
the node to color ratio (n/k), for each tree type generated, three different node to color
ratios (2, 4, and 10) are used.

123

All Colors Shortest Path problem on trees 629

Table 1 Permissible values of edge weights for each edge weight distribution

Distribution Permissible values Description

R 1–10 Edge weights are set randomly

1 1 All edge weights are set to one

D 1–10 Starting from level 0, edge weights
decrease gradually with depth

I 1–10 Starting from level 0, edge weights
increase gradually with depth

Table 2 The complete list of parameters used in generating different types of trees

Parameter Description Values

n Number of nodes 211–1111

k Number of colors 26–556

b Bushiness type S (shallow), D (deep), R (random)

bf Branching factor 2–20

w Edge weight distribution Random (R), 1 (all 1), I (increasing),
D (decreasing)

The complete list of the parameters used in generating different types of trees
are given in Table 2. In order to uniquely identify the dataset used, each specific
type of the tree used throughout the experiments is labeled with a string of the form
nX1kX2bX3b f X4wX5, where Xi with i ∈ {1 . . . 5} corresponds to the value of the
parameter that precedes, used in generating the corresponding dataset.

6.2 Experimental results

The results of the experiments with the algorithms on all the datasets are presented in
three parts. In Sect. 6.2.1, we present the results for the trees when the bushiness type
is random (random trees). In Sect. 6.2.2, we report the results for shallow trees and in
Sect. 6.2.3, we give the results for deep trees.

Alongwith the conventional tabu search algorithm, Tabu, proposed in our paper, we
also compare the results of a modified version of the tabu search algorithm by Öncan
et al. (2008) for the GMST problem. In this new version, which we call Tabu-VF, the
neighborhood size is changed dynamically by cycling over N 1(s), N 2(s), and N 3(s)
as the feasible neighborhood sizes during the neighborhood search.

For GA, Tabu, and Tabu-VF, various parameter settings are evaluated to determine
the best values for each parameter. For brevity, however, the parameter tuning section
is omitted in this paper. The details of it can be found in Akçay (2015). As a result of
the parameter tuning, for GA, the iteration size is set to 30,000, the population size is
selected as 1000, the crossover rate is set to 0.6, and the mutation rate is set to 0.5.
Similarly, for Tabu and Tabu-VF, the iteration size is set to 50,000 and the tabu tenure

123

630 M. B. Akçay et al.

Table 3 The parameters along
with their values used in the
metaheuristic algorithms

Metaheuristic Parameter Value

GA Iteration size 30,000

Population size 1000

Crossover rate 0.6

Mutation rate 0.5

Tabu, Tabu-VF Iteration size 50,000

Tabu tenure 10

is selected as 10. All the experiments are performed using these settings, which are
listed in Table 3 for a quick reference. It should be noted that the iteration size values
for GA, Tabu, and Tabu-VF have been chosen as a result of the observations made
during the parameter tuning phase as described in Akçay (2015). They correspond to
the values in the range tested that best account for the solution quality within a feasible
amount of time.

For each combination of the bushiness type and the edge weight distribution, we
present the comparative results in two different types of tables with respect to (1) the
best path costs and (2) the average runtimes of the heuristics. In order to avoid using the
long dataset names in referring to individual rows of these tables, we assign a unique
acronym to the datasets, which also indexes the rows, as given in the first column of
the tables. We repeat the individual tests 10 times for each metaheuristic algorithm.
While the best solution returned out of 10 is used in the best path cost tables, the
average of the 10 runtimes are reported in the average runtime tables. In an attempt to
easily compare the quality of the heuristics, the cost of the solutions they return are
normalized with respect to the optimal value presented in the ILP column for each
dataset. The execution times reported in all the respective tables are in seconds. When
the ILP runs last longer than that can be afforded, they are terminated and instead the
results associated with the corresponding LP executions are reported. Such results are
appropriately marked with an asterisk in the tables.

The rest of this section presents the experimental results in detail for a versatility
of the combinations of the dataset parameters. Therefore, those interested in seeing
the overall discussion earlier can safely skip to Sect. 6.3.

6.2.1 Results for random trees

In this section, the results for random trees are presented for two different edge weight
distributions, namely random trees with random edge weights, and random trees with
all edge weights set to one.

For the best path costs shown in Table 4, GA, Tabu, and Tabu-VF have values that
are worse off on the average by a factor of 1.053, 1.055, and 1.082 of the optimal
respectively. Although this points at a slightly better solution quality for GA com-
pared to Tabu, a closer inspection of the table reveals that their relative performance
relies heavily on the value of the n/k ratio. As the n/k ratio decreases, the quality

123

All Colors Shortest Path problem on trees 631

Table 4 Best path costs as a factor of the optimal solution for random trees with randomly distributed
weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

RR-1 n255k26bRbf5wR 155 1.6839 1.1548 1.1097 1.1032

RR-2 n255k64bRbf5wR 511 1.4716 1.0509 1.0313 1.0470

RR-3 n255k128bRbf5wR 1131 1.1034 1.0000 1.0000 1.0053

RR-4 n421k43bRbf7wR 262 1.7137 1.1069 1.0534 1.1374

RR-5 n421k106bRbf7wR 780 1.4064 1.0526 1.0269 1.0218

RR-6 n421k211bRbf7wR 1933 1.1107 1.0021 1.0041 1.0072

RR-7 n511k52bRbf7wR 368 1.7554 1.1332 1.0000 1.1196

RR-8 n511k128bRbf7wR 984 1.3923 1.0244 1.0142 1.0366

RR-9 n511k256bRbf7wR 2227 1.1486 1.0031 1.0009 1.0085

RR-10 n820k82bRbf8wR 557 1.6535 1.0610 1.0323 1.0467

RR-11 n820k205bRbf8wR 1659 1.4286 1.0536 1.0289 1.0573

RR-12 n820k410bRbf8wR 3954 1.1477 1.0086 1.1088 1.1179

RR-13 n1023k103bRbf15wR 685 1.6350 1.1255 1.0847 1.0876

RR-14 n1023k256bRbf15wR 2157 1.3848 1.0408 1.0315 1.0890

RR-15 n1023k512bRbf15wR 4989 1.1189 1.0072 1.1812 1.1920

RR-16 n1111k112bRbf20wR 750 1.8213 1.0813 1.0347 1.1107

RR-17 n1111k278bRbf20wR 2340 1.2872 1.0376 1.0436 1.0897

RR-18 n1111k556bRbf20wR 5499 1.1200 1.0105 1.2035 1.2042

The best quality solutions are shown in bold for each dataset

of the solutions obtained by GA gets better compared to Tabu and Tabu-VF. This is
observed specifically on the datasets RR-6, RR-12, RR-15, and RR-18 when the n/k
ratio is 2 in Table 4. Interestingly enough, when n/k = 10 Tabu obtains better qual-
ity solutions compared to GA, consistently over the respective datasets. LP-iterative
returns solutions that are, on the average, farther from the optimal by a factor of 1.710,
1.395, and 1.125 when the n/k ratios are 10, 4, and 2 respectively.

When the n/k ratio increases, the runtime of ILP increases dramatically on the
datasets RR-10, RR-13, RR-14, RR-16, and RR-17 as shown in Table 5. The average
of the runtimes for these five datasets is 2192 s while the average for the rest is only
4.9 s. As LP-iterative calls the LP solver multiple times, its average runtime is 319 s,
which is high compared to the metaheuristics. GA, Tabu, and Tabu-VF have average
runtimes of 39.4, 28.5, and 8.5 s respectively. The runtime of GA increases with the
number of colors (k) due to the crossover operation. As a result of the neighborhood
search in Tabu, and Tabu-VF, on the other hand, the runtime decreases whenever the
n/k ratio decreases.

Random trees with all edge weights set to one We could obtain the optimal values
using ILP in mostly a feasible time except for the datasets R1-10, R1-13, and R1-16.
For these datasets, marked with an asterisk (*) in the corresponding rows, we present

123

632 M. B. Akçay et al.

Table 5 Average runtimes for random trees with randomly distributed weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

RR-1 n255k26bRbf5wR 1.641 17.321 18.322 19.341 8.432

RR-2 n255k64bRbf5wR 2.145 36.598 23.455 3.508 2.541

RR-3 n255k128bRbf5wR 1.293 79.658 31.558 1.411 1.495

RR-4 n421k43bRbf7wR 3.841 41.278 22.613 33.906 8.112

RR-5 n421k106bRbf7wR 2.988 101.774 23.802 8.234 5.854

RR-6 n421k211bRbf7wR 2.227 167.013 50.488 3.716 2.341

RR-7 n511k52bRbf7wR 14.637 62.587 35.744 57.603 17.718

RR-8 n511k128bRbf7wR 4.726 143.692 51.953 10.455 6.715

RR-9 n511k256bRbf7wR 2.048 255.504 48.584 6.502 6.513

RR-10 n820k82bRbf8wR 750.046 154.392 41.545 101.617 18.757

RR-11 n820k205bRbf8wR 16.718 344.059 70.345 18.809 7.577

RR-12 n820k410bRbf8wR 2.741 618.323 64.361 7.234 7.318

RR-13 n1023k103bRbf15wR 3960.33 248.196 32.643 88.725 20.289

RR-14 n1023k256bRbf15wR 491.993 574.221 33.851 13.825 6.007

RR-15 n1023k512bRbf15wR 4.497 972.131 52.596 5.218 4.451

RR-16 n1111k112bRbf20wR 3941 302.541 29.674 111.567 15.189

RR-17 n1111k278bRbf20wR 1818.82 589.667 28.598 14.554 6.069

RR-18 n1111k556bRbf20wR 4.575 1034.56 48.421 7.605 6.757

Fastest runtimes are reported in bold

the lower bounds obtained by LP instead of the actual optimal values in Table 6
and the execution times taken by a call to the respective LP in Table 7. LP-iterative
returns solutions that are, on the average, farther from the optimal by a factor of 1.407,
1.20, and 1.118 when the n/k ratios are 10, 4, and, 2 respectively. For the best path
costs shown in Table 6, GA, Tabu, and Tabu-VF have values that are on the average
within factor 1.025, 1.042, and 1.056 of the optimal values respectively. It is observed,
however, from Table 6 that when n/k = 10, Tabu outperforms GA in solution quality
on all the datasets with the exception of the dataset R1-10. An inspection of Table 7
reveals that the average running time for ILP is 31.3 s excluding the datasets R1-14
and R1-17 as well as the ones already marked with an asterisk. LP-iterative has a
runtime of 411.3 s on the average. GA, Tabu, and Tabu-VF have on the other hand
average runtimes of 39, 26.6, and 8.6 s respectively.

6.2.2 Results for shallow trees

In this section, we present the results for shallow trees for four different edge weight
distributions, namely, randomly distributed edge weights, all edge weights set to one,
edge weights decreasing with depth, and edge weights increasing with depth.

123

All Colors Shortest Path problem on trees 633

Table 6 Best path costs for random trees with all weights set to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

R1-1 n255k26bRbf5w1 42 1.4762 1.0238 1.0000 1.0238

R1-2 n255k64bRbf5w1 120 1.2167 1.0417 1.0083 1.0250

R1-3 n255k128bRbf5w1 256 1.0938 1.0078 1.0117 1.0234

R1-4 n421k43bRbf8w1 73 1.2877 1.0411 1.0137 1.0411

R1-5 n421k106bRbf8w1 203 1.2808 1.0197 1.0443 1.0394

R1-6 n421k211bRbf8w1 410 1.1024 1.0049 1.0146 1.0146

R1-7 n511k52bRbf8w1 92 1.4565 1.0326 1.0217 1.0217

R1-8 n511k128bRbf8w1 240 1.1542 1.0250 1.0167 1.0333

R1-9 n511k256bRbf8w1 512 1.1445 1.0195 1.0156 1.0391

R1-10 n820k82bRbf8w1 81* 2.3457 1.9012 1.9630 1.9630

R1-11 n820k205bRbf8w1 397 1.1864 1.0327 1.0353 1.0680

R1-12 n820k410bRbf8w1 824 1.1092 1.0158 1.0704 1.0777

R1-13 n1023k103bRbf15w1 104* 2.5000 2.0000 1.9412 2.0098

R1-14 n1023k256bRbf15w1 498 1.1807 1.0442 1.0542 1.0783

R1-15 n1023k512bRbf15w1 1032 1.1231 1.0165 1.1231 1.1231

R1-16 n1111k112bRbf20w1 114* 2.4234 1.9820 1.9550 1.9910

R1-17 n1111k278bRbf20w1 541 1.1811 1.0370 1.0536 1.0702

R1-18 n1111k556bRbf20w1 1116 1.1344 1.0197 1.1452 1.1541

The best quality solutions are shown in bold for each dataset

Shallow trees with randomly distributed edge weights Table 8 presents the optimal
values along with the best path costs attained by the heuristics. LP-iterative returns
solutions that are, on the average, a factor of 1.431, 1.094, and 1.003 of the optimal
when the n/k ratios are 10, 4, and, 2 respectively.GA, Tabu, and Tabu-VF have values
within a factor of 1.015, 1.038, and 1.051 of the optimal respectively. In Table 9, the
average runtimes are reported as 5.1 s for ILP, 349.6 s for LP-iterative, 39.4 s for GA,
22.8 s for Tabu, and 6.7 s for Tabu-VF.

Shallow trees with all edge weights set to one The optimal values are obtained using
ILP in a feasible time except for the datasets S1-4 and S1-7. LP-iterative returns
solutions that are, on the average, a factor of 1.021 and 1.008 away from the optimal
when the n/k ratios are 4 and 2 respectively. For the best path costs shown in Table 10,
GA returns the optimal or the best for all the datasets while Tabu and Tabu-VF have
values worse off by a factor 1.007 and 1.012 of the optimal respectively. In Table 11,
the average runtimes are reported as 528.3 s for LP-iterative, 37.6 s for GA, 22.1 s for
Tabu, and 8.2 s for Tabu-VF.

Shallow trees with edge weights decreasing with depth Among the datasets involved
in this case, we could not obtain the optimal values using ILP in a feasible time for
the datasets SD-4, SD-7, and SD-8. As can be computed from Table 12, LP-iterative

123

634 M. B. Akçay et al.

Table 7 Average runtimes for random trees with all weights set to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

R1-1 n255k26bRbf5w1 6.591 18.607 34.957 29.412 13.592

R1-2 n255k64bRbf5w1 4.006 45.678 48.245 5.694 5.781

R1-3 n255k128bRbf5w1 1.171 87.783 39.295 2.402 2.139

R1-4 n421k43bRbf8w1 15.503 52.293 25.750 38.851 12.756

R1-5 n421k106bRbf8w1 10.819 127.487 28.451 6.710 3.651

R1-6 n421k211bRbf8w1 2.579 256.484 43.312 3.174 2.846

R1-7 n511k52bRbf8w1 23.692 99.524 28.489 47.182 12.759

R1-8 n511k128bRbf8w1 10.751 230.505 38.414 8.333 4.127

R1-9 n511k256bRbf8w1 2.968 38.234 41.985 3.650 3.991

R1-10 n820k82bRbf8w1 2.456* 254.953 21.997 73.859 13.743

R1-11 n820k205bRbf8w1 281.860 573.437 50.517 14.117 7.983

R1-12 n820k410bRbf8w1 18.353 952.115 54.513 5.124 4.037

R1-13 n1023k103bRbf15w1 6.671* 376.979 36.739 110.652 22.815

R1-14 n1023k256bRbf15w1 48,268 718.946 48.352 18.315 8.124

R1-15 n1023k512bRbf15w1 20.251 1095.26 63.751 7.002 5.331

R1-16 n1111k112bRbf20w1 7.001* 428.337 24.862 84.623 20.541

R1-17 n1111k278bRbf20w1 7393.44 822.434 28.615 14.721 6.011

R1-18 n1111k556bRbf20w1 8.252 1224.04 44.642 4.571 4.322

Fastest runtimes are reported in bold

Table 8 Best path costs as a factor of the optimal solution for shallow trees with randomly distributed edge
weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SR-1 n421k43bSbf20wR 152 1.3026 1.0132 1.0263 1.0132

SR-2 n421k106bSbf20wR 573 1.0244 1.0035 1.0000 1.0070

SR-3 n421k211bSbf20wR 1592 1.0000 1.0000 1.0000 1.0000

SR-4 n820k82bSbf9wR 420 1.4405 1.0381 1.0143 1.0595

SR-5 n820k205bSbf9wR 1322 1.1362 1.0045 1.0151 1.0272

SR-6 n820k410bSbf9wR 3382 1.0065 1.0006 1.0716 1.0585

SR-7 n1111k112bSbf10wR 552 1.5489 1.0453 1.0308 1.0815

SR-8 n1111k278bSbf10wR 1849 1.1201 1.0249 1.0249 1.0552

SR-9 n1111k556bSbf10wR 4532 1.0033 1.0013 1.1615 1.1593

The best quality solutions are shown in bold for each dataset

123

All Colors Shortest Path problem on trees 635

Table 9 Average runtimes for shallow trees with randomly distributed edge weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SR-1 n421k43bSbf20wR 2.036 38.681 23.542 23.455 5.853

SR-2 n421k106bSbf20wR 1.037 51.822 43.653 3.856 2.452

SR-3 n421k211bSbf20wR 1.162 55.836 40.145 1.765 1.784

SR-4 n820k82bSbf9wR 10.072 330.252 35.931 76.133 16.131

SR-5 n820k205bSbf9wR 3.472 342.550 45.123 12.933 6.318

SR-6 n820k410bSbf9wR 2.701 575.765 62.400 5.710 5.663

SR-7 n1111k112bSbf10wR 14.803 351.998 30.567 66.442 12.023

SR-8 n1111k278bSbf10wR 7.024 701.217 28.642 11.234 6.051

SR-9 n1111k556bSbf10wR 3.791 698.401 44.675 3.476 3.648

Fastest runtimes are reported in bold

Table 10 Best path costs as a factor of the optimal solution for shallow trees with all weights equal to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

S1-1 n421k43bSbf20w1 82 1.0000 1.0000 1.0000 1.0000

S1-2 n421k106bSbf20w1 208 1.0192 1.0000 1.0000 1.0000

S1-3 n421k211bSbf20w1 418 1.0048 1.0000 1.0048 1.0048

S1-4 n820k82bSbf9w1 82* 2.0370 1.9877 1.9877 1.9877

S1-5 n820k205bSbf9w1 405 1.0296 1.0000 1.0000 1.0099

S1-6 n820k410bSbf9w1 815 1.0147 1.0000 1.0147 1.0196

S1-7 n1111k112bSbf10w1 111* 2.0270 1.9730 1.9730 1.9730

S1-8 n1111k278bSbf10w1 551 1.0145 1.0000 1.0073 1.0145

S1-9 n1111k556bSbf10w1 1109 1.0054 1.0000 1.0252 1.0325

The best quality solutions are shown in bold for each dataset

returns solutions that are, on the average, farther from the optimal by a factor of 1.076.
For the best path costs shown in Table 12,GA, Tabu, and Tabu-VF return solutions that
are on the average within factor 1.028, 1.036, and 1.044 of the optimal respectively.
In Table 13, while the average runtime of LP-iterative is reported as 408.9 s, GA runs
in 35.1 s, Tabu in 19.9 s, and Tabu-VF in 8.5 s.

Shallow treeswith edgeweights increasingwith depth Wecould not obtain the optimal
value for the dataset SI-4 using ILP in a feasible time. LP-iterative, in Table 14, returns
solutions that are, on the average, farther from the optimal by a factor of 1.019, 1.009,
and 1.005 when the n/k ratios are 10, 4, and 2 respectively. For the best path costs
shown in Table 14, GA always returns the optimal for all datasets while Tabu and
Tabu-VF are within factor 1.006 and 1.008 of the optimal respectively. In Table 15,

123

636 M. B. Akçay et al.

Table 11 Average runtimes for shallow trees with all weights set to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

S1-1 n421k43bSbf20w1 5.694 59.403 24.866 25.591 15.554

S1-2 n421k106bSbf20w1 4.758 135.023 39.031 5.179 3.713

S1-3 n421k211bSbf20w1 1.108 56.737 41.668 2.371 2.590

S1-4 n820k82bSbf9w1 6.596* 257.926 31.887 58.810 14.540

S1-5 n820k205bSbf9w1 19.748 712.413 35.741 9.641 5.039

S1-6 n820k410bSbf9w1 3.812 772.628 48.703 4.852 4.711

S1-7 n1111k112bSbf10w1 7.126* 360.772 32.786 76.705 15.584

S1-8 n1111k278bSbf10w1 26.341 1138.25 33.431 11.281 6.942

S1-9 n1111k556bSbf10w1 5.037 1261.77 50.435 4.649 4.967

Fastest runtimes are reported in bold

Table 12 Best path costs as a factor of the optimal solution for shallow trees with edge weights decreasing
with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SD-1 n421k43bSbf20wD 520 1.2000 1.0462 1.0462 1.0615

SD-2 n421k106bSbf20wD 1316 1.0851 1.0426 1.0547 1.0699

SD-3 n421k211bSbf20wD 2640 1.0133 1.0136 1.0136 1.0136

SD-4 n820k82bSbf9wD 486* 2.4527 2.2881 2.2798 2.2305

SD-5 n820k205bSbf9wD 2604 1.0998 1.0445 1.0292 1.0461

SD-6 n820k205bSbf9wD 5200 1.0385 1.0100 1.0285 1.0269

SD-7 n1111k112bSbf10wD 666* 2.5766 2.2583 2.2342 2.2402

SD-8 n1111k278bSbf10wD 2230* 1.6915 1.6556 1.6502 1.6771

SD-9 n1111k556bSbf10wD 7024 1.0216 1.0125 1.0433 1.0450

The best quality solutions are shown in bold for each dataset

the average runtimes are reported as 397.9 s for LP-iterative, 36.5 s for GA, 20.9 s for
Tabu, and 8.1 s for Tabu-VF.

6.2.3 Results for deep trees

In this section, we present the results for deep trees for four different edge weight
distributions, namely, randomly distributed edge weights, all edge weights set to one,
edge weights decreasing with depth, and edge weights increasing with depth.

Deep treeswith randomly distributed edgeweights Theoptimal values can be obtained
using ILP except for the dataset DR-7. LP-iterative can be seen in Table 16 to return
solutions that are, on the average, farther from the optimal by a factor 1.803, 1.314, and

123

All Colors Shortest Path problem on trees 637

Table 13 Average runtimes for shallow trees with edge weights decreasing with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SD-1 n421k43bSbf20wD 6.274 65.172 32.356 26.482 17.978

SD-2 n421k106bSbf20wD 5.528 133.621 43.212 4.957 3.131

SD-3 n421k211bSbf20wD 1.144 55.552 45.683 2.886 1.915

SD-4 n820k82bSbf9wD 5.001* 153.442 23.924 53.044 13.365

SD-5 n820k205bSbf9wD 142,651 553.068 30.726 7.888 6.438

SD-6 n820k205bSbf9wD 5.761 519.719 40.844 2.934 4.812

SD-7 n1111k112bSbf10wD 10.965* 272.692 24.211 67.462 14.544

SD-8 n1111k278bSbf10wD 8.245* 1045.22 28.902 10.447 8.734

SD-9 n1111k556bSbf10wD 9.172 881.823 46.15 3.444 5.347

Fastest runtimes are reported in bold

Table 14 Best path costs as a factor of the optimal solution for shallow trees with weights increasing with
depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SI-1 n421k43bSbf20wI 278 1.0000 1.0000 1.0000 1.0000

SI-2 n421k106bSbf20wI 900 1.0044 1.0000 1.0000 1.0022

SI-3 n421k211bSbf20wI 1942 1.0010 1.0000 1.0010 1.0010

SI-4 n820k82bSbf9wI 371* 1.5768 1.5067 1.5067 1.5067

SI-5 n820k205bSbf9wI 1675 1.0143 1.0000 1.0000 1.0072

SI-6 n820k410bSbf9wI 3709 1.0097 1.0000 1.0135 1.0151

SI-7 n1111k112bSbf10wI 777 1.0386 1.0000 1.0000 1.0000

SI-8 n1111k278bSbf10wI 2337 1.0077 1.0000 1.0051 1.0077

SI-9 n1111k556bSbf10wI 5083 1.0035 1.0000 1.0315 1.0311

The best quality solutions are shown in bold for each dataset

1.121 when the n/k ratios are 10, 4, and 2 respectively. GA, Tabu, and Tabu-VF can
come as close to the optimal as by a factor of 1.019, 1.030, and 1.049 respectively. As
computed from Table 17, the average runtimes are reported as 391.5 s for LP-iterative,
37.3 s for GA, 275 s for Tabu, and 5.6 s for Tabu-VF.

Deep trees with all edge weights set to one The optimal values could not be obtained
using ILP in a feasible time for the datasets D1-7 and D1-8. LP-iterative returns
solutions that are, on the average, farther from the optimal by a factor 1.333, 1.146,
and 1.087 when the n/k ratios are 10, 4, and 2 respectively. For the best path costs
shown in Table 18, GA, Tabu, and Tabu-VF have values worse off by a factor 1.018,
1.032, and 1.051 of the optimal respectively. In Table 19, the average runtimes are

123

638 M. B. Akçay et al.

Table 15 Average runtimes for shallow trees with weights increasing with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

SI-1 n421k43bSbf20wI 2.587 82.174 31.124 34.515 18.267

SI-2 n421k106bSbf20wI 3.907 158.575 34.415 5.123 3.806

SI-3 n421k211bSbf20wI 1.123 63.885 53.214 3.034 3.021

SI-4 n820k82bSbf9wI 7.362* 150.788 20.124 49.872 12.741

SI-5 n820k205bSbf9wI 6.967 460.999 40.875 8.277 4.119

SI-6 n820k410bSbf9wI 3.851 469.717 45.131 3.599 2.995

SI-7 n1111k112bSbf10wI 138.324 255.284 24.746 69.284 18.523

SI-8 n1111k278bSbf10wI 8.124 840.613 33.311 10.727 5.382

SI-9 n1111k556bSbf10wI 4 1099.42 45.341 4.044 3.713

Fastest runtimes are reported in bold

Table 16 Best path costs as a factor of the optimal solution for deep trees with randomly distributed edge
weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DR-1 n255k26bDbf2wR 201 2.0647 1.0000 1.0000 1.0000

DR-2 n255k64bDbf2wR 561 1.3939 1.0160 1.0053 1.0374

DR-3 n255k128bDbf2wR 1244 1.1270 1.0048 1.0032 1.0064

DR-4 n511k52bDbf2wR 396 1.5404 1.0202 1.0000 1.0480

DR-5 n511k128bDbf2wR 1150 1.2183 1.0270 1.0270 1.0287

DR-6 n511k256bDbf2wR 2486 1.1279 1.0068 1.0032 1.0193

DR-7 n1023k103bDbf2wR 140* 11.5071 7.4500 7.1429 7.1643

DR-8 n1023k256bDbf2wR 2441 1.3290 1.0610 1.0414 1.0901

DR-9 n1023k512bDbf2wR 5357 1.1088 1.0134 1.1572 1.1581

The best quality solutions are shown in bold for each dataset

reported as 255.5 s for LP-iterative, 32.3 s for GA, 21.2 s for Tabu, and, 6.42 s for
Tabu-VF.

Deep trees with decreasing edge weights The optimal values could be obtained using
ILP except for the datasetsDD-7 andDD-8. LP-iterative returns, in Table 20, solutions
that are, on the average, a factor of 1.6, 1.365, and 1.154 away from the optimal when
the n/k ratios are 10, 4, and 2 respectively.GA, Tabu, and Tabu-VF have values worse
off by a factor 1.072, 1.061, and 1.073 of the optimal respectively. In Table 21, the
average runtimes are reported as 39.5 s forGA, 21.9 s for Tabu, and 6.6 s for Tabu-VF.
LP-iterative, on the other hand, has a relatively higher average runtime of 161.6 s
excluding the dataset DD-9 which runs in 1655.38 s alone.

123

All Colors Shortest Path problem on trees 639

Table 17 Average runtimes for deep trees with randomly distributed edge weights

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DR-1 n255k26bDbf2wR 2.882 22.651 21.358 20.816 8.127

DR-2 n255k64bDbf2wR 2.467 57.836 23.466 3.590 2.323

DR-3 n255k128bDbf2wR 0.820 101.757 31.706 1.543 1.541

DR-4 n511k52bDbf2wR 17.035 65.015 20.639 56.129 8.498

DR-5 n511k128bDbf2wR 13.391 145.161 29.156 9.517 3.342

DR-6 n511k256bDbf2wR 1.503 292.502 28.439 4.134 3.213

DR-7 n1023k103bDbf2wR 7.793* 479.848 41.761 121.993 13.251

DR-8 n1023k256bDbf2wR 9180.50 917.34 47.564 19.235 5.819

DR-9 n1023k512bDbf2wR 7.036 1441 91.322 6.474 4.045

Fastest runtimes are reported in bold

Table 18 Best path costs as a factor of the optimal solution for deep trees with all edge weights set to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

D1-1 n255k26bDbf2w1 45 1.4000 1.0000 1.0000 1.0444

D1-2 n255k64bDbf2w1 121 1.1653 1.0165 1.0000 1.0000

D1-3 n255k128bDbf2w1 257 1.0856 1.0078 1.0000 1.0156

D1-4 n511k52bDbf2w1 98 1.2653 1.0408 1.0204 1.0612

D1-5 n511k128bDbf2w1 254 1.1260 1.0315 1.0472 1.0630

D1-6 n511k256bDbf2w1 520 1.0769 1.0115 1.0231 1.0385

D1-7 n1023k103bDbf2w1 102* 2.3824 2.0490 2.1078 2.0882

D1-8 n1023k256bDbf2w1 255* 2.3569 2.1294 2.1451 2.2000

D1-9 n1023k512bDbf2w1 1061 1.0980 1.0170 1.1320 1.1357

The best quality solutions are shown in bold for each dataset

Deep trees with increasing edge weights Among the related datasets, we could not
obtain the optimal value using ILP for the dataset DI-7. According to Table 22, LP-
iterative returns solutions that are, on the average, farther from the optimal by a factor
of 1.11, 1.064, and 1.042 when the n/k ratios are 10, 4, and 2 respectively. GA, Tabu,
and Tabu-VF have values worse off by a factor 1.014, 1.025, and 1.034 of the optimal
respectively. An inspection of Table 23 reveals that the average running time is 282.9 s
for LP-iterative, 30.2 s for GA, 20 s for Tabu, and 6.2 s for Tabu-VF.

6.3 Discussion and analysis of the experimental results

For ACSP-t instances where each node has a distinct color, the optimal solution can
be found in polynomial time by Proposition 1. In support of this fact, the following
observation has been made throughout the experiments. The average runtime tables

123

640 M. B. Akçay et al.

Table 19 Average runtimes for deep trees with all edge weights set to one

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

D1-1 n255k26bDbf2w1 10.577 14.045 20.867 19.756 8.533

D1-2 n255k64bDbf2w1 5.217 40.891 23.571 3.697 2.449

D1-3 n255k128bDbf2w1 1.146 73.971 30.512 1.732 1.638

D1-4 n511k52bDbf2w1 39.302 57.207 23.856 40.851 9.314

D1-5 n511k128bDbf2w1 20.688 154.707 29.171 6.864 3.775

D1-6 n511k256bDbf2w1 9.454 275.352 45.181 3.881 3.511

D1-7 n1023k103bDbf2w1 7.347* 296.099 27.623 92.895 16.952

D1-8 n1023k256bDbf2w1 7.145* 679.947 39.912 16.092 6.898

D1-9 n1023k512bDbf2w1 40.712 707.155 49.841 5.054 4.727

Fastest runtimes are reported in bold

Table 20 Best path costs as a factor of the optimal solution for deep trees with edge weights decreasing
with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DD-1 n255k26bDbf2wD 277 1.6931 1.0505 1.0289 1.0866

DD-2 n255k64bDbf2wD 707 1.4187 1.0396 1.0226 1.0820

DD-3 n255k128bDbf2wD 1371 1.1648 1.0160 1.0117 1.0058

DD-4 n511k52bDbf2wD 488 1.5082 1.2172 1.1475 1.0984

DD-5 n511k128bDbf2wD 1230 1.3106 1.1057 1.0683 1.0683

DD-6 n511k256bDbf2wD 2298 1.1340 1.0296 1.0226 1.0348

DD-7 n1023k103bDbf2wD 204* 5.8627 5.2843 4.7745 4.8725

DD-8 n1023k256bDbf2wD 512* 5.2773 4.4336 4.2070 4.4102

DD-9 n1023k512bDbf2wD 3652 1.1632 1.0433 1.1238 1.1369

The best quality solutions are shown in bold for each dataset

reveal that the average execution time of ILP decreases dramatically as the n/k ratio
gets smaller. In fact, when n/k = 2, a rule of the thumb is to use ILP directly as it
becomes the fastest for most datasets and reasonably fast for the rest.

It is interesting to note how the runtimes are effected by the change in n/k. When
this ratio gets smaller, both Tabu and Tabu-VF as is the pattern with ILP run faster
than they do for instances with a large n/k. For such instances, which might be
classified as easy in the light of Proposition 1, Tabu and Tabu-VF can be told to tackle
such instances relatively easier. In contrast, the runtimes of GA and LP-iterative are
inversely proportional to this ratio.

Table 24 presents the rankings of the heuristic algorithms proposed with respect
to their quality of the solutions. In each cell of the table, the count of the times a
specific heuristic gets closest to the optimal is reported for distinct combinations of

123

All Colors Shortest Path problem on trees 641

Table 21 Average runtimes for deep trees with edge weights decreasing with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DD-1 n255k26bDbf2wD 6.145 12.995 35.464 28.712 7.891

DD-2 n255k64bDbf2wD 7.984 30.981 28.119 4.977 2.876

DD-3 n255k128bDbf2wD 2.102 109.687 42.432 1.592 1.638

DD-4 n511k52bDbf2wD 12.891 41.543 21.639 43.514 8.573

DD-5 n511k128bDbf2wD 36.372 186.061 39.766 6.958 3.349

DD-6 n511k256bDbf2wD 18.581 356.265 57.765 3.713 3.214

DD-7 n1023k103bDbf2wD 8.988* 445.844 23.725 89.402 19.202

DD-8 n1023k256bDbf2wD 10.741* 109.699 25.654 13.326 5.803

DD-9 n1023k512bDbf2wD 13.953 1655.38 80.886 4.227 6.724

Fastest runtimes are reported in bold

Table 22 Best path costs as a factor of the optimal solution for deep trees with edge weights increasing
with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DI-1 n255k26bDbf2wI 172 1.0814 1.0000 1.0000 1.0116

DI-2 n255k64bDbf2wI 574 1.0418 1.0174 1.0139 1.0000

DI-3 n255k128bDbf2wI 1400 1.0271 1.0000 1.0000 1.0000

DI-4 n511k52bDbf2wI 462 1.1385 1.0216 1.0000 1.0173

DI-5 n511k128bDbf2wI 1464 1.0669 1.0164 1.0178 1.0109

DI-6 n511k256bDbf2wI 3342 1.0437 1.0132 1.0108 1.0197

DI-7 n1023k103bDbf2wI 600* 1.9450 1.8800 1.8550 1.8617

DI-8 n1023k256bDbf2wI 3475 1.0829 1.0265 1.0224 1.0541

DI-9 n1023k512bDbf2wI 7877 1.0551 1.0135 1.1353 1.1582

The best quality solutions are shown in bold for each dataset

the n/k ratio, the bushiness type (b), and the edge weight distribution (w). The very
reason that the n/k ratio was incorporated into this table can be attributed to the
observation that this ratio has an impact on both the average runtimes as well as the
quality of the solutions attained. A quick inspection of Table 24 tells us that there is
not a single heuristic that dominates for all combinations of the values of bushiness
type, weight distribution, and n/k. LP-iterative is easily seen to be not promising
as there is not a single occurrence of it in the table. This is actually in conformance
with our expectations as ACSP-t has been proven in this paper to be constant factor
inapproximable.

A more detailed inspection of the table, however, lets us make some additional
observations. Drilling down on n/k, for example, lets us specify a different heuristic
for distinct values of n/k. When n/k = 10, the counts associated with the heuristics

123

642 M. B. Akçay et al.

Table 23 Average runtimes for deep trees with edge weights increasing with depth

Dataset acronym Dataset name Algorithm

ILP LP-iterative GA Tabu Tabu-VF

DI-1 n255k26bDbf2wI 3.289 25.319 24.261 19.932 8.155

DI-2 n255k64bDbf2wI 2.915 38.865 25.727 3.888 2.591

DI-3 n255k128bDbf2wI 1.710 96.296 26.645 1.467 2.512

DI-4 n511k52bDbf2wI 16.251 71.713 21.178 45.839 8.751

DI-5 n511k128bDbf2wI 12.567 138.435 30.972 7.745 3.495

DI-6 n511k256bDbf2wI 4.154 371.571 35.492 2.949 5.335

DI-7 n1023k103bDbf2wI 6.751* 252.549 27.788 80.831 12.402

DI-8 n1023k256bDbf2wI 13.564 524.277 26.641 12.725 5.319

DI-9 n1023k512bDbf2wI 27.128 1027.38 53.491 4.305 6.873

Fastest runtimes are reported in bold

Table 24 Number of the best results achieved by heuristic algorithms

b w

R 1 D I

n/k→ 10 4 2 10 4 2 10 4 2 10 4 2

R TB: 5 GA: 1 GA: 5 GA: 1 GA: 4 GA: 5 – – – – – –

VF: 1 TB: 4 TB: 2 TB: 5 TB: 2 TB: 1

VF: 1 VF: 1

S GA: 1 GA: 2 GA: 3 GA: 3 GA: 3 GA: 3 GA: 1 GA: 1 GA: 3 GA: 3 GA: 3 GA: 3

TB: 2 TB: 2 TB: 1 TB: 3 TB: 2 TB: 2 TB: 2 TB: 1 TB: 3 TB: 2

VF: 1 VF: 3 VF: 1 VF: 1 VF: 1 VF: 2

D GA: 1 GA: 1 GA: 1 GA: 2 GA: 2 GA: 2 TB: 2 TB: 3 GA: 1 GA: 1 TB: 1 GA: 2

TB: 3 TB: 3 TB: 2 TB: 2 TB: 1 TB: 1 VF: 1 VF: 1 TB: 1 TB: 3 VF: 2 TB: 2

VF: 1 VF: 1 VF: 1 VF: 1

TB Tabu, VF Tabu-VF

can be rolled up as 13 for GA, 30 for Tabu, and 10 for Tabu-VF. Averaging the
normalized best path costs over all the datasets with known optimal solutions (not
marked with an asterisk) when n/k = 10 yields 1.0522 for GA, 1.0277 for Tabu,
and 1.0531 for Tabu-VF. Obviously, Tabu takes the lead qualitywise as reflected by
these numbers. However, in order to see the tradeoff between the execution time and
the solution quality, we also compute the corresponding average runtimes over the
related datasets as 27.6 forGA, 46.9 for Tabu, and 12.5 for Tabu-VF. We can therefore
state that, although Tabu leads in quality, Tabu-VF is a good candidate as long as the
runtime is critical and the solutions that are 5.3% away from the optimal are admissible
as opposed to those that are 2.8% away.

Considering the datasets when n/k = 4, the counts associated with the heuristics
can be reported as 17 for GA, 22 for Tabu, and 6 for Tabu-VF. The average best path

123

All Colors Shortest Path problem on trees 643

costs over all the related datasets is calculated as 1.0284 for GA, 1.0240 for Tabu, and
1.0405 for Tabu-VF. Additionally, the corresponding average runtimes can be reported
as 35.2 for GA, 8.0 for Tabu, and 4.3 for Tabu-VF. In this case, Tabu that gets closest
to the optimal also happens to run in a reasonably short time. Hence, Tabu could be
the preferred choice.

The counts when n/k = 2 can be reported as 28 forGA, 11 for Tabu, and 4 for Tabu-
VF. The average best path costs over all the related datasets are calculated as 1.0092
for GA, 1.0531 for Tabu, and 1.0584 for Tabu-VF. Additionally, the corresponding
average runtimes can be reported as 43.8 for GA, 3.6 for Tabu, and 3.4 for Tabu-
VF. Even though in terms of quality GA is the best heuristic, the average runtime of
ILP here is only 3.3 s. Therefore, as discussed above, ILP renders other alternatives
impractical.

7 Conclusion

In this paper, we introduce a computationally interesting problem, namely the ACSP
problem on trees, which is generic enough to find an application in many real world
domains. We show that ACSP-t is NP-hard and prove that there is no constant factor
approximation algorithm for it. An ILP formulation of ACSP-t as well as several
heuristic algorithms based on iterative rounding of LP relaxation, genetic algorithm,
and tabu search are developed.We conduct an extensive experimental study to perform
a comparative analysis of all the proposed heuristics for various kinds of trees and edge
weight distributions. It is observed from these experiments that there is not a single
heuristic that dominates for all combinations of the values of the bushiness type, the
weight distribution, and the node to color ratio. Another major observation is made
by noting the correlation between the node to color ratio and the difficulty of different
instances of the problem. As this ratio gets smaller, the ACSP-t instances become
easier to solve. When the node to color ratio is relatively large, Tabu-VF is a good
candidate as long as the runtime is critical. For average values of n/k, Tabu that gets
closest to the optimal also happens to run in a reasonably short time. For small values
of n/k, however, ILP renders its alternatives impractical.

As a future work, we plan to investigate new algorithms for the All Colors Shortest
Path problem instanceswhose input is either a graph or a tree. Exploring new heuristics
with guaranteed approximation bounds is left as an interesting open problem. Another
interesting open problem would be to look for tighter inapproximability bounds.

References

Akçay, M.B.: All colors shortest path problem on trees. Master’s thesis, Izmir University of Economics,
Izmir (2015)

Bilge, Y.C., Çağatay, D., Genç, B., Sarı, M., Akcan, H., Evrendilek, C.: All colors shortest path problem
(2015). arXiv:1507.06865

Dror,M., Haouari, M., Chaouachi, J.: Generalized spanning trees. Eur. J. Oper. Res. 120(3), 583–592 (2000)
Feremans, C., Labbé, M., Laporte, G.: A comparative analysis of several formulations for the generalized

minimum spanning tree problem. Networks 39(1), 29–34 (2002)

123

http://arxiv.org/abs/1507.06865

644 M. B. Akçay et al.

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Francisco (1979)

Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree
problem. J. Algorithms 37(1), 66–84 (2000)

Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Read-
ing (1989)

Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, pp. 585–594. ACM (2003)

IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/. Accessed 20 July 2015

Ihler, E.: The complexity of approximating the class Steiner tree problem. In: Graph-Theoretic Concepts
in Computer Science, pp. 85–96. Springer, Berlin (1992)

Ihler, E., Reich,G.,Widmayer, P.: Class Steiner trees andVLSI-design.DiscreteAppl.Math. 90(1), 173–194
(1999)

Klein, P., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. J.
Algorithms 19(1), 104–115 (1995)

Labordere, H.: Record balancing problem: a dynamic programming solution of a generalized travelling
salesman problem. Rev. Fr. Inf. Rech. Oper. 3(NB 2), 43 (1969)

Laporte, G., Nobert, Y.: Generalized traveling salesman problem through n-sets of nodes—an integer pro-
gramming approach. Inf. Syst. Oper. Res. 21(1), 61–75 (1983)

Laporte, G., Mercure, H., Nobert, Y.: Generalized travelling salesman problem through n sets of nodes: the
asymmetrical case. Discrete Appl. Math. 18(2), 185–197 (1987)

Lawler, E.L.: The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley-
Interscience Series in Discrete Mathematics. Wiley, New York (1985)

Lien, Y.N., Ma, E., Wah, B.W.S.: Transformation of the generalized traveling-salesman problem into the
standard traveling-salesman problem. Inf. Sci. 74(1), 177–189 (1993)

Myung, Y.S., Lee, C.H., Tcha, D.W.: On the generalized minimum spanning tree problem. Networks 26(4),
231–241 (1995)

Öncan, T., Cordeau, J.F., Laporte, G.: A tabu search heuristic for the generalized minimum spanning tree
problem. Eur. J. Oper. Res. 191(2), 306–319 (2008)

Pop, P.C.: The generalized minimum spanning tree problem. Ph.D. thesis, University of Twente (2002)
Pop, P.C.: New models of the generalized minimum spanning tree problem. J. Math. Model. Algorithms

3(2), 153–166 (2004)
Pop, P.C., Kern, W., Still, G.: An approximation algorithm for the generalized minimum spanning tree

problem with bounded cluster size. Technical report 1577, Department of Applied Mathematics,
University of Twente (2001)

Pop, P.C., Kern,W., Still, G.: A new relaxation method for the generalized minimum spanning tree problem.
Eur. J. Oper. Res. 170(3), 900–908 (2006)

Pop, P.C.,Matei, O., Sabo, C.: A hybrid diploid genetic based algorithm for solving the generalized traveling
salesman problem. In: Hybrid Artificial Intelligent Systems—12th International Conference, HAIS
2017, Proceedings, La Rioja, Spain, 21–23 June 2017, pp. 149–160 (2017)

Pop, P.C., Matei, O., Sabo, C., Petrovan, A.: A two-level solution approach for solving the generalized
minimum spanning tree problem. Eur. J. Oper. Res. 265(2), 478–487 (2018)

Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Graph-theoretic
Concepts in Computer Science, pp. 196–210. Springer, Berlin (1990)

Slavik, P.: The errand scheduling problem. Technical report, Department of Computer Science, SUNY,
Buffalo (1997)

Srivastava, S., Kumar, S., Garg, R., Sen, P.: Generalized traveling salesman problem through n sets of nodes.
Can. Oper. Res. Soc. J. 7, 97–101 (1969)

Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

123

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

	All Colors Shortest Path problem on trees
	Abstract
	1 Introduction
	2 Related work
	3 Definition and computational complexity of ACSP-t
	4 Integer linear programming formulation of ACSP-t
	4.1 ILP model
	4.2 LP-relaxation based heuristic

	5 Metaheuristic algorithms
	5.1 Genetic algorithm based heuristic
	5.2 Tabu search based heuristic

	6 Experimental study
	6.1 Datasets
	6.2 Experimental results
	6.2.1 Results for random trees
	6.2.2 Results for shallow trees
	6.2.3 Results for deep trees

	6.3 Discussion and analysis of the experimental results

	7 Conclusion
	References

