
A COMPARISON BETWEEN RELATIONAL
DATABASE MODELS AND NOSQL TRENDS

ON BIG DATA DESIGN CHALLENGES
USING A SOCIAL SHOPPING

APPLICATION

SERHAT UZUNBAYIR

JUNE 2015

A COMPARISON BETWEEN RELATIONAL
DATABASE MODELS AND NOSQL TRENDS

ON BIG DATA DESIGN CHALLENGES
USING A SOCIAL SHOPPING

APPLICATION

a thesis submitted to

the graduate school of

natural and applied sciences of

izmir university of economics

by

SERHAT UZUNBAYIR

in partial fulfillment of the requirements

for the degree of

master of science

in the graduate school of natural and applied sciences

JUNE 2015

ABSTRACT

A COMPARISON BETWEEN RELATIONAL
DATABASE MODELS AND NOSQL TRENDS ON BIG

DATA DESIGN CHALLENGES USING A SOCIAL
SHOPPING APPLICATION

SERHAT UZUNBAYIR

M.S. in Intelligent Engineering Systems

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Brahim Hnich

June 2015

Data generation is increasing excessively day by day. Consequently, the term

Big Data came out to expand the meaning of data we face nowadays. Traditional

database technologies started to have struggles when operating the applications

containing huge amount of data. Such problems impelled researches to develop

brand new ways of handling data.

All systems should try to adopt changes resulting from new requirements

when necessary. There are various database management systems and products

in the market. Relational databases were efficient to store and process data since

1970s. However, today’s amount of data is far more huge compared to even last

couple of years ago. This situation inevitably forces some systems to shift their

design from relational models to NoSQL trends. There are also various NoSQL

technologies exist with a number of different products developed by companies.

In this case, developers may be confused to decide which type of database should

be used in order to deal with Big Data and its problems within their systems.

In this thesis, we summarize database management systems including NoSQL

and challenges among them. We analyse and compare two different database

technologies in detail; relational and graph databases. We design and develop

data models for both technologies for a social shopping system called TrendPin.

We show design models as well as distinct query performances. Additionally,

we explain information extraction process and implement a knowledge base for

TrendPin to overcome problems we encountered when designing graph model.

ii

iii

Keywords: database, big data, sql, nosql, database management systems, rela-

tional database, graph database, information extraction, knowledge base, feature

extraction, online shopping.

ÖZ

BÜYÜK VERİ TASARIM ZORLUKLARI ÜZERİNE BİR
SOSYAL ALIŞVERİŞ UYGULAMASI KULLANILARAK
İLİŞKİSEL VERİTABANLARI VE NOSQL AKIMLARI

ARASINDA BİR KARŞILAŞTIRMA

SERHAT UZUNBAYIR

Akıllı Mühendislik Sistemleri, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. Brahim Hnich

Haziran 2015

Veri yaratımı günden güne fazlaca artmaktadır. Sonuç olarak bugünlerde karşı

karşıya kaldığımız verinin anlamını genişletmek için Büyük Veri terimi ortaya

çıktı. Geleneksel veritabanı teknolojileri büyük miktarlarda veriler içeren uygula-

maları çalıştırırken mücadeleler yaşamaya başladı. Bu tür sorunlar araştırmacıları

yepyeni veri işleme metotları geliştirmeye yöneltti.

Tüm sistemler gerekli olduğu zaman yeni gereksinimlerden kaynaklanan

değişimlere ayak uydurmak zorundadırlar. Piyasada çeşitli veritabanı yönetim

sistemleri ve ürünleri bulunmaktadır. İlişkisel veritabanları 1970’lerden beri

veri saklama ve işleme konusunda etkiliydiler. Fakat bugünkü verinin mik-

tarı geçtiğimiz birkaç yıla göre karşılaştırıldığında bile çok fazladır. Bu du-

rum kaçınılmaz olarak bazı sistemlerin tasarımlarını ilişkisel modellerden NoSQL

akımına çevirmeye zorlamıştır. Farklı şirketler tarafından geliştirilen bir çok farklı

NoSQL ürünü vardır. Bu durumda geliştiriciler sistemlerindeki Büyük Veri ve

onun problemleri ile uğraşmak için hangi tür veritabanı seçeceklerine karar ver-

mekte zorlanmaktadırlar.

Bu tezde, farklı veritabanı yönetim sistemleri ve zorlukları özetlenmiştir.

İlişkisel ve grafik tabanlı olmak üzere iki farklı veritabanı teknolojisi analiz

edilmiş ve karşılaştırılmıştır. Bu iki teknoloji için sosyal ağ ile çevrimiçi alışveriş

uygulaması olan TrendPin üzerinde veri modelleri tasarlanmış ve geliştirilmiştir.

Tasarım modelleri ve farklı sorgu performansları gösterilmiştir. Ek olarak bilgi

iv

v

çıkarımı konusu açıklanmış ve grafik modeli tasarımında karşılaşılan sorunların

üstesinden gelmek için bir bilgi bankası oluşturulmuştur.

Anahtar Kelimeler : veritabanı, büyük veri, sql, nosql, veritabanı yönetim sis-

temleri, ilişkisel veritabanı, grafik veritabanı, bilgi çkarımı, bilgi bankası, özellik

çıkarmı, çevrimiçi alışveriş.

ACKNOWLEDGEMENT

I would like to take the opportunity here to thank some special people, who

motivated me and gave me the strength to close one chapter of my life successfully.

First of all, I would like to thank to my advisor, Prof. Dr. Brahim Hnich,

who gave me the opportunity and privilege to work with him. He is one of the

most brilliant person I have ever met in my life. His ability to point out the right

way all the time, endless support, supervision, and patience guided me until the

end of the road we started together. He was always there when I needed him,

even from abroad.

Secondly, I must express my thanks to Ata Şaşmaz for each and every sec-

ond of his efforts to help me, and Özkan Sayın for his unlimited advices, and

encouragements when I was confused.

I would like to thank very specially to my colleagues Erdem Okur, Levent

Tolga Eren, and Berkehan Akçay for their trust, encouragements, and never

ending supports during the process of this thesis.

I am very thankful to all of my friends. This world is worth living because of

them.

Finally, I am very thankful to my father Ömer, my mother Gül, and my

beloved sister Gülşah for their love and unconditional support all the time.

vi

TABLE OF CONTENTS

Front Matter i

Abstract . ii

Öz . iv

Acknowledgement . vi

Table of Contents . vii

List of Figures . xii

1 Introduction 1

1.1 Topic of the Thesis . 1

1.2 Contributions of the Thesis . 3

1.3 Outline of the Thesis . 4

2 Big Data 6

2.1 Big Data Definition . 6

2.2 Characteristics of Big Data . 8

2.2.1 Volume . 8

vii

2.2.2 Variety . 9

2.2.3 Velocity . 10

2.2.4 Fourth Addition to 3V’s: Veracity 10

2.2.5 3C’s Concept . 11

2.3 Sources of Big Data . 12

2.3.1 Social Networking . 12

2.3.2 Sensor Data . 13

2.3.3 Online Transactions . 14

2.3.4 Smart Devices . 14

2.4 Challenges of Big Data Services 15

2.5 Big Data Storage and Access . 16

2.5.1 MapReduce . 18

2.5.2 Apache’s Hadoop Distributed File System 22

2.5.3 Summary . 24

3 Relational Databases and NoSQL 26

3.1 Introduction . 26

3.2 Relational Database Management Systems 27

3.2.1 Relational Model . 28

3.2.2 ACID Properties . 30

3.2.3 Normal Forms . 32

viii

3.2.4 SQL: Structured Query Language 36

3.3 NoSQL: Not Only SQL . 41

3.3.1 Definition . 42

3.3.2 BASE Properties . 42

3.3.3 NoSQL Models . 43

3.4 Summary . 58

4 TrendPin 60

4.1 Introduction . 60

4.2 Features . 61

4.2.1 Core Features . 62

4.2.2 Additional Features . 64

4.3 TrendPin as a Big Data Project 65

4.4 Summary . 67

5 Different Database Models For TrendPin 68

5.1 Introduction . 68

5.2 Relational Data Model . 69

5.2.1 Authentication . 70

5.2.2 Users and Products . 71

5.2.3 Posts and Comments . 73

5.2.4 Shops and Vendors . 74

ix

5.2.5 PostLike and CommentLike 74

5.2.6 Product Categories and Followers 75

5.3 Graph Data Model . 75

5.3.1 Relationships Between Users and Products 76

5.3.2 Friendship Among Users 78

5.3.3 Relationship Between Products and Shops 79

5.3.4 Creating Posts and Comments 80

5.3.5 Relationship Between Products and Campaigns 82

5.3.6 Private Messaging . 83

5.3.7 Special Cases of Graph Model 85

5.4 Summary . 85

6 Information Extraction 87

6.1 Definition . 87

6.2 Method Explanation . 88

6.3 Issues with Graph Model of TrendPin 89

6.3.1 Issue I: Automatic Links Between Related Products 90

6.3.2 Issue II: Similar Products From Rival Vendors 91

6.3.3 Issue III: Displaying Smarter Results 91

6.3.4 Solution . 92

6.4 Knowledge Bases . 93

x

6.5 A Knowledge-Based Information Retrieval Module for TrendPin . 95

6.5.1 Creating a Domain-Knowledge 95

6.5.2 Automatic feature extraction 96

6.5.3 Combining knowledge base with keyword search 100

6.6 Graph Model Changes . 101

6.7 Effects of Knowledge Based Information Extraction on TrendPin . 102

6.8 Challenges and Drawbacks of Feature Extraction Methodology . . 103

6.8.1 Challenges . 103

6.8.2 Drawbacks . 104

6.9 Summary . 105

7 Tests 106

7.1 Model Comparisons . 106

7.1.1 Experimental Query Results 107

7.1.2 Design Challenges . 113

7.2 Summary . 114

8 Conclusion 115

8.1 Summary . 115

8.2 Contributions . 116

8.3 Drawbacks . 117

8.4 Future Work . 117

xi

LIST OF FIGURES

2.1 Growth of Data Over the Years [34] 7

2.2 3V’s of Big Data [48] . 8

2.3 The three dimensions of veracity (Al-Khouri, 2013)[34] 11

2.4 Social networking site usage by age group, 2005-2013[64] 13

2.5 E-business transaction volume and online retail purchases ratio . . 14

2.6 Example of a Map Reduce Model [71] 19

2.7 Hadoop file structure . 23

3.1 Example of a flat file . 27

3.2 Relation and attributes on relational model 29

3.3 A column-family/wide-column store example [10] 45

3.4 Relational model vs document model [73] 47

3.5 An undirected graph (right), and a directed graph (left) 51

3.6 A path from A to D . 52

3.7 A graph database example . 52

3.8 Student graph database . 53

xii

4.1 Homepage of TrendPin . 61

4.2 Profile page of a product . 62

4.3 Profile page of a user . 63

4.4 A Help post about a product . 64

4.5 Messages Panel . 65

5.1 FbFriendship and FbProfile tables 71

5.2 Product, User, and UserProductRelation tables 72

5.3 Post and Comment tables . 73

5.4 Shop and Vendor tables . 74

5.5 PostLike and CommentLike tables 74

5.6 ProductCategory, RelationType, and Follower tables . . 75

5.7 Relationship between users and products 78

5.8 Friendship among users . 79

5.9 Relationship between products and shops 80

5.10 Creating posts and comments . 82

5.11 Relationship between products and campaigns 83

5.12 Private messaging . 84

6.1 Information extraction example[21] 89

6.2 iPhone and some of its accessories 90

6.3 Searching a product using TrendPin 92

xiii

6.4 An example of a Knowledge Base 94

6.5 Knowledge Graph . 97

6.6 Similarity Connection . 98

6.7 Feature extraction in TrendPin 102

7.1 Average results for experiment 1 108

7.2 Average results for experiment 2 109

7.3 Average results for experiment 3 110

7.4 Average results for experiment 4 112

xiv

Chapter 1

Introduction

1.1 Topic of the Thesis

The era we live in today allows technological systems to keep their importance at

high levels. With the help of these systems, data on the paper is being digitalized

to facilitate easier and much faster data generation. Digital data is being created

with only one single touch on mobile phones, tablets, or computers and it can be

used immediately though the Internet. Development of smart devices and espe-

cially the introduction of social networks have dramatically affected the increase

in the amount of data. Disturbingly, these advancements altered the type of data

and revealed the notion of Big Data.

Many applications in different domains from military to social media and even

scientific research can create Big Data. Militaristic applications are trying to find

and locate threats using large volumes of incoming data from various sources,

each second thousands of pictures and videos are being uploaded to social media

applications such as Facebook and Instagram from all over the world, cameras are

constantly observing traffic or certain places, sensor data is coming from RFID

tags, statistical data is being collected for economic sources, scientific research on

biomedical and health care areas are being done by scientists. It is obvious that

data generation is visibly increased.

1

CHAPTER 1. INTRODUCTION 2

Databases are collections of data in an organized way to make storing,

analysing, and retrieving possible. Normally traditional database procedures

store data in a relational table fashion. When new data is created, it can be

added to the related row on the table. There are different relational database

management products. The most popular examples are; MySQL, Oracle, and

Microsoft SQL Server. In order to fetch data, queries should be written and ex-

ecuted. Those products use Structured Query Language (SQL) for this purpose.

SQL allows many data manipulation operations such as insertion, update, and

deletion operations.

Relational database management systems are quite good at handling small-

sized data. However, as data generation grows huge, storing and analysing oper-

ations become quite complicated for relational models. There may not be enough

storage to hold new data if database is centralized, or it may not be not efficient

to separate useful information among whole data stack. Usual data models are

no longer able to stay their positions at the center of the area. This is where

not only SQL (NoSQL) approaches show up and help to overcome those kinds of

issues regarding to Big Data.

Time is one of the precious dimensions of daily life. Of course, the most time

consuming action is working for many of people. Busy business life definitely

prevents people to spend time going from one shop to another for specific needs.

Even for non-workers or when the shops are closed, it is a brilliant idea to be

able to start or continue shopping using online shopping applications. Invention

of the Internet made that idea possible and broader with companies such as

amazon, e-bay, and gittigidiyor. On the other hand elements of social media

and friendship among users create a suitable environment to expose personal

information, feelings, opinions, news about their lives as long as they allow other

users to follow them. When these two distinct formations are mixed up together,

a brand new online shopping with social networking platform TrendPin came out.

There are many different NoSQL approaches; key-value pairs, column-based

databases, document databases, and graph databases. This thesis briefly explains

different NoSQL types and their products. Since social networking is producing

CHAPTER 1. INTRODUCTION 3

Big Data, and can easily be modelled with graphs, graph databases are appropri-

ate to handle storing and querying such information over distributed servers. To

accomplish this structure, we created a graph model for TrendPin in this thesis

work and compared its performances with relational data model.

During graph modelling of TrendPin, there were some problems stemmed

from the project specification when converted into graph model. We present

feature extraction processes with their importance to increase performance of the

systems. We implemented a knowledge base for TrendPin and explain why it was

necessary to build include such structure at the end.

1.2 Contributions of the Thesis

In this thesis we discuss what Big Data is, why it carries such importance, and

what kind of problems occur during generation, storing, and retrieving. We ex-

plain various types of NoSQL approaches and choose graph databases to compare

with relational database models. We analyse relational model of Microsoft SQL

Server, graph model of Neo4j, and create two versions of TrendPin to support

these products. We discuss strengths and weaknesses of both models for same

requirements and point out performance issues.

Relational models differ from graph models in both design and data process-

ing stages. During graph modelling we encountered problems about connections

between same products but from different vendors, and connections between re-

lated products. Also we wanted to display much smarter results to the users when

searching a product. To solve those problems, we investigate information extrac-

tion processes and present a knowledge base for the project, explain benefits, and

assess increase in performance of the system.

Main contributions of this thesis are as follows;

• We discuss types of NoSQL briefly, explain graph databases in detail, discuss

different products on the market for each type.

CHAPTER 1. INTRODUCTION 4

• We present two different data models, relational model and graph model,

for TrendPin, and show how to create those models for given requirements.

• We explain information extraction processes, why we need to use these tech-

niques for this project, and present a knowledge-based information retrieval

module for TrendPin to overcome some design problems.

• We present different queries based on same purposes for both versions of

the system, and compare performance results.

• We provide a comparison on design challenges such as maturity and re-

silience for both models.

1.3 Outline of the Thesis

The outline of this thesis is as follows;

• Chapter 1 gives an introduction and overview of the thesis as well as thesis

plan.

• Chapter 2 presents the definition of Big Data, its characteristics and chal-

lenges in the field. In addition, it discusses how to move from relational

models to distributed approaches.

• Chapter 3 discusses traditional database technologies and explains NoSQL

trends by giving examples and acquaints different products.

• Chapter 4 introduces TrendPin; a social shopping platform.

• Chapter 5 discusses various database approaches implemented on TrendPin

by showing data models. Additionally it explains how the implementation

was being done.

• Chapter 6 explains information extraction methods and presents a

knowledge-based information retrieval module for TrendPin in order to fix

design issues originated from its graph model.

CHAPTER 1. INTRODUCTION 5

• Chapter 7 discusses experimental results over queries in terms of perfor-

mances, and discusses design challenges of both models in terms of specific

properties.

• Chapter 8 summarizes and concludes the thesis by stating future work.

Chapter 2

Big Data

2.1 Big Data Definition

Today perhaps the most important value of mankind is information. People can

move forward during their life with information. As for the computer science,

collection of information is said to be data. Invention of the internet and social

media, with the help of mobile devices, every day a lot of data is being generated

in each and every domain of life varying from application domains such as mobile

applications to improve healthcare, to educating online without ever going to any

other institutions.

Al-Khouri (2014) [34] explains on Figure 2.1 that there were 160 exabytes of

data in all hard drives in 2006. After 2007, growth of data increased exponentially.

And expecting results proposes that this growing is going to reach 112 zettabytes

of data by 2020.

Yan (2013) [87] states that Big Data term is emerged during 1980’s academic

and industrial meetings. She also adds that there were dozens of definitions dis-

cussed throughout the literature. However, Diebold (2000) [53] covered academic

definition of Big Data for the first time by stating “Big Data refers to the explo-

sion in the quantity (and sometimes, quality) of available and potentially relevant

6

CHAPTER 2. BIG DATA 7

Figure 2.1: Growth of Data Over the Years [34]

data, largely the result of recent and unprecedented advancements in data record-

ing and storage technology.” Not only quantity, but also the rate of accumulation

of data is reached to the levels which cannot be ignored.

Maier (2013) [74] explains that many organizations extended the definition

of the term. For instance Smith (2012) [81] told that “‘Big Data’ represents the

historical debri (observed data) resulting from the interaction of at between 70

and 77 independent variable/subjects”. He also adds that these subjects can be

both instances of unknown populations which are not randomly generated, and

moving along aimed time slots. As data becomes unstructured with the increase

in its type, the definition becomes much clear.

Big Data is also characterised by a change in the qualities of data held by

organisations. In traditional methods, data is stored in a highly structured format

to maximise its informational content. For example, a relational database has a

set number of fields, each of which will contain a specific type of data in a specific

format. This structure makes it easy to process and manipulate by applying

simple deterministic rules to that data. However, Big Data is not easy to store

and handle efficiently within relational tables because of its characteristics. With

the demonstration of the meaning made Big Data became quite popular and

researchers started to investigate the topic quickly.

CHAPTER 2. BIG DATA 8

2.2 Characteristics of Big Data

The data that cannot be managed by relational database management tools is

not enough to explain and understand what Big Data is. To be able to give the

sense of its true definition, the characteristics should be discussed. Doug Laney

(2001) [70] introduced 3V’s (Figure 2.2) concept for the first time to characterize

Big Data; volume, variety, and velocity.

Figure 2.2: 3V’s of Big Data [48]

2.2.1 Volume

The word “big” in the term Big Data sounds like the data is not small at first

glimpse. However, “how big is this Big Data?” is a key question. Huddar and

Ramannavar (2013) [67] claim that 800,000 petabytes of data were stored in the

world in 2000. And they state that in 2020, this number is going to reach 35

zettabytes. Additionally, with the growth of social media, and the products of

the companies which are selling data management services increase this number

everyday. A recent report from IBM (2011) [33] declares that 90 % of the data

has been generated over the last two years. Too much data has been generated

and is continuing to be generated each second, yet most of it still not analysed

at all.

An intense research of a company named Domo [9] puts forward how much

data is being generated in every minute from users of different companies. The

CHAPTER 2. BIG DATA 9

research claims that;

• YouTube users upload 48 hours of new video,

• Email users send 204,166,667 messages,

• Google receives over 2,000,000 search queries,

• Facebook users share 684,478 pieces of content,

• Twitter users send over 100,000 tweets,

• Instagram users share 3,600 new photos,

These facts uncover that many organizations are generating zettabytes of data

every day. Many companies are having problems with storing huge amount of data

because they cannot store using traditional database management systems. They

want to analyse and extract the useful data, gain benefits from it to understand

how well the business is going on, or customer thoughts and etc. When the

amount of data is growing, the ability of processing of data is decreasing. To

overcome this issue, they need to use the right technology.

2.2.2 Variety

As the volume of data increases, the variety of data changes. The usage of

especially mobile devices, social media, as well as different types of sensors is

increasing every other day. “As new services are added, new sensors deployed,

or new marketing campaigns executed, new data types are needed to capture the

resultant information” (Dijcks, 2013) [54]. These actions allow users to produce

many different kinds of data; social data, statistical data, medical data, surveil-

lance data. It can be understood that this data is not always in text or numerical

format. Huddar and Ramannavar (2013) [67] states that it can be raw data,

semi-structured data, or unstructured data from web pages that contain image,

video, audio, pdf, web log files, sensor readings and etc.

CHAPTER 2. BIG DATA 10

Variety of data also means the variety of databases. Traditional database

management systems are having difficulties when it comes to analyse different

kinds of data in a single query. Storing this data is also creates difficulties for

traditional methods. For example video and image files cannot be efficiently

stored in a relational database. When the value of an entity is changing frequently,

it is not very efficient to apply changes on a scheme. Since traditional database

management systems are not efficient when it comes to process various kinds of

data, many organizations are still having struggles about managing, merging and

governing different varieties of data.

2.2.3 Velocity

Normally data is not being generated in an ordered format. With the broad usage

of internet in mobile device services increased data generation rate exponentially.

Data is now generated at any time and at anywhere from mobile devices, sen-

sor networks, and such tools. Here the characteristic term velocity is about how

quickly data is arriving and stored, and its associated retrieval. It is important

to get the data as fast as possible, manage it, and convert it to output for taking

the best and the most efficient feedback. Many companies are keeping record of

every single transaction especially on their websites. Dumbill (2012) [56] claims

that, online retailers are able to compile large histories of customers every click

and interaction: not just the final sales. They are doing this so that they can

recommend similar products by quickly suck advantage out of customer informa-

tion and go one step ahead in the market. Another important point is by using

sensors and smart devices, data streaming happens too fast and in near-real time.

The new designed systems have to react to the changes as quick as possible to be

able to answer the needs of the organizations.

2.2.4 Fourth Addition to 3V’s: Veracity

Some researchers add another characteristic onto 3V’s called “veracity” which is

explained as uncertain, noisy, or imprecise data. There is not a single reason to

CHAPTER 2. BIG DATA 11

have uncertain data. For example there maybe same attribute name that corre-

sponds to different entities, or vice versa (Maier, 2013) [74] Figure 2.3 explains

three dimensions of veracity.

Figure 2.3: The three dimensions of veracity (Al-Khouri, 2013)[34]

2.2.5 3C’s Concept

According to Suthaharan (2013) [83], when a set of data is growing to infinity

by having k number of zeros, ones, twos, threes, and etc. will be referred as Big

Data within 3V’s space. However, when a sample is taken from such data will

still be a small data. By claiming this argument, he suggests new characteristics

of Big Data and calls them as C3; cardinality, continuity, and complexity. He

then defines these three new properties;

• Amount of records in the dataset which grows dynamically as cardinality,

• Increase of data size in time with a continuous function as continuity,

• Variety of data, huge volumes of dataset, and the high speed of data pro-

cessing as complexity.

CHAPTER 2. BIG DATA 12

2.3 Sources of Big Data

Big data is nearly everywhere and many systems are generating it without even

being stopped once. There are plenty sources in several domains that increases

data traffic through the cloud continuously. Now we will discuss some of these

sources.

2.3.1 Social Networking

Perhaps the most popular data source of Big Data is social networking. Today the

Internet can be accessed from almost everywhere through a number of devices.

This allows people to connect with others when they are on the road, or at home,

or while doing their jobs. They can chat, request support for an issue, send/check

job applications, check locations, play games together, and etc. According to a

study of Pew Research Center in Figure 2.4, more than 70% of all internet users

use social networking sites. Same study also indicates that there is an increase

on not only the numbers of adult users, but also the number of middle-aged

and elderly users who use social media. There are different applications, such as

Instagram, Twitter, Facebook, Snapchat, Vine, Youtube, Super, to connect with

other users. Type of the generated data can be various too. Some applications

just create images, some of them create videos, some of them create texts, and

some of them create mixture of all.

Social media is sure plays an important role when connecting with people.

On the other hand, it enables;

• Free advertising in front of billions of people,

• Marketing of companies and products,

• Product promotions,

• Predictions of events like the results of football matches, political situations,

new music album successes,

CHAPTER 2. BIG DATA 13

• E-learning,

• Fast spread of news, and many more.

Figure 2.4: Social networking site usage by age group, 2005-2013[64]

2.3.2 Sensor Data

A sensor is a hardware whose task is to sense its environmental phenomenons e.g.

heat, sound, motion, and transfer its findings. Sensors are distributed to every

corner of the world and gathering real-time data for certain objectives. Some of

the examples of such objectives are;

• Monitoring health of patients with wearable wireless sensor devices to find

symptoms of clinical diseases, or tracking medical conditions.

• Observing traffic on the roads with image sensors in order to report current

traffic situation, or even find and locate criminals.

• Measuring weather conditions and predict daily and weekly forecasts.

CHAPTER 2. BIG DATA 14

• Monitoring environments for specific purposes such as to measure heat in-

crease around active volcanoes and start evocations of residential areas.

• Observing animals for wildlife tracking.

2.3.3 Online Transactions

Transactional data is the data which is generated by a transactional event. The

difference between non-transactional data and transactional data is time dimen-

sion. Transactional data always has a time variable to indicate occurrence of the

event. For example; an order from a website, billing, online trading, and internet

banking processes are create transactional data. According to a research [20],

online retails are increasing (see Figure 2.5). This proves that transactional data

is blowing all over the internet and will continue to increase in the near future.

Figure 2.5: E-business transaction volume and online retail purchases ratio

2.3.4 Smart Devices

Changes in the technology direct to turn more devices into smart devices. Smart

phones, smart watches, smart televisions, smart glasses are very popular and

becoming indispensable items of daily life. There are many functions of those

technologies. By using smart phones, we can do a lot of stuff from paying bills

CHAPTER 2. BIG DATA 15

to find places. Smart watches can now be used to listen to radio and call others.

Smart televisions provide surfing on the internet, watch online films. Smart

glasses allow recording videos with just a blink of an eye. All of are just examples

and it is thrilling to predict what comes next in the future.

2.4 Challenges of Big Data Services

Big Data creates new opportunities to the market, and opens a whole new research

area to the researchers. At the same time the services held by Big Data based

systems have many computational challenges. Laney (2001) [70] states that the

challenges are mostly arise from complexity that is caused by three dimensional

characteristics; volume, variety, and velocity.

Since the volume of the data is very big, it needs to be decided how to store

it properly. When it comes to variety, it has to be analysed while keeping in

mind that unstructured data can contain various sources in various formats such

as audio or video files. Velocity is related to generation speed of data. It should

be generated in real time and have to be managed within certain time intervals

before delivery.

According to Fan et. al. (2013), characteristics of Big Data allows many dif-

ferent challenges ranging from unique statistical and computational issues. These

challenges include “scalability and storage bottleneck, noise accumulation, spuri-

ous correlation, incidental endogeneity, and measurement errors”[58].

Apart from those challenges above, Cloud Security Alliance (2012) [35] reports

that there are also security and privacy challenges such as data provenance, end-

point input validation, real-time security monitoring and etc.

Big Data challenges sometimes differ from domain to domain. Dobre and

Xhafa (2013) [55] suggest that in a context-aware platform for large scale data

handling, there are some problematic requirements that should be handled by

Big Data services such as mobility and locality, proximity, real-time guarantees,

CHAPTER 2. BIG DATA 16

support for communication imperfection, and etc.

Because of the novelty of the concept and research area, there are other chal-

lenges such as lacking efficient tools and experienced big data developers.

2.5 Big Data Storage and Access

Data is expanding in three dimensions day by day. This growing inevitably

pushed database management system developers to change the way that they

work with the latest researches and developments. Angeles and Castro (2013) [37]

states that most database management systems are either row based (horizontally

scalable) or column based (vertically scalable) shown in Table 2.1. However, as

Angadi et. al. (2013) [36] discussed that the organizations, with the new projects

under development, are going away from “one size fits all” approach because of

the challenges that Big Data has brought to the field.

ID Name Age 1212 1212
1212 Jack 25 Row 1 Jack ID 1414
1414 Caroline 27 25 3214
3214 Klaus 18 1414 Jack

Row 2 Caroline Name Caroline
27 Klaus
3214 25

Row 3 Klaus Age 27
18 18

Table 2.1: Table (left), Row (center), Column (right) based database structures

Storing Big Data with tables on a single machine is not efficient, due to the

fact that data growing speed is tremendously fast. On the other hand, it is not

always very easy to develop a great structure for distributed machines working

over cloud and expect it to perform as promised. Timely design considerations

should be taken care of very well. There are three important properties to be

considered when developing such systems:

CHAPTER 2. BIG DATA 17

• Performance is the first property. When an input is given to the system,

the results should be received as fast as possible. The algorithms are the

most effective factors on this issue. Problems can be different, and they

should be coded specifically to the problem. If it is a centralized system,

performance will be relying on the hardware. However, when the system

is distributed, a huge effector called latency will come to the playground.

Latency is the time taken between a response and its stimuli. Mostly,

latency should be very low, in case of improved performance. However,

network connections are not always stable. This causes problems on real-

time applications especially. For example, when a user is taking an online

exam using a computer, questions may not be answered in time, if latency is

high. This may cause him to fail not because of his knowledge, but because

of the system’s performance. Probably the main reason of this issue would

be derived from communication overheads, or the server may be very far

away from the user’s location. During design phase, it should not be ignored

in that those overheads should be reduced.

• Scalability is another property. It means that a system should continue

operating when the size of inputs are very large and coming fast. To do so,

it is preferred to increase storage automatically. According to the type of

the system design, scalability can be divided into two:

– Vertical scaling means that the system’s storage is increased with the

addition of more memory or CPU of the computer on centralized sys-

tems.

– Horizontal scaling means that the system’s storage is increased with

the addition of new nodes working over cloud on distributed systems.

Adding new nodes expands the storage of the system automatically

and there will not be any information loss. In our case, this type of

scaling is preferred, and it increases the performance of overall system.

• Availability is the last property. Systems should be available at any time

when a request has been created. For example, sometimes ATM machines

may not be available; credit card or money cannot be inserted because of

hardware faults. For distributed systems, in order to prevent information

CHAPTER 2. BIG DATA 18

losses, data should be copied and stored on different servers. With this

way, even though a server is not available, the operation can be done using

another server which contains same information.

It is obvious that distributed systems have more advantage over centralized

systems in terms of performance, scalability, and availability when storage is the

concern. Since Big Data requires distributed approaches to perform efficiently,

the main system which inspired others on the market is called Apache’s Hadoop

Distributed File System (HDFS). Before explaining it, we are going to define a

data processing paradigm called MapReduce, which became popular after 2004

and inspired HDFS.

2.5.1 MapReduce

In early 2000s, Google and some other companies were having struggles to keep

vast amounts of data in a single database. To overcome this serious issue Google

presented MapReduce programming model (Dean and Ghemawat, 2004) [50]. It

is a programming paradigm to process large volumes of data within distributed

clusters on the cloud using parallel programming style. Simply, the model takes

key/value pairs as inputs and processes them to output key/value pairs. The

process involves two distinct operations; Map, and Reduce:

• Map operation converts inputs to intermediate forms and groups them.

• Reduce operation takes these intermediate key/value pairs and combines

them to create smaller forms.

After Map operation produces a list of key/value pairs, these values are sent to

Reduce operation to combine and create outputs. MapReduce process requires

five distinct stages to produce associated output: Splitting, Mapping, Shuffling,

Reducing, and Finalizing.

CHAPTER 2. BIG DATA 19

Figure 2.6: Example of a Map Reduce Model [71]

Let us explain how MapReduce process takes place with an example. Assume

that we have the following two samples of data taken from a course statistics

table:

Course
Code

Number of
Passed
Students

Year
Course
Code

Number of
Passed
Students

Year

SE 315 39 2012 SE 305 40 2014
SE 305 73 2011 SE 315 72 2013
SE 315 44 2011 SE 305 52 2013
SE 115 144 2011 SE 115 152 2014
SE 305 60 2012 SE 115 168 2013
SE 115 148 2012 SE 315 81 2014

Table 2.2: Sample data collection about the number of students and courses

Sample data above shows three different courses (SE 115, SE 305, and SE

315), and the number of students who passed these courses from 2011 to 2014

separately. Now we want to find the total number of students who passed each

course between 2011-2014. Lets explain whole MapReduce process step by step:

CHAPTER 2. BIG DATA 20

• Step 1 - Splitting: The first operation is to split given datasets into 10

distinct rows.

SE 315 39 2012

SE 305 73 2011

SE 315 44 2011

SE 115 144 2011

SE 305 60 2012

SE 115 148 2012

SE 305 40 2014

SE 315 72 2013

SE 305 52 2013

SE 115 152 2014

SE 115 168 2013

SE 315 81 2014

• Step 2 - Mapping: Now Map function will generate a list of key/value

pairs. In this case we want to have course name as keys, and number of

passed students as values.

CHAPTER 2. BIG DATA 21

SE 315 39

SE 305 73

SE 315 44

SE 115 144

SE 305 60

SE 115 148

SE 305 40

SE 315 72

SE 305 52

SE 115 152

SE 115 168

SE 315 81

• Step 3 - Shuffling: The next step is to shuffle all pairs to get same keys

together before reducing them to single key/values pairs.

SE 115 144

SE 115 148

SE 115 152

SE 115 168

SE 305 73

SE 305 60

SE 305 40

SE 305 52

SE 315 39

SE 315 44

SE 315 72

SE 315 81

CHAPTER 2. BIG DATA 22

• Step 4 - Reducing: Now Reduce function will perform reducing operation

and all courses will be grouped with the associated values as only one row.

SE 115 {144, 148, 152, 168}

SE 305 {73, 60, 40, 52}

SE 315 {39, 44, 72, 81}

• Step 5 - Final result: In this last step, the system will aggregate the

values within their keys and display as the final output.

SE 115 612

SE 305 225

SE 315 236

Gu et. al. (2014) [60] summarizes the benefits of MapReduce technique;

“MapReduce significantly simplifies the design and implementation of many data-

intensive applications in the real world. Moreover, MapReduce offers other bene-

fits, including load balancing, elastic scalability, and fault tolerance, which makes

it widely adopted parallel computing framework.”

2.5.2 Apache’s Hadoop Distributed File System

MapReduce opened a whole new world for Big Data storage systems and it be-

came an indispensable component of Hadoop. In 2006, Doug Cutting, an em-

ployee of Yahoo, intended to create a web search engine called Nutch, and devel-

oped Hadoop. It is a framework written in Java that contains Hadoop Distributed

File System (HDFS) and MapReduce components, and aimed to manipulate the

CHAPTER 2. BIG DATA 23

data on clusters consist of commodity hardware (White, 2010) [85]. “It enables

applications to work with thousands of computational independent computers

and petabytes of data.” (Kiran et. al., 2013) [69].

Figure 2.7: Hadoop file structure

HDFS inside Hadoop is able to contain many and very large files by creating

clusters of commodity hardware nodes. All files are replicated among different

nodes, in order to prevent data losses. HDFS works as a master-slave model and

its structure includes NameNode as a Master Node and DataNode as a Slave

Node. There can only be one NameNode and many DataNodes in each cluster.

CHAPTER 2. BIG DATA 24

NameNode is responsible from file creations, deletions, and modifications. It also

controls accessibility, transmission of those files when requested from DataNodes

as well as creating replicas among nodes. DataNodes are responsible from their

local disks.They can contain replicated data of other DataNodes.

MapReduce technique of Hadoop is called Hadoop MapReduce. The method

is the same with MapReduce idea we discussed in the previous section. A Map

function is required to filter the data, and a Reduce function is required to gather

results from filtered data. On the other hand, the role of Hadoop here is to

connect DataNodes under a NameNode and perform MapReduce operations to

manage Big Data.

Rao et. al. (2013) [79] reminds that Yahoo, Facebook, LinkedIn, and Twitter

uses Hadoop for important part of their services. There are other products which

use Hadoop to perform their own operations;

• HBase [13], a non-relational database model runs on HDFS.

• Hive [14], a data warehouse runs on top of Hadoop.

• Zookeeper [32], a distributed configuration, synchronization, and naming

service.

• Ambari [4], a monitoring and managing tool for Hadoop clusters.

• Pig [22], a platform to create MapReduce programs.

2.5.3 Summary

Type of the data is changed forever. It is now big, even getting bigger from three

dimensions; volume, variety, and velocity. There is nothing to stop Big Data

generation. However, it is very important to continue discovering new ways of

analysing and handling it. It can be seen in nearly every environment; in social

life for communicating, in marketing to reach wider customers for presenting new

products, spreading news to anywhere from all over the world, monitoring places,

CHAPTER 2. BIG DATA 25

collecting environmental information, and for many more purposes. From all

of those unstructured data, each information pieces would be very valuable to

different organizations.

Since it is not easy to store and handle Big Data, it is a must to change

the way to look at traditional database management systems. They are not

enough and efficient, because there are challenges revolving around the concepts

of performance, scalability, and availability. Reading data, writing data are not

very fast enough so that new approaches are becoming popular. MapReduce

techniques from Google enlightened other companies in this sector to develop

more efficient products. Apache’s Hadoop Distributed File System and the other

products stabilized the quality of Big Data storage and processing.

Chapter 3

Relational Databases and NoSQL

3.1 Introduction

Databases can be defined as collections of organized information. This informa-

tion can vary from numeric entities to image entities. In addition to those, there

are relations to create connections between one entity to another. A database is

modelled according to some defined purposes. For example; to store information

about students in a university, or to keep track of product sales in a company, or

even to record user information of a gym center.

A database requires software applications called database management sys-

tems, in order to manipulate stored information. They provide easy reading and

writing procedures such as creating, inserting, deleting, and updating. Addition-

ally, by using combinations of these procedures, a database can be backed up and

maintained when necessary to restore if any information is lost during database

usage.

Database management systems are everywhere and have many advantages.

They use powerful methods to hold information together and provide quick ways

to retrieve when requested. When Big Data is the main circumstance, traditional

methods became no longer that powerful. Large datasets started to not only

26

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 27

outgrow existing hard drives, but also slow down data fetching speed. Therefore,

new ways of handling data became an important concern of researchers.

Each database management system should be modelled regarding to the re-

quirements that are coming from system’s specifications. With respect to data

storing, retrieving, and handling methods, database management systems are

classified into several types. We are going to explain relational databases and

each one of NoSQL trends.

3.2 Relational Database Management Systems

Relational databases are first mentioned in a research paper of a computer sci-

entist Edgar Frank Codd[45], who was working for IBM during 1970. The paper

broke a fresh ground for databases and literally redefined the ways of data man-

agement. Before that, databases were written in flat files; huge single text files

where the data is being separated by particular characters such as commas. Here

s an example of a flat file:

Figure 3.1: Example of a flat file

In the example above, all information is given as a one single line. It looks

complicated and not understandable when read if the size is huge. The file needs

to be searched from start to end each time for finding a specific entry and this

was not an efficient way to do it.

After relational databases have been introduced, many companies started to

use them and they became quite popular since then. They maintained their

position in the market for forty years. When Big Data came out, developers

realized that relational model cannot adopt itself to work efficiently towards fast

growing, and fast scaling data. Multiple join operations, nested queries reduced

the performance of such systems.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 28

StudentID Name Surname Department
20080601050 Terry Washington Computer Science
20100703212 Daniel Brown Public Relations
20110601212 Daisy Lockwood Computer Science
20110501022 Ben Grimm Yacht Design
20120501015 Susan Storm Yacht Design
20110601055 Joe Marker Computer Science
20130703225 Elena Gilbert Public Relations

Table 3.1: departments table

StudentID RegistrationDate Advisor
20100703212 27.09.2010 Carrie Coulson
20110501022 24.09.2011 Andrew Garland
20110601055 24.09.2011 Andrew Garland
20120501015 27.09.2012 Matt Donovan

Table 3.2: advisors table

Id StudentID StudentClub

1 20080601050 Music Club

2 20130703225 Folk Dance Club

3 20110601055 Aikido Club

4 20120501015 Environmental Club

5 20100703212 Music Club

Table 3.3: studentclubs table

Now we will explain relational model, ACID properties, and how data manip-

ulation can be done on relational databases.

3.2.1 Relational Model

Relational model contains structured data and it basically has two main compo-

nents; relation, and attribute (see Figure 3.2). A relation is a set of attributes

that define items in relational model.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 29

Figure 3.2: Relation and attributes on relational model

• For Table 3.1, relation can be defined as;

Relation1(StudentID, Name, Surname, Department)

• For Table 3.2 relation can be defined as;

Relation2(Id, StudentID, RegistrationDate, Advisor)

• For Table 3.3 relation can be defined as;

Relation3(StudentID, ForeignLanguage, Gpa)

An attribute is a characteristic of an item. Attributes can be referred as the

labels of attribute values. For example, attributes of Relation1 are StudentId,

Name, Surname, and Department. Attribute values for Name are Terry, Daniel,

Daisy, Ben, Susan, Joe, and Elena. Sometimes an attribute value may not be

given. In this case “null” keyword will be counted as the value for that attribute.

Relation and attribute connections create a table structure. Therefore, finite

ordered elements which are created with relations are referred as rows or tuples,

and attributes are referred as columns. For example, a tuple in the second row

of Table 3.1 is

20100703212 Daniel Brown Public Relations

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 30

To identify each record uniquely, the user needs to set some attributes (candi-

date keys). One of those attributes will be a primary key. This key should always

consists of different values for each tuple, meaning that no two tuples can have

the same primary key. For example; in Table 3.2, there are registration dates and

advisors of students. Sometimes more than one student can register to the same

department on the same day. Because of this, their advisor may be the same

person. Here we have two tuples sharing same RegistrationDate and Advisor.

However, these two records belong to different students, because of the difference

in StudentID’s. Having a primary key is a must for every database table. It is

unique and can include only one attribute, or a group of attributes. Moreover, a

foreign key represents an attribute or again a group of attributes to create a link

between entities in different tables by connecting with the primary key of other

table.

A foreign key is a column or group of columns in a relational database ta-

ble that provides a link between data in two tables. It acts as a cross-reference

between tables because it references the primary key of another table, thereby

establishing a link between them. For example; in Table 3.3, there are student

clubs. Since one student can be registered to more than one student club, Stu-

dentID attribute cannot be used as a primary key in this table. Instead, there is

another attribute called Id is defined. When there is a need to create a relation

with this table and other tables, Id will serve as primary key, and StudentID will

be foreign key.

3.2.2 ACID Properties

James Nicholas Gray, was the first person who described atomicity, consistency,

isolation, durability properties of databases in 1970. Thirteen years later, in

1983, Theo Härder and Andreas Reuter [62] came up with the acronym ACID.

Relational databases provide ACID transactions. These properties are very im-

portant, because they ensure that database transactions are safe, reliable, and

accurate. Next, we provide definitions of these four properties.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 31

3.2.2.1 Atomicity

Any operation performed on the database can be either completely successful or

fail. A transaction cannot be separated to be successful, which means that if

some fragments of a transaction are successful and the other fragments fail, it

cannot be successful at the end; all fragments need to be successful. Therefore,

it can be said that each transaction should be atomic.

3.2.2.2 Consistency

Constrains and rules of the database cannot be violated by transactions. Any

operation performed on the database should produce consistent outputs. When

the same input is given more than once to the database, the results should be

the same, unless there were no value changes performed between the first and the

last try.

3.2.2.3 Isolation

Transactions should be isolated from each other in any database system. When

there are more than one transaction performing concurrent operations, none of

them can interrupt or disturb others. For example, if more than one user are

changing values of the same item in their own sessions, these changes should

remain in their sessions.

3.2.2.4 Durability

Results of transactions should be durable. When an update is committed, the re-

sults should stay the same all the time. This allows system recoveries or rollbacks

when system fails for some reason during the operation such as CPU, or storage,

or a software failures. So that the system will be able to continue working from

a restored point.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 32

3.2.3 Normal Forms

Relational database tables may contain in some forms of extra data related to

actual data. For example, some attributes or even whole attributes may be

duplicated sometimes. This is called data redundancy. Relational databases

should have as minimum as possible data redundancies. Normalization techniques

are introduced to ensure such a requirement. To be able to do normalization,

functional dependencies should be provided along with primary keys, and foreign

keys of the relations. A functional dependency is the basis for normalization. It is

a relation between two entities, when one or more attributes identify the value of

another attribute uniquely. If there is a functional dependency between relations

X and Y, it is signified as X →Y and can be read as ”Y functionally depends on

X”. For example, consider table below;

EmployeeID Name Surname Profession Salary
25256 Pepper White Software Tester 2500
25645 Peter Darker Web Engineer 3000
42545 David Garner Web Engineer 3000
63253 Ashley White Chief Moderator 3600

Table 3.4: employees table

Here, EmployeeID is the determining attribute of Name, Surname, Profession,

and Salary attributes. The one who has an EmployeeID of 63253 is Ashley White.

Whenever a query with this id number is given as input, the result will be Ashley

White. Moreover, if there was another tuple including 63253 as EmployeeId, it

would still belong to Ashley White having profession of Chief Moderator, and a

salary of $3600. Therefore, it can be said that Name, Surname, Profession, and

Salary are depend on EmployeeID.

Functional dependencies are crucial when designing relational database mod-

els. By using dependencies, many normalization forms such as first normal form,

second normal form, third normal form, Boyce-Codd normal form, and fourth

normal form are defined. Now, we are going to explain each.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 33

3.2.3.1 First Normal Form - 1NF

Edgar Frank Codd was the first person who proposed normalization techniques

[46] to ensure minimal data redundancies after he introduced relational model in

1971. A relation can be in first normal form if and only if all attributes of a tuple

are atomic. In other words, there should not be more than one attribute value

in any column. Considering the example below, there are two tables containing

Actors, BirthDate, and Movies attributes. In Table 3.5, there are more than one

values in Movies column which is not preferred for 1NF. On the other hand, Table

3.6 is in 1NF, since all the values are single in each column.

Actors BirthDate Movies
Rober Downey Jr. 04.04.1965 The Avengers, Iron Man, Sherlock Holmes
Mark Ruffalo 22.11.1967 The Avengers, Just Like Heaven
Chris Hemsworth 11.08.1983 Thor, The Avengers, Rush

Table 3.5: Actors table is not in first normal form

Actors BirthDate Movies
Rober Downey Jr. 04.04.1965 The Avengers
Rober Downey Jr. 04.04.1965 Iron Man
Rober Downey Jr. 04.04.1965 Sherlock Holmes
Mark Ruffalo 22.11.1967 The Avengers
Mark Ruffalo 22.11.1967 Just Like Heaven
Chris Hemsworth 11.08.1983 Thor
Chris Hemsworth 11.08.1983 The Avengers
Chris Hemsworth 11.08.1983 Rush

Table 3.6: Actors table is in first normal form

3.2.3.2 Second Normal Form - 2NF

Edgar Frank Codd [46] proposed another normal form in 1971. A relation can

be said in 2NF, whenever it is in 1NF and each attribute that are not included

in primary key should depend on all attributes of the primary key. Considering

Table 3.7, primary key is Guest, Hotel pair. In this case hotels are not related to

the living city of their guests. LivesIn attribute is depending on Guest attribute.

Therefore, we need to separate this table into two as in Table3.8. In this form,

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 34

primary key is Guest and other attributes just depend on this attribute. Second

normal can be guaranteed when primary key includes only one attribute.

Guest Hotel LivesIn
Emily Thorn The Langham, Chicago Miami
Emily Thorn Bordessone, California Miami
Mark Addie Tivoli Lodge, Colorado England
Mark Addie Primland, Virginia England
Tara Lord The Oxford Hotel, Oregon New York
Tara Lord Shereton, Izmir New York

Table 3.7: Guest table is not in second normal form

Guest Hotel Guest LivesIn
Emily Thorn The Langham, Chicago Emily Thorn Miami
Emily Thorn Bordessone, California Mark Addie England
Mark Addie Tivoli Lodge, Colorado Tara Lord New York
Mark Addie French Quarter Inn, Chicago
Tara Lord The Oxford Hotel, Oregon
Tara Lord Shereton, Izmir

Table 3.8: Guest tables are in second normal form

3.2.3.3 Third Normal Form - 3NF

Third normal form is also proposed by Edgar Frank Codd [46]. A relation is in

third normal form, if and only if it is in second normal form, and there should not

be any transitive dependencies. A transitive dependency is a type of functional

dependency which contains transitive feature. If attribute Z depends on attribute

Y, and attribute Y depends on X, then attribute Z is also depends on X by

transitivity. For example, in Table 3.9 an album depends on an artist, and an

artist depends on a song. Therefore, an album depends on a song over an artist.

This is a transitive dependency and violates 3NF. In Table 3.10, it is shown two

separate tables composed from that table and all attributes which are not keys,

depend on primary key. In the table on the left, Title depends on Artist, whereas

in the other table, Song depends on Artist. Now, these two tables can be said in

3NF.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 35

Album Song Artist
Memories Memories Kelly C.
Best Of Kelly Memories Kelly C.
Like a Wheel Alone Eric Sad
Say My Name Touch Me Samantha

Table 3.9: Song table is not in third normal form

Album Song Song Artist
Memories Mermories Memories Kelly C.
Best Of Kelly Memories Alone Eric Sad
Like a Wheel Alone Touch Me Samantha
Say My Name Touch Me

Table 3.10: Song tables are in third normal form

3.2.3.4 Boyce-Codd Normal Form - BCNF

Boyce-Codd normal form is an addition to third normal form for a special sit-

uation where third normal form does not hold. Therefore BCNF is a stronger

version of 3NF. It is proposed by Raymond F. Boyce and Edgar Frank Codd [47]

in 1974. A relation is in BCNF, if and only if each and every determinant is

a candidate key. This means all non-trivial functional dependencies have super

keys on the left hand side. We do not provide any examples here.

3.2.3.5 Fourth Normal Form - 4NF

BCNF is a common used normal form. However, it can still have some anomalies.

To overcome these issues, fourth normal form is introduced. 4NF is proposed

by Ronald Fagin [57] in 1977. 1NF, 2NF, 3NF, and BCNF are related with

functional dependencies. On the other hand, 4NF is provided by multivalued

dependencies. A multivalued dependency appears in the same table when there

are one or more tuples contains one or more other tuples. It can be signified as

X →→Y. For example, in Table 3.11, there are car models, companies, and color

of the cars. A company can produce multiple colors of the same model. Therefore,

CarModel and Company values are duplicated when Color changes. There are

multivalued dependencies between CarModel and Company attributes, as well

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 36

as CarModel and Color attributes, so that primary key is the pair of CarModel,

Company attributes and this causes violation of 4NF. Consequently, the table is

decomposed into two as in Table 3.12 to eliminate unnecessary duplications.

CarModel Company Color
M1 BMW Black
M2 BMW Red
M2 BMW Blue
M3 BMW Red
M3 BMW Black
A3 Audi Black
A3 Audi White

Table 3.11: Car table is not in fourth normal form

CarModel Company CarModel Color
M1 BMW M1 Black
M2 BMW M2 Red
M3 BMW M2 Blue
A3 Audi M3 Red

M3 Black
A3 Black
A3 White

Table 3.12: Car tables are in fourth normal form

3.2.3.6 Other Normal Forms

There are also fifth normal form (5NF or PJNF), sixth normal form (6NF), and

seven normal form (7NF) in the literature. However, they are out of the scope of

this thesis.

3.2.4 SQL: Structured Query Language

3.2.4.1 Definition

Data is manipulated by using Structured Query Language (SQL) in relational

databases. It is first designed to support quasi-relational database management

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 37

system at IBM in 1970 by Donald D. Chamberlin and Raymond F. Boyce [42].

They named it as SEQUEL which stands for Structured English Query Lan-

guage. Later on, the name changed into just SQL. In 1979, SQL was released

commercially for the first time ever to the market.

3.2.4.2 Retrieving Data

SQL is based on queries, and consists three main clauses; SELECT ,FROM, and

WHERE , in order to retrieve data from a single table or a set of tables.

• SELECT clause describes the attributes to be retrieved as a result of the

query.

• FROM clause indicates the tables which are required to read for the query.

• WHERE clause restricts and filters query results by using an equation or a

combination of equations.

Let us write a very simple SQL query to find “the advisor of student whose

id is 20120501015” in Table 3.2. Firstly we need to select advisors, therefore we

need a SELECT Advisor statement first. We use advisors table, therefore

we need a FROM advisors statement. Lastly, we need to find student whose id

is 20120501015, therefore we need a StudentID = 20120501015 statement.

The query would then return the following result:

Advisor
Matt Donovan

The order of the statements in an actual query format is shown below;

1 SELECT Advisor

2 FROM advisors

3 WHERE StudentID = 20120501015;

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 38

Of course, queries not always that simple. Most of the time there are more

than one tables contain related information with each other. In order to bring

tables together and search for information, join procedures should be performed.

The most common way of joining tables is done by using equal (=) symbol in the

WHERE clause.

Let us write another query to find “name and surname of a student whose

advisor is Andrew Garland, and whose department is Computer Science”.

1 SELECT Name, Surname

2 FROM departments, advisors

3 WHERE departments.StudentID = advisors.StudentID AND

4 advisors.Advisor = "Andrew Garland" AND

5 departments.Department = "Computer Science";

Two tables departments and advisors join together, according to the

corresponding Name and Surname attributes of Avdisor Andrew Garland and

Department Computer Science. AND allows combining conditions. Here, we have

three conditions; joining tables, finding advisor, and finding department. There-

fore, these conditions are combined together with AND. SQL also provides NOT to

negate a given condition, and OR to check both conditions and return satisfying

one. The query above returns this result:

Name Surname
Joe Marker

There are different types of join operations such as inner join, left join, right

join, full join, cartesian join.

• Inner Join: If there is a match in both joining tables, returns all rows.

• Left Join: Returns all rows of left table, although there are no matching

rows at the right table.

• Right Join: Returns all rows of right table, although there are no matching

rows at the left table.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 39

• Full Join: If there is a match in one of joining tables, returns all rows.

• Cartesian Join: Returns Cartesian product of rows from joined tables.

SQL provides additional statements to analyse further and display data.

These are GROUP BY, HAVING, and ORDER BY clauses.

• GROUP BY: This clause groups retrieved data with respect to the given

conditions.

• HAVING: This clause filters retrieved data with respect to the given con-

ditions. Filtering operation is similar to WHERE clause, however HAVING

filters grouped results.

• ORDER BY: This clause sorts result set with respect to the given conditions

including ascending (ASC), and descending (DESC) order options.

Aggregation of data is also possible with SQL aggregating functions; COUNT,

AVG, SUM, MIN, MAX.

• COUNT: This function counts the number of rows with respect to the given

conditions.

• AVG: This function finds average value of a column with respect to the given

conditions.

• SUM: This function calculates sum of a column with respect to the given

conditions.

• MIN: This function finds lowest value of a column with respect to the given

conditions

• MAX: This function finds highest value of a column with respect to the given

conditions

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 40

3.2.4.3 Adding, Modifying, and Removing Data

SQL uses INSERT, UPDATE, and DELETE statements, in order to write data to

a single table, or a set of tables.

INSERT clause is used to add a new data to existing tables. For example,

if we want to add a new student record (whose StudentID is 20140401040, and

registered to Aikido club) onto Table 3.3, we have to execute the following query:

1 INSERT INTO studentclubs(Id, StudentID, StudentClub)

2 VALUES (6, 20140401040, "Aikido Club");

A new row will be created and added to the end of the table as follows:

Id StudentID StudentClub

1 20080601050 Music Club

2 20130703225 Folk Dance Club

3 20110601055 Aikido Club

4 20120902015 Environmental Club

5 20100703212 Music Club

6 20140401040 Aikido Club

Table 3.13: studentclubs table

UPDATE clause is used to change the values of existing tables. For example,

if we want to modify the salary of an employee (whose EmployeeID is 25256) on

Table 3.4, we have to execute the following query:

1 UPDATE employees

2 SET salary = 3200

3 WHERE EmployeeID = 25256;

Column value of the row which belongs to Pepper White will be changed and

the table will be modified as follows:

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 41

EmployeeID Name Surname Profession Salary

25256 Pepper White Software Tester 3200

25645 Peter Darker Web Engineer 3000

42545 David Garner Web Engineer 3000

63253 Ashley White Chief Moderator 3600

Table 3.14: employees table

DELETE clause is used to delete rows from existing tables. For example, if we

want to delete an employee (whose name is David, and surname is Garner) from

Table 3.14, we have to execute the following query:

1 DELETE FROM employees

2 WHERE Name = "David" AND Surname = "Garner";

The entire row which belongs to David Garner will be deleted and the infor-

mation will remain as follows:

EmployeeID Name Surname Profession Salary
25256 Pepper White Software Tester 2500
25645 Peter Darker Web Engineer 3000
63253 Ashley White Chief Moderator 3600

Table 3.15: employees table

3.3 NoSQL: Not Only SQL

Although relational database management systems are dominating others for

more than forty years, technological methods need to shift, due to find solu-

tions to new requirements. We discussed in Chapter 2 what Big Data is and why

traditional database management systems do not work well with it. In addition,

we discussed what MapReduce and Hadoop are and how they work. Since there

is not a query language such as SQL in the structure of Hadoop, it acts more like

a warehouse rather than a database. Thus, NoSQL term comes into play. It is

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 42

a database technology which aims to process the data which is high in volume,

includes different sorts of sources, and generated very fast.

3.3.1 Definition

The term NoSQL first came out in 1998 by Carlo Strozzi [82]. At that time he used

this term to provide no form of the SQL for querying. In late 2009, Eric Evans

from Rockspace, a cloud hosting company, reused NoSQL word in a conference

to address a different meaning; “Not only Structured Query Language”.

“NoSQL systems are distributed, non-relational databases designed for large-

scale data storage and for massively-parallel data processing across a large number

of commodity servers.” (Moniruzzaman and Hossain, 2013) [76]. Since SQL does

not meet the needs of big online companies who produces mass amount of data

every hour such as Amazon, Google, Facebook, and Twitter any more, NoSQL

started to be used and improve their performance.

3.3.2 BASE Properties

Database transactions should be done considering ACID properties to ensure

reliability. They are working well with relational models which are depending

on schemas, and structured data. However, NoSQL models sometimes violate

one or more of these properties depending on the design. Parallel programming,

distributed structure, and unstructured data are no longer maintain the stability

of ACID.

Eric Brewer presented CAP theorem during ACM Symposium in 2000 [40].

Distributed systems need to ensure consistency, availability, partition tolerance

to create stable designs. Yet, none of them can provide all three properties at

the same time. For example, distributed systems should provide availability and

partition tolerance at any time, on the other hand, this fact reduces consistency.

As a counter part of ACID, Eric Brewer introduced BASE properties.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 43

3.3.2.1 Basically Available

The system does guarantee availability with respect to CAP theorem. There

should be a response to any request and this may be either a success, or a failure.

3.3.2.2 Soft-State

The system can change its state over time. Sometimes there may be no inputs

given, but the state can still change for consistency.

3.3.2.3 Eventual consistency

Over time, the system eventually becomes consistent when incoming inputs are

no longer exist.

3.3.3 NoSQL Models

There are four types of NoSQL database models. Even though they are all aimed

to behave as a database for a system, they do the job in different ways. Next, we

explain those models briefly except graph databases.

3.3.3.1 Key-Value Stores

Key-value stores model is based on Amazon’s article (2007) [51] about their dis-

tributed data store named Dynamo. It is the simplest category of NoSQL and

relies on a global collection of key-value pairs. Basically it is a schema-less model

that is consist of a numerical identifier to represent the key and the actual data

in the format of strings, sets, or even lists to represent the corresponding values.

This type of a structure scales itself as a hash table as the data increases. More

importantly, querying should be carried out through keys not values.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 44

Key Values

1
Password: xxx
Name: Craig

2
ID: 239344
Location: Izmir
Occupation: Engineer

3 Last Name: Yates

Table 3.16: A key-value store example

Table 3.16 is a representation of a key-value store. The data is unstructured

because vales are not fixed as they are in relational models. There may be one

or more values with different types of attributes for associated key. Generally

key-value stores are used when the data is highly scalable and fetching is in-

tended to be really fast. They are used in applications to manage a user’s profile,

information of a session, finding items associated to a certain key value, and etc.

Some examples of key-value stores are:

• Redis [24] (an open-source product, copyrighted by Salvatore Sanfilippo and

Pieter Noordhuis in 2009)

• Dynamo [11] (offered by Amazon in 2007)

• Riak [25] (an open-source product, developed at Basho Technologies in

2009)

• Voldemort [30] (offered by LinkedIn in 2009)

• Windows Azure Storage [31] (offered by Microsoft in 2008)

• Aerospike [2] (offered by Aerospike in 2012)

3.3.3.1.1 Key-Value Stores Applications

Key-Value stores are simple databases to build, and manage the data. One of

the well-known example is session data of the users. By using id of a user, it is

possible to retrieve and update relative the data from the store. Another example

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 45

is accessing the most current messages of a user or favourite items. The system

should know the keys of messages or items and recompute information on the

background regularly to get current status of them.

3.3.3.2 Column-Family/Wide-Column Stores

Column-family/wide-column model is based on Google’s article (2006) [43] called

Bigtable. In the column family object, there are columns of related data. In

fact key-value pairs still exist in column family type, but they are mapped to the

set of columns. Columns can be modelled as tables and key-value pairs can be

modelled as rows in a relational database model.

Figure 3.3: A column-family/wide-column store example [10]

Figure 3.3 shows the representation of a column family/wide-column store.

Here CustomerInfo and AddressInfo are column families.

Moniruzzaman and Hossain (2013) [76] states that using column family/wide-

column stores are best for:

• Distributed data storage,

• Large-scale, batch-oriented data processing,

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 46

• Exploratory and predictive analysis performed by expert statisticians and

programmers.

Some examples of column-family/wide-column Stores are:

• Bigtable [43] (offered by Google in 2006)

• Hbase [13] (developed by Apache)

• Cassandra [7] (an open source product developed at Facebook)

• Hypertable [15] (an open source product developed at Zvents Inc.)

• Accumulo [1] (created by National Security Agency)

• SimpleDB [26] (offered by Amazon)

3.3.3.2.1 Column-Family/Wide-Column Stores Applications

Column-family/wide-column stores are more complex when compared to key-

value stores. This type of databases are beneficial when column operations such

as MIN, MAX, and AVG will be used frequently. When there are many transac-

tions going on with the application, this type of a database should not be used.

Because, delete and update operations will be reducing storage efficiency.

3.3.3.3 Document Databases

Document databases are originated from IBM’s Lotus Notes software. They are

designed to store and manage semi-structured data which means neither raw nor

typed data. It is actually structured but not organized as a relational structure.

They have the ability to store dynamic documents in a database. Therefore a

client is able to edit the existing documents. Document encoding can be done with

different formats e.g. XML (Extensible Markup Language), JSON (JavaScript

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 47

Object Notation), BSON (binary encoding of JSON objects), YAML (Yet An-

other Markup Language), or PDF (Portable Document Format).

Document oriented databases can be modelled as rows in a relational database

model, but their structure is based on key-value pairs rather than a table struc-

ture. Querying can be performed not only with keys but also with values.

Figure 3.4: Relational model vs document model [73]

Figure 3.4 shows how a document database model differs from a relational

database model. For this example comments which related to an article is kept

together to form a document.

Some examples of document databases are:

• MongoDB [18] (an open source application developed by 10gen in 2009)

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 48

• CouchDB [8] (an open source application developed by Damien Katz in

2005)

• RavenDB [23] (developed by Ayende Rahien in 2009)

• Elasticsearch [12] (an open source application developed by Shay Banon in

2010)

• ThruDB [27] (developed by T Jake Luciani in 2007)

• JasDB [17] (offered by Obera Software in 2012)

3.3.3.3.1 Document Databases Applications

Document databases are good when the aim is to store data as documents with

certain characteristics and also if other documents are continuously added to the

system, getting updates or completely removed. The application will require a

CRUD (create, read, update, and delete) user interface such as a simple contact

list of a mobile phone. Hecht and Jablonski (2011) [65] indicates other examples

such as blogs and real-time analytics.

3.3.3.4 Graph Databases

Graph database idea comes from the graph theory. Buerly (2012) [41] explains

that the graph theory is emerged in 1736 when Euler solved the Seven Bridges

of Königsberg problem by modeling a graph topology with nodes and their con-

nectors. By using this model he answered that he can walk through the city by

crossing each bridge only once. After that, graph theory became very popular and

used for many well-known problems such as minimum spanning tree (Bor̊uvka,

1926) [39], graph enumeration (Harary and Palmer, 1973) [63], clique problem

(Luce and Perry, 1949) [72], and etc. And nowadays it is proved that it can be

used to model database management systems too.

Graph databases are highly aimed to store information about networks. They

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 49

include nodes to represent entities, edges to represent the relationships, and prop-

erties to represent information about these nodes and edges. They are generally

built and optimized for traversing over the graph and matching patterns if exist,

producing recommendations for social networks, and etc.

Urma and Mycroft (2013) [84] states that graph databases are differing from

relational database models with two fundamental properties; index-free adja-

cency, and semi structured data. Graph databases support index-free adjacency;

meaning that each node knows the location of its adjacent nodes. Thus an index

lookup becomes unnecessary. The data is gathered by accumulating the informa-

tion of nodes and their links. This allows accessing results faster than relational

database models. Graph databases also support semi-structured data explained

in document databases section. Additionally join operations are unnecessary for

graph databases because a graph scales itself naturally as data increases.

Some examples of graph databases are:

• Neo4j is developed by Neo Technology in 2007 [19]. It is the most popular

graph database product and a well documented open source project. It is

built-in Java and fully transactional. Community edition and Personal ver-

sion of Commercial subscriptions are free, whereas Start-ups and Business

& Enterprise editions requires certain amount of fees. It is cross platform

and working on Linux, Mac, and Windows. Other than Java, Neo4j has

many drivers and supports .net, JavaScript, Ruby, Python, PHP, Scala,

and Clojure which makes developers flexible to play with it. With the re-

lease of version 2.0, it has a user interface too. It is very easy to install

and connect by just selecting folder path from your files and works through

your browser with REST API. There are nodes and relationships between

them. There is not any limit on the number of nodes. Query language of

Neo4j is called Cypher. Both nodes and relationships can now be labelled.

This makes searching faster and improves indexing when writing queries.

• AllegroGraph is offered by Franz Inc. [3] It is initially aimed to sup-

port Resource Description Framework. It is cross platform and working on

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 50

Linux, Mac, and Windows. It has client interfaces (similar to Neo4j) for

Java, Python, Ruby, Perl, C#, Clojure, and Common Lisp. It uses Gruff:

A Grapher-Based Triple-Store Browser for graphical query builder. The

most important usage of AllegroGraph is RDF triples.

• Trinity is offered by Microsoft in 2013 [29]. It uses a memory cloud so that

it is a memory-based graph database supporting low-latency online query

processing. It supports only C# APIs for now. It can run in two modes;

embedded and distributed. It is not open source but still in development.

• InfoGrid is registered to NetMesh Inc. since 2010 [16]. It is described as

a Web Graph Database aimed to make web applications on a graph system

easily. It is an open source project and still being in development with

different projects such as InfoGrid Model Library Project, InfoGrid Probe

Project, and etc.

• BrighstarDB is developed by Khalil Ahmed and Graham Moore [6]. It

is scalable graph database for .NET platform and can be used as an Azure

service. Its query language is LINQ. Its difference from other products

comes from providing an Entity Framework model for data storage.

• TitanDB is a scalable distributed graph database offered by Aurelius in

2012 [28]. It is build on Apache Cassandra, open source and supports

billions of nodes. There are three main storage back ends; Cassandra,

HBase, and Oracle Berkley. In order to make a search, it should be first

indexed. It uses a native integration with TinkerPop graph stack. Its query

language is Gremlin, uses Frames as object-to-object mapper, and graph

server is Rexter.

3.3.3.4.1 Graph Databases Applications

Graph databases work best when a social networking is large part of the ap-

plication such as Facebook and Instagram. Because Graph databases rely on

traversing over linked data. You can look for what people are liking, buying,

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 51

posting. After gathering these informations, you can create algorithms to recom-

mend pages to users related to their activities that have been done before. You

can create queries and ask for specific records such as “which of my friends like

product A but not product B and have never been to city C?”. Graph databases

are strongly related to the aim of our project and its working principles. There-

fore, we chose to develop a graph database to compare graph design with the

relational model in Chapter 5.

3.3.3.4.2 Graph Model

Graphs are composed of two main components; vertices (V), and edges (E).

A vertex is used to represent an object within the context of the model and

sometimes referred as node. An edge is used to represent connections between

vertices. Thus, they are used to create relationships among nodes. This structure

together is called as a graph (G=(V, E)). In order to connect two nodes, one

edge should be used. Directions of edges can be specified, therefore that kind of

graph will be a directed graph (see Figure 3.5). If edge directions are not specified,

then this graph referred as an undirected graph (see Figure 3.5). From node A to

node B, and from node B to node A will be the same edge.

Figure 3.5: An undirected graph (right), and a directed graph (left)

Graphs on Figure 3.5 are labelled graphs, because nodes are labelled as A, B,

C, and D. A path from node A to node D is shown with bold edges below:

Consider this scenario; Tony is a friend of both Henry and Kate. He works

at Oxford and Kate owns a Mercedes. Figure 3.7 is a representation of a graph

database resulted from previous scenario. It can be understood from the figure

(on the left) that graph databases are really whiteboard friendly. It is easy to

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 52

Figure 3.6: A path from A to D

Figure 3.7: A graph database example

model a graph database on whiteboard by drawing initial ideas quickly. Then as

the time passes and the model can be improved easily by drawn modifications

and transfer to the computer (on the right) before starting to code the database.

One or more relational tables can be merged into a single graph in graph

database design. Let us combine Table 3.1, 3.2, and 3.3 and design a graph

database.

First, we need to decide nodes and their types. StudentID, Name, and Sur-

name attributes are related to a student object in Table 3.1. However, Depart-

ment is not dependent on students, therefore it can be separated from students

and become another object itself. Since Advisor attribute in Table 3.2 is also not

dependent on students, it can be separated too. In Table 3.3, SudentClub is an

object in real world. Hence, we have 4 types of nodes; Student, Department,

Advisor, and StudentClub.

Now, we need to create relationships and their directions between nodes. A

student studies at a department, therefore the relationship from a student node to

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 53

a department node can be study at. A student may be joined to a club, therefore

the relationship from a student node to a student club node can be joined. An

advisor coaches or guides a student, therefore the relationship from a student node

to an advisor node can be guided by. Hence, we have 3 types of relationships;

STUDY AT, JOINED, and GUIDED BY.

Finally, our graph database will look as in Figure 3.8.

Figure 3.8: Student graph database

There are various graph database products in the market as we listed before.

We decided to design our graph database using Neo4j in Chapter 5. Because it is

free, easy to install, well-documented, portable, mature, and supported. Cypher

is easy to learn, similar to SQL. It meets all needs of TrendPin when it comes

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 54

to huge amount of data management. We explain how Cypher processes data in

the next section.

3.3.3.4.3 Cypher Query Language

Although there are different relational database management systems, most pop-

ularly MySQL, Oracle, DB2, Access, and MSSQL, SQL became a standard query

language for those and more products. As for graph databases, there are various

query languages such as Cypher and Gremlin. Since Neo4j works with Cypher,

we discuss this language by providing example queries on various graph models.

Cypher developers tried to create an easy to read query language which is

enriched with mimics of nodes and vertices of a graph. A simple Cypher query is

composed of MATCH, WHERE, and RETURN clauses in order to retrieve data from

graphs.

• MATCH: This clause specifies a searching example or pattern on the graph.

It is an illustration of the searched information. It uses left and right

parentheses (()) to indicate nodes, dashes (-) to indicate relationships,

left and right angle brackets (< >) to indicate the direction of relationships,

square brackets ([]) and colons (:) to indicate relationship names.

• WHERE: This clause is similar to SQL’s WHERE clause. It filters matching

results with respect to a given criteria.

• RETURN: This clause defines nodes, relationships, or properties to be dis-

played to the user.

Let us write a simple Cypher query below for the graph on Figure 3.7 to find

the name of the person who works at Oxford. We first need to find the node which

represents Oxford, then we need to filter the relationship labelled with WORKS AT

between Oxford and the person we are looking for. Finally, we need to return the

name of the corresponding person.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 55

1 MATCH (u) -[:WORKS_AT]-> (p)

2 WHERE p.name = "Oxford"

3 RETURN u.name

As a result, it returns one record which is Tony. Person node is represented

with u, and workplace node is represented with p. Relationship between these two

nodes is represented with WORKS AT label. WHERE statement filters workplaces

whose name is Oxford and associates it with node p. RETURN statement chooses

only name attribute of people found and displays to the user.

As for another example, let us find who owns a Mercedes. We first find the

node which represents Mercedes, then we filter OWNS relationship with Mercedes

and the person. However this time, we are going to change the direction of the

relationship, in order to prove that direction is related with the node we are

looking for in the graph. Then we return the name of the corresponding person.

The result will be Kate, and the query below does returns it.

1 MATCH (c) <-[:OWNS]- (u)

2 WHERE c.model = "Mercedes"

3 RETURN u.name

In graph databases, there is no need to join tables as in relational databases.

Everything is encapsulated on the graph. If there is a node with no connection

to the graph, it can easily be connected by just creating a connection. Cypher

provides nearly all aspects of SQL and more, in terms of data manipulation.

Graph traversals are easy with Cypher. There is even a function to find shortest

path shortestPath(). On the other hand, Cypher supports the followings:

• Sorting items with ORDER BY

• Counting the number of records with COUNT

• Returning distinct results with DISTINCT

• Limiting the number of records with LIMIT

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 56

• Aggregating values in the result set with SUM

• Creating chains among query results with WITH

• Allowing indexes with USING INDEX,

In Neo4j, nodes can be labelled. The advantage of labelling is to increase

search speed by restricting search conditions on requested labelled nodes, rather

than searching the whole graph. Have a look at the students graph in Figure 3.8

and find how many students are guided by an advisor named Andrew Garland.

If the nodes are not labelled, the query would be scanned all over the graph.

However, this time only the nodes labelled with student, and advisor will be

enough to get the correct results. Since the question asks to find how many of

them, we use COUNT clause in RETURN. There are two students who are guided

by Andrew Garland on the graph, hence, the result of the query bellow will be 2.

1 MATCH (s:Student) - [:GUIDED_BY]-> (a:Advisor)

2 WHERE a.Name = "Andrew Garland"

3 RETURN COUNT(s)

Cypher uses CREATE, SET, DELETE, and REMOVE statements to do modifi-

cations on a graph.

• CREATE: This clause is used to create new nodes, as well as new relation-

ships. Creating a new node requires a node identifier, a label, keys and

values inside curly brackets (). On the other hand, creating a new relation-

ship requires node mimics before and after the relationship, and optionally

directions.

• SET: This clause is used to define new values and do the change on nodes

or relationships.

• DELETE: This clause is used to delete existing nodes or relationships.

• REMOVE: This clause is used to remove labels or properties of nodes or

relationships.

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 57

In order to add new data on a graph, first new nodes should be created.

Basically just using CREATE clause and its requirements are enough to create

new nodes. Let us add a new node to student graph we illustrated in Figure 3.8

using the query below:

1 CREATE (s:Student {StudentID: "20130601010",

2 Name: "James",

3 Surname: "Rhodey",

4 RegistrationDate: "26.09.2013"})

In this query, s is the node identifier, student is the label, StudentID,

Name, Surname, and RegistrationDate are keys, 20130601010, James,

Rhodey, and 26.09.2013 are values.

Creating a node does not mean that it will be connected to the graph imme-

diately. To create a relationship, first MATCH clause is required to find the nodes

which are going to connect each other. Additionally WHERE clause helps to match

nodes with given properties. Then, CREATE is used to create the relationship.

Considering student graph on Figure 3.8 again, let us say that James is registered

to Aikido club and we want to add this node to a student club node. We use the

following query:

1 MATCH (s:Student), (c:Club)

2 WHERE s.StudentID = "20130601010" AND

3 c.Name = "Aikido Club"

4 CREATE (s) -[:JOINED{ id = "5"}]-> (c)

Updating a property of a node can be done by SET clause. To do this, first

MATCH, and WHERE clauses are again required to find the nodes which will be

affected from updates. Then, SET clause updates selected values. Considering

Figure 3.8, Elena Gilbert, whose student id is 20130703225, wants to change her

department from Public Relations to Public Relations. In this situation, both her

department and her StudentID need to be updated. The query below provides

these updates:

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 58

1 MATCH (s:Student)

2 WHERE s.StudentID = "20130703225"

3 s.Name = "Elena Gilbert"

4 SET s.StudentID = "20130103225" AND

5 s.Department = "Computer Science"

Deleting a node or a relationship is provided by DELETE clause. Consider

Figure 3.8 once more and assume that a student, whose name is Susan Storm, left

from Envionmental club. Firstly, MATCH clause needs to scan students who are

joined student clubs by representing JOINED relation with r. Secondly, WHERE

clause narrows these results to the Susan Storm and Environmental. Finally,

relation r gets deleted as follows:

1 MATCH (c:Club) <-[r:JOINED]- (s:Student)

2 WHERE s.Name = "Susan Storm" AND

3 c.Name = "Environmental"

4 DELETE r

3.4 Summary

In the relational databases, the information is kept in the form of tables and

attributes. Information is then retrieved from many tables by join operations.

It is also possible to use constraints on the query that can be used due to the

qualification of data that is being searched for. Atzeni et. al. (2012) [38] claims

that relational database models are used for structured data more than 30 years.

Technology is not stable. It is changing very fast. During all those years re-

lational database models have been compared with new ideas such as object

oriented databases. With the introduction of NoSQL, researchers, developers,

and scientists are started to compare relational database systems and NoSQL

systems. According to a White Paper from Datastax (2013) [49], technology

leaders are now looking forward to directly move to NoSQL systems rather than

CHAPTER 3. RELATIONAL DATABASES AND NOSQL 59

just considering to have a NoSQL based system or not.

As opposed to the table structure of relational database models, NoSQL has

no tables. Instead, there are key-value stores. The purpose of these stores is to

extract data easily, in a simple format, and manage it to increase the efficiency

while avoiding the problems caused by the latency of data generation. Data is

stored both in a JSON or XML document format. Therefore, there is no join

operations, and no complex queries are needed.

ACID, properties are the core attributes of relational database models. In

order to improve performance and scalability, Nance et. al. (2013) [77] states

that NoSQL database systems are not usually being tied to these attributes.

Thus, another term called BASE has been emerged. On the other hand Singh

(2013) [80] states that although NoSQL data models do not usually support

ACID attributes of relational databases for scalability reasons a new platform

called FoundationDB is now able to combine ACID and NoSQL transactions well

enough.

Graph databases provide easy data modelling as graphs on the board before

even writing any codes. By using this advantage, they became popular among

other NoSQL models. They are very suitable when modelling social graphs in-

cluding many relationships among thousands of objects. Horizontal scaling is

another advantage of graph models. Traversals are faster with provided func-

tions even depth of the paths are huge such as “friends of friends of friends”

relationships.

There are various NoSQL models, which we have not discussed in detail.

However, we chose graph databases in addition to relational model for this thesis

project, therefore we explained graph model in detail. In the next section, we

present TrendPin as a Big Data project.

Chapter 4

TrendPin

4.1 Introduction

Online shopping is a popular platform for many people, who like to buy products

or services through the Internet using technological devices such as computers,

tablets, or applications on smart phones. There are a lot of advantages of this

kind of shopping. For example, one can check e-shops quickly for specific items

at home, at job, or even walking outside, since they are available 24/7. Price

comparisons are also very easy by just typing the name of the item on different

online stores and clicking the item links. Therefore, there is no need to run

from one shop to another and check those items. If a digital media has been

purchased, it can immediately become available to download. On the other hand,

if a product has been purchased, package can be delivered to anywhere the user

wishes. Of course, there are some disadvantages too. For instance, payments

are usually being done by credit cards, cheques, or pre-paid cards. However,

some e-shops provide cash on delivery options too. Privacy and security are also

problematic. Some users do not want to share personal information with these

kinds of providers.

TrendPin is a social network founded by Murat Demir and Kerem Işık in

2012. It is an online shopping system which completely redefines this experience

60

CHAPTER 4. TRENDPIN 61

by adding a social dimension on it. It aims to reduce doubts when buying a

product with special features to decide whether it is good, bad, worth buying,

or even allows you to see if it has already been bought by your friends. These

features makes TrendPin the best platform to make people better choices when

doing shopping on the internet.

Figure 4.1: Homepage of TrendPin

4.2 Features

There are mainly two features of TrendPin; online shopping and social network-

ing. You can think something like Amazon meets Facebook at first. However,

TrendPin is far more beyond that mentality.

First of all, users have to connect with their Facebook account and invite their

Facebook friends to TrendPin in the first version of the system. There are user

profile pages and product pages in TrendPin. After they personalized their profile

page, they can search for a product which they wish to buy or just get to know

more about it. On a product profile page (see Figure 4.2), there is a picture (see

Figure 4.2–a), name (see Figure 4.2–b), and description (see Figure 4.2–d) of the

product, as well as the prices of the same product for different firms (see Figure

4.2–f). When the user clicks to the links of the firms, they can be redirected to

the product page on their website too.

CHAPTER 4. TRENDPIN 62

4.2.1 Core Features

There are three buttons (see Figure 4.2–c) which are labelled as;

• Like

• Have

• Buy

Figure 4.2: Profile page of a product

These three buttons are essential features for the core idea of TrendPin. When

the users click one or more of these buttons, it will be shown on their profile page

in a box (see Figure 4.3) to show however they indicated that product; either

as they like or have, and their picture will be shown on that product’s page as

well. The reason behind this idea is that if the friends of users want to buy a

CHAPTER 4. TRENDPIN 63

product that these users already have, friends of them can see their picture on

the product’s page, and can ask questions and opinions about it easily by just

clicking to the users picture (see Figure 4.2–g and 4.2–h).

Figure 4.3: Profile page of a user

As in the most online shopping applications, the user can share their com-

ments, add pictures and videos, share links, and etc. about the product on its

profile page, or their own profile page using comment text field (see Figure 4.2–e)

by adding a mention character right before the name of the product. In TrendPin

the users have to use plus sign (+) in order to mention a product. Here, another

important feature of TrendPin should be underlined. On Figure 4.2–e and profile

page of a user (see Figure 4.3), there are four special buttons which are labelled

as;

• Buy

• Have

• Help

• Like

CHAPTER 4. TRENDPIN 64

Three of these buttons are the same we mentioned above on product profile

page, and one additional ”Help” button has been put there. This is also essential

for TrendPin. The users can mention a product not only by just writing comments

or attaching media to it, but also can specifically indicate whether they are going

to buy, they already have, they request help, or they like that product. After

creating the post, their friends can see it on their news feed screen and write

comments to that post. This makes it easier to express the users thoughts to

their friends, and much efficient. With this kind of sharing, friends of the users

would like to leave comments related to specific reasons. For instance, if it is a

Help post (see Figure 4.4), it is assumed that the user will get comments about

helping to the specified problem.

Figure 4.4: A Help post about a product

4.2.2 Additional Features

There are additional features of TrendPin and they are listed below:

• What the users share can be also posted on their own Facebook profile page,

if they enable it from the settings panel.

• TrendPin can suggest to the user to the products which they may like in

their user profile page (see Figure 4.3) based on the previous activities of

them as well as their friends on the application.

• It is also possible to compose and send instant messages to the friends by

clicking to messages icon (see Figure 4.5), as well as reading the ones the

CHAPTER 4. TRENDPIN 65

users get from their friends.

• The users get notified by any activity that happened about them and the

products they interacted with, and observe these on the notification panel

like other social networks such as Facebook and Twitter.

Figure 4.5: Messages Panel

TrendPin is a powerful online shopping platform with really different features

than other platforms are providing today. Initial version of the system is designed

with a relational database model. Since it is also a social networking platform

with thousands of users and products, it is started to generate data large in

volume. Users can do many activities using it at any time, so that velocity of

creating data is high. Shared posts can vary by containing unstructured data as

text or media files. Because of these reasons, TrendPin is a system that generates

Big Data, thus making it very suitable to convert its database into a NoSQL

database and do research for Big Data analysis.

4.3 TrendPin as a Big Data Project

When this project is started, TrendPin was just an idea. There were only discus-

sions about the features, how to add more and improve them without considering

CHAPTER 4. TRENDPIN 66

design and implementation details. All we have were prototypes of screens, noth-

ing more. As discussions went on, design and implementation details of the

system emerged and we agreed on one important fact; TrendPin is a Big Data

Project.

To be able to say that a system contains Big Data, there are couple of criteria

to be considered. We need to look at the features of Big Data which we have

discussed in detail in Chapter 2. What makes Big Data is the 3V’s concept:

• As for volume, there are millions of datasets in the database of TrendPin

that are comes from user interactions, products, and transactions. Hence,

the volume is big.

• As for variety, many forms of data can be created, or uploaded to the

system. These include text data during chatting via messaging interface and

commenting on products, or other users’ posts, uploading different types of

media such as image and videos, inquiry data from searches, numerical data,

status updates, and etc. Therefore, data generation is unstructured.

• As for velocity, users can post or interacted with anything at any time,

product files are checking everyday regularly to update prices on various

stores. The results should be available immediately. For these reasons,

data creation speed is high.

In a usual online shopping application, there are products to sale and the

users can interact with the system to choose, pay, and wait for their product to

be delivered. Now, the definition of TrendPin includes social networking. Which

means that users are not standing as individuals in the database. There is a

friendship relation which creates connections among different users. As a result,

this creates a platform to share common interests, ideas, requests, and more.

When thousands, millions, even billions of people start to interact with such a

system, there will be a tremendous amount of data generation over the cloud to

be handled. As time passes, some portions of the data need to be transferred to

other servers. Relational model fails to process such interactions and the system

CHAPTER 4. TRENDPIN 67

will surely get slower. That is the main reason of moving to NoSQL trends, and

for this project, we wanted to try graph databases. We have already discussed

that when a system contains a social networking procedures, graphs work the

best.

4.4 Summary

In this chapter, we introduced TrendPin, which combines online shopping with

social networking to provide an unusual shopping experience. We discussed core

attributes of the system to differentiate it from other e-shopping applications.

The system is social, meaning that the users can not only purchase items or ser-

vices, but also be social by expressing their feelings, desires, opinions about their

expenses, as well as getting knowledge of the products that their friends already

have. Moreover, the users can message with their friends, get recommended of

the products they can like and maybe buy in the future. We have also explained

why TrendPin is a Big Data project. In the next chapter, we define different data

models and analysis of the system.

Chapter 5

Different Database Models For

TrendPin

5.1 Introduction

We have explained in Chapter 4 that there was not any implementation of Trend-

Pin before we start this thesis work. It was challenging to start to develop such

a system in terms of design, coding, and analysis due to the fact that everything

was started from scratch. The aim of this thesis work is to design relational and

graph models and test their performances on the system.

Initially, user interfaces of the system are created based on the screenshots.

The main purpose of this phase was to create user-friendly and easy to use inter-

faces which provide all of the requirements within context of the problem. After

user interfaces are agreed to work best with the system, implementation phase

for the application began. Since the implementation is not the concern of this

study, we are going to focus on database designs behind the system.

TrendPin is designed to work with a relational database management system

in the first iteration. In this version, data is being held within relational tables.

Second version of TrendPin is designed using graph databases. Data is being

68

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 69

stored and handled using a graph structure. We explain how these two differ-

ent data models are designed, compare query results, and discuss our findings

throughout the rest of this chapter. Moreover, TrendPin was in under devel-

opment throughout this thesis study. Therefore, it should be keeping in mind

that TrendPin is supposed to keep improve by applying updates periodically.

Therefore, in two of our versions, the system lacks some of the features such as

registration with username and password.

5.2 Relational Data Model

In the first iteration, a relational model is designed using ASP.NET technology

with Microsoft SQL Server database product. More importantly, before rela-

tional database model has been created, it has known that a graph model for

this project is going to be designed. Therefore, this situation affected relational

design decisions in terms of table separation. For instance, there is a table called

UserProductRelation which corresponds to the relationship between graph

nodes.

Relational model consists of fourteen different tables which are listed below.

The reason behind this partition approach is to avoid violation of normalization

rules which we have covered in Chapter 3. Thus, retrieving information some-

times requires many join operations and increases retrieval time inevitably. We

explain table details by stating attributes, primary keys, relations, and data types

covering all features from authentication to messaging in the following sections.

• User

• Product

• UserProductRelation

• Post

• PostLike

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 70

• FbFriendship

• ProductCategory

• CommentLike

• RelationType

• Comment

• FbProfile

• Follower

• Shop

• Vendor

The most important two entities of TrendPin are users and products. Posts

that are created by users are another important entity category. Then comments

on those posts comes to the agenda. There are supportive entities related to

relation type between other entities, and suppliers.

5.2.1 Authentication

There is not an implementation of a system specific registration as we underlined

before. Thus, users can only register via Facebook authentication module. If the

user does not have a Facebook account, the system cannot be usable. Actually,

this design decision was made based on announcing TrendPin to more people,

especially to the friends of the users. Since TrendPin never went fully live, the

number of users would be limited. We thought that if a user registers using

Facebook accounts, more people will at least try the application. In addition, for

such a young system, security is another important property. Facebook Login

API is not only easy but also a reliable way of connection to an application.

When a user tries to connect with a Facebook account, the process returns a

Facebook profile id which can be used to retrieve many information about that

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 71

particular user. This id is a large number and can be stored as floats, or casting

to string. However, the best option to store them as BIGINT(64). It is enough

for TrendPin to store ids. Therefore, FbProfile table (see Figure 5.1) stores only

Facebook ids in FacebookProfileId as BIGINT(64), names of the users in

FullName as strings, and profile photo URLs in PhotoUrl as strings.

In addition, FbFriendship table (see Figure 5.1) keeps Facebook friend lists

of users to suggest invitations of TrendPin if they have not registered yet. This

table has an Id to increments friends as an integer, FbProfileId of the user,

and a user id given by the system in UserId as integers.

Figure 5.1: FbFriendship and FbProfile tables

5.2.2 Users and Products

Users and products are vital entities of TrendPin. Their attributes, and relation-

ships include many details and causes lots of transactions during system usage.

A user is an essential entity of any system. On TrendPin’s database details of

them is stored in User table (see Figure 5.2). It holds user ids inId as integers,

first name of the users in First Name as strings, last name of the users in Last

Name as strings, email addresses in Email as strings, login keys to be used for

login processes after registering with Facebook ids in LoginKey as strings, pho-

tos of users in PhotoFile as strings, last login time of users in LastLogin as

DateTime format, Facebook user names in FbUsername as strings, and Face-

book profile ids in FbProfileId as BIGINT(64).

A product is another essential entity of an online shopping platform. On

TrendPin’s database details of them is stored in Product table (see Figure 5.2).

It stores product ids in Id as integers, name of the products in Title as strings,

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 72

details belong to products in Description, product seller ids in VendorId as

integers, whether products has images or not in HasPhoto as boolean values,

photo URL of products in RemotePhotoURL as strings, product category ids

in CategoryId as integers, prices of products in Price as integers, shop ids in

ShopId as integers, URLs of the products in the website of the shops which are

needed to be redirected to those pages in ShopProductUrl as strings, counting

likes on the products in LikeCount as integers, counting owners of the products

in OwnCount as integers, counting the number of users who wants to have these

products in WantCount as integers, counting help requests of the products in

HelpCount as integers, to keep insertion time of the products in InsertDate

as DateTime format, and the last update time of the products in UpdateDate

as DateTime format.

A relationship between a user and product can be different. A user can like,

buy, have, or need help about a product. For this reason, UserProductRe-

lation table (see Figure 5.2) keeps ids to count relations in Id as integers,

user ids in UserId as integers, product ids in ProductId as integers, rela-

tion ids in RelationId as integers, and the time these relations are created in

CreationDate as DateTime format.

Figure 5.2: Product, User, and UserProductRelation tables

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 73

5.2.3 Posts and Comments

Posts and comments are important features of communication and sharing

thoughts among users. In terms of social networking, they do not refer to the

same object. A post is always created first by a user, and others create comments

below this posts. That’s why they are distinguished from each other and stored

in different tables.

A post can be created by users about products and stored in Post table (see

Figure 5.3). It stores ids of the posts in Id as integers, ids of the users who

created the post in UserId as integers, product ids which are related to the post

ProductId as integers, contents of the post if they do not include any media

in Text as strings, media included content of the posts in FormattedText as

strings, relation ids in RelationId as integers, deciding whether these posts

are help posts or not in IsHelpPost as boolean values, counting likes of the

posts in LikeCount as integers, counting comments left under the posts in

CommentCount as integers, and the creation time of the posts in Date as Date-

Time format.

A comment can be created by users under posts as answers and stored in

Commet table (see Figure 5.3). This table stores ids of the comments in Id

as integers, ids of the users in UserId as integers, content of the comments in

Text as strings, counting likes of the comments in LikeCount as integers, and

the creation time of the comments in Date as DateTime format.

Figure 5.3: Post and Comment tables

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 74

5.2.4 Shops and Vendors

Shops are the places which sell different kinds of products, whereas vendors are

small individual suppliers to provide goods or services. They are separated from

each other to ensure normalizations are under control.

A shop information is given by the administrators and kept in Shop table

(see Figure 5.4). It stores ids of the shops in Id as integers, name of the shops

in Name as strings, and URL’s of the shops in Website as strings.

A vendor information is also given by the administrators and kept in Vendor

table (see Figure 5.4). It stores ids of the vendors in Id as integers, name of the

vendors in Name as strings, and URL’s of the vendors in Website as strings.

Figure 5.4: Shop and Vendor tables

5.2.5 PostLike and CommentLike

A post and a comment can be liked by users and this should be stored in case

there is a need when finding who liked which post and comment (see Figure 5.5).

Figure 5.5: PostLike and CommentLike tables

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 75

5.2.6 Product Categories and Followers

There are different kind of products in the database such as notebooks, mobile

phones, accessories, and etc. This information could be kept in Product table

too. However, it was necessary to separate these two entities to help listing prod-

ucts as a tree structure. For example; products → technology → electronic →
music→ albums.

Categories of a products are kept in ProductCategory table (see Figure

5.6). It includes id of the product in Id as integers, name of the products in

Name, and up level category in ParentId as integers.

Since TrendPin has four distinct post types (buy, have, help, like), when a

post has been created, type of the post should be kept within this entity.

In social network applications, a user may follow another user’s profile page

to observe or get notified by actions. Here, we use this table to model friendship

relations among users. Follower table (see Figure 5.6) holds this information.

It contains ids of users in UserId, ids of the followers in FollowerId, and the

time that they followed in AssociationDate as DateTime format.

Figure 5.6: ProductCategory, RelationType, and Follower tables

5.3 Graph Data Model

In the second iteration, a graph model designed with Neo4j. Integration of Neo4j

with ASP.NET provided by Neo4jClient driver. It was designed after relational

model, therefore knowledge of the application domain was good. However, graph

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 76

design was started from scratch which means from board designs to implemen-

tation road was long. Luckily, designing graphs is easier than relational tables,

since they are not only just an abstraction of real life entities with nodes and

relationships, but also visual transferring is possible.

In our graph data model, there are users and products as nodes, and social

relationships among them. TrendPin has different features varying from com-

menting on products to messaging between users. Therefore, we divided our data

model into six parts;

• Relationships between users and products

• Friendship among users

• Relationship between products and shops

• Creating posts and comments

• Relationship between products and campaigns

• Private messaging

5.3.1 Relationships Between Users and Products

Users and products are different two main entities. Their key-value properties

are similar to the attributes of relational model.

User (GraphUser) information is generated during Facebook authentication

process. A user has many attributes and can be connected to many other entities.

User objects include ids in Id as integers, full name of the users in FullName

as strings, name of the users in FirstName as strings, surname of the users

in LastName as strings, to indicate whether the users are members or not in

IsMember as booleans, to indicate whether the users are administrators or not

in IsAdmin as booleans, email addresses of the users in Email as strings, keys

which are necessary to login are in LoginKey as strings, profile photo URLs in

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 77

PhotoFile as strings, latest login time in LastLogin as Date, Facebook user

names in FbUsername as strings, to indicate whether the users are promoted to

not in IsPromotedUser as booleans, register time in RegistrationDate as

Date, when the last message received in LastMsgReceivedOn as Date, when

the friend lists are updated in LastFriendsUpdate as Date, tokens related

to last access time in LastAccessToken as strings, time of last access tokens

in LastAccessTokenIntTime as Date, time when the last activities have

occurred in LastActivityEpochTime as Date, and to indicate the number of

unread notifications in UnreadNotificationCount as integers.

A Facebook login also returns friend lists of the users. With that friend list,

graph model creates [IS FRIEND OF] relationships between users after they

login to TrendPin for the first time. When a friend is already registered to the

database, [IS FRIEND OF] relationship is automatically created on the graph

model.

Product GraphProduct information comes from vendors and shops as XML

files. After parsing them, GraphProduct nodes are created. These objects in-

clude id of the products in Id as integers, id of the shops and products together

in ShopProductId as string, name of the products in Title as strings, de-

scription of the products in Description as strings, ids of the shops only in

ShopId as integers, ids of the vendors only in VendorId as integers, to indicate

whether products have images or not in HasPhoto as booleans, URLs of the

images in RemoteRphotoUrl as strings, category ids to represent which cate-

gory these products belong to in CategoryId as integers, price of the products

in price as integers, URLs of the shops where these products are sold in order

to redirect when clicked in ShopProductUrl as strings, the number of likes in

LikeCount as integers, the total number of have selections in HaveCount, the

number of buying selections in BuyingCount as integers, the number of need

help selections in NeedsHelpCount as integers, the time when these products

inserted to the database in InsertDate as Date, the time when these products

are last updated in UpdateDate as Date, and to indicate whether products are

deleted for certain reasons in IsDeleted as boolean formats.

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 78

Figure 5.7: Relationship between users and products

A Relationship between a product and a user can be BUYING, HAVE, LIKE,or

NEEDSHELP. When users select one or more of these options, relationships are

created according to chosen types. Here is an example scenario;

“Serhat is a friend of Levent Tolga and Mehmet Berkehan. He likes Iphone 4S

and is buying IPAD 4th generation. Levet Tolga has an Apple MacBook Pro and

likes Iphone 4S. Mehmet Berkehan is a friend of Serhat and Erdem. He needs

help with Iphone 4S and has IPAD 4th generation. Erdem has an Iphone 4S.”

Figure 5.7 shows nodes and relationships among users and products in Trend-

Pin according to the given scenario.

5.3.2 Friendship Among Users

Graphs are very good at designing friendship relationships without any confusion.

Both storing and retrieving such kind of information from graphs are easy. Users

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 79

can become friends with each other on TrendPin. We already show that the

relationship is called [IS FRIEND OF].

Let us have a closer look at friendships considering the following scenario;

“Sercan and Serhat are friends of Mehmet Berkehan. Serhat is also a friend

of Levent Tolga. Moreover, Mehmet Berkehan is a friend of Erdem.”

Figure 5.8: Friendship among users

Here, friendship seems to be in one direction. However, it is allowed to retrieve

data from both sides of the relationships in Neo4j. Therefore, there is no need to

create these relationships with both directions.

5.3.3 Relationship Between Products and Shops

Products are related with users, and also they can be sold in shops. We have

already underlined that product pages include direct links to the shops which

users can click and be redirected to the pages of selected shops. TrendPin uses

XML files to gather product information from more than 20 shops at the same

time including companies such as Gold, Dekoreko, Altinci Cadde, and Teknosa.

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 80

Shops (GraphShop) contain ids of the shops in Id as integers, names

of the shops in Name, as strings, websites of the shops in Website as

strings, URLs of XML files of the shops in XmlUrl as strings, type of the

parsers in ParserTypeName as strings, total number of the products in

ProductCount as integers, and time when the last update has occurred in

LastXmlUpdateTime as Date formats.

In order to design products and their shops with graphs requires [HAS] re-

lationships. Let us illustrate the following scenario on the graph 5.9;

“Gold and Teknosa sell Vestel V-Press Ütü, and Teknosa also sells Samsung

LCD TV together with Darty.”

Figure 5.9: Relationship between products and shops

5.3.4 Creating Posts and Comments

Perhaps the most complex part of graph model of TrendPin is to have a solid,

and consistent graph for creating posts and comments related to that posts.

A user can create a post about a product by selecting one type of buy, like,

have, or help features. When a post is created, it is added to the database as a

GraphPost labelled node which also includes type of the post as an attribute

(buy, like, have, or help). Doing such a setting provides that a post will be

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 81

stay at the top of all relevant comments. Thus, it will indicate its meaning

clearly. In addition, post nodes have post ids in Id as integers, Facebook ids of

the users in FacebookId as integers, id of the users who create those posts in

userId as integers, products that are relevant to those posts in ProductId as

integers, message contents in Text as strings, media of the posts if they included

in FormattedText as strings, creation date of the post in Date as integers.

A user can create a comment under a post. Difference of a comment from a

post is that comments do not have any types. Just exclude type property from a

post and it becomes a comment in the database. Comment (GraphComment)

nodes have ids in Id as integers, products that are relevant to those posts

in ProductId as integers, ids of the users who create those comments in

UserId, message contents in Text as strings, to count total likes of the posts in

LikeCount as integers, and creation date of the post in Date as Date formats.

Relationships are another important design decision here. When a user posts

a post, POSTS relationship is created between a user and a post. Since this post

will be about a product, it is connected TO a product or more products. When

a user creates a comment to a post, WRITES relationship is created between a

user and a comment. Since this comment is written under a post, it connects to

that post with REPLIED TO relationship. If there are already comments above a

new comment, PREVIOUS TO relationship is created to indicate there are more

comments before this one. Moreover, a post can be LIKED by a user.

These relationships are ternary relationships. The order is as follows:

• A user posts a GraphPost to a GraphProduct

• A user writes a GraphComment replied to a GraphPost

• A user writes a GraphComment replied to a GraphPost but also previous

to a GraphComment

The scenario below projected on Figure 5.10 clarifies everything we discussed

about posts and comments.

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 82

Figure 5.10: Creating posts and comments

“Onur creates a post of help about a Iphone 4S and IPAD 4th Generation.

Levent Tolga writes a comment to that post as a reply. Mehmet Berkehan writes

a comment after Levent Tolga’s comment, but it is still a reply to Onur’s post.

Serhat may like Mehmet Berkehan’s comment and Onur’s post. Erdem posts a

post of like as a reply of Onur’s post but it can be shareable as a post.”

It seems quite complex on the example, however it is quite reasonable to link

all of users, posts, comments with that kind of structure. A query to fetch data

can be written easily with to traverse this graph to find what is needed.

5.3.5 Relationship Between Products and Campaigns

TrendPin started to suggest products to its users when graph model has been

created. To provide this feature, campaign (GraphCampaign) objects are cre-

ated. This object includes products which can be shown to users who have

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 83

already searched or purchased similar products. Campaign objects contain ids of

the campaigns in Id as integers, product ids in these campaigns in ProductId

as integers, finish time of campaigns in EndDate as Date, and product objects

within campaigns in Product as GraphProduct formats.

FOR relationship is created when a product needs to be contained within a

campaign.

Figure 5.11: Relationship between products and campaigns

The scenario below and Figure 5.11 illustrates how this feature is modelled.

“Campagin 1 and 12 contain Samsung TV, campaign 1 and 6 contain Vestel

V-Press Ütü.”

5.3.6 Private Messaging

Private messaging another feature of social networking. It is needed to track how

private messages are being sent and stored within entities. First, a user prepares

a message to another user and start a conversation by sending that message.

After a conversation is started, they can continue sending messages to each other

without waiting an answer similar to texting via smart phones’ messaging feature.

For example one can send or receive 4 successive messages before getting a single

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 84

reply.

Message (GraphMessage) nodes have id of the message in Id as integers, ids

of users who first create those messages FromUserId as integers, ids of the users

who receive these messages in ToUserId as integers, contents of the messages

in Text as strings, product ids which these messages are about in ProductId

as integers, creation date of the messages in Time as Date, and IPs of te users in

SentIP as strings.

Relationships are similar to posts and comments, and the order is as follows:

• User X WRITES a message K to user Y

• User Y writes message L REPLIED TO message K

• User X writes message M replied to message K but PREVIOUS TO message

L

Figure 5.12: Private messaging

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 85

Story below is an example of a private conversation. Figure 5.12 illustrates

how private messaging is modelled as a graph.

“Erdem writes a message to Serhat for asking whether he is online or not.

Serhat replies back and Erdem asks another question and conversation goes on.”

The graph indicates who sent which messages to who, also points to previous

messages with ternary relations. When it comes to querying and displaying these

messages, this structure will make it simpler.

5.3.7 Special Cases of Graph Model

After graph model is completed, we wanted to move on with testing. Second

iteration of database design seem fine at first, however the graph design was not

felt complete. It was not answering the following crucial questions:

• What about realizing same products from different shops and vendors? How

can it prevented to create new nodes for the same items?

• What about categorizing products of products such as accessories?

To be able to provide a solid graph model, we had to modify it by eliminat-

ing such problems. Therefore, we introduce information extraction concept in

Chapter 6. With the additions of this concept, graph model will be completed.

5.4 Summary

In this chapter, we discussed two different data model designs and implemen-

tations of TrendPin. We showed tables and their attributes in relational data

model, entities and relationships among them in graph model. We also explained

what each attribute stands for, as well as provided examples to increase under-

standing. We agreed that there is not a single design that fits for all requirements

CHAPTER 5. DIFFERENT DATABASE MODELS FOR TRENDPIN 86

of any system.

Relational models are advantageous because they are in the market for more

than forty years and they have certain steady rules. On the other hand, graph

databases are much newer in the area. They work better on Big Data problems

for sure. We compare performances in Chapter 7, however before doing that, we

discuss information extraction concept in the next chapter to overcome problems

of graph model and complete it.

Chapter 6

Information Extraction

Information systems are being filled with huge amount of textual data which

are coming from multimedia communications. With the increase of unstructured

data that is being generated by users throughout blogs, social platforms, and

other websites, many of those systems are not able to extract useful information

for their specific purposes. The extraction of useful data and convert that into

meaningful entities within the system requires specific techniques. “Developing

intelligent tools and methods, which give access to document content and extract

relevant information, is more than ever a key issue for knowledge and information

management.” (Nédellec C. and Nazarenko A., 2006)[78] To be able to satisfy such

a requirement, information extraction (IE) concept emerges as one of the most

important areas to be researched.

6.1 Definition

Information extraction is a very crucial concept when searching, indexing, and

matching patterns through a huge amount of data. Origins of the problem comes

from generation of relational data by using natural language texts in 1970s (Wu

F. and Weld D.S., 2013)[86]. The main research areas of information extraction is

natural language processing, web mining, and information retrieval. Furthermore,

87

CHAPTER 6. INFORMATION EXTRACTION 88

there are huge domain-specific applications which IE is an essential work to be

done such as biological literature mining, and financial analysis.

6.2 Method Explanation

Basically IE systems are focused on searching information that is related with

what the user needs to see.[66] The aim is to identify the names, objects, and

their relations between those entities from unstructured texts. “Two fundamen-

tal tasks of information extraction are named entity recognition and relation

extraction.” (Jiang, J., 2012) [68]. Considering we have a sentence as “Last

week, Microsoft corporation has announced that they have agreed to establish a

partnership with Pargesoft and COMEL.”. Now, there will be a function called

information extractor which contains some arguments to perform a named en-

tity recognition and relations between these to satisfy a relation extraction. The

goal of this extractor is to generate two arguments and a relation as a triple for

all other relations. This summary information will then help to solve problems

regarding to the issue. Here we would have such a function;

partnership(company1, company2, date)

It can be said that IE is a text exploration method (Nédellec C. and Nazarenko

A., 2006)[78]. Another example in Figure 6.1 explains quite well about how

information extraction tidies up unstructured data.

Voorhees (1999) explains that there are two main activities in information

retrieval systems; indexing and matching.

• Indexing is the process of finding some of the suitable entities to represent

texts.

• Matching is the process of finding the similarities between two distinct

representations.

CHAPTER 6. INFORMATION EXTRACTION 89

Figure 6.1: Information extraction example[21]

When these two operations are done and analysed successfully, with the help of

additional structures such as knowledge bases and etc., systems can work smarter

and more efficient. Based on this assumption, we have implemented an IE system

for TrendPin, and explain the details in the following sections.

6.3 Issues with Graph Model of TrendPin

Big Data contains semi or unstructured information as we discussed in Chapter

2. That information is meaningless, unless it has been processed with the help

of the methods we explained in the previous section. Now, we have a huge data

collection supplied by different vendors within our graph database. We wish

to somehow extract structured information from that data in order to direct

our system operating smarter. By doing so, our goal is to improve searching

throughout the graph database and display the results to the users including

meaningful information automatically.

While we were analysing our graph database design we faced with three sig-

nificant problems:

CHAPTER 6. INFORMATION EXTRACTION 90

• Automatic links between related products

• Similar products from rival vendors

• Displaying smarter results

6.3.1 Issue I: Automatic Links Between Related Products

In graph database of TrendPin’s, we have many different products from mobile

phones to televisions and even clothes. We get our data from different vendors in

XML format. After we parse the file and insert into the graph database, we create

relations among different users, and also between products and users themselves.

Up to this point everything seemed appropriate for our purposes. However, when

we think about how an accessory is related to its product, the design has stuck.

In addition, when we want to divide items into distinct categories, same situation

would seem continue to occur.

Figure 6.2: iPhone and some of its accessories

For instance, an iPhone 5S case is an accessory of an iPhone 5S. It cannot be

used on other iPhones. At the same time, an iPhone 5S charger and an iPhone

headphones is also accessories of iPhone. There are many more items which

should be treated as accessories of some other products such as tripods, selfie

sticks, cases, screen protectors, and etc. Additionally there are some exceptional

cases that should be taken into account; an iPhone 4S charger cannot be used

on iPhone 5S. Headphones can also be an accessory of MP3 players, computers,

and tablets. How can we decide which item is an accessory of another item

automatically?

CHAPTER 6. INFORMATION EXTRACTION 91

6.3.2 Issue II: Similar Products From Rival Vendors

We said that we get our data in XML format. After parsing these files, the sys-

tem updates relevant nodes and relationships if they are already exist in graph

database. If they don’t exist, it creates new ones. Since we don’t have only one

vendor or supplier, we get XML files written in distinct formats. For example

one tuple of a product from a vendor includes it’s web link, price, image, model,

and full name respectively. Whereas, another tuple for the same product from

another vendor includes product’s id, web link, price, category, image, full name,

model, description, and credit card purchase choices. Therefore, this data can-

not be matched exactly when a complete keyword matching operation has been

performed due to the difference of order and attributes of tuples. Moreover, full

name of the same product can also be different in different vendors. Below is an

example of product names in three different XML files;

• iPad Mini 64 GB Wi-fi White MD533

• iPad Mini 64GB Wi-Fi White Tablet PC

• iPad Mini 64GB White

In the first one, full name of a product is written with a model number MD553

which we have no idea about what it means. In another XML, the same product is

labelled with ”Tablet PC” indicator. In the last one, it is not stated that an iPad

Mini has Wi-Fi (we know that iPad Mini has Wi-Fi feature by default). Although

all of these three products are representing the same product, the strings are not

completely identical. Therefore, exact matching is not possible. How can we be

sure about these three products are actually the same?

6.3.3 Issue III: Displaying Smarter Results

TrendPin has a very huge database with thousands of different types products.

When users search a product, the system should be able to display the best and

CHAPTER 6. INFORMATION EXTRACTION 92

relevant results for the users at the top. For example, one may want to find

information about a smart phone or its accessories such as Samsung Galaxy S5

and start to type “SAMSUNG GAL”, the system should try to auto complete it.

Figure 6.3: Searching a product using TrendPin

Auto completing is not a challenge here because it is easy to implement.

However, when there are many variations of the same product such as white,

black, blue, and garnet red in color or 16 GB, 32 GB, and 64 GB in memory,

an another issue emerges. Different users care differently about those variations.

Especially for Apple products, size of the memory is an affecting factor for users

when buying, since it cannot be changed later on. How can we decide which one

should appear at first?

6.3.4 Solution

When we combine and think about those three independent issues, we can see that

there is a common feature; all of them are about products, not users; specifically

they are about “product names”. And the product information comes from XML

files as texts. These texts are actually unstructured data and if we can bring them

a meaning, our issues will then be solved naturally. The situation here leads us to

CHAPTER 6. INFORMATION EXTRACTION 93

the information retrieval techniques which we are explaining since the beginning

of this chapter. There is a term called ”knowledge base” which will be terrifically

helpful to solve our issues.

Knowledge bases and information retrieval techniques indeed helps to fasten

searching processes. On the other hand, using an intelligent subsystem, search re-

sults are now much more better for any users of the system. They help to analyse

the problems that are arising from information extraction. Another importance

of a knowledge base is that it stays as a huge information resource for the future

learning to make data more meaningful. Our primary goal is to understand what

a knowledge base is, and then build one specifically for our system. After that,

we will perform “knowledge based information retrieval methods” to overcome the

problems we listed before.

6.4 Knowledge Bases

A knowledge base is a repository which is organized in a certain form depending

on information retrieval and may be based on both a human controlled process

which consists of textual physical documents, or an artificial intelligence con-

trolled process which operates automatically.

”A knowledge base typically contains set of concepts, instances, and relations”

(Deshpande et. al, 2013)[52]. In the example below, there is a set of concepts

including all, schools, countries, elementary, secondary, and cities. These con-

cepts arranged in a hierarchical order starting from the most general to the most

specialized words. Instances are known examples of the most specialized concepts

such as Hillcrest Public School (it is an elementary school in London), Saunders

Secondary School (it is a secondary school in London), and London (it is a city).

There are also relationships between them to indicate the type of instantiations

of instances from concepts.

Generally there are two kinds of knowledge bases; domain-specific knowledge

bases and global knowledge bases. Deshpande et. al. (2013)[52] underlines

CHAPTER 6. INFORMATION EXTRACTION 94

Figure 6.4: An example of a Knowledge Base

that Google Scholar and especially product based databases which are built by e-

commerce web systems are domain-specific knowledge base examples. In our case

we have to build and use a domain-specific knowledge base because of TrendPin’s

current structure.

Other examples of knowledge bases can be listed as follows;

• http://whatis.com/

• http://docs.nexcess.net/

• http://www.time4advice.co.uk/kb/

• http://knowledgebase.mediafire.com/

• http://helpdesk.nex-tech.com/

• http://www.ctera.com/kb/

• http://realestateexpress.com/

• http://www.efsumb-portal.org/ep/

These websites contain huge amount of meaningful data and are still open to

research for the same purposes.

CHAPTER 6. INFORMATION EXTRACTION 95

6.5 A Knowledge-Based Information Retrieval

Module for TrendPin

There are different approaches when creating a knowledge base for an application.

Each approach requires distinct steps to be completed. However, all of those will

fulfill the same goal. For this thesis work, we generalized entire knowledge base

creation process within three distinct steps:

• Step 1: Creating a domain-knowledge

• Step 2: Automatic feature extraction

• Step 3: Combining knowledge base with keyword search

6.5.1 Creating a Domain-Knowledge

Domain-knowledge is basically a text file which contains concepts and their as-

sociated values. Before creating a domain-knowledge, we ran some queries over

our database and found word frequencies of the products which we have. This

information helped us to find more reliable entities and bought us some time.

Word Frequency
kol 13202
saati 13177
erkek 8579
kolye 5677
bayan 5660
siyah 5532
ml 4939
kadın 4458
bileklik 4148

Table 6.1: Top ten word frequencies

After fetching the most used words, we classified and formed two groups as

concepts and values for our knowledge domain. At the same time, we decided

CHAPTER 6. INFORMATION EXTRACTION 96

that some of the categories should be major ones whereas some of them should be

minor ones. Because this will be very useful to solve our third issue (displaying

smarter results). With the help of word frequency list, we built the domain-

knowledge on Table 6.2.

Category Value
color beyaz, kırmızı, siyah, pembe, bordo, siyah, mavi, mor, turuncu,

yeşil, gri, mor, kahverengi, turkuaz, sarı, lacivert, blue, white, black,
gold, silver, rose, şeffaf

gender erkek, kadın, unisex, men, women
usingPlace kol, duvar
appearance taşlı, desenli, detaylı, baskılı, çizgili, çiçekli, leopar, patchwork, dan-

tel, pırlantalı
material gümüş, altın, kaplama, deri
measure m, cm, mm
supplier casio, asus, apple, samsung, nokia, hp, armani, nacar, nikon, sony,

bosch, philips, siemens, arçelik, lacoste, vestel, esprint, toshiba
size mini, midi, büyük, küçük, uzun, kısa, mega, micro, macro
model galaxy, iphone, ipad, tablet, notebook, xperia, laptop, pc, bilgisayar
weightML ml, 100ml, 50ml, 30ml
clothing gömlek, pantolon, body, t-shirt, sweatshirt, tunik, kazak, bluz,

eşarp, triko, ayakkabı, bot
weight gr, kg
memory 8GB, 16GB, 32GB, 64GB, 128GB, 512GB, 1TB, 2TB
shaper kare, dıkdörtgen, üçgen, daire
phone smart phone, regular
size ön, arka, önü, arkası

Table 6.2: A part of TrendPin’s domain-knowledge

6.5.2 Automatic feature extraction

Now that we have a kind of a digital library as a domain-knowledge, we can start

to do information extraction processes. Manolescu (1998) [75] explains that to

be able to handle with complex data, large information, and perform similarity

searching systems are forced to understand complex information and enable using

it efficiently including faster response times. By doing that, we are be able to

solve our problems in the graph structure, and push its abilities to the next level.

CHAPTER 6. INFORMATION EXTRACTION 97

In our original graph database design, we had users and products as nodes, and

relationships between users and products as well. To be able to do an information

extraction from the knowledge base we have just created, we create links among

products themselves. To do so, we use concepts and values as attributes for

products, and then ask questions about how similar two products are. Let us

explain how automatic information extraction is being done by the system;

Assume that we have two products labelled as X and Y. Normally these

two products have their own attributes within the nodes. Right now, we are

separating some attributes from those products and make them new standalone

nodes. Labels of these nodes comes from categories. In this case, we have three

categories which determine product X and Y in color, supplier, and memory. The

connections between attribute nodes and products are has color, has supplier, and

has memory respectively. Figure 6.5 illustrates whole structure.

Figure 6.5: Knowledge Graph

What remains is that the answer of how similar these two products. With

this type of a structure, it is not that hard to find it. If attributes of X and Y are

CHAPTER 6. INFORMATION EXTRACTION 98

close to each other then we can say that these are very similar products. However,

there is a challenge here; if only one attribute is the same, we cannot say that

they are similar products. Similarly in this example, we cannot even determine

if they are exactly same products or not. Because for this specific example, one

can be an iPad and the other one can be an iPhone. Solution is adding more

attributes such as the size of the products in inches, or etc. Obviously, the more

attributes, the increased opportunity to find similarities.

Figure 6.6: Similarity Connection

There is a similarity function f(s) which takes two arguments as inputs, here

two products with their connected attributes as lists;

ProductX {attribute1, attribute2, attribute3, ...}

ProductY {attribute1, attribute2, attribute3, ...}

CHAPTER 6. INFORMATION EXTRACTION 99

f(s) = (ProductX, ProductY) = ?

At the end, when we can create a link between the products (see Figure 6.6)

according to the result of this similarity function f(s), it means we are close to

solve issue 1 and 2.

6.5.2.1 Additional Operations for Issue I and Issue II

Building knowledge base, having similarity functions are not enough to solve our

issues. There should be additional operations to be performed on the system.

Let us recall first two issues;

• Issue I states that when doing categorization, products should be separated

from their accessories and listed according to that while displaying search

results. How does the system understand which of the products are acces-

sories of other products? This operation should be automatically operated.

• Issue II states that there are more than one vendors who supply the same

products to sell customers. How does the system determine if two products

from rival vendors are actually the same?

Even though we have bunch of similarity functions and their results, the sys-

tem cannot be sure about whether the items are accessories of another items

(because product names never underline when an item is an accessory), or are

they the same products reside in different vendors.

For the first issue, we need to consider an important key point; if a product

is an accessory of another product, its price should be much lower than the other

one. For instance, an iPhone 6 costs around $1074.93, an iPhone 6 EarPods cost

$32.25, an iPhone 6 case costs $40.00, an iPhone 6 charger adapter costs $21.47 in

Turkey. As you can see the price of iPhone 6 is always higher than its accessories.

Therefore checking item prices is a must to deciding the accessories.

CHAPTER 6. INFORMATION EXTRACTION 100

For the second issue, we need to consider another key point; if two products

are actually the same, they can be stored in different vendors even though their

similarities are close to each other. For instance, both companies Teknosa and

Vatan Computer sell Samsung Galaxy S5 mobile phones. The XML files they

sent include textual information about that product. After the system inserting

one of them into the database, it should check when iterating over another XML

whether that item exists in the database or not. With the help of similarity

function, TrendPin decides that these two items are the same. Therefore, it will

never create another node for the same product. However, it will also check their

suppliers. Even though they are very similar, if their vendors are different they

system will know that they are being sold by more than one vendor.

Adding these two additional operations allows TrendPin to overcome first two

issues successfully. How about the third issue?

6.5.3 Combining knowledge base with keyword search

Keyword search is the method to find exact match between searched text and

the item in the database. TrendPin uses Apache Lucene [5] to search anything.

It provides a fast, scalable searching performance as well as incremental indexing

and multiple index searching features. When we put our knowledge base on top

of Lucene experience, we get better and smarter results.

6.5.3.1 Additional Operations for Issue III

Combining knowledge base with keyword search is not enough to overcome issue

III. To recall that, it states there are different product combinations in terms of

color, memory, screen size and etc. Some of them are essential when shopping

such as memory for specific products. By considering this situation, we added

another column to our knowledge base an called it Impact. If a category effects

the user’s choice largely, we set as “impact of this category is major”, else we set

as “impact of this category is minor”.

CHAPTER 6. INFORMATION EXTRACTION 101

Category Value Impact
gender erkek, kadın, unisex, men, women major
memory 8GB, 16GB, 32GB, 64GB, 128GB, 512GB, 1TB, 2TB major
color beyaz, kırmızı, siyah, pembe, bordo, siyah, mavi, mor,

turuncu, yeşil, gri, mor, kahverengi, turkuaz, sarı,
lacivert, blue, white, black, gold, silver, rose, şeffaf

minor

usingPlace kol, duvar major

Table 6.3: A part of TrendPin’s domain-knowledge including Impact column

Last important point is checking if the user already has the product or not.

Usually when a person is searching an accessory of a product, he or she is al-

ready have the product, therefore want to search for an accessory of it. When a

user sets a product as “I have it” in the product’s profile page, search field will

automatically correct to that sentence into an accessory when trying to search it.

By implementing these features, issue III has been overcame.

6.6 Graph Model Changes

Examples in previous sections were great to explain the techniques in theory,

on the other hand they are not efficient to implement on our graph due to the

increased complexity foresights. It would require more types of nodes such as

color, supplier, memory, and etc., as well as more relationships. Instead, we just

created two more nodes labelled with FeatureOption and FeatureGroup.

A FeatureOption node indicates a single feature to tie it to the products.

For instance, Color: Red, Black, Blue. Here, Red, Black, and Blue are options,

Color is a group. FeatureOption nodes include ids in Id as integers, values

of options in Values as a list of strings, and ids of related FeatureGroups in

FeatureGroupId as integers.

A FeatureGroup node ties FeatureOptions together. Some features are major

and changes the product model, whereas others do not change the model. For

example, for iPad color and storage (16 GB, 32 GB, 64 GB) are minor while

CHAPTER 6. INFORMATION EXTRACTION 102

Figure 6.7: Feature extraction in TrendPin

CPU, screen size, memory (512 MB, 1 GB) are major options. The difference is

stored within this node in IsMajor as boolean formats. Additionally, there are

ids of groups in Id, and name of the options in Name as strings.

These two nodes connected with each other by HAS relationships. After that,

FeatureOptions are connected to GraphProduct nodes via MATCH relationships

as in Figure 6.7.

6.7 Effects of Knowledge Based Information Ex-

traction on TrendPin

The effects of knowledge based information extraction can be listed as below;

• TrendPin is now smarter when searching a product. It tries to find out

what the user is looking for without even writing the whole name.

• The system decides when two or more products from different vendors are

the same and does not create multiple product page of the same product.

CHAPTER 6. INFORMATION EXTRACTION 103

• It automatically suggests accessories when the user tries to search for a

product if it is already been purchased.

• It creates an advanced searching page containing all relevant features about

that specific product with check boxes after a product has been searched

for the first time.

6.8 Challenges and Drawbacks of Feature Ex-

traction Methodology

It is inevitably true that feature extraction and information retrieval techniques

are very good at what they intent to do. Especially information extraction is the

perfect way to provide support for the knowledge identification in an automatic

way. However, just like every concept, these techniques have some challenges in

practice.

6.8.1 Challenges

Major challenges of the topic are described by Ciravegna in 2001[44]. He claims

that there are two distinct challenges;

• Automatic adaptation to different text types.

• Human-centred issues in copying with real users.

He explains that the first challenge comes from four tasks of information

extraction such as adaptation of new domain information, adaptation of distinct

sub-languages, adaptation of different text genres, and adaptation of different

document types. is developing methodologies able to fill the gap between the two

approaches in order to cope with different text types. These tasks create very

serious limitation for portability. He also adds that they are not able to cope

CHAPTER 6. INFORMATION EXTRACTION 104

with the variety of extralinguistic structures (e.g. HTML tags, and document

formatting)

For the second challenge, he underlines that information extraction is related

to human-computer interaction during an application development process. Users

does not need to be expert on the area, so that they need to be supported during

the whole adaptation process to maximize effectiveness of the final application.

Apart from those above, Grishman (1997)[59] discusses three design issues on

the topic;

• To parse or not to parse

• Portability

• Improving performance

6.8.2 Drawbacks

Feature extraction is very useful when it is applied reasonable and well. On the

other hand, according to some researchers, there are a number of drawbacks of

using this methodology on the knowledge management systems.

Manolescu (1998)[75] sums up those drawbacks in his article;

• When a new item is inserted, there will be additional processes.

• Feature extraction function is not easy to determine.

• Indexing methods are not always scale well.

• There may be additional storage for the features.

In addition, Guyon and Elisseeff (2006)[61] described more problems and re-

quired needs of the topic;

CHAPTER 6. INFORMATION EXTRACTION 105

• More theoretically grounded algorithms.

• Better estimation of the computational burden.

• Better performance assessment of feature selection.

More research should be done on this area to be able to optimize the methods

and get better performance.

6.9 Summary

Graph databases are very powerful and graph designs can be extended in ev-

ery direction. There is not a single design decision for every graph application.

They are only limited with imagination of developers. Therefore, we show that

information extraction and its methods can also be applied on graph models.

In this chapter, we explained information extraction and its methods. We also

presented problems originated from graph design of TrendPin and related infor-

mation extraction concept with those problems to find a suitable solution. Then,

we implemented a knowledge base for TrendPin and explained implementation

process step by step.

Graph model of TrendPin changed and we illustrated these changes on the

graph. At the end we listed the effects of feature extraction processes on the

system as well ass stating challenges and drawbacks of such methods. In the

next chapter, we compare relational and graph model using queries and explain

results.

Chapter 7

Tests

In this chapter, we discuss the differences of both relational model and graph

models in terms of design challenges and performances via experimental query

results. Note that the main purpose of this thesis work is to provide a comparison

between database management systems. Feature extraction implementation is

applied as a result of graph model design. Therefore, we do not state a comparison

of feature extraction processes between relational model and graph model and

exclude it out from this section.

7.1 Model Comparisons

Querying to expect same result sets on both relational and graph model is of

course the best way to compare two versions of the same application. Simply,

which one operates faster is going to be treated as a better design choice. How-

ever, choosing the best fitting technique usually depends on application domain,

time required to complete the project, and developers experiences. For instance,

when developers experience is low on graph databases, there would be a required

training. If the time is very crucial to deliver the system to the customers, it

would be very difficult to choose graph databases over relational models., be-

cause relational models are already in the market for many years and developers

106

CHAPTER 7. TESTS 107

experience would be much higher. Moreover, some applications may not be suit-

able to design as graphs, in this case other models can be chosen by database

developers.

We divide comparisons into two; experimental query results to measure per-

formances in a timely manner, and remarks on design challenges we face during

the design process of both models in the next section.

7.1.1 Experimental Query Results

We compared two distinct models of TrendPin by executing SQL and Cypher

queries for the same result sets.

We measured running times of those queries in order to show which database

performs better on which operations. We have only tested with reading queries,

since it is believed to be more challenging to retrieve data rather than writing in

terms of velocity.

We ran each query 500 times on a PC which had Windows 8.1 64 bit operating

system, 16 GB ram, Intel Core i7-4700 CPU at 2.40 GHz processor.

For relational model, we used Microsoft SQL Server 2012 database product.

For graph model, we used Neo4j 2.1.7 Community Edition.

Experiments include description of the experiment, SQL query, Cypher query,

and the query results in the form of bar charts with average of all trials.

7.1.1.1 Experiment 1

For the first experiment, we try to retrieve many results and compare how well

two models handle such an operation. To analyse this situation, we want to “find

the list of member friends of users for the given UserId”. Note that some users

may not be members of the system, therefore we exclude them here.

CHAPTER 7. TESTS 108

5.2SQL

6.9Cypher

0 2 4 6 8 10
Duration in miliseconds

Figure 7.1: Average results for experiment 1

SQL query for this experiment is given below;

1 SELECT f.UserId

2 FROM Follower f

3 WHERE f.FollowerId = "UserId"

4 UNION ALL

5 SELECT f.FollowerId

6 FROM Follower f

7 WHERE f.UserId = "UserId"

Cypher query for this experiment is given below;

1 MATCH (u:GraphUser) -[:IS_FRIEND_OF]-> (f:GraphUser)

2 WHERE u.Id = "UserId" AND f.IsMember = true

3 RETURN f, SKIP 0, LIMIT 100

7.1.1.2 Experiment 2

For the second experiment, we try to retrieve results from single type of matchings

and compare how well two models handle such an operation. This is easy for both

models due to the fact that there is not any join operations needed. To analyse

this situation, we want to “find first five products a user has ever selected as

BUYING”.

SQL query for this experiment is given below;

CHAPTER 7. TESTS 109

2.3SQL

4.7Cypher

0 2 4 6 8 10
Duration in miliseconds

Figure 7.2: Average results for experiment 2

1 SELECT TOP(5)

2 FROM User u, Product p, UserProductRelation upr,

3 RelationType rt

4 WHERE u.Id = upr.UserId AND

5 upr.RelationId = rt.Id AND

6 upr.ProductId = p.Id AND

7 rt.Type = "BUYING"

8 ORDER BY upr.CreationDate ASC

Cypher query for this experiment is given below;

1 MATCH (u:GraphUser) -[rel:BUYING]-> (p:GraphProduct)

2 WHERE u.Id = "UserId"

3 WITH p as prod

4 ORDER BY rel.Date ASC

5 LIMIT 5

6 RETURN prod

7.1.1.3 Experiment 3

For the third experiment, we try to retrieve results from multiple type of match-

ings and compare how well two models handle such an operation. Now, we

include join operations for relational model and two times match operation for

CHAPTER 7. TESTS 110

graph model. To analyse this situation, we want to “find the shops of last two

products which a user selected as NEEDSHELP.

4.7SQL

3.4Cypher

0 2 4 6 8 10
Duration in miliseconds

Figure 7.3: Average results for experiment 3

SQL query for this experiment is given below;

1 SELECT sh1.Name, sh2.Name

2 FROM Shop sh1, Shop sh2, Product p

3 WHERE sh1.Id = p.ShopId AND

4 s1.Id = s2.Id AND

5 p.ProductId IN

6 (SELECT TOP (2) prod.ProductId

7 FROM User u, Product P, UserProductRelation upr,

8 RelationType rt

9 WHERE u.Id = upr.UserId AND

10 upr.RelationId = rt.Id AND

11 upr.ProductId = p.Id AND

12 rt.Type = "NEEDSHELP"

13 ORDER BY upr.CreationDate DESC)

CHAPTER 7. TESTS 111

Cypher query for this experiment is given below;

1 MATCH (u:GraphUser) -[rel:NEEDSHELP]-> (p:GraphProduct)

2 WHERE u.Id = "UserId"

3 WITH prod

4 ORDER BY rel.Date DESC

5 LIMIT 2

6 MATCH (prod) <-[:HAS]- (s:GraphShop)

7 RETURN s.Name

7.1.1.4 Experiment 4

For the fourth experiment, we try to retrieve posts of users and compare how

well two models handle such an operation. To analyse this situation, we want to

“find a post of a user given by post id about a product”.

SQL query for this experiment is given below;

1 SELECT p.Id, p.UserId, p.ProductId

2 p.Text, p.FormattedText, p.LikeCount,

3 p.CommentCount, p.Date,

4 u.FirstName, u.LastName, u.Email

5 FROM User u, Post p, Product prod

6 WHERE u.Id = p.UserId AND

7 p.ProductId = prod.Id AND

8 p.Id = "PostId"

Cypher query for this experiment is given below;

1 MATCH (u:GraphUser)-[r:POSTS]->(p:GraphPost)-

2 [:FOR]->(prod:GraphProduct)

3 WHERE p.Id = postId

4 RETURN p, r, u, prod

CHAPTER 7. TESTS 112

3.1SQL

2.9Cypher

0 2 4 6 8 10
Duration in miliseconds

Figure 7.4: Average results for experiment 4

7.1.1.5 Results

• In experiment 1, we wanted to show how a UNION statement in SQL query

performs against Cypher version. According to the average results, SQL

performs better than Cypher.

• In experiment 2, we wanted to see how multiple join operations race against

Cypher equivalence. It appears that Cypher is a bit slower, in contrast to

SQL performance.

• In experiment 3, we wanted to measure how sub queries of SQL with many

tables that join together performs with Cypher. Here, Cypher performs

better against a complex query of SQL.

• In experiment 4, we wanted to retrieve specific results with very straight-

forward queries. Performances of both queries are very close in these trials.

As a result of all the experiments we have conducted, neither relational

databases nor graph databases are best fit for each datasets and queries. They

did not perform identical on different queries, therefore it is not possible to say

that one of them is better. Eventually, it can be said that application domain,

experience of developers, and querying style are significant factors when deciding

which data model should be used for projects.

CHAPTER 7. TESTS 113

7.1.2 Design Challenges

7.1.2.1 Maturity

Databases are not created immediately after requirements are collected. In order

to model a database, requirements should be interpreted in detail. A good de-

sign is only possible with well understood requirements and application domains.

Problems arising from the design is hard to recover when implementation of the

system has begun. Thus, a model should be robust and stable enough to cover

all requirements.

Relational databases are old trends. For more than 40 years, a lot of relational

models created from a lot of different developers. It is not always easy to decide

how to partition tables into two or more. It is up to developers choice and the

experience in the topic. Relational models require normalization operations to

hold for whole database design. The community of relational databases and SQL

includes tons of developers who write on blogs, create slides, share experiences

and examples on the internet. When someone stuck on an issue, it is always

possible to find a solution idea online. For this reason, relational model design is

more mature and advantageous.

On the other hand, graph databases are a lot newer in the market. There

are a lot of products and different programming languages for each. It is not

similar to “learn SQL and use most of the products” mentality. Therefore, it is

not as easy as finding well prepared documents about graph databases. There are

less people in the community to get supported. Neo4j is far the best to provide

developer manuals, provide a stable product, and continuously improve features

and issues regarding to the environment among others. As a result, choosing

Neo4j is a good move and it is more mature than other products, however it is

still not as easy to find solutions when stuck on a problem as relational models

in the community. Since graph databases attract many attentions, this situation

will soon be changed.

CHAPTER 7. TESTS 114

7.1.2.2 Resilience

Inserting, updating and deleting operations do not effect the design conditions

of databases. However, when a relational schema is decided, it is not possible to

go beyond this agreed schema. With the addition of new requirements, it may

be impossible to change columns, add new attributes since it is probably going

to violate all normalization conditions on other tables. It may be complicated to

decide what to do in such situations. Hence, relational models are hard to adopt

changes over time and their resilience is limited.

Graph databases provide easy extensions for new coming data. New labels

on nodes and new relationships do not effect other nodes in the database. It

is as easy as simulating a graph on a board and implement changes on graph

without intervening other entities. Moreover, lacking a scheme allows converting

all requirements into entity and relationship pairs in many different methods. In

chapter 6, we implemented feature extraction addition on the graph and overall

design we provided in chapter 5 did not changed at all. For these reasons, graph

databases are more resilient than relational models for sure.

7.2 Summary

In this chapter, we presented experiments we conducted on TrendPin in terms of

querying with two different database technologies. We show that both databases

perform different towards distinct experiments. In some trials, Microsoft SQL

Server performed better, whereas in others, Neo4j produced faster result sets.

Therefore, it is not a valid statement that one type of database always performs

better. It is up the to problem domain, design of the models, and query contents.

We also discussed both models from maturity and resilience perspectives. We

stated Microsoft SQL Server is more mature than Neo4j. However, Neo4j is still

more resilient and flexible.

Chapter 8

Conclusion

8.1 Summary

The reason behind of upgrading systems is that previous versions are not able to

meet new requirements. These requirements are often system specific. In general

developers want their system to be used easily, work as efficient as it can, handle

related jobs without any problem. Researchers are aware of Big Data challenges;

“Today we are witnessing an exponential growth in the volume and detail of data

captured by enterprises, the rise of multimedia, social media and online social

networks, and the Internet of Things” (Dobre and Xhafa, 2013) [55]. Relational

Database Management Systems can no longer help to solve the problem of Big

Data. Thus they have issues when it comes to manage and analyse it efficiently.

To remind from previous chapter, when the number of users and interactions are

increased, it becomes very complicated for the system to keep itself stable and

work efficient at the same time.

Big Data is a huge area to be researched. Many researchers are agreed on the

solutions are lies within NoSQL. Moniruzzaman and Hossain (2013) [76] under-

lines that there are different alternatives to manage Big Data such as NewSQL

and NoSQL instead of Relational Database Management Systems. Hecht and

115

CHAPTER 8. CONCLUSION 116

Jablonski (2011)[65] agrees on this by stating that ”many companies and or-

ganizations developed own storage systems, which are now classified as NoSQL

databases”.

In this thesis study, we have discussed Big Data extensively from its features,

to sources and challenges. We have stated that they require additional opera-

tions to work better. We have explained how MapReduce procedure processes

and why Hadoop Distributed File System is a pioneer of new solutions for Big

Data applications. We have separated database management systems into two as

relational databases and NoSQL trends and explained both approaches in detail.

We discussed nearly every single details of relational tables, ACID properties

and normalization techniques and discussed SQL. Moreover, we discussed each

NoSQL technologies also by providing example products and talked which is best

for which application domain.

We chose graph databases to design for the rest of this study and explained

how graph designs can be implemented by using Neo4j. We introduce Cypher

query language for graph data handling with examples. However there was still

an important question remained to be discussed; “How well are graph databases

when compared to relational database models in terms of performance, scalability,

and other Big Data needs?”. In order to answer this question, we have introduced

a system called TrendPin.

8.2 Contributions

Contributions of this study can be summarized as follows:

• We discussed different database technologies and present an comparative

analysis about NoSQL trends, especially graph databases with Neo4j prod-

uct and Cypher query language in Chapter 3.

• We proposed TrendPin and explained two different database models on the

system, relational model with Microsoft SQL Server, and graph model with

CHAPTER 8. CONCLUSION 117

Neo4j in Chapter 5.

• We discussed information extraction techniques and implemented a knowl-

edge base for TrendPin to find answers to the issues of its graph model in

Chapter 6.

• We present experimental results with two distinct models in terms of query

comparisons, as well as design challenges in Chapter 7.

8.3 Drawbacks

Drawbacks of this study can be summarized as follows:

• In this study we aimed to cover only two type of database management

systems. As we have discussed before, there are more types and a large

number of different products even for the types we selected to experiment

on. Therefore, it is not possible to agree one of them is the best for now.

• We could not try queries on feature extraction entities which we covered in

Chapter 6, due to the fact that there was not an implementation of such

a technique in relational model. It would be comparable if implementation

was completed in relational model too.

• We experimented with only four different types of queries. There could be

written more and compare more statements in both models.

8.4 Future Work

Future work of this study can be summarized as follows:

• TrendPin never went live fully functional. We tested the system to find

bugs, features where improvements needed, and etc. such as a beta testing.

After the website is online, more challenges will probably follow.

CHAPTER 8. CONCLUSION 118

• We would like to develop more databases for the same application such as

MongoDB for document databases, or Cassandra for column-family/wide

column databases and compare same queries which we have covered in this

thesis to extend our study.

• We would like to improve our knowledge base to provide much more smarter

results for the users of this system.

BIBLIOGRAPHY

[1] Accumulo. https://accumulo.apache.org/.

[2] Aerospike. http://www.aerospike.com/.

[3] Allegrograph. franz.com/agraph/allegrograph/.

[4] Ambari. ambari.apache.org/.

[5] Apache lucene. http://lucene.apache.org/core/.

[6] Brightstardb. https://brightstardb.com/.

[7] Cassandra. http://cassandra.apache.org/.

[8] Couchdb. couchdb.apache.org/.

[9] Data never sleeps. http://www.domo.com/learn/

infographic-data-never-sleeps/.

[10] Data storage for modern high-performance business applications. http:

//msdn.microsoft.com/en-us/library/dn313285.aspx.

[11] Dynamo. http://aws.amazon.com/dynamodb/.

[12] Elasticsearch. http://www.elasticsearch.org/.

[13] Hbase. http://hbase.apache.org/.

[14] Hive. hive.apache.org/.

[15] Hypertable. http://hypertable.org/.

119

https://accumulo.apache.org/
http://www.aerospike.com/
franz.com/agraph/allegrograph/
ambari.apache.org/
http://lucene.apache.org/core/
https://brightstardb.com/
http://cassandra.apache.org/
couchdb.apache.org/
http://www.domo.com/learn/infographic-data-never-sleeps/
http://www.domo.com/learn/infographic-data-never-sleeps/
http://msdn.microsoft.com/en-us/library/dn313285.aspx
http://msdn.microsoft.com/en-us/library/dn313285.aspx
http://aws.amazon.com/dynamodb/
http://www.elasticsearch.org/
http://hbase.apache.org/
hive.apache.org/
http://hypertable.org/

BIBLIOGRAPHY 120

[16] Infogrid. infogrid.org/.

[17] Jasdb. www.oberasoftware.com/jasdb-2/.

[18] Mongodb. http://www.mongodb.org/.

[19] Neo4j. www.neo4j.org/.

[20] Online retail payments forecast 2010 2014: Alternative payments

growth strong but credit card projected for comeback. https://www.

javelinstrategy.com/Brochure-171.

[21] Open information extraction. http://ai.cs.washington.edu/

projects/open-information-extraction.

[22] Pig. https://pig.apache.org/.

[23] Ravendb. ravendb.net/.

[24] Redis. http://redis.io/.

[25] Riak. http://basho.com/riak/.

[26] Simpledb. http://aws.amazon.com/simpledb/.

[27] Thrudb. code.google.com/p/thrudb/.

[28] Titandb. thinkaurelius.github.io/titan/.

[29] Trinity. http://research.microsoft.com/en-us/projects/

trinity/.

[30] Voldemort. http://www.project-voldemort.com/voldemort/.

[31] Windows azure storage. http://www.windowsazure.com/en-us/

documentation/services/storage/.

[32] Zookeeper. zookeeper.apache.org/.

[33] Ibm big data success stories. http://public.dhe.

ibm.com/software/data/sw-library/big-data/

ibm-big-data-success.pdf, 2011.

infogrid.org/
www.oberasoftware.com/jasdb-2/
http://www.mongodb.org/
www.neo4j.org/
https://www.javelinstrategy.com/Brochure-171
https://www.javelinstrategy.com/Brochure-171
http://ai.cs.washington.edu/projects/open-information-extraction
http://ai.cs.washington.edu/projects/open-information-extraction
https://pig.apache.org/
ravendb.net/
http://redis.io/
http://basho.com/riak/
http://aws.amazon.com/simpledb/
code.google.com/p/thrudb/
thinkaurelius.github.io/titan/
http://research.microsoft.com/en-us/projects/trinity/
http://research.microsoft.com/en-us/projects/trinity/
http://www.project-voldemort.com/voldemort/
http://www.windowsazure.com/en-us/documentation/services/storage/
http://www.windowsazure.com/en-us/documentation/services/storage/
zookeeper.apache.org/
http://public.dhe.ibm.com/software/data/sw-library/big-data/ibm-big-data-success.pdf
http://public.dhe.ibm.com/software/data/sw-library/big-data/ibm-big-data-success.pdf
http://public.dhe.ibm.com/software/data/sw-library/big-data/ibm-big-data-success.pdf

BIBLIOGRAPHY 121

[34] Ali M. Al-Khouri. Privacy in the age of big data: Exploring the role of

modern identity management systems. World Journal of Social Science, 1,

2014.

[35] Cloud Security Alliance. Top ten big data security and privacy

challenges. https://downloads.cloudsecurityalliance.org/

initiatives/bdwg/Big_Data_Top_Ten_v1.pdf, November 2012.

[36] Abhinay B. Angadi, Akshata B. Angadi, and Karuna C. Gull. Growth of

new databases & analysis of nosql datastores.

[37] Maŕıa del Pilar Angeles and Victor González Castro. V+ h: Hybrid archi-

tecture for dss and oltp. International Journal of Information Management,

33(6):940–947, 2013.

[38] Paolo Atzeni, Giorgio Orsi, Christian S. Jensen, Sudha Ram, Letizia Tanca,

and Riccardo Torlone. The relational model is dead, sql is dead,... and i

don’t feel so good myself. 2012.

[39] Otakar Bor̊uvka. O jistém problému minimálńım (about a certain minimal

problem).

[40] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7,

2000.

[41] Mike Buerli. The current state of graph databases. 2012.

[42] Donald D Chamberlin and Raymond F Boyce. Sequel: A structured english

query language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)

workshop on Data description, access and control, pages 249–264. ACM,

1974.

[43] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gru-

ber. Bigtable: A distributed storage system for structured data. OSDI 2006

Proceedings of the 7th USENIX Symposium on Operating Systems Design

and Implementation, 7:15, 2006.

https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Top_Ten_v1.pdf

BIBLIOGRAPHY 122

[44] Fabio Ciravegna. Challenges in information extraction from text for knowl-

edge management.

[45] Edgar F Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[46] Edgar F. Codd. Normalized data base structure: A brief tutorial. In Pro-

ceedings of the 1971 ACM SIGFIDET (now SIGMOD) Workshop on Data

Description, Access and Control, pages 1–17. ACM, 1971.

[47] Edgar F. Codd. Recent Investigations in Relational Data Base Systems. IBM

Thomas J. Watson Research Division, 1974.

[48] Datameer. http://www.datameer.com/product/hadoop.html.

[49] Datastax. Nosql in the enterprise, a guide for technology leaders

and decision-makerse. http://www.datastax.com/wp-content/

uploads/2011/09/WP-DataStax-NoSQL.pdf, October 2013.

[50] Jeffrey Dean and Sanjay Ghemawat. Map-reduce: Simplified data processing

on large clusters 0018-9162/95. D OSDI IEEE, 2004.

[51] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available

key-value store. In SOSP, volume 7, pages 205–220, 2007.

[52] Omkar Deshpande, Digvijay S Lamba, Michel Tourn, Sanjib Das, Sri Subra-

maniam, Anand Rajaraman, Venky Harinarayan, and AnHai Doan. Build-

ing, maintaining, and using knowledge bases: a report from the trenches.

In Proceedings of the 2013 international conference on Management of data,

pages 1209–1220. ACM, 2013.

[53] Francis X. Diebold. ”big data” dynamic factor models for macroeconomic

measurement and forecasting. 2000.

[54] Jean-Pierre Dijcks. Oracle: Big data for the enter-

prise. http://www.oracle.com/us/products/database/

big-data-for-enterprise-519135.pdf, June 2013.

http://www.datameer.com/product/hadoop.html
http://www.datastax.com/wp-content/uploads/2011/09/WP-DataStax-NoSQL.pdf
http://www.datastax.com/wp-content/uploads/2011/09/WP-DataStax-NoSQL.pdf
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf

BIBLIOGRAPHY 123

[55] Ciprian Dobre and Fatos Xhafa. Intelligent services for big data science.

Future Generation Computer Systems, 2013.

[56] Edd Dumbill. What is big data? an introduction to the big data land-

scape. oreilly. com, http://radar. oreilly. com/2012/01/what-is-big-data.

html, 2012.

[57] Ronald Fagin. Multivalued dependencies and a new normal form for re-

lational databases. ACM Transactions on Database Systems (TODS),

2(3):262–278, 1977.

[58] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. arXiv

preprint arXiv:1308.1479, 2013.

[59] Ralph Grishman. Information extraction: Techniques and challenges. In

Information Extraction A Multidisciplinary Approach to an Emerging Infor-

mation Technology, pages 10–27. Springer, 1997.

[60] Rong Gu, Xiaoliang Yang, Jinshuang Yan, Yuanhao Sun, Bing Wang, Chun-

feng Yuan, and Yihua Huang. Shadoop: Improving mapreduce performance

by optimizing job execution mechanism in hadoop clusters. Journal of Par-

allel and Distributed Computing, 74(3):2166–2179, 2014.

[61] Isabelle Guyon and André Elisseeff. An introduction to feature extraction.

In Feature Extraction, pages 1–25. Springer, 2006.

[62] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Computing Surveys (CSUR), 15(4):287–317, 1983.

[63] Frank Harary and Edgar M Palmer. Graphical enumeration. Technical

report, DTIC Document, 1973.

[64] Jonathan Hausmann. http://autoinflammatorydiseases.org/

social-media-2/physicians-guide-social-media-part/.

[65] Robin Hecht and Stefan Jablonski. Nosql evaluation. 2011.

[66] Jerry R. Hobbs and Ellen Riloff. Information extraction. In Nitin Indurkhya

and Fred J. Damerau, editors, Handbook of Natural Language Processing,

http://autoinflammatorydiseases.org/social-media-2/physicians-guide-social-media-part/
http://autoinflammatorydiseases.org/social-media-2/physicians-guide-social-media-part/

BIBLIOGRAPHY 124

Second Edition. CRC Press, Taylor and Francis Group, Boca Raton, FL,

2010. ISBN 978-1420085921.

[67] Mr Mahesh G. Huddar and Manjula M. Ramannavar. A survey on big data

analytical tools. International Journal of Latest Trends in Engineering and

Technology (IJLTET).

[68] Jing Jiang. Information extraction from text. In Mining text data, pages

11–41. Springer, 2012.

[69] M. Kiran, Amresh Kumar, Saikat Mukherjee, and G. Ravi Prakash. Verifica-

tion and validation of mapreduce program model for parallel support vector

machine algorithm on hadoop cluster. 2013.

[70] Douglas Laney. 3-d data management: Controlling data volume, velocity

and variety. META Group Research Note, February, 6, 2001.

[71] Lynn Langit. Hadoop mapreduce fundamen-

tals. http://www.slideshare.net/lynnlangit/

hadoop-mapreduce-fundamentals-21427224.

[72] R. Duncan Luce and Albert D. Perry. A method of matrix analysis of group

structure. Psychometrika, 14(2):95–116, 1949.

[73] Prabath Maduranga. http://www.prabathsl.com/2013/02/

document-oriented-database_14.html.

[74] Markus Maier. Towards a big data reference architecture, 2013.

[75] Dragos-Anton Manolescu. Feature extraction: A pattern for information

retrieval. Proceedings of the 5th Pattern Languages of Programming, Monti-

cello, Illinois, 1998.

[76] ABM Moniruzzaman and Syed Akhter Hossain. Nosql database: New era of

databases for big data analytics-classification, characteristics and compari-

son. International Journal of Database Theory & Application, 6(4), 2013.

http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224
http://www.slideshare.net/lynnlangit/hadoop-mapreduce-fundamentals-21427224
http://www.prabathsl.com/2013/02/document-oriented-database_14.html
http://www.prabathsl.com/2013/02/document-oriented-database_14.html

BIBLIOGRAPHY 125

[77] Cory Nance, Travis Losser, Reenu Iype, and Gary Harmon. Nosql vs rdbms-

why there is room for both. Proceedings of the Southern Association for

Information Systems Conference, Savannah, GA, USA.

[78] Claire Nédellec and Adeline Nazarenko. Ontologies and information extrac-

tion. arXiv preprint cs/0609137, 2006.

[79] P. Srinivasa Rao, K. Thammi Reddy, and MHM Krishna Prasad. A novel

and efficient method for protecting internet usage from unauthorized access

using map reduce. International Journal of Information Technology and

Computer Science (IJITCS), 5(3):49, 2013.

[80] Akshay K. Singh. Performance isolation in cloud storage systems. 2013.

[81] Jerry A. Smith. Field note: What makes big data big some mathematics

behind its quantification, data scientist insights. 2012.

[82] Carlo Strozzi. Nosql - a relational database management system.

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/

Home%2520%20page/, 2007-2010.

[83] Shan Suthaharan. Big data classification: Problems and challenges in net-

work intrusion prediction with machine learning. In Big Data Analytics

workshop, in conjunction with ACM Sigmetrics, 2013.

[84] Raoul-Gabriel Urma and Alan Mycroft. Source-code queries with graph

databases - with application to programming language usage and evolution.

Science of Computer Programming, 2013.

[85] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2010.

[86] Fei Wu and Daniel S Weld. Open information extraction using wikipedia. In

Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 118–127. Association for Computational Linguistics, 2010.

[87] Jean Yan. Big data, bigger opportunities. 2013.

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%2520%20page/
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%2520%20page/

	Front Matter
	Abstract
	Öz
	Acknowledgement
	Table of Contents
	List of Figures

	Introduction
	Topic of the Thesis
	Contributions of the Thesis
	Outline of the Thesis

	Big Data
	Big Data Definition
	Characteristics of Big Data
	Volume
	Variety
	Velocity
	Fourth Addition to 3V's: Veracity
	3C's Concept

	Sources of Big Data
	Social Networking
	Sensor Data
	Online Transactions
	Smart Devices

	Challenges of Big Data Services
	Big Data Storage and Access
	MapReduce
	Apache's Hadoop Distributed File System
	Summary

	Relational Databases and NoSQL
	Introduction
	Relational Database Management Systems
	Relational Model
	ACID Properties
	Atomicity
	Consistency
	Isolation
	Durability

	Normal Forms
	First Normal Form - 1NF
	Second Normal Form - 2NF
	Third Normal Form - 3NF
	Boyce-Codd Normal Form - BCNF
	Fourth Normal Form - 4NF
	Other Normal Forms

	SQL: Structured Query Language
	Definition
	Retrieving Data
	Adding, Modifying, and Removing Data

	NoSQL: Not Only SQL
	Definition
	BASE Properties
	Basically Available
	Soft-State
	Eventual consistency

	NoSQL Models
	Key-Value Stores
	Key-Value Stores Applications

	Column-Family/Wide-Column Stores
	Column-Family/Wide-Column Stores Applications

	Document Databases
	Document Databases Applications

	Graph Databases
	Graph Databases Applications
	Graph Model
	Cypher Query Language

	Summary

	TrendPin
	Introduction
	Features
	Core Features
	Additional Features

	TrendPin as a Big Data Project
	Summary

	Different Database Models For TrendPin
	Introduction
	Relational Data Model
	Authentication
	Users and Products
	Posts and Comments
	Shops and Vendors
	PostLike and CommentLike
	Product Categories and Followers

	Graph Data Model
	Relationships Between Users and Products
	Friendship Among Users
	Relationship Between Products and Shops
	Creating Posts and Comments
	Relationship Between Products and Campaigns
	Private Messaging
	Special Cases of Graph Model

	Summary

	Information Extraction
	Definition
	Method Explanation
	Issues with Graph Model of TrendPin
	Issue I: Automatic Links Between Related Products
	Issue II: Similar Products From Rival Vendors
	Issue III: Displaying Smarter Results
	Solution

	Knowledge Bases
	A Knowledge-Based Information Retrieval Module for TrendPin
	Creating a Domain-Knowledge
	Automatic feature extraction
	Additional Operations for Issue I and Issue II

	Combining knowledge base with keyword search
	Additional Operations for Issue III

	Graph Model Changes
	Effects of Knowledge Based Information Extraction on TrendPin
	Challenges and Drawbacks of Feature Extraction Methodology
	Challenges
	Drawbacks

	Summary

	Tests
	Model Comparisons
	Experimental Query Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Results

	Design Challenges
	Maturity
	Resilience

	Summary

	Conclusion
	Summary
	Contributions
	Drawbacks
	Future Work

