
A COMPARATIVE STUDY OF DIFFERENT
DATABASE TECHNOLOGIES FOR BIG
DATA MODELING AND ANALYSIS IN

EDUCATION

ÖZKAN SAYIN

JANUARY 2015

A COMPARATIVE STUDY OF DIFFERENT
DATABASE TECHNOLOGIES FOR BIG
DATA MODELING AND ANALYSIS IN

EDUCATION

a thesis submitted to

the graduate school of

natural and applied sciences of

izmir university of economics

by

ÖZKAN SAYIN

in partial fulfillment of the requirements

for the degree of

master of science

in the graduate school of natural and applied sciences

JANUARY 2015

ABSTRACT

A COMPARATIVE STUDY OF DIFFERENT
DATABASE TECHNOLOGIES FOR BIG DATA
MODELING AND ANALYSIS IN EDUCATION

ÖZKAN SAYIN

M.S. in Computer Science

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. Brahim Hnich

January 2015

With the increase in data generation, notion of Big Data emerged, along with

new problems on the side. Traditional relational databases on single computers

failed to perform at required efficiencies. As a result, new approaches to hosting

data emerged that uses clouds of commodity hardware. In addition, new database

management system (DBMS) technologies are created under NoSQL movement,

with new ways of modelling data.

Different data models have their own advantages and disadvantages. Conse-

quently, there is not one DBMS that is the best choice for every project. Instead,

the way the project needs data to be stored and retrieved is a determinant factor

on the choice. Some data models ensure data consistency and ease maintenance;

whereas, others focus on performance. We analyse three different data models,

namely relational, document based and graph databases, and conduct a case

study on Sınavo, an online education system. We investigate each data model

from their design to their performances on different queries. We show that differ-

ent systems offer different qualities and perform better at some queries and worse

on others.

In addition to storing Big Data, making data-driven decisions is an important

and valuable process. We investigate two exemplary cases on Sınavo. We intro-

duce a novel approach to estimating student performances by applying bayesian

statistics on data stored in Sınavo system. We also propose a way of classifying

questions based on their difficulty levels.

iii

iv

Keywords: big data, database, data model, sql, relational database, document

store, document based database, graph database, data driven decision-making.

ÖZ

BÜYÜK VERİ MODELLEME İÇİN FARKLI
VERİTABANI SİSTEMLERİ VE EĞİTİM

SİSTEMLERİNDE ANALİZ ÜZERİNE
KARŞILAŞTIRMALI BİR ARAŞTIRMA

ÖZKAN SAYIN

Bilgisayar Bilimleri, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. Brahim Hnich

Ocak 2015

Veri yaratım hızındaki artış ile Büyük Veri kavramı, yanında birçok yeni sorun

ile ortaya çıktı. Tek bilgisayar üzerinde çalışan geleneksel ilişkisel veritabanları,

istenen verimliliği sağlayamamaya başladı. Sonuç olarak, bu veriyi bilgisayar

bulutlarında saklayan yeni yaklaşımlar, ve veriyi farklı şekillerde modelleyen yeni

veritabanı yönetim teknolojileri geliştirildi.

Farklı veri modelleri farklı avantajlar ve dezavantajlar sunmaktadır. Bu ne-

denle, tüm projeler için en iyisi olan bir veritabanı yönetim sistemi yoktur.

Aksine, bir proje için doğru olan veritabanı sistemi, bu projedeki verinin nasıl

depolanacağına ve sorgulanacağına bağlıdır. Kimi veri modelleri bakımı ko-

laylaştırır ve veri tutarlılığını garanti altına alırken, kimi verimliliğe odaklanmak-

tadır. Bu tezde, üç farklı (ilişkisel, döküman tabanlı ve grafik tabanlı) veritabanı

sistemi incelenmiş, ve bir çevrimiçi eğitim sistemi olan Sınavo üzerinde örnek vaka

çalışması yapılmıştır. Bu üç veritabanı sistemi, tasarım aşamasından, sorgu ver-

imliliğine kadar incelenmiştir. Sonuç olarak, farklı veritabanı sistemlerinin farklı

avantajlar sağladığı, ve farklı sorgu tiplerine göre değişik performans sergilediği

gösterilmiştir.

Büyük Veriyi depolama ve sorgulamanın dışında, veri güdümlü karar verme

çok önemli ve değerli bir işlemdir. Bu tezde, örnek olarak 2 durum incelenmiştir.

Sınavo sisteminde öğrencilerin performanslarını sistemin depoladığı istatistikler

üzerinden bayes metodlarını kullanarak tahmin etmek için yeni bir yol önerilmiş,

v

vi

ayrıca soruları zorluklarına göre gruplandırmak için bir metot gösterilmiştir.

Anahtar Kelimeler: büyük veri, veritabanı, veri modeli, sql, ilişkisel veritabanı,

döküman tabanlı veritabanı, grafik veritabanı, veri güdümlü karar verme.

TABLE OF CONTENTS

Front Matter i

Abstract . iii

Öz . v

Table of Contents . xi

1 Introduction 1

1.1 Topic of the thesis . 1

1.2 Overview of this thesis . 3

1.3 Structure of the thesis . 4

2 Big Data 5

2.1 Introduction . 5

2.2 Sources and Uses . 6

2.2.1 Sensors and Surveillance Systems 6

2.2.2 Social Media . 7

2.2.3 Healthcare . 8

vii

2.2.4 Others . 8

2.3 Storing Big Data . 9

2.3.1 Apache’s Hadoop Distributed File System 10

2.3.2 Google File System . 12

2.4 Processing Big Data - MapReduce 14

2.5 Summary . 18

3 Database Management Systems 19

3.1 Introduction . 19

3.2 Relational Databases . 20

3.2.1 Relational Model . 21

3.2.2 Normalization . 23

3.2.3 Reading and Writing Data 25

3.3 Document Based Databases . 30

3.3.1 JSON . 31

3.3.2 Document . 32

3.3.3 Storage, Retrieval and Editing 33

3.4 Graph Databases . 38

3.4.1 Graphs . 39

3.4.2 Data Access . 41

3.4.3 Editing & Inserting Data 45

viii

3.5 Summary . 46

4 Sınavo: A Big Data 48

4.1 Introduction . 48

4.2 Components . 49

4.2.1 Question Solving . 49

4.2.2 Games . 50

4.2.3 Test . 51

4.2.4 Performance Analysis . 52

4.2.5 Landing Page . 53

4.3 Challenges . 54

4.3.1 Handling Data . 55

4.3.2 Accessing Data . 56

4.4 Summary . 57

5 Alternative Database Approaches to Sınavo 58

5.1 Relational Database . 59

5.1.1 User data & Interactions 60

5.1.2 Questions - Subjects . 63

5.1.3 Games . 65

5.1.4 Tests . 67

5.1.5 Statistics . 69

ix

5.2 Document Database . 70

5.2.1 User data & Interactions 71

5.2.2 Questions - Subjects . 73

5.2.3 Games . 77

5.2.4 Tests . 79

5.2.5 Statistics . 83

5.3 Graph Database . 84

5.3.1 User data & Interactions 85

5.3.2 Questions - Subjects . 88

5.3.3 Games . 90

5.3.4 Tests . 94

5.3.5 Statistics . 95

5.3.6 Design Notes . 96

5.4 Comparison & Analysis . 98

5.4.1 Non-quantitative Attributes 98

5.4.2 Quantitative Attributes 102

5.5 Summary . 111

6 Data-driven Decisions 112

6.1 Statistics of Sınavo . 112

6.2 Bayesian Statistics and Credible Intervals 114

x

6.3 Performance Analysis & Prediction 118

6.4 Question Difficulty Deduction . 122

6.5 Summary . 125

7 Conclusion 127

7.1 Summary . 127

7.2 Future Work . 130

xi

LIST OF FIGURES

List of Figures . xiv

2.1 Increase in Internet access over the years according to statistics

from International Telecommunication Union. 7

2.2 Hadoop file system architecture 11

2.3 MapReduce structure . 15

2.4 Two fragments of sample collection of sales data 16

2.5 Data at different phases of MapReduce computation 17

3.1 Sample database for a car sales company 21

3.2 First normal form . 24

3.3 Second normal form . 24

3.4 Third normal form . 25

3.5 Fourth normal form . 26

3.6 Car model represented in JSON format 31

3.7 Simple MongoDB query . 33

3.8 MongoDB aggregation pipeline 35

xii

3.9 MongoDB MapReduce . 37

3.10 Car database as graph . 40

3.11 Basic Cypher query . 41

3.12 Cypher query with labels . 42

3.13 Family tree graph . 43

3.14 Cypher query with variable path length selector 43

3.15 Shortest path query in Cypher . 44

3.16 Shortest path between Ruth and Ophelia 44

3.17 Creating a relationship in Neo4j 45

5.1 SQL query used to retrieve the details of a user 62

5.2 Execution durations for query that retrieves the subjects of the

last three questions a user has solved 103

5.3 Execution durations for authentication query 105

5.4 Query execution durations for different path lengths over 1000 ex-

ecutions . 107

5.5 Closer look at query performances for different path lengths . . . 110

6.1 Sample probability mass function for 20 Bernoulli Trials with 0.7

probability of success . 114

6.2 3 Sample beta distributions . 116

6.3 Posterior Beta(10, 2) and credible interval with confidence level 95%119

6.4 Prior & posteriors with actual prior and non-informative prior . . 121

xiii

6.5 Credible interval with 60% confidence level 122

6.6 Credible interval with more data and 95% confidence level 123

6.7 Difficulty labels for question intervals 125

xiv

Chapter 1

Introduction

1.1 Topic of the thesis

Everyday life is getting swarmed with computers. From home automations to

means of communication, and different kinds of sensors, data generation rate is

growing wildly. Although computer systems have been around for decades, with

new uses of these systems, such as social networks, the amount of data generated

and processed is becoming a problem on its own. Such collections of data are

regarded as Big Data.

Database management systems (DBMS) are special software applications that

are used to provide storage and means of retrieval for organized collections of data,

i.e. databases. In traditional systems with relatively small datasets, data have

been stored in relational databases as tables. There are a number of DBMS’s that

implement relational schemas, such as Microsoft SQL Server, or MySQL, gener-

ally characterized with their shared language of querying, SQL (Structured Query

Language). However, with new means of data generation, characteristics of data

are changed. Social networks, for example, generate highly connected data. In

addition, the ways of querying these collections have also evolved. Traditionally,

queries included minimal joins of different collections, such as matching an entity

in one collection to another entity in another collection. However, social networks

1

CHAPTER 1. INTRODUCTION 2

now support various types of queries. Users can see not only their friends, but

also friends of their friends. They can even check which of these people work for

a certain company, or follow certain football team. Sınavo is an online education

system that is a good example for the shift in data generation and querying re-

quirements. It provides students with means of solving questions within different

context such as games or tests, free of charge. In addition, the system is designed

to support socialization among students by sharing questions and their thoughts

on them, along with chatting during competitive games.

With new requirements of extracting data from databases, traditional DBMS’s

began to fail operating effectively. To respond such requirements, new data mod-

els for databases emerged. There are many database management systems that

are built around these new data models, generally characterized as NoSQL, which

is often interpreted as “not only SQL”, instead of “no to SQL”. Each database

management system usually implements its own query language.

Some of these systems focus on new data models, such as storing data as ob-

jects, or graph; whereas, others focus on storing and serving any data effectively

on clouds of computers, such as Apache’s Cassandra. This thesis focuses on ways

of modelling data, instead of efficiency in using clouds of computers. As there

are tens of data models, such as graph databases, key-value stores, column-based

databases, and multiple database management systems for each model exist, it is

not within the scope of this thesis to investigate all models and technologies. In-

stead, we focus on specific and characteristic data models, (document and graph)

and report a comparison among them to support our claim.

In addition, we present a novel way of making data-driven decisions regarding

student performances and question classifications based on statistics gathered by

Sınavo system over time.

CHAPTER 1. INTRODUCTION 3

1.2 Overview of this thesis

This thesis discusses new problems that arise with Big Data and how different

approaches to storing and processing Big Data work. We investigate details of

three database management systems of different models: Microsoft SQL Server

for relational databases, MongoDB for document stores, and Neo4j for graph

databases. We give exemplary systems of different data models for the same

problem and discuss what each approach thrives and fails at. We explore bases

for database selection and discuss how requirements govern data model.

We also present a novel way of estimating student performances. We make

use of bayesian statistics to evaluate student statistics and generate credible in-

tervals which denote probable success rate for students. We discuss how student

performances change over time and how a feedback loop within this evaluation

system can be used to adjust accordingly. In addition, we apply a similar ap-

proach to classification of questions. Again using bayesian statistics, we give a

process of data-driven decision making to come up with question difficulties based

on statistics gathered over time.

Contributions of this thesis can be summarized as follows:

• We discuss three database systems and details of querying them. We present

a case study on Sınavo and how data can be modelled for each database

system.

• We provide a comparative analysis of these three database management

systems’ non-quantitative properties such as maintenance or flexibility.

• We present results of experiments run on three databases and their perfor-

mances for different types of queries.

• We present a novel way to use statistics stored by Sınavo to make data-

driven estimations on student performances by using bayesian credible in-

tervals.

CHAPTER 1. INTRODUCTION 4

• We present a novel way of classifying questions in an educational system

based on their difficulties by using credible intervals. We introduce an

approach to use their statistics and map questions to different difficulty

labels.

1.3 Structure of the thesis

Following chapters of this thesis are structured as follows:

• Chapter 2 presents the definition of Big Data and exemplifies possible

sources and uses. It also investigates fundamental approaches to both stor-

ing and processing Big Data.

• Chapter 3 discusses main database models and explains their inner work-

ings. For each database model, we give examples of how data is stored,

retrieved and updated.

• Chapter 4 explains what Sınavo is and how it is used by students. We also

give statistics of Sınavo to explain why it is a Big Data project.

• Chapter 5 exemplifies different data models applied to Sınavo and give

details of how different database management systems are implemented.

We also give a comparison among those DMBS’s for their quantitative and

non-quantitative properties.

• Chapter 6 presents a novel way of data-driven decision making regarding

user performances and question difficulties based on statistics gathered by

Sınavo system.

• Chapter 7 summarizes this thesis and discusses future work.

Chapter 2

Big Data

The term “Big Data” is used for collections of large and complex datasets whose

size is too huge to be operated by traditional computational methodologies. These

operations include but are not limited to storing the data, searching the dataset

within feasible time and performing analysis to derive useful information.

2.1 Introduction

We live in information age, in which almost every aspect of our lives is digitalised.

We have satellites taking images of the world into tiny bits of details. We have

weather balloons equipped with sensors to gather meteorological information to

be used for forecasting. We shop online, and communicate via Internet. We

even have applications on our mobile phones to track our movements as we sleep

that try to wake us up when our sleep is light and assess our sleep quality. As

a result, we are bombarded with information the amount of which is not easy

to comprehend. According to a study done by IBM, 2.5 quintillion (2.5 × 1018)

bytes of data is generated every day. 90% of the data we currently have has

been generated in the last two years, and things are not slowing down. McKinsey

Global Institutes projects 40% growth in the data generation per year.

5

CHAPTER 2. BIG DATA 6

Even though the term Big Data brings firstly the size aspect to mind, the

amount is not the only dimension that makes a dataset a Big Data. There is

a popular 3V approach that is used to describe main characteristics of a big

dataset, which are volume (the amount of the data), velocity (the pace of the

data generation) and variety (the complexity of the data). Note that any or all

of these characteristics can be enough to make it as Big Data.

Velocity and volume characteristics of a dataset are easy to measure and are

tightly coupled, as faster data generation results in more data generated. Variety,

on the other hand, is harder to measure, usually referring to two aspects of data:

being heterogeneous, i.e. including different types such as images, texts, arrays

of numbers, and being unstructured, i.e. not having a common structure for

different samples. Heterogeneity and the lack of structure is mostly caused by

different sources that feed the system with data.

2.2 Sources and Uses

There are practically infinite kinds of sources for data, as the world has become

embedded with computer systems. Hence, we are going to discuss major types

of sources and benefits of analysing data gathered from these sources.

2.2.1 Sensors and Surveillance Systems

Our lives are being monitored. There are many types of sensors, which can be

described as tools of digitizing physical entities, scattered all around the world.

Planes, for example, record gigabytes of data per flight, which are used to take

precautionary measures to prevent risks of crashes and to discover weak points

and improve the overall designs.

Surveillance systems installed within urban territories gather streams of videos

to help the law-enforcement for monitoring public areas and solving criminal

investigations. These systems are called Close-Circuit TV (CCTV), as they record

CHAPTER 2. BIG DATA 7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2002 2004 2006 2008 2010 2012 2014

P
er

ce
nt

ag
e

of
 H

ou
se

ho
ld

s
w

ith
 In

te
rn

et
 A

cc
es

s

Year

Developped Countries
World Average

Developing Countries

Figure 2.1: Increase in Internet access over the years according to statistics from
International Telecommunication Union.

videos and send it to predefined points, instead of broadcasting.

2.2.2 Social Media

As Internet became widespread, users themselves have become a major source for

data generation (see Figure 2.1). Nowadays, people share everything via social

media: Twitter for what they think, Foursquare for where they are, Youtube for

their videos, etc. With more than 2 billion Internet users, the data generated

is huge. For example, Twitter announced in March of 2012 that they get 340

million tweets per day. Similarly, Facebook recorded 757 millions of daily active

users in December, 2012, and Youtube gets 100 hours of video uploaded every

minute.

As people use these data to communicate with each other, and share glimpses

of their lives, that is not the only use of the data generated. In [2], researchers

have shown that analysing tweets can result in incredible box office predictions,

CHAPTER 2. BIG DATA 8

more accurate than prediction markets. Similar analyses are also being applied

to stock market and election predictions.

2.2.3 Healthcare

In the process of medical diagnosis, doctors try to gather as much data about

their patients as possible. They get blood tests done to extract physiological

and biochemical statistics. They order electrocardiography to record electrical

activities of the patient’s heart. There are many other tests done on patients

to gather states of many part of the human body, as every aspect of a living

organism is a great data source. After that, doctors analyse the dataset to find

out possible diseases and disorders. In its essence, this is gathering Big Data and

analysing it to infer valuable information.

For example in [4], scientists developed a system called Artemis, that monitors

premature babies’ condition and provides clinical decision support for doctors. In

the future, it is anticipated that such diagnostic and decision support systems will

play vital roles in medicine.

2.2.4 Others

Every interaction with Internet is another data source for corporations. Consider

the example of online shopping. At first glance, the data to be generated looks like

user’s activities such as browsing and buying. A basic dataset generated within

an online shopping system would consist of entries that include the keywords

users used for search, items browsed by users and purchases made. However, a

lot of precious information lies within implicit correlations of these entries, such as

how many items were browsed of the same kind before the purchase, demographic

profiles of users that bought a particular item, etc. Mining the dataset wisely and

making use of the relations of data, systems are built to make valuable inferences

such as deciding if a user is only browsing, or actually intends to buy. This set

of data is also used within recommendation systems that try to deduce it’s users

CHAPTER 2. BIG DATA 9

interests and suggests other items appropriately. We can observe the success of

these recommendation systems on many websites, where we are offered clothes

we might buy, movies we might like, people we might know, etc.

2.3 Storing Big Data

As we have discussed before, the number of data sources and data generation

speed is enormous. This yields the problem of storing this data, and more impor-

tantly, accessing in a timely fashion. Since it is infeasible to develop supercomput-

ers to handle both storage and access to data with discussed size, building cloud

systems that consist of a number of computers running on commodity hardware

connected via network is a common practice.

One of the main concerns when building these systems is scalability, which is

the ability to add more hardware for extra storage. Distributed systems enable

users to increase the number of computers (nodes) in the cloud system easily.

Since the data is not stored in one location, but divided into chunks and dis-

tributed to different nodes, adding hardware does not affect existing data and

requires almost no effort.

Availability is another point of concern, which is the ability to provide service

even in case of partial hardware failures. To be able to continue serving even if

some nodes malfunction, data is replicated and stored in more than one location.

If any node fails, another node that keeps a copy of the same data takes over and

serves requests. However, availability of all files are not guaranteed all the time,

as the system might fail to serve a request in the unlikely event of malfunctions in

all the nodes keeping a replica of the requested data. To increase the robustness

of the system, the number of replications can be increased, providing higher

availability at the cost of increased size. Hence, such systems takes the number

of replicas as parameters to achieve required probability of availability specific to

the application domain.

Latency is the time it takes the system to serve the requested data and can

CHAPTER 2. BIG DATA 10

be crucial for real-time applications. Facebook’s messaging system is a good

example of a real-time system running on cloud storage [3]. Although there is

time lost while reading / writing the data, the time lost while sending /receiving

the data is the primary cause of latency, especially for geographically distributed

systems. Hence, reducing the communication overhead is the main purpose while

designing such systems. One can distribute replicas of the data such that the

distance between the site storing the data and the source of request is close. In

this case; however, writing speed will decrease, as the replicas will have to be sent

to different and distant sites, again causing communication overhead.

By designing intelligent systems with swarms of computers that achieve what

supercomputers would have difficulties achieving, costs are greatly reduced. Since

these systems run on commodity hardware, Big Data applications are attracting

businesses all over the world.

The most commonly used and known systems that offer distributed storage

and processing capabilities are Apache’s Hadoop Distributed File System (HDFS)

and Google File System (GFS).

2.3.1 Apache’s Hadoop Distributed File System

Hadoop Distributed File System is a file system built in Java language, and

designed to run on very large clusters of commodity computers. Originally de-

veloped for Apache’s web search engine project called “Nutch”, HDFS is now a

module in Apache’s Hadoop project, which is defined as a software framework

designed to allow distributed processing on large scale data-sets.

HDFS runs on a master-slave architecture that consists of a central control-

ling unit, called NameNode, and many DataNodes that store the actual data (see

Figure 2.2). NameNode is a master server that controls file operations (such as

create, delete, rename) and regulates access to files on the higher level. On the

lower level, it manages replica placement and provides fault tolerance by mon-

itoring states of DataNodes and redirecting any requests to appropriate nodes.

CHAPTER 2. BIG DATA 11

Figure 2.2: Hadoop file system architecture

DataNodes, on the other hand, are the computers that store the data and serve

read / write requests. They also follow instructions received from the NameNode

to create, delete and replicate data blocks.

Files on HDFS are split into blocks that are distributed on DataNodes. Each

block is stored as a single file in the local system. When a file is created, NameN-

ode partitions the data into a set of blocks, the size and the replication factor

of which is configurable, and maps the write requests to DataNodes. As the

DataNodes send heartbeat signals regularly, NameNode is always aware which

DataNodes are available. In addition, thanks to Hadoop’s Rack Awareness sys-

tem, it also keeps track of which DataNode belongs to which rack, i.e. a branch

in the network topology. With this knowledge, NameNode tries to place blocks

of the same file into the same rack to reduce network traffic, but replicas into

at least two different racks to increase availability, in case a DataNode branch is

dead due to a network failure.

CHAPTER 2. BIG DATA 12

2.3.2 Google File System

Google File System (GFS) is a distributed file system developed by Google with

main purpose of being used within Google. According to the article published by

Google that covers the details and statistical analysis of the system [16], it was

co-designed with applications and hence, it is designed to fit the requirements of

Google’s operations.

GFS runs on a master-slave architecture on clouds of Linux machines, just like

HDFS. The design of the system is simplified by a single master server, referred as

GFS master (NameNode in HDFS), that controls the overall mechanism. How-

ever, this master server tries to get involved with read and write operations as

minimum as possible to avoid becoming a bottleneck for the system. Hence, no

read or write operations are done through the master server. Instead, for example,

when a client requires a read, it makes a query with the metadata to the master

server, and master responds with the corresponding chunk server (DataNode in

HDFS) information that stores the data to be read. The client caches this in-

formation and makes its read request to the chunk server directly, and continues

to read data until the information about the chunkserver it cached expires. As

all the data transportation occurs between the client and the chunk server that

stores the data, master plays merely a controlling role with little involvement.

The expected size of files stored on GFS is more than 100 MB, often multi

gigabytes. These files are divided into chunks (blocks in HDFS) and stored in

chunk servers, where they are kept as regular Linux files. Each chunk is replicated

through multiple chunk servers to maintain high availability in case of hardware

failure, which is regarded as a common occasion instead of an exception. When

a client makes a read request, master server returns the list of replica locations,

instead of just one. If client discovers a failure that prevents communication with

a chunk server, it continues on the list and tries the next replica. Clients are

free to choose which replica to read from, and normally choose the closest one to

themselves, which would reduce communication overhead.

When a client contacts the master server regarding a write request, the master

CHAPTER 2. BIG DATA 13

server fetches the list of chunk servers that hold the chunk to write to. One of

these servers is chosen as primary, and holds the lease for the chunk for a period

of time, which can be extended as per primary’s request. Upon receiving the

list of chunk servers, the client pushes the data to be written to these servers.

Once the data arrives and chunk servers acknowledge the event, the client sends

a write request to primary. As there may be concurrent write requests, the

primary serializes these requests by assigning consecutive serial numbers to each

write request. Then, the primary redirects write requests to all replica holders,

where the requests are applied in order of their serial numbers; hence, providing

consistency among concurrent write requests.

Although the system works fundamentally the same way with HDFS, there are

some key design differences that makes it meet the needs of Google’s applications.

For example, it is estimated that file changes occur mostly by appending new

data to a file, instead of overwriting an existing one. For this case, GFS provides

an operation called record append to append data to a given chunk atomically.

This operation does not care about the offset at which the data is going to be

written. Instead, it only ensures that the given data will be appended without

its continuity being interrupted by any other concurrent write.

Another design choice is the size of chunks. It is chosen to be 64 MB, which

is larger than usual file systems. Keeping chunk size bigger has advantages espe-

cially from Google’s application perspective. It minimizes communication with

master server as a file is distributed to less chunk servers, clients make less num-

ber of calls to master server to ask for chunk location. This is specifically efficient

because most file reads and writes occur sequentially on large files. Larger chunk

size also means less metadata to store at the master server, which affects master

server’s efficiency and enables the metadata to be stored in the main memory.

CHAPTER 2. BIG DATA 14

2.4 Processing Big Data - MapReduce

Storing Big Data efficiently is necessary but not enough as applications will nat-

urally need computation and statistical analysis on data. As the data is so large

that it is usually scattered onto clouds of computers, narrowing the computation

down to one central unit leads to unacceptable efficiencies. Instead, distribut-

ing the computation process to computers to be done in parallel is the common

way of approaching it. However, distribution of the computation is not a trivial

task. In addition to design decisions such as where a computation should oc-

cur, there might be several constraints that arise from the characteristics of the

computation.

For example, the computation may require running on a shared memory. In

that case, the computation is split into different jobs that run in parallel on

different parts of data. However, shared memory oblige lock mechanisms as jobs

running concurrently on the same part of memory would result in race conditions.

Therefore, such a job is required to lock a part of the memory before beginning

of the computation, do the job, and unlock the memory when it’s done.

On the other hand, most of the problems faced working on Big Data can be

split into jobs that do the same type of computation on mutually exclusive sets

of data. In that case, input data is sliced and fed to different jobs. Each job does

the same computation in parallel and generate results accordingly. Then, these

results are merged together to generate the output. As data in Big Data systems

are usually scattered onto different computers, they are already sliced in a way.

Since moving the data is more costly than moving the computation, jobs are run

on the computers that hold the slices of data. However, not all problems can be

split into jobs that can run in parallel. Some jobs may require outputs of other

jobs. Such jobs would have to wait for other jobs to finish, receive their outputs

and run after. If the jobs were running on a shared memory, it would be easier

to program such conditions. But when the computation is running on different

machines, problems of scheduling such preconditions makes it really complex to

parallelize the computation.

CHAPTER 2. BIG DATA 15

Figure 2.3: MapReduce structure

In 2004, Google introduced MapReduce [10] which is a programming model

that simplifies the process of distributing computation and enables high-

throughput calculations to be done on clouds of commodity hardware. The un-

derlying architecture automatically handles low-level jobs such as distribution of

input data, communication between workers, etc. Instead of dealing with these

complex details, users are asked to implement two simple functions:

• Map : M(ki, vi)→ P , where P is a list of < kn, vn > pairs

• Reduce : R(kj, V)→ Q , where V and Q are lists of values

In Map function, input data is read as a key-value pair and an intermediate

result is procuded as a list of key-value pairs. Then, these intermediate results

are fed to Reduce function, where they are combined to create outputs. Different

workers of Map might create intermediate results for the same key. When inter-

mediate results are being sent to Reduce function, values of the results for the

same keys are grouped into lists. By doing so, libraries ensure that all interme-

diate results of the same key are sent to the same worker that runs the Reduce

function (see Figure 2.3)

Next, we give an example MapReduce application. Let us assume that we have

a distributed database system that stores sales records for different sales people

(see Figure 2.4). To calculate total amounts of sales by person, we introduce Map

function given in algorithm 1.

CHAPTER 2. BIG DATA 16

Sales Person Amount Date

P1 10 01.02.2014

P2 20 12.02 2014

P2 5 28.02 2014

P1 15 05.03.2014

Sales Person Amount Date

P1 5 05.02.2014

P2 5 06.02 2014

P1 15 05.03 2014

P1 10 13.03.2014

Figure 2.4: Two fragments of sample collection of sales data

Let the number of workers running Map function be 2. Initially, a node is

selected as master, that governs the process. Let us assume that master machine

assigns map functions to workers MW1 and MW2 and specifies records on left

and right as input for map functions to MW1 and MW2 respectively. Algorithm

1 will produce a list of < Pi, Ak > pairs for every record, resulting in 4 pairs per

worker, 8 pairs in total (see Figure 2.5a and 2.5b). These intermediate results are

written to local files on map workers, splitted into R regions by passing keys to

a hash function (see Figure 2.5c). After that, master notifies workers for reduce

function, which are assigned to specific regions of the intermediate results and,

in turn, reads their corresponding set of intermediate results. These results are

then combined and passed to the reduce function specified by the user, which,

for this example, would be the function given in Algorithm 2.

Algorithm 1: Map function for calculating total sale amount by person

1 Function Map(F : Collection Fragment)
2 foreach Record r in F do
3 emit(r.person, r.amount)
4 end
66 return;

Algorithm 2: Reduce function for calculating total sale amount by person

1 Function Reduce(<K, [V]>)
2 count = 0;
3 foreach value v in V do
4 count+ = v;
5 end
6 emit(count);
88 return;

This reduce function basically adds all sale amounts to find the total amount

CHAPTER 2. BIG DATA 17

Region Key Value

R1
P1 10
P1 15

R2
P2 20
P2 5

(a) Intermediate results of
W1

Region Key Value

R1

P1 10
P1 20
P1 15

R2 P2 5

(b) Intermediate results on
W2

Key Value
P1 {10, 15, 10, 20, 15}
P2 {20, 5, 5}

(c) Input for Reduce function

Key Value
P1 70
P2 30

(d) Overall output

Figure 2.5: Data at different phases of MapReduce computation

for a person. As the intermediate results are split into two for two salespeople,

each reduce function sums up sales for only one person. As a result, two key value

pairs, < P1, 70 > and < P2, 30 >, will be the output of this MapReduce job (see

Figure 2.5d). In the end, these 2 distinct outputs are written into two seperate

output files. They are not automatically merged into one file, as usually results

of a MapReduce computation are inputs for another one. If that is not the case,

the receiver of these outputs is expected to handle fragmented output.

Although the given Map and Reduce functions generate the expected results

just fine, there is still room for optimization. If we look at the intermediate results

of map worker 1, we see two pairs being generated : < P1, 10 > and < P1, 15 >

(R1 in Figure 2.5a). This means that the map function emits two separate sale

amounts for the same salesperson P1. Instead of generating two intermediate

results, we can sum up the amounts of the same person before sending them to

reduce function, which is basically what the specified reduce function does. This

way, the intermediate result would be < P1, 25 > and there will be only one pair,

which, in turn, would decrease communication overhead. The function that does

such partial reduce operation on map worker’s intermediate results is called a

combiner function. If the reduce function is both associative and commutative,

the same procedure used in reduce phase can be applied to intermediate results

as combiner function. However, there may be different ways of optimization by

CHAPTER 2. BIG DATA 18

the combiner function based on the problem’s nature.

2.5 Summary

Big Data is anticipated to be a big step for computer science. As data generation

increases exponentially, data-driven decisions bring valuable implications on data

into light. Successful applications of such data-oriented decision-making systems

are spreading all around us: from systems that deduce box office success of a

movie from the buzz in Twitter, to decision-support systems that help doctors

custom-tailor elaborate diagnosis and treatment for patients.

Traditional systems fail to store and serve Big Data in applicable time limits.

Usual Big Data systems require handling of huge amount of read/write operations

per second, which is not affordable without doing parallel computations. Common

approach is to use several commodity computers to divide and conquer these

operations. Many similar applications, such as Google File System and Apache’s

Hadoop File System, offer a blackbox system that provides efficient read/write

operations and provide high availability of data by handling hardware failures

within themselves.

Although applications have specific complex patterns of computation and

analysis, MapReduce paradigm, offered by Google, provides very useful abstrac-

tion and simplifies the job of programmers by handling data aggregation and

communication among the data nodes itself, only requiring a couple of simple

enough functions to be defined.

Chapter 3

Database Management Systems

3.1 Introduction

A database is simply a collection of organized data. Such a collection usually

includes many different kinds of entities, number of samples from each kind of

entity, and some relations among these entities. Any collection of data can be

regarded as a database; such as, files stored by an operating system. For example,

let us define directories and files as two entity types. Then, the most obvious

relation among two entities, namely a directory and a file, is that a file is located

inside a directory.

Database management systems are software applications designed to manage

databases. They provide means of reading and writing data to clients such as

users and other applications. In addition, some commercial applications han-

dle maintenance jobs, which include backing up the data periodically, handling

indexing, fragmentation, etc.

For decades, database management systems have been used successfully. How-

ever, with the explosion of Big Data, traditional systems began to fail at han-

dling increased number of reads and writes. Engineers were forced to develop

new technologies to provide new means of interaction with the data, and support

19

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 20

distribution of the data.

A collection of data, a database, is organized based on the requirements of

targeted operations. Some applications may be obliged to provide atomic write

operations to ensure data integrity; whereas, others may require very fast access

to read related data without the need to ensure data integrity. Such concerns

are grouped under ACID term [17], which is an abbreviation of four proper-

ties: Atomicity, Consistency, Isolation and Durability. Atomicity means that a

transaction either fails or succeeds as a whole such that it is not possible for

some parts of a transaction succeed, whereas others fail. Consistency requires

that transactions can not violate any rules or constraints defined by a database

system. Isolation property ensures that concurrent transactions do not disrupt

each other and result in a state as if those transactions occur serially. Durability

means that when a transaction is committed, effects of it will hold, even in case

of system failures. As a result, there emerged many different implementations of

databases. They differ in terms of the ways they store data, and their read and

write mechanisms. There are a number of different approaches available. We will

go over the most common ones used.

3.2 Relational Databases

In relational databases, data is stored as a collection of tables (also known as

relations). Each table stores a list of items of the same type, where rows in these

tables correspond to items and columns correspond to different attributes of these

items.

Relational databases are the most commonly used database models, according

to DB-Engines, which is an initiative that collects and present DBMS usage

statistics, supported by Solid IT company. Relational databases have been on the

market for decades and used on many different types of applications. However,

with the emergence of Big Data and social networks, their performance decrease

in handling multi-level relations (such as friends of friends of friends) and difficulty

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 21

Id Brand Model Year Engine
1 Mare Motors S22 2009 1.6L
2 Steed Cars Shallow 2009 1.6L
3 Steed Cars Quadus 2012 1.4L
4 Mare Motors XQ15 2013 2.0L

(a) Table models

Id Model Id Model Name Amount Date
1 3 Quadus 15 000 $ 20.05.2014
2 3 Quadus 14 500 $ 26.05.2014
3 4 XQ15 22 000 $ 13.06.2014

(b) Table sales

Figure 3.1: Sample database for a car sales company

they pose for scalability created a need for different models.

Relational databases implement relational model for the organization of data.

3.2.1 Relational Model

Relational model [6] defines the basic architecture and the organization of data

for relational databases. In the context of relational model, a relation is not a

connection among items, but a list of attributes that define an item. Looking at

the example in Figure 3.1, there are two relations:

• R1(Id,Brand,Model, Y ear, Engine)

• R2(Id,ModelId,ModelName,Amount,Date)

All items that belong to a relation are required to follow the relation’s schema

strictly. There may be tuples that does not have a value for an attribute. In such

cases, null becomes the value for the attribute of the tuple. Although lacking

attributes is possible in this sense, there can not be tuples having more attributes

than described in the schema. Hence, data stored in relational databases are said

to be structured data.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 22

Relational model requires a set of attributes to uniquely identify a tuple. This

set of attributes is called candidate keys, one of which is selected by the user to

be a primary key. This means that if values of attributes that are included in a

candidate key is known, there is only one tuple having these values for the given

attributes and it can easily be found. Note that there might be more than one

set of attributes that defines a tuple. However, database systems require only one

to be labelled as primary key. Every relation is obliged to have a primary key,

which is unique for every tuple. This yields that there can not be two identical

tuples, which is a necessity in relational model.

Although entities usually have a set of attributes that defines it naturally, they

are not commonly used as primary keys in practice. Instead, surrogate primary

keys are introduced which are not related to any data of the entity, but generated

by the user of the database management system or by the system itself. The

most obvious surrogate keys are natural numbers which are auto incremented

with every insertion. Looking at the example given in Figure 3.1a, the set of

attributes {Brand, Model} is enough to identify a tuple. (Note that we are

assuming two brands can name their models with the same name. Just model

would be sufficient otherwise.) However, we introduce a column named “Id” and

assign unique integers to every tuple. This simplifies the database design.

It is certain that items on different tables will somehow be related. These re-

lations are established by the use of foreign keys. A foreign key is set of attributes

on a table that are primary keys on another table. Tuples in table given in Figure

3.1b have an attribute called modelid. This attribute is a foreign key for sales

table, and a primary key for models table. To find out the engine volume of a

car sold in sale with id 1, we look at the modelid, which is 3. Then, we locate

the model with id 3 in models table, and find out that the car sold had an engine

with volume 1.4 liters.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 23

3.2.2 Normalization

Relations in relational model can be designed in many ways. This yields many

possibilities of problematic designs. General tendency on database design is to

avoid redundancy to prevent inconsistencies. Looking back at the car database

example, each tuple in sales table includes both model name and model id. The

pair <model name, model id> is redundant as it resides both in models and sales

table. If the name of a model was to be changed, one would have to alter the tuple

in models table, and all tuples in sales table that mentions the model. If a subset

of tuples that mentions the model was to be missed, the database would contain

inconsistencies. There will be <model name, model id> pairs in the database

that shows different names for the same model id.

To avoid commonly made mistakes, normal forms have been introduced to

act like a guideline for relational database designers [6][7][8]. Before getting into

details of normal forms, let us define the terminology. Functional dependency is a

relation between two sets of attributes, where a set of attribute practically decides

the value of the other attribute. A set of attributes A is functionally dependant to

another set of attributes B, denoted like B → A, if each value combination for B

yields exactly one value combination for A. For example, in a database where lo-

cations of university campuses are listed as R(university, campus, town), for any

combination of values for attributes {university, campus}, there exists only one

town. Then, town is said to be functionally dependant on {university, campus}.

A relation is said to be in first normal form, if each attribute of the re-

lation has an atomic value. For example, the table given in Figure 3.2a is not

in first normal form, since attribute color of the tuple includes two values. To

transform it to a relation in first normal form, the relation should be corrected

as R(team, color) and there needs to be two tuples: {A, red} and {A, yellow}
(Figure 3.2b).

Second normal form is violated when a relation is not in first normal form,

or an attribute that is not subset of the primary key is functionally dependant on a

proper subset of the primary key. Primary key of the table given in Figure 3.3a is

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 24

Team Colors
A red, yellow

(a) Not in 1st normal form

Team Colors
A red
A yellow

(b) In 1st normal form

Figure 3.2: First normal form

{university, department}. However, departments of universities have nothing to

do with the rector of the university. Hence, field rector is functionally dependant

only on university, making it a violation for second normal form. To fix this

problem, we decompose the table so that field rector is in a new table with only

the attribute it depends on: university.

University Department Rector
IEU Computer Science Prof. A
IEU Fine Arts Prof. A

(a) Not in second normal form

University Rector
IEU Prof.A

(b) In second normal form

University Department
IEU Computer Science
IEU Fine Arts

(c) In second normal form

Figure 3.3: Second normal form

A relation is in third normal form(3NF) if and only if it is in second normal

form, and all attributes of the relation are functionally dependant on only the

key, nothing else. Figure 3.4a provides an example of a design that is not in 3NF.

Primary key for this relation is department as the head of the department and

his/her birthday can be determined by it. Although birthday of the head of the

department is functionally dependant on department field, it is rather a transitive

dependency, i.e. it actually depends on department head, and department head

depends on the department. Hence, it is in clear violation of 3NF. To fix this

violation, we decompose the relation into two, and make sure birthday is on a

separate relation of which person (department head) is the primary key.

Boyce-Codd Normal Form (BCNF) is a normal form, also known as 3.5 Normal

Form, that handles a special case at which 3NF fails. Basically, a relation is in

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 25

Department Dept. Head Birthday
Computer Science Prof. B 05.11.1955

(a) Not in 3rd normal form

Department Dept. Head
Computer Science Prof. B

(b) In 3rd normal form

Person Birthday
Prof. B 05.11.1955

(c) In 3rd normal form

Figure 3.4: Third normal form

BCNF if and only if all attributes on left hand side of non-trivial functional

dependencies are candidate keys. We are not going into details as our exemplary

dataset does not contain this case.

Normal forms discussed so far have been dealing with functional dependen-

cies. Fourth normal form (4NF), on the other hand, focuses on the concept of

multivalued dependency. There is a multivalued dependency between attributes

A and B if each value of A yields multiple values for B, denoted like A →→ B.

In the example given in Figure 3.5, there is a multivalued dependency between

attributes person and phonenumber (person →→ phonenumber) as a person

can own more than one phone. To store multiple phone numbers of a person, the

address of that person mentioned more than once, which is a redundancy. To

fix this issue, 4NF ensures that the relation is in 3NF and for each multivalued

dependency A→→ B in a relation, A is a super key, i.e. it is a candidate key or

any superset of it. Primary key in the given relation is {person, phonenumber}.
Hence, multivalued dependency person →→ phonenumber violates the rule of

4NF. Normalization in this case is done by decomposing the table such that at-

tributes phonenumber and the attribute it depends on, person, reside in another

table, as in Figure 3.5c.

3.2.3 Reading and Writing Data

Data within a relational database is read and written by using Structured Query

Language (SQL). Typical read query written in SQL has three parts : SELECT,

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 26

Person Address Phone Number
Sherlock Baker Street 21B 555-15-25
Sherlock Baker Street 21B 131-62-32

(a) Not in 4th normal form

Person Address
Sherlock Baker Street 21B

(b) In 4th normal form

Person Phone Number
Sherlock 555-15-25
Sherlock 131-62-32

(c) In 4th normal form

Figure 3.5: Fourth normal form

FROM, and WHERE. SELECT statement corresponds to project operation (Π) in rela-

tional algebra. It defines the attributes that will be returned by the query. FROM

clause defines the tables included in the query. WHERE clause states a proposi-

tional formula that filters the tuples to be selected, which corresponds to select

operation in relational algebra.

For example, to get the names of models created in year 2009, we run the

following query on the table given in Figure 3.1:

1 SELECT model

2 FROM models

3 WHERE year = 2009

The results will be two models [S22, Shallow]. The cost of such a read op-

eration is basically the time spent on locating the data. Communication cost of

sending found data back to the client is not a concern of query optimization, but

rather the database management system.

The execution time of this query is highly dependant on the existence of an

index on attribute year. If there is no index, database engine is required to

look at all tuples within the table, locate the ones that fulfill WHERE statement,

and project model attribute to return. The complexity of such a search will be

in O(n). To avoid this full table scan, the concept of indexing is introduced.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 27

Indexes are <key, location> pairs, which are stored sorted by their key. Hence,

the complexity of an indexed search is in O(log n).

When the query requires to include more than one tables, join operation is

used. For example, to find out the dates of, and the money made from sales of

car model Quadus, the following query is required:

1 SELECT sales.date, sales.amount

2 FROM models, sales

3 WHERE models.name = "Quadus" AND

4 sales.model_id = models.id

The result will be two pairs: [20.05.2014, 15000$] and [26.05.2014, 14500$]. It

is clear that two tables are scanned to produce this result. The process of scanning

is optimized by an internal query optimizer of the database engine. There are

three main join mechanisms: nested loop joins, merge joins and hash joins. When

a query is submitted, query optimizer examines the query, and the tables included

within the query. It generates a query execution plan based on its analysis on

the query and tables, considering the number of rows in the tables, any indexes

on the attributes used in join, selectivity of the given where clause, etc. Next, we

look into the join operations in detail.

Nested loop join algorithm selects one table as inner table, and the other as

outer table. First, outer table is filtered by any criteria that contains only the

outer table. Then, for each row left on outer table, inner table is scanned for

join condition. Rows from outer are matched with the rows of inner table and

the union is returned. In worst case where no indexes exist, the join operation

would require full table scan on outer table, and for each row in outer table, full

table scan on inner table. Let m be the number of rows on outer table, and n

be the number of rows on inner table; then, total complexity would be O(m.n).

However, indexes on attributes for both tables would increase efficiency a lot.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 28

Merge join is a special type of join that requires both tables to be sorted by

the attributes used in join. Algorithm scans through both collections in parallel

and tries to avoid searching for tuples that do not possibly hold a value that can

be matched. First, any unary eliminations are done. After that, algorithm starts

scanning both tables row by row and keeps indexes to remember which row is

scanned last for each table. At the beginning of the scan, each index points to

minimum / maximum value in that table, based on the way the tables are sorted.

Assume that there are two tables (Ta and Tb), and they are sorted on attribute F

in ascending order. Initially, both indexes (ia and ib) would point to tuples that

store the minimum values for F . Let va be the value for attribute F of the tuple

that is being checked in Ta and vb the value for field F of the tuple being checked

in Tb. For any va, to find out which rows store matching values, algorithm checkes

tuples in Tb as long as vb is less than or equal to va. When ib points to a row

where vb is greater than va, there is no need to continue scanning for the given

va anymore, because tuples are sorted and the rows ahead would contain values

for F , that are only greater than va. For any matching value, the two rows are

matched and added to the result set. As tuples in both rows are only scanned

once, complexity of this join would be O(m+n), where m is the number of tuples

in Ta and n is the number of tuples in Tb.

Similar to the merge sort algorithm, this little trick that prevents any unnec-

essary comparisons between tuples of two tables requires the tables to be sorted.

For a table that stores millions of rows, merge join will be the most efficient,

only if the table is stored in a sorted manner, or there are mechanisms to retrieve

data sorted. Otherwise, the overhead caused by sorting millions of tuples would

eliminate any efficiency merge join offers.

Hash join is the join type that is used when the tables are not sorted and

cardinalities are fairly large. It consists of two phases : build and probe. Let

F be the attribute on which the tables are joined. In build phase, one of the

tables is selected as the build table. Then, the rows of this table are stored in a

hash table, created by passing the values for F through a hash function H that is

created automatically by the database engine, based on its statistical knowledge

of the table. In probe phase, for each row of the second table, the value for F is

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 29

passed through H to find the possible matches in the hash table. As there might

occur collision in the hash table, rows that result in the same bucket are checked

if they are matching. Let h be the complexity of hash function, then the overall

complexity of the algorithm will be O(h ∗m+ h ∗ n).

Main struggle of the hash join is that the hash table created in the build phase

is required to be stored in memory. When the build table is too large, size of the

hash table will exceed memory capabilities, resulting in use of virtual memory, and

decreasing the efficiency of the algorithm hugely. Hence, it is common practice

to select the table that holds fewer tuples as the build table.

There are two types of write operations: update and insert. An update

operation is changing data on a tuple that already exists in a table; whereas,

insert operation is adding a completely new tuple into a table. Two main factors

of an update operation is the cost of locating the tuple(s) to be updated, which is

basically the same cost as reading them, and the cost of changing some values of

that tuple(s). On an insert operation, however, there is no searching for existing

tuple. Hence, the cost only consists of the latter.

For example, to change the engine volume of model S22 from 1.6L to 1.4L,

the following query needs to be run:

1 UPDATE models

2 SET engine = "1.4L"

3 WHERE brand = "Mare Motors" AND model = "S22"

When executing such an update query, database engine first locates the tuples

that matches the conditions in WHERE clause, then executes the operations in SET

clause. As discussed in reading data section, the existence of an index on the

attributes included in the WHERE clause of the query is the determinant factor of

performance for the first part. However, when data is inserted or altered, indexes

require maintenance, which results in extra work. As a consequence, having too

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 30

many indexes on attributes included in SET operation yields low performance on

update.

Insert operations, on the other hand, do not require any search on relations.

As only new data is written into the database, cost of an insert operation consists

of updating (or creating) required indexes, as previously discussed.

3.3 Document Based Databases

Document based databases emerged with NoSQL (not only SQL) movement.

Although SQL databases have been used widely, their performance suffered for

new types of queries. Having to follow a strict schema became too constraining.

The idea behind document oriented databases is to store semi-structured data

in documents as a whole. A document includes all data regarding to an object,

which corresponds to a tuple in RDMBSs. Data within a document is often stored

as key - value couples. A set of documents stored together is called a collection,

which corresponds to tables (relations) in RDBMSs.

Having semi-structured data relaxes schema constraints and lets data to be

modelled more easily. However, not following a strict structure often results in

maintenance problems.

Document based databases, (and other NoSQL databases) are usually not

ACID compliant. Although there are some database systems that provide ACID

properties, such as CouchDB, MongoDB is not one them. Instead, MongoDB

ensures atomic operations on single documents and claim that it should be enough

to ensure data integrity.

There are a number of formats used to store data in document based

databases. Most commons are JSON (JavaScript Object Notation) and XML

(Extensible Markup Language). As such formats have been widely used, there

are a variety of libraries for all widely used programming languages that parses

and encodes data in these formats. We will focus on JSON format and MongoDB.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 31

1 {
2 "name" : "Quadus",

3 "year" : "2012",

4 "engine" : "1.4L"

5 "sales" :

6 [{
7 "amount" : "15.000$",

8 "date" : "20.05.2014"

9 },
10 {
11 "amount" : "14.500$",

12 "date" : "26.05.2014"

13 }]
14 }

Figure 3.6: Car model represented in JSON format

3.3.1 JSON

JSON is a highly flexible data format. There are four types of elements in JSON,

which are objects, arrays, keys and primitive values. Objects in JSON are basi-

cally lists of key-value pairs. Keys in these key-value pairs are strings that acts

just like hashes in hash tables. Values, on the other hand, can be other objects,

arrays, or primitive values, such as number, string, boolean and null. Arrays in

JSON are heterogeneous collections of objects, primitive values, or other arrays.

Objects are denoted with curly brackets ({ }), and arrays are denoted with

square brackets ([]). A sample object can be seen in Figure 3.6.

This object has 4 keys, which are name, year, engine, sales. Fields name

and engine are of primitive string type; whereas, year is stored as number. Field

sales, on the other hand, stores an array of objects.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 32

3.3.2 Document

A document in a document-oriented database is a collection of data that usually

represents an object in real world. It is common practice to denormalize data

and embed as much related information as possible into one document and store

them together to avoid costly joins.

As data is denormalized on purpose for performance gains, normalization

issues are ignored as a trade-off between consistency and operational efficiency.

There is no universal rule of thumb when designing document oriented databases.

It is preferred to have schemas, albeit relaxed ones and embedding subdocuments

into documents is a common practice. However, the decision of embedding an

object into another one, or having it as an individual document depends on the

operations to be run on the data set.

When objects are represented in the form of a document, different types of

semi-structured information can be embedded into one single document. Con-

sider the representation of car model Quadus in JSON format in Figure 3.6. In

addition to name, year and engine information, sales data is also inserted into

the document. This yields the result that no join operations are needed when

fetching sales data for a model. Instead, only model document is required to get

both model details and sales information. Note that the same operation requires

scan of two tables to join them in a relational database. While using this schema,

it is possible to have indexed ids for models and have brand documents store it’s

models as an array of ids, for faster look-up for models through brands.

Another possible schema would be to have brands as master documents, and

embed models into them as subdocuments. If the database is designed this way, to

locate sales of a model, one would require either to know the brand that owns the

model and locate the brand document to get the model and sales subdocuments,

or search through brand documents and check if the models array includes the

one being searched.

It is obvious that there are many number of design choices to be made and

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 33

the decisions should be based on the search patterns of the application that will

use this database.

3.3.3 Storage, Retrieval and Editing

Document based databases contain collections of documents. Documents are

stored as a whole and documents in the same collection are stored together.

Different document based database management systems provide different types

of querying and editing interfaces. We will be focusing on MongoDB.

Queries in MongoDB consist of multiple parts: query criteria and modifiers.

Query criteria is the part where a predicate is provided that chooses if a document

will be included in the result set. Query criteria may also include a list of keys

used for projection. Returned documents will include only the fields given in the

projection list. Modifiers, on the other hand, are used to manipulate the result

set, such as sorting the results, limiting the number of documents to be returned.

Figure 3.7: Simple MongoDB query

For example, to get a list of models with year 2009, we need to run the query

given in Figure 3.7. If only the names of these models will be shown, it is logical to

project only the name part of the documents, as the query suggests. The results

will be sorted on their names, and the result set will be limited to include 5 items

max, as per modifiers given in the query. Note that value 1 given in projection

and sorting modifier is used to state that the given field should be used in the

operation and value true can be used with 1 interchangeably. If values false, or

0 are used instead, the fields mentioned will be excluded from the result. There

are other modifiers, such as skip, that skips the given number of documents and

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 34

returns the documents after that. Modifiers skip and limit are used together

mostly for pagination.

Each query is restricted to search through the documents in only one col-

lection. Hence, cross-collection queries, joins in relational databases, are not

allowed, which can be limiting for applications working on MongoDB. To be able

to query documents based on data from different collections, separate queries are

required to run, the latter using the output of the former. For example, if sales

data were to be stored in a different collection than the models, to be able to

search sales data of all models created in a given year, we need to query first the

models of the given year, and extract the model names from the first results, and

use these models as input for the second query, which would match the model to

sales documents and return the sales data.

Formerly mentioned relatively simple queries are not the sole ways of retriev-

ing data. MongoDB provides three different aggregation operations that enables

querying and manipulating data on server side. First one is fairly basic aggre-

gation operations, referred as single purpose aggregation operations. This group

includes simple functions that run on a single collection. For example, count is

used to get the number of documents that returns true for a given predicate, or

distinct is used to get distinct values the documents in the collection have for

given key.

There are two other aggregation operations that provide more complex means

of data retrieval. Aggregation pipeline is used when data being queried requires

to be manipulated, grouped, processed and then returned. A good example for

aggregation pipeline would be to sum the amount of money received for models,

grouped by the year of the model that were made after 2005, for the given schema

in Figure 3.6. To be able to get the data, we need to eliminate documents referring

to models that were made before 2005, find all sales data grouped by years, and

sum them up. For this operation, the query in Figure 3.8 will do the job.

Let us look closer to the query. The sales data of models that were built

before 2005 do not concern us. Hence, we use $match operator to denote that the

documents used in this aggregation need to have their year greater than or equal

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 35

1 db.models.aggregate({
2 $match : {"year" : {$gte : 2005}},
3 $unwind : {"sales" : 1},
4 $group : {
5 "_id" : "$year",

6 "totalSale" : {$sum : "$sales.amount"}
7 },
8 $sort : {"totalSale" : 1}
9 })

Figure 3.8: MongoDB aggregation pipeline

to ($gte) 2005. Note that the $match operator will make use of the index on

year field, if there is any. Then, we need to sum up all sales separately. However,

each document contains an array of sales data, instead of one. Hence, we use

$unwind operator. This operator duplicates documents to have only one sales

data object on them, so that each sales data object is mentioned once and not

in an array. As we need to group data by the model’s year, we give year as id

for $group operation. MongodDB groups documents that generate same id into

one document, passing them through the other group operations, such as $sum

operation given in the example. Finally, $sort operation sorts the generated

results by the fields used as input, which yields sum of all amounts of sales,

grouped by the year of the model, sorted in ascending order by the year of the

model.

MongoDB also provides MapReduce framework. This framework makes use of

the MapReduce paradigm discussed in section 2.4. It applies the map function to

each document that matches the query criteria, emitting key-value pairs. Then,

reduce function is applied to keys that have more than one value. As both map

and reduce functions are custom javascript functions, it is easy to customize both

procedures to generate complex results. It is also possible to state a finalize

function to process and manipulate the results of the reduce function and shape

it into a final result.

To perform the same operation given in Figure 3.8 in MapReduce paradigm,

code presented in Figure 3.9 must be run on MongoDB instance. Note that the

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 36

mapReduce interface given in MongoDB shell takes 3 inputs. First one is the

mapping function that will be applied to all documents used in the MapReduce

operation. Data contained in the currently processed document can be accessed

using this keyword. As we are iterating on model documents, there is an array of

sales for each model, and each of the amounts given in these sale elements must

be included in the operation. Hence, we iterate on this.sales and for each

sale data, we emit <year, amount> pair. It is obvious from this example that

one document may emit more than one results for a map function. Then, these

results are automatically grouped on keys, and given into the reduce function,

which is given as the second parameter. This function iterates over the values,

which are sale amounts for each sale, and sums them up to find the total amount

received from sales of all models that were produced in the same year. The third

parameter, which is an JSON object, is used to input optional parameters, such

as finalize function, or a query criteria to select which documents will be included

in this MapReduce operation. If no criteria is given, all documents will be passed

through the map function. Other optional parameters include a “sort” field,

which determines the sorting criteria of input parameters, or a “limit” which

limits the number of documents that will be included in the operation, or an

“out” value which indicates where the results will be written. It is possible to

write the results of a MapReduce operation into a collection to be stored for later

use, or to be given into a second MapReduce operation as input, thus enabling

incremental MapReduce operations.

Aggregation pipeline is relatively more efficient than the MapReduce frame-

work, as it has a coherent interface and provides predetermined operations; thus

enabling internal optimization techniques run by the database engine prior to

the execution. However, MapReduce framework accepts custom functions that

provides a more flexible interface, with the additional advantage of being a widely-

known concept.

Insertion in MongoDB is fairly simple, as objects are both represented and

stored in JSON, and there are no schema restrictions on the database shell. To

insert a document, function insert is used, which takes a single parameter. If

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 37

1 db.models.mapReduce(

2 //map function

3 function ()

4 {
5 var key = this.year;

6 this.sales.forEach(function(sale){
7 var value = sale.amount;

8 emit(key, value);

9 })
10 },
11 // reduce function

12 function(key, values)

13 {
14 var result = {year : key, totalAmount : 0};
15 values.forEach(function(value){
16 result.totalAmount += value;

17 })
18 return result;

19 },
20 // optional parameters

21 {
22 query : { year : {$gte : 2005}}
23 }
24)

Figure 3.9: MongoDB MapReduce

the parameter is a JSON object, one document is created in the specified collec-

tion, and the number of documents returned to inform the client for the result

of the operation. If the parameter is an array of objects, bulk insertion opera-

tion occurs, returning an object called BulkWriteResult that contains detailed

outcome including the number of documents created, any possible write errors.

Update operations, on the other hand, takes three parameters. First one is

query criteria that is used, just like when retrieving objects, to find documents

that will be affected by the given update. Second parameter contains instruc-

tions as to what the update operation will change. MongoDB provides obvious

operators in addition to some very useful instructions to be used in an update

operation. For example, $set - $unset operators are fairly simple and used

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 38

to set/unset a field in the document. Operator $addToSet, on the other hand,

inserts the given value into an array, only if the array does not contain the given

value, thus easing the maintenance of sets. Options for the update operation is

given as the third parameter. These options include “upsert” key, which lets the

database system to insert a document with the properties given in the update

instructions, if no document matches the query criteria. This option comes in

handy as it lets the user avoid checking existence of a document before updating

it, and inserting a new document when there is none. The other option is “multi”

key, which implicates if the update operation might change multiple documents,

or if the operation should only be run on the first document found.

3.4 Graph Databases

Graph databases are another part of the NoSQL movement that is becoming

more and more popular. These databases model the data in a graph structure

with vertices representing objects in the real world, and edges corresponding to

the interactions between these objects. Nodes and vertices have properties, as

key-value pairs, that are used to store details of objects and relationships.

Advocates of graph databases discuss the argument that when people model

real world objects, they usually tend to use graphs. For example, entity - re-

lationship (ER) diagrams are most commonly used diagrams in early modelling

stages of software development. It is an easy way to abstract data and define how

systems would work. As an ER diagram can easily be mapped into a graph struc-

ture, it is easier to model a graph database, rather than creating complex tables

that require multiple joins, or choosing from varying possibilities of documents.

In addition to being a more natural way of designing a database system,

graph databases are better in handling connected data. Consider a many-to-

many relationship among objects of same type, for example, friendship among

users of a system. To represent such a configuration, relational databases would

require a new table which would include tuples for each connected objects, a

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 39

table to hold unique ids of all <user, user> pairs. Finding objects that take part

in such a relationship would require multiple costly joins of tables. If multiple

depths of this relationship considered, such as friends of my friends, or friends

that are friends with my friends, things would go out of hand. A document based

database system might respond better to first depth objects in such a relationship,

but again would fail with multiple depths. Graph databases easily handle this

type of queries, as it enables queries to be graph traversals.

Moreover, graph databases make use of index-free adjacency, which means

that relationships of an object directly point to other objects, instead of storing

indexes for those objects. This avoids index-lookups and increases performance

on multiple depth relational searches.

3.4.1 Graphs

A graph is a mathematical model that is used to represent objects and rela-

tionships among them. Objects in real world correspond to vertices (nodes) in a

graph; whereas, edges connect these nodes and correspond to relationships among

objects. Therefore, a graph is basically a set of vertices and edges, denoted as

G = (V,E). Edges might have directions, making the graph directed, or may be

without directions, which yields in an undirected graph. Each vertex might be

connected to any number of other vertices. However, edges are restricted to be

connecting only two vertices. Therefore, for a relation that binds more than two

objects, a new vertex is introduced to represent the action, and all other objects

that take part in this action are connected via edges to this new vertex.

The number of edges that emanate from, or leads to a vertex v is said to be

the degree of that vertex, denoted as deg(v).

A path between two vertices is a sequence of edges which starts from one

vertex, and leads to the other vertex, without violating edge direction if the graph

is directed. A cycle is a path where the two vertices the path connects are the

same vertices, i.e., a path that returns to the point it starts. There may be more

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 40

than one (infinitely many if a cycle is involved) paths between any two nodes. In

an undirected graph, if there is at least one path from any vertex to any other

vertex, the graph is said to be connected. In a directed graph; however, if any

vertex is connected to any other vertex without violating direction constraints of

edges, the graph is strongly connected. The connectivity of a graph implies the

robustness of the graph and is calculated as the minimum number of vertices that

must be removed from the graph to break the graph’s connectedness.

When dataset of cars, models and sales, given in Figure 3.1, modelled as a

graph, the result will be the graph given in Figure 3.10. Brands and models

are obvious choices to be selected as vertices. First approach to sales, on the

other hand, might be to have them as relations between customers and models.

However, since there is no customer data available in the dataset for now, it is

required to consider each sale an object, thus modelling them as vertices too. Note

that the relations are relatively obvious in the given database, and the directions

can be removed. However, usual tendency is to keep directions in data as much

as possible, but ignore them in the context and treat the graph as undirected.

Figure 3.10: Car database as graph

There are many graph databases available, such as Titan, OrientDB, and

Neo4j. We will be focusing on Neo4j, which is developed by Neo Technology Inc

and used by thousands of companies, 50 of which is Fortune 2000 companies,

according to their website [1].

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 41

3.4.2 Data Access

Various graph databases are now ready to be used in full-scale. However, when

it comes to querying them, there is no consensus in the language used to access

data. Unlike SQL being used in almost all of the relational database management

systems, developers of graph databases decided to implement their own languages.

As graph databases are relatively new technologies, there might be convergence to

some of these languages; but currently it is not the case. As we will be focusing on

Neo4j, we will look at Cypher language, which is used by Neo4j graph database.

As graph databases store data in vertices and edges, pattern in accessing the

data is finding a set of vertices to begin with, and following a graph traversal

query to get results. Consider the database schema given in Figure 3.10, to find

the models of brand “Mare Motors”, first we need to find the vertex represent-

ing “Mare Motors”, and then find vertices that are connected with it with a

”is of brand” relation, resulting in “S22” and “XQ15” vertices.

Cypher queries usually consist of three parts: MATCH, WHERE and RETURN.

MATCH clause is used to denote the graph pattern that will be searched throughout

the database. This pattern includes nodes and relationships, using parenthesis

“()” for nodes, and brackets “[]” for relationships. To get the models of a brand,

like the example given earlier, one should run the following query.

1 MATCH (n) <-[:IS_OF_BRAND]- (m)

2 WHERE n.name = "Mare Motors"

3 RETURN m.name

Figure 3.11: Basic Cypher query

In the cypher query given above, two nodes are mentioned in the MATCH clause,

namely n and m. A relationship is also given between these nodes, which is la-

belled as IS OF BRAND. In the WHERE clause, we express a constraint, which

says that node n should have name “Mare Motors”, which makes it match with

the brand node of Mare Motors. Note that this constraint can also be de-

noted in JSON as (n {name:"Mare Motors"}), instead of using a WHERE clause.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 42

Once this constraint is satisfied, all nodes that are connected to node n with an

IS OF BRAND relationship will be models of Mare Motors. In the RETURN clause,

the output of the query is given, which is name values of all vertices matching the

pattern. It is possible to return nodes as a whole, by not stating a key in return

clause. Note that although < denotes direction of the relationship, a pattern

without a direction is also possible, which makes it match with direction of both

sides.

Cypher is designed to resemble a graph as close as possible. Hence, query

“(brand)<-[IS OF BRAND]-(model)” is highly readable, which makes it easier

to understand existing queries, and improves retention rate of knowledge in this

language.

As there are no collections, or tables, every object is mapped to a node in

graph. For the formerly given example, the pattern tries to match all nodes

with name “Mare Motors”, even if they do not stand for brands. However, there

is a natural grouping among vertices that represent same types of objects. To

mimic this concept, vertices can be labelled in Neo4j. Same types of objects are

labelled with same key, and these labels are used in patterns. This way, database

management systems avoid full node scans and scan only the nodes with the

label given in query. Similar to the former example, to find the number and total

amount of sales of all models of brand “Steed Cars”, the required query will be

as the following, which will return <29 500$, 2>.

1 MATCH (n:brand) <-[:IS_OF_BRAND]- (:model) <-[:

SOLD_MODEL]-(s:sale)

2 WHERE n.name = "Steed Cars"

3 RETURN SUM(s.amount), COUNT(s)

Figure 3.12: Cypher query with labels

Note that brand nodes are labelled as brand and model nodes are labelled

as model. These labels are used in the query as (n:label), where n denotes the

node, and label is the name of the label. Because there is no need for models

in this query, node in the pattern for models is not given any name, just the

label. In addition, as we are only interested in the number and total amount of

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 43

money made in these sales, we use grouping operators SUM and COUNT to aggregate

results.

Figure 3.13: Family tree graph

Cypher provides more detailed means to query for more complex patterns.

The power of graph databases comes forward while traversing paths of uniden-

tified lengths. Consider the family tree graph given in 3.13, which represents a

relatively small family tree with nine people, who are connected with marriages

and parenthood relations. For example, to find all descendants of Ruth, we need

to get all nodes that are connected to Ruth with relation is child of, regardless

of the number of vertices in between. Following query does this job with making

use of Neo4j’s ability to handle variable path length selectors.

1 MATCH (r{name:"Ruth"})
2 <-[:is_child_of*]- (descendant)

3 RETURN descendant

4 LIMIT 25

5 ORDER BY descendant.name

Figure 3.14: Cypher query with variable path length selector

Results will be Jane, Jerry, John and Terry. Note that the results are sorted

by their names, as ORDER BY operator is used in the query. The other operator

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 44

1 MATCH

2 (ruth{name:"Ruth"}),
3 (ophelia{name:"Ophelia"}),
4 p = shortestPath ((ruth)-[*..10] -(ophelia))

5 RETURN p, LENGTH(p)

Figure 3.15: Shortest path query in Cypher

used LIMIT would limit the results to have only 25 nodes, if there were more than

25 vertices matching the pattern. Also note that the constraint for finding node

for Ruth, that the name of the node is “Ruth” is given within the MATCH clause,

instead of using a WHERE clause.

One of the most usable powers of Neo4j stems from its ability to search

for a shortest path between two nodes. Cypher language provides the method

shortestPath() that takes a pattern as a parameter, and finds the shortest path

matching the parameter. For example, if we want to find the path that binds

Ophelia to Ruth, we need to run the query given in Figure 3.15.

Figure 3.16: Shortest path between Ruth and Ophelia

Result set will include the shortest path between Ophelia and Ruth, denoted

with the dashed lines in Figure 3.16, and the length of the path, which is 5.

Note that vertices and edges not included in the path are greyed out for better

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 45

(a) Initial graph (b) Graph with new relationship

Figure 3.17: Creating a relationship in Neo4j

visibility. Unique powers of graph databases become clearer when the difficulty

of achieving same operation with other types of databases is considered.

3.4.3 Editing & Inserting Data

Data insertion in a graph database can be analysed in two sections: creating a

vertex, or a relationship. Creating vertices is done by using the following query

1 CREATE (n:new_node {"key" : "value"})
2 RETURN n

In this query, n represents the node to be created. This node will have

new node as its label, and will be storing key-value pairs denoted within curly

brackets. Optionally, this query returns the newly created node, as per instruc-

tion RETURN n.

To create a relationship, two vertices need to be located first. Then, the

relationship is created between those two vertices. Consider the example given

in Figure 3.17. Let’s say that we want to create a visited relationship between

vertices with ids 12 and 15, and we want this relationship to store “12.09.1986“

as its date property. First, MATCH clause in the following query locates two nodes,

denoted as n and v, based on the constraints on their ids (see Figure 3.17a). After

that, CREATE clause creates a new relationship with the given type, visited in this

case, with given key-value pair (see Figure 3.17b). Database management system

returns these two nodes, and the newly created relationship, as per instructions

given in RETURN clause.

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 46

1 MATCH (n:person {"id" : "12"}),
2 (v:place {"id" : "15"})
3 CREATE (n)-[r:visited {"date" : "12.09.1986"}]->(v)
4 RETURN n, v, r

To update already existing data within the graph database, cypher provides

a simple interface. Similar to other databases, first the node or the relationship

needs to be located. Then, using SET, or REMOVE keywords, data stored within

these nodes and relationships are updated. The following query, for example,

locates a node called n1 and updates its data. SET keyword sets newValue as

value of newKey. If the node already includes that key, value of it is changed. If

no such keys exist within the node, new key is inserted. REMOVE keyword removes

the key-value pair, key of which given as input.

1 MATCH (n1:label {"id" : "id1"})
2 SET n1.newKey = "newValue"

3 REMOVE n1.oldKey

4 RETURN n1

3.5 Summary

For years, relational databases have been used widely and hence, they hold a

firmly defined structure. However, with the emergence of Internet, and social

media, data generation and complexity increased and these relational databases

began to fail serving efficiently. As they require strict schemas to be defined and

followed, people felt the need to get rid of the schema constraints, since data

generated nowadays are from various sources and do not strictly follow any rules.

With the emergence of NoSQL movement, various types of new approaches

were developed to store data without heavy constraints of relational databases,

with additional properties, such as horizontal scalability, being prone to sharding.

Two intriguing technologies are document based databases and graph databases.

Note that there are many variations of databases that were not mentioned in this

CHAPTER 3. DATABASE MANAGEMENT SYSTEMS 47

section, as we focus on document based and graph based databases.

Document based databases tend to embed as much data as possible into one

document to avoid costly joins of multiple tables. However, querying interface is

thus limited not allowing any kind of join of more than one collection. Although

they are more suitable for distributed storage and heavy computing among multi-

ple servers using MapReduce framework, they struggle when handling connected

data, and multiple degrees of relations. ACID compliance is also mostly lack-

ing and hence, they might be insufficient to the area the database management

system tries to serve, if reliability is a key issue.

Graph databases promote the idea that people tend to think in graphs when

modelling. When data is stored as a graph too, there is no translation between

the data model, and database schema, which in turn increase development ef-

ficiency. They are also very effective when objects are heavily connected and

required queries include multiple depths of relations. In addition, Neo4j provides

ACID transactions. But graph databases are relatively young and are under ac-

tive development. Although they thrive at handling relationships, they perform

weaker on simple data access.

In summary, each data model has its efficiencies and incompetences. They

approach data differently and host characteristic designs. As a result, there is no

one database management system that fits all project requirements. Instead, stor-

age and access to data should be carefully planned and matching database model

should be selected. We provide a detailed comparison among these database

management systems in Section 5.4.

Chapter 4

Sınavo: A Big Data

4.1 Introduction

Sınavo is an online education system that provides its users means of studying

in preparation for certain examinations. It currently supports users for LYS-

YGS, which are examinations conducted by ÖSYM (Öğrenci Seçme ve Yerleştirme

Merkezi), which is a governmental institution, to elect students for universities,

or KPSS, which is another examination that is used in electing candidates of

governmental employees. However, the concept is easily applicable to other areas.

The core mechanism in Sınavo is solving multiple-choice questions. Users can

solve questions in many different conjunctures, such as in games, or in tests.

However, social interactions play a significant part in Sınavo experience. Users

can chat while playing games, share questions they struggle to solve to get opin-

ions of other users, brag about their accomplishments in social networks such as

Facebook, etc.

Sınavo has been in development for more than 4 years and is constantly adapt-

ing to new requirements of its users and the business. Initial version of Sınavo

focused on solving questions and tests. In time, social interactions became avail-

able to users to provide a collaborative learning experience. After succeeding in

48

CHAPTER 4. SINAVO: A BIG DATA 49

attracting thousands of users, Sınavo started to provide course videos and video

solutions to its questions. Now, Sınavo supports private schools to generate and

evaluate tests, as well as tracking user statistics and analysing student perfor-

mance.

4.2 Components

Sınavo provides different means of question solving. All questions in Sınavo

database are linked to a collection of subjects which consists of subjects with

3 levels. First level is called lessons and is the most generalized category, such

as Mathematics, Physics, Literature. Second and third level subjects are more

specific. Questions are constrained to belong to three subjects, each from differ-

ent levels. However, no question is allowed to be of more than one subject at the

same level. In addition, subjects are strictly in a tree structure, meaning that

each subject is a child of one and only one subject and there are no cyclic paths

in the subjects structure.

The subject tree is an extensive collection of subjects with 9 lessons, and

more than 170 subjects in second level, and more than 1150 subjects in the third

level. The 3-level tree is a design choice, governed by the domain of the project.

However, it can easily be changed to host other structures.

All questions are multiple-choice questions with exactly one right answer, four

wrong choices. Users have three possible results when solving a question. They

can solve the question correctly, wrongly, or skip it.

4.2.1 Question Solving

Most basic way of solving questions is a module called Question Solving. In this

module, users select a set of subjects first and start a session. In a session, they

are asked random questions from question database that belong to the subjects

they have selected earlier. There is no sequential order in subjects of questions,

CHAPTER 4. SINAVO: A BIG DATA 50

and questions are primarily selected from the ones that the user have not solved

yet. After user solves a question, he is shown statistics of that question, his results

on that specific question, and his incremental statistics on the session. Statistics

of a question include the number of times that question is solved, which is split

into numbers of the question being solved correctly, wrongly, or left empty, and

the fastest solvers of that specific question.

Sınavo has a score system that aims to encourage users to study. Top users

with highest scores are listed on the main page. Users gain points by solving

questions correctly, or might lose points if they solve questions wrongly. However,

the outcome of the question solving action is not the sole component of points.

The time that takes a user to solve question is inversely proportional to the score.

Hence, the quicker the user solves a question, the more points he or she gets from

that question.

4.2.2 Games

Games are the most popular parts of Sınavo system. They provide a competitive

environment in which users are encouraged to solve more questions and be more

careful when doing it. There are currently two types of games in Sınavo, which

are BenBilirim and BildinBildin.

BenBilirim is a multi-player game that consists of rounds of question solving

played in real time. In each round, all users are asked the same question and

are required to solve it in a predetermined amount of time. When the time is up

for a round, or all users have answered the question, the round ends and users

are shown the result of that round. If a user solves a question correctly, he or

she gains the right to continue to the next round. Users that did not answer the

question correctly, which means that their answer was either wrong or empty or

they did not answer the question in time at all, get an error. If the number of

a user’s errors exceed a predetermined limit, the user gets eliminated from the

game, but is allowed to watch the proceeding rounds. The game continues until

there is only one user left. If at any round all users fail to gain the right to go on

CHAPTER 4. SINAVO: A BIG DATA 51

to the next round, all users that contested in that round are allowed to proceed,

as the game requires a clear winner.

Players are allowed to chat during the game, which provides a way of igniting

social competition. They are also presented with a result page that shows the

winner of the game with a positive visuals to provide a sense of achievement.

The game requires at least two people to run, but there is no upper-limit to

the number of contestants. More than 25000 games have been created in Sınavo.

Most crowded games had more than 50 players and the longest games lasted more

than 100 rounds.

BildinBildin, on the other hand, is a single-player game in which players try

to solve as many questions correctly as possible. At the beginning, they are given

a predetermined amount of time, and start solving questions. With each question

they solve correctly, they gain extra time; whereas, solving a question wrongly

results in a penalty in the time they have. The game goes on until they run out of

time. Amount of time a player survives the game is that game’s outcome. These

records are visible on the records page, and present a good way of increasing

competition among players, to motivate them to solve more questions.

4.2.3 Test

Formerly mentioned examinations (LYS-YGS and KPSS) have predetermined

numbers of questions for each lesson. LYS and YGS happens once a year; whereas,

KPSS can be taken twice in a year. Majority of students in Turkey attend to

paid institutions that try to help in the quest of succeeding these examinations.

These institutions prepare regular tests to both measure the students’ current

level, and prepare them for the real examination. As time is very limited in real

examinations, students need to get faster at solving questions. These tests mimic

the real examination in both time allowed to solve the tests and the number of

questions included in a test.

These tests usually consist of a number of question groups, such as

CHAPTER 4. SINAVO: A BIG DATA 52

mathematics-1 or science. These question groups are predetermined sets of sub-

jects (or lessons), some of which include only subjects of a specific lesson, whereas,

some include more than one lesson. For example, the question group called

mathematics-2 consists of advanced subjects of lesson mathematics. On the other

hand, question group called science includes questions from physics, chemistry

and biology. Hence, there is no one-to-one mapping between the subject-tree and

these question groups.

Sınavo provides a similar experience through tests. New questions are entered

into the database to ensure that questions in a test are not solved before by

students. Each test has a predefined time limit and predefined set of questions.

System allows students to take these tests within a few days. For example, a

test may be online for a week. When a students decides to take a test, he or she

goes to available tests page, select the test, and begin solving. Once the students

begins to take the test, there is no way of pausing the timer, so that each user

has the same amount of time to finish. Once the time the test is online finishes,

results of that test are announced. These results include statistics of the user on

the test, such as the number of correct, wrong, empty answers, as well as their

rankings in the set of all users that take the test.

Performances of students in such tests are highly valuable. Within this data,

there resides strengths and weaknesses of students for each subject. As different

users solve the same questions in the same amount of time, data generated is

validly comparable. In addition, users take these tests in different time intervals,

which makes the data decisive for tracking a student’s performance change. If

correctly mined, this data will outline performance track of the student, and may

result in useful and accurate predictions.

4.2.4 Performance Analysis

Every action of users in Sınavo is stored to provide detailed statistics with in-

formative presentations. For example, when a user solves a question, answer of

the user is stored as well as the time it takes the user to answer, procedural

CHAPTER 4. SINAVO: A BIG DATA 53

statistics of the user’s session, etc. Using this data, students can monitor their

performances on specific subjects, compare it to average performances of all other

users in selected subjects, see the fastest solvers of a question, and the time it

took them to solve it, see how many times a question is solved, with details such

as how many of that was correctly, etc.

Performance analysis section of Sınavo targets providing users the ability to

monitor their current status and spot their weaknesses and strengths. Users

can display numerical statistics of their actions in Sınavo such as the number of

questions they have solved, or the number of questions they have yet to solve. In

addition, they can decompose their statistics to see details on specific subjects

on the subject tree.

In addition, users can display some fun statistics of their experiences in Sınavo.

For example, they can see the number of people attended to a BenBilirim, which

was the most crowded game the user attended to, or the longest lasting BenBilirim

game and their rankings in that game. They can also check the person that beat

themselves the most times, which makes that person a nemesis.

4.2.5 Landing Page

Landing page in Sınavo, which is the page users land after logging in, is a com-

prehensive dashboard. In the middle, posts of other users are displayed, which

include updates from users, shared questions, or game results. This part is cru-

cial for social interactions that occur within Sınavo. On the right hand-side, high

scores and their owners are displayed. Displaying highest scores on everyone’s

landing page creates a crucial incentive for users to increase their scores and get

a spot in the hall of fame. In addition, users are presented with their statis-

tics of question solving in last 7 days. This way, users can easily see both their

performances recently, and the amount of time they spent studying in Sınavo.

Seeing a huge drop on last days is a good motivation for students to go on and do

some work. They can also see their performances decomposed by lessons, with

comparison to Sınavo averages. This provides a glimpse of their status on each

CHAPTER 4. SINAVO: A BIG DATA 54

lesson. As these statistics are displayed together with Sınavo averages, users can

estimate their weak points easily, and focus studying on those.

All this data is generated in real time, meaning that every action that affects

these statistics will be displayed on the page load. This is an important design

choice, and a trade-off between performance and user-friendliness as seeing the

displays change after doing some action is a good way of motivating users to keep

up the work. Although caching some statistics and updating displays periodically

would be more efficient from developers’ perspective, when users do not spot any

difference on these statistics after solving some questions, they tend to feel that

what they have been doing was all in vain, and stop studying. This is especially

the case when studying on a computer screen. People are used to study with pen

and paper, and have fun on computer. Trying to study on a computer requires a

good motivation and high focus. Hence, these tiny motivational designs choices

play a huge role in keeping students’ attention.

4.3 Challenges

Sınavo has been online for more than three years. Users have been using the

system extensively, generating a huge amount of data.

As discussed earlier, Big Data is usually described with three V attributes :

Volume, Velocity, and Variety. With millions of records stored in its database,

Sınavo surely carries enough volume. New games are constantly created and

played. In addition, daily averages of number of questions solved are close to six

thousand. These facts prove that the velocity at which Sınavo system generates

new data is high.

Variety can be considered as relatively weak in Sınavo, especially considering

most of the actions can be seen as solving a multiple choice question. However,

questions can be solved in many conjunctures, which means that each action

yields different set of properties. This diversity is actually the main reason that

makes Sınavo not very suitable for relational database management systems.

CHAPTER 4. SINAVO: A BIG DATA 55

4.3.1 Handling Data

Sınavo has more than 80000 users signed up, more than half of which , around

47000, used their Facebook accounts to join Sınavo. These users can bond friend-

ships on Sınavo, as well as importing their friendship data from Facebook. This

generates a highly interconnected set of entities. Of course, not all of these users

are active daily. Considering the fact that examinations occur annually, users

that succeed in an examination are not likely to return to Sınavo. However, there

are more than 30000 users that used Sınavo actively in the last month, which

means that Sınavo endures a good traffic regularly.

There are more than 55000 questions in Sınavo database. These questions are

stored as images to be printed on web pages, with one image storing the question

part, and 5 others storing choices. To provide a better readability, especially for

small devices such as mobile phones and tablets, these images require a certain

amount of quality.

The biggest chunk of Sınavo data consists of data generated when users solve

questions. This action has occurred for more than 6500000 times. This is an

incredible amount of valuable data that holds vital statistics to be used, as well

as a crucial source for data-driven decisions. A sample data of this collection

includes a reference to user, to question and to the entity which encapsulates the

session, which can be different games, or tests. It also contains the choice of user,

the duration it took the user to solve the question, and the date at which this

question solving action occurred.

In addition to data generated by actions occur in Sınavo, users also generate

data via messaging tools and chatting in games. Sınavo users can send messages

to other users to introduce themselves, get acquainted, and to converse. More

than nine thousand messages have been sent using Sınavo. Users can also chat

during competitive games. As these games are the most densely used features of

Sınavo, chatting during these games is a major source for conversations. There

are more than 300000 chat messages sent.

CHAPTER 4. SINAVO: A BIG DATA 56

4.3.2 Accessing Data

As Sınavo is an online system working on request - response structure, response

time is a crucial performance trait. Hence, accessing data in a timely manner is

vital. This requirement dictates that no time-consuming data aggregations can

be run on frequent requests.

Sınavo tries to summarize important statistics of its users on their landing

page. These summaries include their statistics in last 7 days, or a status report

on lessons. As studying in Sınavo is a continuous progress, users want to be able to

monitor any changes in their statistics in real time. This enforces Sınavo to avoid

caching these results and require that always up-to-date data is fetched when

generating response. For example, when generating a status report on lessons,

all the data required is present in the collection of solved questions. To be able

to generate this report, user’s success rate on questions of each lesson is required.

However, fetching these from a collection of more than six millions of records is

not an easy job. Even if there exist indexes, there might still be thousands of

records need aggregation to generate the required results. In addition, different

reports yield different criteria to filter solved question data; e.g., monthly success

rate of users on subjects.

To be able to generate results in a nick of time, statistics are stored incremen-

tally, instead of being calculated when requests arrive. This is done by storing

a collection of statistics incrementally, and updating them when a question is

solved. However, one collection of incremental statistics is not enough to cover

all requirements. Queries to generate these reports include subject constraints to

filter question solving statistics on only certain subjects, as well as time criteria

to get monthly statistics of a user. To be able to serve statistics per subjects,

records are generated per user per subject. This way, the look-up for one user’s

performance on a subject is locating a document with the specified subject.

Such reports do not consist only of individual user statistics. They also require

a range of queries that generate statistics of all Sınavo users on questions of a

subject, or, statistics of a question, regardless of the users solved that question.

CHAPTER 4. SINAVO: A BIG DATA 57

To handle such queries, different collections store different incremental statistics.

However, the number of collections to be updated when a question is solved is

much like the number of indexes to be updated when an entity is introduced

or updated in a database. When this number exceeds a certain amount, this

design of incremental statistics begins working against the idea. Too many work

to do when a simple entry is inserted into a collection will increase the insertion

duration, which might yield in decrease in overall performance.

4.4 Summary

We have described Sınavo, which provides its users means of studying through a

web interface. It includes different components, such as competitive games and

tests to practice. The system encourages social interaction via sharing questions,

chatting during games, etc. In addition, we have discussed numbers of Sınavo

and shown that it endures a high volume data generation.

Chapter 5

Alternative Database Approaches

to Sınavo

As discussed earlier, Sınavo has been in active development for more than 3

years, with some prototyping earlier than the start of this development. There

have been two major design cycles that included different technologies running

in the background.

Prototype of Sınavo was developed using ASP.NET web server with MSSQL

database behind the curtain, which is a relational database management system

developed by Microsoft Corporation. Not all of the systems current Sınavo has,

was within the prototype’s context. It was a showcase of what can be done for

an online educational system, and how that can be implemented.

All versions of Sınavo was designed similarly to provide backward data com-

patibility. For example, users authenticate themselves using their emails and

passwords. Passwords are stored in the database hashed with MD5 [24], which

is a commonly used irreversible hashing function. Using an irreversible hashing

function provides security over passwords because even if unauthorized parties

get access to the database, they can not generate raw passwords from hashed

values. When a user tries to authenticate, Sınavo system hashes the value pro-

vided by the user and checks if there is an entry in the database that matches

58

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 59

given email-hashed password pair. As the data is backward compatible, in case

of change in data storage, the only thing that is required to migrate the data is

a mapping function that maps data in old schema with the new one.

The following sections discuss user-accessible versions of Sınavo built on dif-

ferent architectures with different database management systems. However, as

mentioned earlier, Sınavo is a system that constantly evolves to fit the needs of

both users and business. Therefore, not all versions include same features. For

that reason, we will be discussing shared features and how they were handled, as

our intention is to give a comparison among data models and their capabilities.

5.1 Relational Database

First version of Sınavo that was accessible to users was also built on an ASP.NET

server, with MSSQL (Microsoft SQL Server) database. Hence, a relational model

was used when designing data structure.

Web server interacts with the database via stored procedures which basically

are functions stored in the database management system and called from the web

server.

There were a few conventions followed when the relational database was de-

signed for Sınavo. For example, each tuple has an Id field, which stores an auto-

incremented integer and is used as a primary key. Although some of the relations

have sets of fields that qualify for being primary keys, Id fields are introduced for

ease of development. Moreover, naming of objects in the database are arranged

so that similar items are displayed nearby. For example, all tables contain prefix

”TBL ”, and all stored procedures start with ”SP ”. In addition, tables storing

similar data are named similarly. For example, TBL StatisticsPerQuestion and

TBL StatisticsPerSubject are both tables storing statistical data. That’s why

names TBL QuestionStatistics and TBL SubjectStatistics are not chosen

instead.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 60

5.1.1 User data & Interactions

Sınavo stores many details about a user, on top of obvious properties such as

names and surnames. For example, for authentication process, an email address

and a password is used. To provide geographically constrained queries, addresses

of users are also kept.

Users’ authentication details and common properties of users of different types

are hold in authentication table. Initial design included many user types, such as

students, teachers, parents. However, they have not yet been used. To provide a

single access point for all users, all authentication information needed to be held

in a single table. The following relational schema is used for the table that holds

authentication data.

TBL Auth(UserId, Email, Fullname, Password, Username,

UserTypeId, RegistrationDate, IsAdmin, EmailValidated)

In this schema, fields Email, Password, Username, RegistrationDate are

self-explanatory. Fullname of a user is first name(s) and last name(s) concate-

nated. IsAdmin and EmailValidated fields are boolean fields stored as bit, for-

mer meaning whether the user is an admin, and the latter meaning if the user

validated his/her email address, which is done by entering a code that is sent to

the email address used in registration. UserTypeId is a foreign key, referencing

TBL UserTypes table, which has the following schema.

TBL UserType(Id, UserType)

Table TBL UserType serves enumeration purposes as field Id is an integer

and UserType is a human-readable value, such as ”Student”, or ”Teacher”. It

is possible to store UserType within TBL Auth table in human-readable form.

However, storing integers is cheaper than strings, and keeping human-readable

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 61

strings in a single place is more reliable.

In addition, users can authenticate themselves via an email-password pair, or

using Facebook’s authentication API. Hence, a subset of users have their Face-

book accounts linked to their Sınavo accounts. Although Facebook serves more

information about users, Sınavo stores only their ids on facebook (FacebookId)

and their emails used to login to Facebook (FacebookEmail). To store the extra

data that comes with a Facebook account, the following table is used.

TBL FacebookAuth(UserId, FacebookId, FacebookEmail)

Other details of users are kept in TBL UserInfo table, and entities are matched

by UserId fields in both tables. These details are stored in the following schema.

TBL UserInfo(UserId, TownId, MobilePhone, BirthDate,

ProfileImage, GoalDepartmentId)

In this table, profile images of users are kept as base64 strings, which is a for-

mat used for converting binary data into a string [20]. Here, TownId is a foreign

key, denoting where the user lives, referencing table TBL Town. Towns, or dis-

tricts, are parts of cities; therefore, there is a many-to-one relationship between

towns and cities. Hence, knowing the id of a town is enough to know the city in

which the user resides. To comply with normalization rules, specifically third nor-

mal form, towns and cities are stored on individual tables with following structure.

TBL City(Id, Name)

TBL Town(Id, Name, CityId)

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 62

GoalDepartmentId is another foreign key in TBL UserInfo and it corresponds

to the university department user marked as his/her goal. Same normalization

rule is applied here, and as DepartmentId is enough to identify the university,

universities and departments are kept on seperate tables and only DepartmentId

is mentioned in user info tuple. The following schemas are used for storing de-

partments and universities.

TBL Department(Id, Name, SchoolId)

TBL School(Id, Name, TownId)

Note that TBL School stores not only universities, but also other schools such

as highschools. TownId in this table is used to locate a school.

It is obvious that due to relational model’s schema constraints and normaliza-

tion rules, information of a user have been split into many tables. This yields the

problem of joining these tables to get all details of a student, which is constantly

required when a web page is displayed, at least for the user displaying the page.

The SQL query given in Figure 5.1 is used to generate these details of a user.

In addition, there are friendship relations created among users. To store this

many-to-many relation, table TBL Friendship is required. However, to form a

1 SELECT U. UserId as UserId , U. Fullname as Fullname ,
2 U. EMail as Email , C. CityName as City , T.Name as Town ,
3 I . MobilePhone as MobilePhone , I . BirthDate as BirthDate ,
4 U. Username as Username , U. UserTypeId as UserTypeId
5

6 FROM TBL Auth U, TBL City C, TBL Town T, TBL UserInfo I
7

8 WHERE U. UserId = I . UserId AND U. UserId = @UserId AND
9 I . UserId = @UserId AND I . TownId = T. Id AND T. CityId = C. Id

Figure 5.1: SQL query used to retrieve the details of a user

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 63

friendship, first a user initiates a friend request to another user and they become

friends only when the second user accepts this request. To store data about these

actions, two tables with the following schema are required.

TBL Friendship(Id, UserId1, UserId2)

TBL FriendshipRequest(Id, FromUserId, ToUserId, Accepted)

When a user sends a friendship request, a new tuple is created in

TBL FriendshipRequest table, and the other user is notified of this request.

When the second user accepts this request, Accepted attribute of the tuple cre-

ated earlier is set to 1, and a new entry is placed into TBL Friendship table that

denotes the friendship of these two users. To find the list of friends of a user, that

user’s id is matched with UserId1 or UserId2 fields of TBL Friendship table.

5.1.2 Questions - Subjects

As discussed earlier, subjects form a tree structure in Sınavo. Tree structures

in relational databases are stored in a database with each item in the table as

tuples, with a reference to their parents. Table TBL Subjects complies with this

structure with the following schema.

TBL Subjects(Id, Name, ParentId, LessonId)

In this table, LessonId is a reference to Id field on the same table. Lessons,

as discussed earlier, are subjects on the first level of the tree. This is a shortcut

to find all subjects of a lesson, that would otherwise require two separate queries.

Note that this is a violation of third normal form as LessonId is functionally

dependant on both Id and ParentId.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 64

TBL Question(QuestionId, Question, Answer, SubjectId, Date,

IsChecked)

Questions are stored in TBL Question table, with schema given above, in the

first version of Sınavo. As questions consist of a set of images and images are

stored within database, these images were first converted to string in a base64

format, and all images and positional information is embedded into an xml file

and stored in Question field. The correct choice is stored in Answer field, with

possible values A, B, C, D, and E. Date is the date at which the question was

entered into the database, and IsChecked is a flag to denote if the question is

checked by administration of Sınavo to see if there were any problems with the

question, such as bad image quality, or missing images. Questions and subjects

are linked with SubjectId field.

Whenever a user solves a question, a new entry is made into table

TBL QuestionSolved, regardless of the context the question was solved in, such

as games or tests. This entry includes id of the user that solved the question

(UserId), the choice the user selected (Answer), the duration it took the user to

answer to (Duration), and the date at which the user solved the question (Date).

The context in which the user solved the question is enumerated and stored in

SolvedWhere field. As a result, the following schema was used for this table.

TBL QuestionSolved(Id, UserId, QuestionId, Answer, Duration,

Date, SolvedWhere)

Using this schema, to find all the questions a user solved, one needs to get

all entries in TBL QuestionSolved which have UserId the same as that user’s id.

To check if a set of questions solved by the user was solved correctly, one need to

query the question too, and check if Answer fields on both tables are the same

or not. Note that dummy value ‘X’ is used if the user did not solve the question

and left it empty.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 65

5.1.3 Games

The first version of Sınavo includes both games, namely BenBilirim and Bildin-

Bildin. Data of a BenBilirim game is stored within the following table and schema.

TBL BenBilirim(Id, CreatorId, Name, SubjectIds, ChallengeDate,

CreationDate)

Obviously, CreatorId is the id of the user that created the game, and Name

field stores the name of the game given by its creator. ChallengeDate is the date

at which the game will start and CreationDate is self-explanatory. SubjectIds,

on the other hand, are not marked as foreign keys, as the field stores all ids of

the selected subjects on creation, as a single string with ids concatenated with

comma as the separator. Note that this approach violates first normal form by

storing more than one value in one attribute. Actual mapping of the game to

subjects is saved into TBL BenBilirimSubjects table with the following schema.

TBL BenBilirimSubjects(Id, BenBilirimId, SubjectId)

This table is created to comply with the fourth normal form and han-

dle multi-valued dependency. Filtering tuples with a certain BenBilirimId

would give the list of subjects that were selected when game with that id

was created. Questions asked in a BenBilirim game form the same mapping

with multi-valued dependency, and are stored in a similar fashion, within table

TBL BenBilirimAskedQuestions with the following schema. Note that ordering

these tuples by their ids would give the list of questions asked in a game chrono-

logically; question that is asked in the first round being on top and question of

the last round being at the bottom.

TBL BenBilirimAskedQuestions(Id, BenBilirimId, QuestionId)

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 66

Attending a BenBilirim in the first version of Sınavo requires an invitation

from either the creator of the game, or any other attendants. Users can either

accept or reject an invitation, until the game starts. All these are inserted into

the table that holds the members of a game called TBL BenBilirimMembers with

the following schema.

TBL BenBilirimMembers(Id, UserId, InviterId, IsAccepted,

IsReminded)

Here, UserId is the id of the user that is being invited to the game; whereas,

InviterId is the person that invites the user. IsAccepted is a flag that stores

whether this invitation is accepted, making the user a part of the game in turn,

and IsReminded is a flag to store if the system had a chance to notify the user

about this invitation.

TBL BenBilirimResult(Id, BenBilirimId, UserId, Round, Ranking)

Results of a BenBilirim game are stored in table TBL BenBilirimResult with

the schema given above. Here, BenBilirimId is id of the game and UserId is

the id of the user whose results are stored in the given tuple. Round field stores

the round in which user got eliminated. Note that winner of the game would

have the number of last round in this field, even if there is no actual elimination.

Ranking stores at which rank the user finished the game, 1 being the winner of

the game.

In the first version of Sınavo, BildinBildin games are not actual en-

tities within the database. Instead, only their results are stored within

TBL BildinBildinResult with the following schema.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 67

TBL BildinBildinResult(Id, UserId, DurationSeconds,

CorrectCount, WrongCount, BeforeRanking, AfterRanking, Points)

Here, UserId is the id of user that played the game, DurationSeconds is the

time the game lasted in seconds. CorrectCount and WrongCount are the numbers

of correct and wrong answers of the user during the game, respectively. Points is

the points user got from the game. BeforeRanking and AfterRanking are the

rankings of the user before and after the game. As Sınavo stored only the highest

record of any user for BildinBildin, these fields are used to generate more de-

tailed result report, and to show the user the affect of playing that specific game

in his position in records. These records are stored in TBL BildinBildinRecords

table with the following schema, where RecordSeconds is the highest duration of

BildinBildin game the user with id, stored in UserId, played.

TBL BildinBildinRecords(UserId, RecordSeconds)

5.1.4 Tests

Tests in the first version of Sınavo are stored within table TBL Test with the

following schema.

TBL Test(Id, BeginDate, EndDate, Duration, Name, Description,

SolvedCount, Type)

BeginDate and EndDate fields store the date interval in which the test can

be taken by the users. Duration, on the other hand, is the number of minutes

users have to solve the test, once they start. Name and Description are self-

explanatory. SolvedCount is an incremental shortcut to store the number of

times a test is solved. Type is an enumeration for the different types discussed

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 68

in section 4.2.3. There exists a many-to-one relationship between questions and

tests. This relationship is stored in TBL TestQuestion table with the following

schema.

TBL TestQuestion(Id, TestId, QuestionId, SubjectId)

This table also contains a violation of third normal form, as SubjectId field

depends on the question, id of which is stored in QuestionId. However, not stor-

ing id of the subject here requires a lot more joins to get subject of each question.

TBL TestUser(Id, TestId, UserId, QuestionId, SubjectId, Answer,

Duration)

Actions of users in a test are stored in table TBL TestQuestion with the

schema given above. This table also contains the same violation of third normal

form. Again, it is designed so to reduce number of joins required. Answer is

the choice user chooses, and Duration is the number of seconds that takes the

user to solve that specific question. For each question in a test, there will be a

tuple entered into this database once a user solves that test. However, storing

data only on this table would require huge amount of work when a result for

the given test needs to be calculated. To avoid this work, as once the user is

done solving the test there will not be any changes regarding that user’s data, a

summary is calculated and inserted into the table TBL TestUserStatistics and

TBL TestUserStatisticsPerSubject with the following schema.

TBL TestUserStatistics(Id, UserId, TestId, Total, Correct,

Empty, Wrong, Net, Ranking)

TBL TestUserStatisticsPerSubject(Id, UserId, TestId, SubjectId,

Total, Correct, Empty, Wrong, Net, Ranking)

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 69

These tables contain summary of a user’s performance on a test, which is suffi-

cient for display purposes of Sınavo 1.0. The only difference between two tables is

that TestUserStatisticsPerSubject stores data divided into tuples that corre-

spond to user’s performance on only one subject; whereas, TestUserStatistics

stores overall statistics generated by the user on that test. Net field on these ta-

bles store a net value for the user. It is a common evaluation used in tests done

in Turkey which is calculated subtracting 0.25 from the total number of correct

answers of a user, for each wrong answer. Hence, on a test where statistics shows,

for example, 10 correct answers and 3 wrong answers, user’s net value would be

9.25. This is again a redundant data, only used to avoid this calculation.

5.1.5 Statistics

As mentioned earlier, all data regarding users’ performances are kept within a sin-

gle collection; namely, TBL QuestionSolved. As a result, all statistics regarding

users’ question solving performance can be extracted from this table. However, as

there are thousands of questions solved in Sınavo daily, and statistics get displayed

more times than that, recalculating everything on the run is not a viable option.

To avoid this heavy calculation, statistics are incrementally kept in the database

and when the need arises, getting these statistics is a simple fetching from a table.

TBL StatisticsSubjectPerUser(Id, UserId, SubjectId, Total,

Correct, Empty, Wrong, Net, Duration, Month, Year)

Table TBL StatisticsSubjectPerUser, with schema given above, stores

monthly statistics of a user (referenced by UserId) on a specific subject (ref-

erenced by SubjectId). It stores month and year on separate fields to ease the

process of aggregating tuples to find a user’s statistics for a year. Total field

stores the total number of questions solved by that user on that subject in the

given month. Number of questions solved by the user correctly corresponds to

Correct, wrongly to Wrong, the number of questions left blank are stored in

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 70

Empty and the net value is stored in Net. Duration holds the total number of

seconds a user spent solving questions on that subject.

User statistics are not the only incremental statistics stored. To store statis-

tics of all users on a specific question, table TBL StatisticsPerQuestion is used

with the following schema.

TBL StatisticsPerQuestion(Id, QuestionId, Total, Correct,

Empty, Wrong, Net, Duration, Month, Year)

Similar to incremental statistics mentioned earlier, Month and Year refers

to the date at which these statistics occurred. Total is the field that stores

the number of times that specific question is solved within the given year and

month. Correct, Wrong, Empty are the number of times users solved that ques-

tion correctly, wrongly, or left it blank, respectively. Duration is the total

number of seconds spent on this question. Similarly, there is a table called

TBL StatisticsPerSubject that stores monthly statistics of questions solved

by all users on a specific subject, with the following schema.

TBL StatisticsPerQuestion(Id, SubjectId, Total, Correct, Empty,

Wrong, Net, Duration, Month, Year)

5.2 Document Database

Second version of Sınavo uses Node.js platform, which is a javascript platform

built on Google Chrome’s javascript runtime with a non-blocking event-driven IO

system. This web server stores data on a MongoDB database, as documents.

MongoDB automatically creates ids for each document inserted into database.

All documents have ” id” fields that are required to be unique, and act as a

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 71

primary key. Developers can present different types of data for this field, such as

String or Number. MongoDB uses the type ObjectId, if non specified. This is a

special structure for MongoDB that stores the time the document is created and

some other parts that makes it unique within the database.

5.2.1 User data & Interactions

MongoDB supports semi-structured documents, which comes in handy while de-

veloping a system to support entities that share some parts but differ in others.

Information of users is a good example for this kind of variance, as users might

have facebook accounts and need data about their accounts on facebook stored

too. As a result, when defining documents, all possible fields are presented here,

leaving the responsibility of checking if such fields actually exist on a document

to the developers.

User documents are structured with the following schema.

1 users : {
2 _id : ObjectId,

3 emailValidated : Boolean,

4 username : String,

5 fullname :String,

6 email : String,

7 password : String,

8 facebookId: Number,

9 facebookEmail: String,

10 isAdmin : Boolean,

11 lastLogin : Date,

12 dateJoined : Date,

13 city: { type: ObjectId, ref: "City" },
14 district: { type: ObjectId, ref: "District"},
15 birthdate : Date,

16 telephone : String,

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 72

17 school : {type:ObjectId, ref:"HighSchool"},
18 target : {
19 university : {type: ObjectId , ref: "University"},
20 department : {type: ObjectId , ref: "Department"}
21 },
22 isBanned : Boolean,

23 friendshipRequest : [{type: ObjectId, ref: "User"}],
24 friendshipWait: [{type: ObjectId, ref: "User"}],

25 friendship : [{type: ObjectId, ref: "User"}],

26 }

As it can be seen from the schema, data about a user is collected into a single

document as much as possible. It includes a wide range of data. For example,

in the array of friendshipRequest, all ids of users that asked to be friends

with this user is stored. Field friendshipWaitFriendship; on the other hand,

stores the users to whom this user sent a friendship request. So, when a user

sends a friendship request to another user, id of the other user is inserted into the

documents of both requester, and requestee. The array friendship holds references

to people with whom the user is friends with. In target, references both to the

university and the department that the user targets are kept.

As a result of such comprehensive document design, getting a user document

generates enough data for most of the user-oriented operations. Because queries

can include projection; i.e., fetching only required parts of documents, storing all

this data within a single document does not cause inefficiency. In addition, all

data is stored in one collection does not require any joins to fetch them. This

yields in ease of use, especially when compared to relational schema in which

these operations required more than 5 different tables and joins.

As mentioned earlier, some users of Sınavo use their facebook accounts to

authenticate themselves; whereas, others use their email - password pairs to login.

By the ability to support semi-structured data, users collection can store both

users with facebookId and facebookEmail and the ones without them.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 73

The city and district the user resides in are stored in collections called cities

and districts which store documents of following simple schemas.

1 districts : {
2 _id: ObjectId,

3 city_id: ObjectId,

4 name: String

5 }

1 cities : {
2 _id: ObjectId,

3 name: String

4 }

5.2.2 Questions - Subjects

The way the subjects and subject tree is stored in MongoDB is much like in re-

lational database. Subject documents correspond to individual subjects, with a

reference to their parents, stored in parentId. A subject document is structured

with the following schema.

1 subjects : {
2 _id: Number,

3 parentId: Number,

4 name: String,

5 numberOfQuestions : Number

6 }

The reason that id and parentId fields are of type number, instead of Ob-

jectId, is that subjects have been imported from the relational database, where

ids are auto-incremented integers.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 74

On the other hand, the way questions are stored is changed drastically. One

major change is that instead of storing base64 images within the database, stor-

ing images is delegated to Amazon’s S3 (Simple Storage Service) which is an

cloud-based object storage service. Image parts of questions are stored within

different buckets in Amazon S3, named after question’s id. As a result, when a

question is displayed, only urls to the images are sent to the client, after which,

client contacts with Amazon S3 servers to download them. That is why only the

image coordinates are stored in the database, regarding the visualization of the

question. Questions are stored in the database with the following schema.

1 questions :{
2 _id : type : Number,

3 subjects : [{ type: Number , ref:"Subject"}],
4 answer : String,

5 qx : Number, qy : Number,

6 ax : Number, ay : Number,

7 bx : Number, by : Number,

8 cx : Number, cy : Number,

9 dx : Number, dy : Number,

10 ex : Number, ey : Number,

11 total : Number,

12 correct : Number,

13 wrong : Number,

14 empty : Number,

15 duration : Number,

16 isChecked : Boolean,

17 isFaulty : Boolean,

18 difficulty : [Number],

19 }

One-to-many mapping form questions to subjects are stored within the sub-

jects field of a question document, which is an array of subject ids, with three

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 75

items in it. Fields qx-qy, ax-ay, bx-by, cx-cy, dx-dy, and ex-ey, are x-y coordi-

nate pairs of images of questions and all 5 choices, respectively. As it is common

practice to embed as much data as possible into the question document regarding

that question, incremental statistics of the question is also stored within its doc-

ument. Field total is the number of times the question is solved; where correct

is the number of correct answers and wrong is the number of wrong answers given

by the students. Empty is the number of times students left the question blank,

and duration is the total number of seconds spent by users on the question.

Similar to relational schema mentioned earlier, isChecked is a flag storing if the

question is checked by Sınavo administration for visual problems, and isFaulty

is a flag storing if the question is faulty.

Difficulty is an array of enumerations calculated by the system, as questions

do not strictly belong to one difficulty class, but hold an interval which might

include multiple difficulty levels.

Similar to relational model, whenever a question is solved by a user, a docu-

ment is inserted into a collection called solvedQuestions with the schema given

below.

1 solvedQuestions : {
2 _id : ObjectId

3 date : Date,

4 user : { type: ObjectId, ref: "User"},
5 question : { type: Number, ref:"Question" },
6 subjects : [{type: Number, ref:"Subject"}],

7 answer :

8 {type: String, enum: ["A","B","C","D","E","X"]},
9 duration : Number,

10 result :

11 {type: String, enum: ["correct", "wrong", "empty"],

12 where :

13 {type: String, enum: ["sc", "bb", "bildin","d"]},
14 test : { type: ObjectId, ref: "Test"},

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 76

15 testQuestionNo : Number,

16 challenge : { type: ObjectId, ref: "BenBilirim"},
17 challengeRound : Number,

18 }

A solved question document stores references to the user, in field user, and to

the question, in field question. Subjects of the question is also stored within an

array, called subjects, to support subject oriented aggregations easily, without

requiring to populate questions. The choice user chose is stored in answer field

and the seconds it took the user to choose it in duration field. Field result

stores the result of this question solving action, which can be correct, wrong

or empty. As this collection stores any question solving action, regardless of

its context, where the user solved the question is stored in where field; values

of which correspond to in question solving interface (sc), benbilirim game (bb),

bildinbildin game (bildin) and a test (d). Again, as the schema is semi structured,

only the documents corresponding to questions solved in a test would have fields

test and testQuestionNo; and only the documents corresponding to questions

solved in benbilirim would store challenge id in challenge field and the round in

which the question was solved in challengeRound field.

There are some redundant data in this collection, such as the subjects of

a question, or the result of the action, which could be calculated by comparing

field answer with the correct answer stored in question document. This is because

when generating complex statistics, an aggregation operation is run on this col-

lection. And as aggregation operations do not allow usage of multiple collections,

embedding redundant data to this document becomes necessary. As mentioned

earlier, the school of thought behind NoSQL supports data redundancy compared

to having strict schemas and constraints, to gain performance.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 77

5.2.3 Games

The structure behind games is changed when Sınavo moved on to the second

version. Instead of relying on a third party application, such as Adobe Flash,

which is the way Sınavo 1.0 handled things, to maintain a constant connection

between the users and the system, Sınavo 2.0 uses web sockets to push events to

clients and support request - response structure of web perfectly. This change

affected the way data is stored within the database.

Ben bilirim games are stored in benbilirims collection with the following

schema.

1 benbilirims : {
2 _id : ObjectId

3 name : String,

4 subjects : [{type: Number , ref:"Subject"}],

5 createdDate : Date,

6 creator : { type: ObjectId, ref: "User"},
7 maxErrors : Number,

8 state :

9 { type: String , enum: ["NotStarted","RoundBreak",

"Running", "Finished"], default: "NotStarted" },
10 currentRound : Number,

11 currentRoundQuestion :

12 {type: Number, ref: "Question"},
13 participants : [{type: ObjectId, ref: "User"}],
14 stats : Mixed,

15 solvedQuestions :

16 [{type: Number, ref : "Question"}],

17 startDate : type: Date,

18 }

Again, all data regarding a game is stored within a single document.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 78

Subjects, for example, is an array of subject ids that store the list of subjects

selected when creating the game. In addition, as the game proceeds, field state

is changed to reflect the current state of the game. Field solvedQuestions stores

an array of question ids that are asked during the game and startDate is the

date at which the game is planned to start.

The most interesting part of a benbilirim document is the field labelled stats,

which is of type Mixed. Mixed values are JSON objects that do not follow any

schema. For example, if a game is played with only 2 people, stats field would

store only the winner and the second. Otherwise, it would contain all top three

players, and other participants that are eliminated in earlier rounds and did not

make it to first three positions. As the second version of Sınavo includes a separate

application that acts as a server for BenBilirim games, individual rounds are not

stored separately. Instead, only the results of a game is stored within this stats

field.

Similar to BenBilirim games, BildinBildin games are changed too, to support

request - response structure with discontinuous connections. A BildinBildin doc-

ument is structured with the following schema.

1 bildinbildins : {
2 user : {type: ObjectId, ref: "User"},
3 subjects : [{ type: Number, ref:"Subject"}],

4 createdDate : Date,

5 solvedQuestions :

6 [{type : Number, ref : "Question"}],

7 remainingDuration : Number,

8 totalDuration : Number,

9 correct : Number,

10 wrong : Number,

11 }

Whenever a BildinBildin game is played by a user, a new document is created

in bildinbildins collection. A BildinBildin document stores the subjects user

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 79

chooses when creating the game in subjects field, and the questions solved during

the game in solvedQuestions field as an array of question ids. As the user

does not have an option to leave the question blank in a BildinBildin game,

only the numbers of correct and wrong answers are collected. At each round of

question, remainingDuration field is updated and the total number of seconds

user survives the game is stored in totalDuration field. Records are cached

within the web server and are not stored in the database. However, if need arises,

they can be calculated from this collection with a simple aggregation that chooses

value of maximum totalDuration for each user, and sorts them.

5.2.4 Tests

The structure in which tests are stored in the database changed a lot during the

transition from the first version of Sınavo to the second one, to suit the needs

better. As a result, a new complex structure emerged, with more usability and

customizability. Question groups are introduced to the database to provide more

suitable hierarchical structure, with the following schema.

1 questiongroups : {
2 name : String,

3 testType : String,

4 questionCount : Number,

5 firstIndex : Number,

6 lastIndex : Number,

7 subjects : [{
8 subject : { type : Number, ref:"Subject"} ,

9 firstIndex : Number,

10 lastIndex : Number

11 }]
12 }

Such a document stores the name of the question group, the type of test in

which this question group appears, as well as some default values. These default

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 80

values include the rank of the first question and the last question that belong to

this question group, in a test. As tests consist of several question groups, each

question group starts and ends at some specific part of a test. For example, a test

with two question groups, such as Mathematics-2 and Geometry, questions that

belong to Mathematics-2 group can start with the first question of the test and

continue to a rank, let’s say n. Then, Geometry would start at n+ 1st question

and continue to the end of the test. In addition, each question group consist of

one or more subjects, that generate question groups similar to the way question

groups generate tests. Hence, a question group stores an array of sub-documents

with a reference to the subject, and the first and last indexes of questions that

belong to that subject. Note that these are merely the default values, as the

same type of tests usually follow the same structure, but not always. Real values,

specific to a test instance, are stored in test documents which follow the structure

given below.

1 tests : {
2 _id : ObjectId,

3 name : String,

4 startDate : Date,

5 endDate : Date,

6 duration : Number,

7 type : String,

8 solveCount : Number,

9 questionCount : Number,

10 availableToPublic : Boolean,

11 resultAnnounced : Boolean,

12 availableAfterEndDate : Boolean,

13 configuration : [{
14 questionGroup :

15 {type : ObjectId, ref : "QuestionGroups"},
16 firstIndex : Number,

17 lastIndex : Number,

18 subjects : [{
19 subject : {type : Number, ref : "Subject"},

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 81

20 firstIndex : Number,

21 lastIndex : Number,

22 questions : [{
23 no : Number,

24 question : {type : Number , ref : "Question"}
25 }]
26 }]
27 }],
28 }

Field configuration stores the actual configuration of how question groups,

subjects, and questions form the test. On the top level, an array of sub-documents

regarding question groups is stored, with actual first and last index of questions.

Within these sub-documents, subjects are stored with their first and last indexes

with the constraint that the intervals of subjects [firstIndex, lastIndex] are

included in the interval given by the questionGroup. However, this constraint is

not applied to the database. It is developers’ responsibility to ensure that there

is no violation. Subject configurations store an array of question id-no pairs,

that stores at what rank each question will be. Note that although storing only

question id-index pairs might be enough to generate a test, generating complex

reports based on question groups or subjects require the extra data.

When a user finishes solving a test, Sınavo system generates many docu-

ments that summarize the performance of the user on that test. These in-

clude partly performances on subjects, question groups, and the overall perfor-

mance of the user on that test. Statistics on a specific subject are stored within

testSubjectStats collection with the following schema.

1 testsubjectstats : {
2 user : {type: ObjectId, ref: "User"},
3 test : {type: ObjectId, ref: "Test"},
4 subject : {type : Number, ref : "Subject"},
5 wrong : Number,

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 82

6 correct : Number,

7 empty : Number,

8 total : Number,

9 duration : Number,

10 net : Number,

11 }

These test subject statistics documents come in handy especially when all

users are required to be ranked by their performances on a subject. To produce

such a ranked list, fetching all documents in testsubjectstats collection and

ordering them by net field is enough. With a similar concern, question group

statistics of users are also summarized and stored within questiongroupstats

collection with the following schema.

1 questiongroupstats : {
2 user : {type: ObjectId, ref: "User"},
3 test : {type: ObjectId, ref: "Test"},
4 questionGroup : {type : ObjectId, ref : "

QuestionGroups"},
5 wrong : Number,

6 correct : Number,

7 empty : Number,

8 total : Number,

9 duration : Number,

10 net : Number,

11 subjectStats : [{type : ObjectId, ref : "

SubjectStats"}]
12 }

The only difference these documents have over documents holding subject

statistics is that as question group statistics consist of subject statistics, these

documents store a list of references to subject statistics, which come in handy

when fetching both question group statistics and subject statistics at the same

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 83

time, instead of querying testsubjectstats collection. The most general sum-

mary of a user’s performance on a test, is stored within the testresults collec-

tion with the following schema.

1 testresults : {
2 user : {type: ObjectId, ref: "User"},
3 test : {type: ObjectId, ref: "Test"},
4 wrong : Number,

5 correct : Number,

6 empty : Number,

7 total : Number,

8 duration : Number,

9 net : Number,

10 questiongroupstats : [{type : ObjectId, ref : "

QuestionGroupStats"}]
11 }

Similarly to question group statistics documents, these documents store an

array of references to question group statistics, in addition to the overall per-

formance of user on the specified test. As a result, overall statistics of a user

on a test and the specific statistics on question groups and subjects form a tree

structure, which can easily be followed by the references stored in parent objects.

5.2.5 Statistics

The second version of Sınavo also stores incremental statistics of users, with the

same motivation as discussed in relational database section. However, because

the main idea behind document based storage is to store all relevant data in a

single document, statistics of questions are not stored in different collections, but

rather within question documents. Hence, only users’ monthly and overall per-

formances are stored in separate collections with following schemas.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 84

1 statspersubject : {
2 user : {type: ObjectId, ref: "User"},
3 subject : {type: Number, ref: "Subject"},
4 wrong : Number,

5 correct : Number,

6 empty : Number,

7 total : Number,

8 duration : Number

9 }

1 statspersubjectmonthly : {
2 user : {type: ObjectId, ref: "User"},
3 subject : {type: Number, ref: "Subject"},
4 wrong : Number,

5 correct : Number,

6 empty : Number,

7 total : Number,

8 duration : Number,

9 month : Number,

10 year : Number

11 }

The only difference between the documents stored in these two collections

is that statspersubjectmonthly stores statistics for specific month; whereas,

statspersubject stores overall performances. As data replication is not deemed

to be problematic, redundant documents are again used for performance opti-

mization purposes.

5.3 Graph Database

Next version of Sınavo is planned to work on a graph database.

Graph database structure was designed from scratch unlike the document

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 85

based database structure, which resembles relational database in some ways that

affects its design. However, designing a graph database is fairly intuitive with

some exceptional cases. Designing process is pretty straightforward. All the

entities in the real world corresponds to vertices and all relationships among

them are denoted with edges between those vertices.

5.3.1 User data & Interactions

Vertices and relationships in Neo4j database store properties as key-value pairs.

Note that Neo4j supports semi-structured data. So, the structures denoted in

this section are not to be strictly implemented by all entities or relations.

User nodes will have the following key-value pairs as their properties.

1 _id : ObjectId,

2 emailValidated : Boolean,

3 username : String,

4 fullname :String,

5 email : String,

6 password : String,

7 facebookId: Number,

8 facebookEmail: String,

9 isAdmin : Boolean,

10 lastLogin : Date,

11 dateJoined : Date,

12 telephone : String,

13 isBanned : Boolean,

All the properties removed from MongoDB documents will have corresponding

relationships. For example, city and district the user lives in are stored within a

user document in MongoDB. In the graph database; however, cities and districts

are entities and are represented by separate nodes. As a result, locations of users

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 86

will be denoted by edges between user nodes and district nodes as given below.

The district and the city in which a user lives in can be found by following

lives in and is in relations emanating from user nodes. Any details required

regarding the address of the user can be embedded into lives in as a property.

Users that share same district or city can easily be found by following those

relations backwards to users.

Friendship relations are perfect fit for the power of graph database design.

Phases of friendships, such as a user requesting a friendship from a user, or a user

declining a friendship request are just simple relationships among user nodes.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 87

When a user requests friendship from another user, a requested friendship

relationship is created between them. The date at which this request occurred

is embedded into the relationship as a property, along with a flag that denotes

if this request is declined or not. If a user declines a friendship request, this flag

is set to true. If the user decides to accept this request, requested friendship

relationship is deleted and is friends with relationship is created instead, the

direction of which differentiates the one who initiated the friendship. To find

friends of a user is as easy as tracing all is friends with relationships.

Complex messaging structures are easy to store in a graph database. These

structures can include threads, multiple receivers, and replying to messages other

than the most-recent one. Such a messaging schema can be seen in the graph

below.

A string of messages starts by a user sending a message to a set of users. In

the example given above, ”User 1” initiates the messaging by sending ”Message

A” to both ”User 2” and ”User 3”. The date and the text of message are stored

as properties of the message node. The relationship to denotes the recipients

of that message, and within this relationship, a flag seen is stored that shows

if the recipient has seen the message or not. Any subsequent messages, such as

”Message B” will be linked to the first message via a is reply of relationship,

again with links to users that send and receive it. A string of messages can be

populated by first finding a message node without any is reply of relationship

emanating from it, and traversing is reply of relationships directed to that or

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 88

any subsequent message nodes.

5.3.2 Questions - Subjects

As graph databases are designed to handle complex relationships, subject tree and

question groups mentioned earlier are very suitable to be stored in one. Nodes

representing question groups will store only their names. Within the relationships

belongs to that leads to question group nodes will include default values of

first and last indexes of questions that are included in that question group, as

mentioned earlier.

Subjects that are at the first level of the subject tree are also labelled as

lessons. This eases the process of locating only the lessons, instead of searching

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 89

for subject nodes that do not have a parent. Each child of a subject will be con-

nected to it with a is child of relation. Subjects have the following properties.

1 _id: Number,

2 name: String,

3 numberOfQuestions : Number

Question nodes are only linked to leaves of the subject tree, as it is easy to

traverse the tree upwards to locate any non-leaf subjects. Questions will have the

following properties.

1 _id : type : Number,

2 answer : String,

3 qx : Number, qy : Number,

4 ax : Number, ay : Number,

5 bx : Number, by : Number,

6 cx : Number, cy : Number,

7 dx : Number, dy : Number,

8 ex : Number, ey : Number,

9 total : Number,

10 correct : Number,

11 wrong : Number,

12 empty : Number,

13 duration : Number,

14 durationSquared : Number,

15 isChecked : Boolean,

16 isFaulty : Boolean,

17 difficulty : [Number]

The only difference between questions stored in MongoDB and Neo4j is that

no references are kept to subjects as relationships replace references in a graph

database. All other properties stand for the same purposes as mentioned in

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 90

section 5.2.2.

Solved questions are not represented as vertices in Neo4j as they are merely

relationships between users and questions with some additional data. Hence, ev-

ery time a user solves a question, a new relationship, called solved, is created

between the user and the question. All related data is stored within this relation’s

properties, with the following schema.

1 date : Date,

2 answer :

3 {type: String, enum: ["A","B","C","D","E","X"]},
4 duration : Number,

5 result :

6 {type: String, enum: ["correct", "wrong", "empty"]

Note that unlike relational database and document based database, in these

relationships only store acts of solving questions that are not during a test or a

game. Those acts are mentioned in the following sections.

5.3.3 Games

Ben Bilirim games require a complex graph to be represented, as there are many

aspects to this kind of game. A node that represents a Ben Bilirim game will

have the following properties.

1 _id : Number

2 name : String,

3 createdDate : Date,

4 maxErrors : Number,

5 state :

6 { type: String , enum: ["NotStarted","RoundBreak",

"Running", "Finished"], default: "NotStarted" },

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 91

7 currentRound : Number,

8 startDate : type: Date,

Again, these properties are the same as in the document on MongoDB, ex-

cluding references. For example, subjects chosen at the creation of a game are

referenced via includes relationship between the game node and a set of subject

nodes, without any properties in them. Users, on the other hand, are connected

to the game node with relationships played, which holds the results of the game

concerning the connected user as properties, including the round the user elimi-

nated and the rank of the user.

For each round played during the game, a round node is created with a re-

lationship to the question asked during that round. As rounds are sequential,

there is a relationship called next round between each consecutive round. As

the first round does not have any preceding round, this relationship emanates

from the node that represents the game. To simplify any queries that traverse

through these sequential rounds, the relationship that bounds the game and the

first round is also named next round.

Users that contested in a round are also connected to the node which stands

for that round with a relationship called attended. This relationship includes

the answer user chose, and the result enumerated as correct wrong or empty.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 92

Each chat message sent during a game is represented with a node labelled

”Chat Message”. Again, as chat messages are sequential, each node is connected

to the next with next message relationship. User that sent the message is also

connected with the chat message node with a relation sent that holds the date

at which the message was sent as a property.

Bildinbildin games have similar but simpler graphs compared to BenBilirim

games.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 93

As there are only one user that plays the game, the user is connected to

the BildinBildin node with a played relation. Details of the game is stored as

properties of the game node with the following schema.

1 bildinbildins : {
2 createdDate : Date,

3 remainingDuration : Number,

4 totalDuration : Number,

5 correct : Number,

6 wrong : Number,

7 }

The game is connected to a string of nodes representing rounds. Each round

is also connected to a question node with asked relationship. Details of a round

include the answer use chose, the result of that round and the number of seconds

the round took.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 94

5.3.4 Tests

Tests require a complex graph with many relationships to existing nodes, a simple

part of which is given below. Note that the relationships from subjects to question

groups (denoted with dashed lines) are skipped in this graph for the sake of

simplicity, as they are handled in detail earlier.

Tests can be seen as a sequence of questions. Hence, the main part of a test

graph is a set of relationships among a test node with questions included in that

test. The type of a test can be found with tracing is of type relationship that

emanates from the node that represents the test. Note that although test type

nodes are connected to question group nodes with contains relationship that

stores the default number of questions from that specific question group as a

property, tests may include different number of questions from those question

groups. Properties of test nodes include the following.

1 _id : Number,

2 name : String,

3 startDate : Date,

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 95

4 endDate : Date,

5 duration : Number,

6 solveCount : Number,

7 questionCount : Number,

8 availableToPublic : Boolean,

9 resultAnnounced : Boolean,

10 availableAfterEndDate : Boolean

Whenever a user solves a test, a node with label ”Test Session” is created

that stores user’s details on that test. This node is connected with the questions

included in the test with solved in session relationship, which also holds user’s

answers and the seconds user spent on that question. To calculate the user’s

performance, all these relations are scanned and aggregated, which is then stored

in the test session node as a summary.

5.3.5 Statistics

Incremental statistics are stored in graph database as the following graph.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 96

Nodes that represent monthly statistics are connected to month nodes which

are connected to year nodes. Even though it is possible to store month and year

data as properties of statistics nodes, this is a design choice to find statistics

regarding same month easier. Nodes that store statistics on a specific subject

are connected with subject nodes with is on subject relationships. All nodes

storing statistics, such as ”Monthly Statistics”, ”Monthly Subject Statistics”,

”Subject Statistics”, and ”Statistics”, share the same structure for their proper-

ties, which is the following.

1 wrong : Number,

2 correct : Number,

3 empty : Number,

4 total : Number,

5 duration : Number

Note that the statistics nodes can be connected to the questions involved in

these statistics. However, this will create a huge amount of redundant relation-

ships, and is not implemented due to not being needed for Sınavo operations.

5.3.6 Design Notes

Designing a graph database is a relatively new experience to developers, especially

when compared to relational schema which have been around for decades now.

Here are a few patterns encountered during this design process.

Initial instinct when generating a graph to store sequential items is to connect

each item with a simple next relationship. Rounds in games, or questions in tests

are examples for that. A simple sequence of items can be seen in the graph below.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 97

However, when these entities can occur in more than one sequence, such as

the questions in Sınavo being used in more than one scenarios, using a simple

next relationship is not a viable option. While traversing through the sequence,

there will be a node that has two next relationships emanating from it. Based on

the sequence being traversed, which next is going to be used can be ambiguous.

Consider the example given below. Sequence 1 and 2 share item 2. However,

while traversing a specific sequence, it is not clear whether item 3, or item b

comes after item 2.

To avoid this ambiguity, there are two patterns to be followed. It is possible to

store an identifier of the sequence within these relations. Hence, when traversing

a string of nodes, query should always continue with the relation that holds the

correct id of the sequence it is traversing. Another possibility is to use of surrogate

nodes. In this pattern, for each item used in a sequence, a surrogate node is

created and next relationships are formed within these surrogates. Then, items

that are actually within the sequence are bound to surrogates with relationships.

Hence, the sequence is always followed with a next relationship, and when an

item in the sequence is required to be located, the surrogate is found first and

then the relationship of is traversed. The graph given below is an example of

two sequences with shared items using surrogacy.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 98

5.4 Comparison & Analysis

We have specified characteristics of three different database types. In the follow-

ing sections, we analyse attributes of these database types and provide a compar-

ison among them. We deliver these comparisons in two parts: quantitative and

non-quantitative attributes. Note that even though we support our claims with

examples, non-quantitative attributes might be subjective to developers. Some

developers may find it very easy to design a relational database because they

are used to it, although it may require a lot more relations and include many

constraints.

5.4.1 Non-quantitative Attributes

5.4.1.1 Ease of Use

We deem attribute ease of use as both the difficulty of using a database, and the

effort it takes to model a dataset in that database model. From this perspective,

relational databases have one advantage: they have been around for decades. De-

velopers are more familiar with relational databases than the ones driving NoSQL

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 99

movement. For this reason, many would feel that relational databases are easier

to use. However, it is obvious that relational schemas do not feel as natural as

others. We have shown that to store attributes of users, the relational database

requires more than four tables, if the users have Facebook accounts linked to

their Sınavo accounts. Whenever data of a user is to be fetched, these tables are

required to be joined. In addition, in the modelling process of a software, first

an ER (Entity-Relationship) diagram is used to clarify entities. When using a

relational database, only after a design process can these entities fit to a relational

schema, as they do not usually comply with natural way developers denote en-

tities. Within this design process, many rules and constraints are required to be

followed to avoid normalization issues. Hence, it is safe to argue that relational

databases are relatively more difficult to design and use.

When designing a dataset as documents to be used in a document based

database, a similar approach is used to the one for relational databases. However,

as data is denormalized on purpose, there is no normalization concerns. Each

entity in an ER diagram corresponds to a document. Relations are embedded

into documents, such as friendship relation among users, mentioned in section

5.2.1. Actions, such as solving questions, are stored as documents as well. As

more data is embedded into a single document, there are less collections than there

are relations in a relational database. In projects such as Sınavo, the number of

tables in a relational database can grow to scales that are difficult to handle. As

a result, document stores can be tidier and easier to use. However, the lack of

inter-collection querying requires such queries to be split into parts. Each part,

concerning only one collection are run separately, and then the results are merged

to generate the output. Although some query parts can be run in parallel, some

will require to be run in series, i.e. some queries will be run after getting results

of others. This creates an excess of communication overhead with the database

server. In configurations where this communication overhead is a bottleneck, the

lack of inter-collection querying would cause an important problem.

Graph databases are obviously the easiest when matching the modelling of a

software to a database schema. As graphs are mostly used when modelling enti-

ties and relationships among them, converting these models to a graph database

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 100

usually requires minimal work. In addition, graph paradigm enables querying

relations of varying length. For example, users are connected with friendship

relations, in all three database types we have discussed. To be able to find a

set of users U that are n friendship relationships away to a user u1, i.e. friends

of the friends of u1 if n = 2, both relational and document based databases

require recursive or iterative calls. However, graph databases are built for this

kind of queries and can query relations of various lengths with ease. Moreover,

Neo4j provides a shortest path query, using Dijkstra’s algorithm [11]. If necessary,

implementing this algorithm in a relational or document based database would

require a lot more work.

5.4.1.2 Maintenance

From maintenance point of view, relational databases are solid. The difficul-

ties they present in modelling process are design choices to avoid maintenance

problems. For example, normalization rules given in section 3.2.2 are generated to

avoid inconsistencies in database. If the database complies with all normal forms,

there will be no data redundancy, and hence no inconsistency among copies of

the same data. In addition, constraints can be introduced to avoid dangling tu-

ples. For example, if a tuple t1 references another tuple t2 in a different relation,

and t2 is removed from the database, a constraint can automatically update the

reference and either delete t1 or set its reference to t2 as null. Applying all these

rules and constraints will ensure that data integrity will be held at all times.

Document stores, on the other hand, are schema free, and data is denormalized

on purpose. Although this enables easier storage and retrieval, it also leads

to possible inconsistencies. This approach delegates the responsibility of data

integrity to the application that uses the database management system. So,

developers of the application need to follow any clean-up required after updating

the database. In addition, there is no guarantee that a document fetched from

database will have all the expected attributes. As a result, the application running

on the document store must expect such irregularities and be able to act on them.

In summary, database management system is not concerned with any rules of

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 101

data it stores. This is a design choice and a trade-off between ease of use and

supporting maintenance, where document based databases favour ease of use.

Graph databases show similarities to document based databases when it comes

to maintenance of the database. As properties of vertices and edges are key-

value pairs, and data is schema free, database management system does not care

about data integrity. However, Neo4j supports transaction event handlers that

are hooked to transaction events such as creating new nodes or updating data

of a node/relation. These event handlers can be used, as triggers in relational

databases, to ensure data consistency after dataset is updated. Transaction events

are fired both before and after data update. When event handlers are hooked

to events, they notify “beforeCommit” or “afterCommit”, which denotes that

handler will be called before any changes are committed in the database, or after.

5.4.1.3 Flexibility

All three database paradigms have similar expressive power, that is, all three

data models can represent any dataset. However, with a strict schema, expressing

same dataset with a relational model can require more work. This work can feel

cumbersome especially when it comes to extending an already existing database

with new properties and/or entities. Even small changes might lead to introducing

multiple new tables. In addition, extending relations with new attributes requires

careful handling. Tuples that already exist in database require default values for

new attributes, as they are bound to follow the schema as it is.

Both document based databases and graph databases, on the other hand, are

more flexible to be extended. As there is no single schema being followed, data is

expected to have nulls. This way of thinking comes in handy especially when new

attributes are required for existing data. If the application is robust in handling

missing properties, there is no excess work required. In case of new entities being

introduced into the database, data model of document store is more suitable,

because collections are designed to encapsulate similar data and inter-collection

relations are not very common. Hence, modular structure of collections do not

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 102

require much work when independent documents are changed. Moreover, as data

is stored as JSON objects, almost any kind of data structure can easily be stored

within these documents, including subdocuments. However, Neo4j requires data

on nodes and edges to be in key-value pairs, which is less flexible.

5.4.2 Quantitative Attributes

The most obvious quantitative attribute of a database is its speed in access-

ing data. We have conducted experiments on Sınavo data stored in these three

databases. With different types of queries, we have tried to capture how these

databases handle queries of different patterns. We have collected query execution

times in milliseconds and present results in this section. Some operations require

more than one query submitted to the database management engine. For such

queries, we start measuring the time before the first query, until right after the

last query. Each operation is executed 1000 times from a Node.js application us-

ing lightweight drivers to avoid added time caused by driver overhead. We have

hooked time measuring operations into the drivers to avoid adding time it takes

to adjust data for the application after query is executed.

We have used Microsoft SQL 2008 R2 as relational database, and query the

database using mssql module of Node.js. We have used MongoDB 2.4.8 and

connect to it using official mongodb module for Node.js. For graph database, we

have used Neo4j Community 2.1.6 and used neo4j module within Node.js. The

experiment was done on a PC with Intel Core i7-3630QM 2.40 GHz CPU with 8

gigabytes of ram and 64 bit Windows 8.1 as operating system.

5.4.2.1 Query with fixed number of joins

The first query retrieves the subjects of the last three questions solved by a user.

As there are three layers in the subject tree and questions belong to the subjects

in the lowest layer, each question is bound to three subjects. Maximum, minimum

and averages are gathered over 1000 executions and displayed in Figure 5.2.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 103

 0

 5

 10

 15

 20

MSSQL MongoDB Neo4j

m
ill

is
e
co

n
d
s

Min

Max

Average

Figure 5.2: Execution durations for query that retrieves the subjects of the last
three questions a user has solved

In SQL, this query requires to locate the last three tuples in TBL QuestionSolved,

find relevant questions and join them with TBL Subjects to find the subjects. As

there are three subjects to be found, TBL Subjects needs to be joined three times.

The following query gets the operation done.

1 SELECT S1.Name, S2.Name, S3.Name

2 FROM TBL_Subjects S1, TBL_Subjects S2,

3 TBL_Subjects S3, TBL_Question Q

4 WHERE S1.Id = Q.SubjectId AND S1.ParentId = S2.Id AND

S2.ParentId = S3.Id AND Q.QuestionId IN

5 (SELECT TOP 3 QS.QuestionId

6 FROM TBL_QuestionSolved QS

7 WHERE QS.UserId = {UserId} ORDER BY QS.Date DESC)

As MongoDB can query only one collection at a time, this operation requires

separate calls to database management system. First, last three documents in

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 104

solvedquestions collection are found. Then, only call required is finding sub-

jects in subjects collection, as subjects are already stored in solved question

document due to denormalization of data. Following queries are run in order to

gather required data.

1 db.solvedquestions.find({user : {userId}})
2 .sort({date : -1}).limit(3);
3 db.subjects.find({_id : {$in : {subjectIds }}});

Cypher query used to collect the required data is relatively simple. It firstly

locates the user node. Following solved relation emanating from the user node,

questions are found. After that, leaf node on the subject tree is found by follow-

ing is on subject relation, and other subjects via is child of relations. The

following cypher query is required to collect required data.

1 MATCH (u:user {id : {userId}})-[r:solved]
2 -(q:question)

3 WITH q

4 ORDER BY r.date DESC

5 LIMIT 3

6 MATCH q-[:is_on_subject]-(s)-[:is_child_of*] ->(s2)

7 RETURN s, s2

5.4.2.2 Authentication query

The second experiment conducted on these databases is an actual case in Sınavo

system. Queries run in this experiment take an email address and a hashed

password as input, and try to locate the user account with these information.

This work is being done regularly by the authentication system of Sınavo. The

details of the user are returned by this query, including the user’s name and

surname, email address, the city and the town the user resides in, along with

the possible Facebook account details, if the user has it linked with their Sınavo

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 105

 0

 10

 20

 30

 40

 50

 60

 70

 80

MSSQL MongoDB Neo4j

M
ill

is
e
co

n
d
s

Min

Max

Average

Figure 5.3: Execution durations for authentication query

account. If no user can be found with the specified email address - password pair,

an empty result set is returned to indicate that the user has failed to authenticate.

SQL version of this query requires locating the tuple with the given input in

TBL Auth table, and get other details about the user from other tables. These de-

tails include general details about user that reside in TBL UserInfo table, which

is matched with the tuple in the TBL Auth table over UserId field. A reference to

the town the user lives in is stored in TBL UserInfo table as field TownId. Using

this reference, first the town is located in TBL Town table, and using data from

this table, city name is retrieved from TBL City table. As it is possible for users

not to have corresponding Facebook accounts stored in Sınavo database, we use

an outer join to join TBL FacebookAuth with TBL Auth. Outer join retrieves the

tuple from TBL Facebook if there is one with the given UserId, and returns NULL

otherwise. If outer join is not used to join these two tables, the result set will be

empty in the case of users without Facebook account data. The following query

is used to authenticate users in MSSQL.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 106

1 SELECT UI.BirthDate, UI.TownId, A.*, FA.FacebookId,

2 FA.FacebookEmail, T.Name, C.CityName

3 FROM TBL_UserInfo UI, TBL_City C, TBL_Town T,

4 TBL_Auth AS A LEFT OUTER JOIN TBL_FacebookAuth FA

5 ON A.UserId = FA.UserId

6 WHERE UI.UserId = A.UserId AND T.Id = UI.TownId AND

7 T.CityId = C.Id AND A.Email = {email} AND

8 A.Password = {password }

Because most of the details of users are embedded into user documents in

MongoDB, authentication query requires less joins. Main part of this query is

to locate the user document that has matching email address and password pair

with the input. As cities and districts are kept separately, with references to

them in user documents, retrieving the names of the city and the district the user

resides in requires the user document to be joined with city and district docu-

ments. Because of the lack of inter collection queries in MongoDB, Only after

the user document is located can another call be made to retrieve the city and

the district. The following queries handles authentication in MongoDB.

1 db.users.find({email : {email},
2 password : {password }});
3 db.cities.find({_id : {user.city}});
4 db.districts.find({_id : {user.district }});

The authentication query in Cypher is pretty straight-forward. Database

engine locates the user node with the given email address and password pair, and

follows lives in relationship from the user node to locate the district, and is in

relationship from the district node to locate the city. The following query handles

this job in Neo4j.

1 MATCH (u:user)-[:lives_in]->(d:district)

2 -[:is_in]->(c:city)

3 WHERE u.email = {email} AND u.password = {password }
4 RETURN u, d, c

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 107

5.4.2.3 Query with different path lengths

The last experiment is designed to estimate abilities of database systems on han-

dling relationships over different path lengths. We define path length as the

number of transitions over different entities. The query retrieves a predefined

number of users, 20 in our case, connected via friendship to a user with exact

path length given as input. The simplest case is friends of a user u, which cor-

responds to a path length of 1. Friends of friends of u are connected to u with a

path length of 2, and so on. We have conducted this experiment for path lengths

from 1 to 5. For each path length, we have measured 1000 executions and used

their averages. Results can be seen in Figure 5.4.

 0

 50

 100

 150

 200

 0 1 2 3 4 5

M
ill

is
e
co

n
d
s

Path Length

MSSQL

MSSQL Recursive

MongoDB

Neo4j

Figure 5.4: Query execution durations for different path lengths over 1000
executions

For this query, we have implemented two different approaches in MSSQL.

First one is a recursive query that uses common table expressions. It first gen-

erates a view with friendships of the user including the path length as Level.

Then, it queries that view to get the results. The following query gets the job

done.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 108

1 WITH FriendRec(UserId, Friend, Level)

2 AS

3 (

4 SELECT UserId1 AS UserId, UserId2 AS Friend ,

5 0 AS Level

6 FROM TBL_Friendship F

7 WHERE F.UserId = {UserId}
8 UNION ALL

9 SELECT UserId1 AS UserId, UserId2 AS Friend ,

10 (FR.Level + 1) AS Level

11 FROM TBL_Friendship F INNER JOIN FriendRec FR

12 ON F.FriendId = FR.UserId

13 WHERE FR.Level < {Length};
14)

15

16 SELECT DISTINCT TOP 20 Friend

17 FROM FriendRec

18 WHERE Level = {Length}

The other approach for MSSQL require multiple calls to the database man-

agement system. Application loops from 1 to the number of path length required

and each query retrieves users connected to user with path length of the index of

the loop. For path length 5, this approach requires 5 separate calls to database

management system, each using output of the previous one. The following query

is the one that is submitted multiple times:

1 SELECT DISTINCT UserId2

2 FROM TBL_Friends

3 WHERE UserId IN {UserIds}

Note that only the last call limits the number of tuples returned to 20.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 109

MongoDB resembles non-recursive SQL approach, as it requires more than one

call to database. Each call retrieves the friends of users given as input. Again,

only on the last call the results are limited to 20. The following MongoDB query

is used.

1 db.users.find({_id : {$in : {UserIds}}},
2 {friendship : 1});

The way Neo4j handles this kind of queries is a lot simpler. With a single

query, it locates the user node and traverses the graph over is friends with

relationships to find users with distance given as input.

1 MATCH (n:user)-[:is_friends_with*{Length}]-(u)
2 WHERE n.id : {UserId}
3 RETURN u.nodeId LIMIT 20

5.4.2.4 Comparison Summary

For the first query, it can be seen in Figure 5.2 that MongoDB outperforms

other databases. Although SQL performs similar to MongoDB, denormalized

data schema enables MongoDB to avoid extra joins required in SQL. As subject

ids are already embedded to solved question documents, only call done is a query

to subjects collection; whereas, SQL requires locating the question first, than

matching the subjects three times. It is obvious that Neo4j performs worst,

compared to SQL and MongoDB.

The second experiment implements the authentication system in Sınavo. The

results given in Figure 5.3 clearly show that, just like in the first experiment,

MongoDB performs better in this query too, with less than a millisecond on

average. Although maximum execution time for Cypher is worse than all others,

average execution time is almost the same with SQL.

With the third query, we investigate how different data models respond to

querying relationships with varying path lengths. We have applied two ap-

proaches for relational database, one with recursion and one with iteration. We

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 110

 0

 5

 10

 15

 20

 0 1 2 3 4 5

M
ill

is
e
co

n
d
s

Path Length

MSSQL

MSSQL Recursive

MongoDB

Neo4j

Figure 5.5: Closer look at query performances for different path lengths

have analysed how increasing path length affects query performance, and seen

that Neo4j is a clear winner in this comparison, for higher path lengths. It can be

seen in Figure 5.4 that Neo4j does not suffer in higher path lengths and continues

to perform close to queries for lower path lengths, resulting in a horizontal line.

Although other databases perform better for lower path lengths, increase in ex-

ecution time for higher path lengths are worrisome. To investigate performances

further on lower path lengths, closer look is given in 5.5. Recursive approach of

SQL performs better than iteration for path lengths 1 and 2; however, its per-

formance decreases tremendously after 2, resulting in max recursion errors after

3, and hitting 15 seconds request timeout limit at 5. MongoDB outperforms all

others for path lengths 1 and 2, as it does for the first query. But, execution time

increases vitally after 2.

To summarize, as these experiments show, databases perform differently under

different types of queries. Hence, there is no one database and data model that

fits all types of datasets. Instead, the ways that dataset is going to be queried is

a vital determinant in the process of choosing database and data model.

CHAPTER 5. ALTERNATIVE DATABASE APPROACHES TO SINAVO 111

5.5 Summary

We have discussed the design and implementation of Sınavo system on three

database management systems. We have shown that relational database requires

more tables than others; whereas, the design process for graph database is easier

than others as it does not require a transition from description of the data model

to a data model suitable for the database.

In section 5.4.1 we have focused on non-quantitative attributes of these three

database management systems and explain how relational databases are easier

to maintain. However, document-based databases and graph databases are more

flexible. In section 5.4.2, we have introduced the results of experiments we have

conducted and shown that although with a small or fixed number of joins Mon-

goDB and Microsoft SQL Server perform better, for locating entities with varying

or long paths, Neo4j outperforms others.

Chapter 6

Data-driven Decisions

Storing and processing Big Data is a big challenge to tackle when developing sys-

tems that undergo huge data generation. However, arguably the most important

part of a Big Data system is the ways this collection of data is processed to make

practical data-driven decisions.

Users of Sınavo generate a vast collection of data, as discussed earlier. There

lies valuable inferences to be made from this collection regarding entities in

Sınavo, from performances of students to characteristics of questions. This sec-

tion describes some of those inferences implemented and how data is used to make

useful decisions and classifications.

6.1 Statistics of Sınavo

As discussed earlier, core of Sınavo is users solving questions. From this simple

interaction of entities, there are many practical results to be inferred. For exam-

ple, performance of a user on a subject is stored as a collection of acts of solving

questions on that subject. However, these statistics are only partial data and

would not reflect to real world with a one-to-one mapping. A user that solves

a small set of questions on a subject correctly is hardly expected to keep this

112

CHAPTER 6. DATA-DRIVEN DECISIONS 113

success in a real world test. What needs to be done is to evaluate these statistics,

and come up with ways to estimate real world performances of users based on

their Sınavo performances.

In addition to this approach, there are more ways this data can be used. The

act of solving a question is a bidirectional matter. As users solve a question and

affect their performances, that question is being solved that sums up to statistics

regarding that question, which can be used to guess how the users that are yet

to solve that question would perform. This estimation of users’ performances on

a question can be labelled as difficulty of that question. Estimating difficulties

of questions using statistical analysis can be automatically done, rather than the

traditional way of hiring experts to do the job. Consequently, it is a lot cost-

efficient.

The center of attention while making data-driven decisions in Sınavo is the

results of users solving questions. To accommodate these results in a more math-

ematical way, we map these results to 0 and 1; 1 corresponding to the question

being solved correctly, 0 to not a successful attempt. Leaving a question empty

is regarded as solving it wrongly, as it means that the user failed to solve the

question correctly. From users’ perspective, these results are a collection of ones

and zeroes for their successful or unsuccessful attempts on solving a set of ques-

tions. From questions’ perspective, these results correspond to a collection of ones

and zeroes for them being solved successfully or unsuccessfully. This approach

enables us to see these acts of solving question as a Bernoulli Trial (also known

as Bernoulli Experiment), which is an experiment with only two possible results:

success or failure.

In such a series of Bernoulli trials where probability of resulting in success is

θ, the probability of getting exactly y successes from n trials follows a discrete

probability distribution which is a binomial distribution Bin(n, θ), and can be

calculated as given below,.

Pr(X = y) =
(
n
y

)
θy × (1− θ)n−y

CHAPTER 6. DATA-DRIVEN DECISIONS 114

Although finding the real value of θ is intractable, what we are interested in

is to estimate the value of θ up to a point. To make this estimation, we have a

subset of actual values. From a question’s perspective, the actual set of results

of these Bernoulli trials would be the array of ones and zeroes formed when all

users, current and future, solves that question. However, it is not feasible to

expect getting all of these actual data. Instead, we do statistical analysis on the

subset of results we have, and guess what θ is likely to be.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20

P
ro

ba
bi

lit
y

Number of Successes

Probability Mass Function for Binomial Distribution (n=20, p=0.7)

Figure 6.1: Sample probability mass function for 20 Bernoulli Trials with 0.7
probability of success

6.2 Bayesian Statistics and Credible Intervals

Analysis focuses on an array of results of Bernoulli trials, i.e. ones and zeroes,

and tries to deduce the probability of another Bernoulli trial resulting in one.

To do this, there are two main clues to be used. First one is evidence, which

CHAPTER 6. DATA-DRIVEN DECISIONS 115

is a subset of all possible results, discussed earlier. The second clue is called a

prior, which is an estimation of what the probability is likely to be, via a belief,

or information gained by observing earlier behaviour of the model.

Let y be the number of ones generated by n Bernoulli trials, and θ be the

probability of any trial resulting in one. Note that these n trials are only known

experiments, and there are likely to be more experiments generating possibly

different results. The question we direct to the data we have is the following: If

there are y ones in n Bernoulli trials conducted, what is the probability of next

experiment resulting in one, i.e. what is θ in the light of our current knowledge?

This can be modelled as the following formulae, based on Bayes’ theorem.

p(θ|y) =
p(y|θ)× p(θ)

p(y)

Here, p(θ|y) is the posterior probability distribution, which gives us the proba-

bility distribution for the next Bernoulli Trial. p(y|θ) is the evidence (also referred

as likelihood), which is the probability distribution given by evident results and

p(θ) is the prior knowledge regarding θ. As p(y) acts as a normalizing constant,

this equality can be translated into the following proportionality, as it is com-

monly denoted.

p(θ|y) ∝ p(y|θ)× p(θ); informally Posterior ∝ Evidence× Prior

It was shown that the evidence is in binomial model. We chose beta distri-

bution to demonstrate prior knowledge, as it suits for probability distribution,

integrating to 1. In addition, beta distribution is a conjugate prior distribution

to binomial distribution [21], which means that applying beta distribution as

prior to a binomial model, posterior is the same family as the prior (beta). This

simplifies calculations. As a result, the posterior takes the following form:

CHAPTER 6. DATA-DRIVEN DECISIONS 116

p(θ|Y) ∝ B(y, n)×Beta(α, β)

∝ (θy × (1− θ)n−1)× (θα−1 × (1− θ)β−1)

∝ θ(y+α)−1 × (1− θ)(n+β)−1

∝ Beta(y + α, n+ β − y)

In summary, applying a beta prior with hyper-parameters α and β to a bi-

nomial likelihood with parameters y, n and θ results in a beta posterior with

hyper-parameters (y + α) and (n+ β − y).

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

Probability

Non-informative beta

Figure 6.2: 3 Sample beta distributions

After getting the posterior distribution, to finalize the estimation process, we

do interval estimation calculations to come up with a credible interval [12]. A

credible interval is an interval within the bayesian posterior distribution that cov-

ers the actual probability, referenced earlier as θ, with a confidence level γ. In

other words, if the probability that θ is within an interval is 95%, that interval is

called a credible interval with a confidence level 95%. Note that the confidence

CHAPTER 6. DATA-DRIVEN DECISIONS 117

level is a parameter itself, and can be adjusted based on the context. Mathemat-

ically, for a distribution F of a variable X, a credible interval with a confidence

level γ is an interval (a, b) that satisfies the following criteria.

Pr(a ≤ X ≤ b) = γ

For a given probability distribution, there are more than one credible intervals

with the same confidence level. One possibility is to choose the mean of the

distribution as the central point of the interval. Another possibility is to find

the narrowest interval that gives the specified confidence. Our focus is to find an

equal-tail interval, which is the interval for which the probability that θ is below

the minimum point is the same as it is above the maximum point.

To calculate a credible interval from a beta posterior, quantile functions are

used. A quantile function Q(p), also called inverse cumulative function, is a

function that returns value v such that the probability that the variable X is less

than or equal to v is p. Mathematically,

Q(p) = v | (Pr(X ≤ q) = p)

So, the equal-tail credible interval with confidence γ for a beta function with

hyper-parameters α and β is given as the following.

[qbeta(
γ

2
, α, β), qbeta(1− γ

2
, α, β)]

where qbeta is the quantile function for beta distribution.

CHAPTER 6. DATA-DRIVEN DECISIONS 118

6.3 Performance Analysis & Prediction

Sınavo provides a system to analyse user performances and deduce states of users

on different subjects. These analyses are not mere statistical figures, but rather

data-driven decisions based on bayesian statistics and credible intervals mentioned

earlier.

From a user’s perspective, each question the user encounters and tries to solve

is a Bernoulli Trial with two possible results: solving it correctly - success, failing

to solve it - failure. These statistics are gathered incrementally whenever users

solve questions, ready to be fetched.

A user’s performance on a subject is modelled as their probability of solving

a question in that subject correctly. As this probability is unknown, we apply

bayesian statistics to calculate a credible interval and use it as an empirical esti-

mation of the performance of user.

Let us define a user whose statistics will be investigated as an example. Con-

sider a user that just started using Sınavo. Let n1, the number of questions that

user solved on an arbitrary subject S, be 10. Let y1 be 9, which is the number

of questions from those n1 questions that the user solved correctly. As a result,

the user conducted n1 Bernoulli trials, y1 of which were successful. Let θ be the

probability of that user solving an arbitrary question from that subject correctly,

which is deemed to be the performance of that user on that subject. A posterior

can be calculated as the following.

p(θ|Y) ∝ B(y1, n1)×Beta(α, β)

∝ B(9, 10)×Beta(1, 1)

∝ Beta(9 + 1, 10 + 1− 9)

∝ Beta(10, 2)

As the user is a fresh one without any prior evidence, a non-informative prior

CHAPTER 6. DATA-DRIVEN DECISIONS 119

is applied, which does not affect the evidence much. For a Beta model, hyper-

parameters of a non-informative distribution is α = 1, β = 1, as given in Figure

6.2. An initial informal estimation would be that the user’s performance is quite

high on that subject, solving 9 questions correctly out of 10. The posterior

calculated above generates the distribution given in Figure 6.3, with α2 being 10,

and β2 being 2.

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

X

Beta Posterior with alpha:10, beta:2

min max

Figure 6.3: Posterior Beta(10, 2) and credible interval with confidence level 95%

As it can be seen, with a non-informative prior and a list of Bernoulli trials

with a pretty high success rate, distribution has its mean close to one, which

yields that the probability of success is also close to one. The credible interval

with 95% confidence, acquired from this posterior is approximately [0.59, 0.98],

calculated as the following.

min = qbeta(0.025, 10, 2) ≈ 0.59,max = qbeta(0.975, 10, 2) ≈ 0.98

Let us assume that after solving n1 questions, user solved n2 questions in the

CHAPTER 6. DATA-DRIVEN DECISIONS 120

next month, y2 of which were successful. As users performances change by time,

we consider months as epochs and use previous month’s posterior, as the prior

for the new month. Let n2 be 20, and y2 be 5, meaning that user was not as

successful at solving questions on subject S this month as the previous month.

Using previous month’s posterior as the new prior, we get the up-to-date posterior

as the following.

p(θ|Y) ∝ B(y2, n2)×Beta(α2, β2)

∝ B(5, 20)×Beta(10, 2)

∝ Beta(5 + 10, 20 + 2− 5)

∝ Beta(15, 17)

ConfidenceInterval ≈ [0.30, 0.64]

Although the user’s performance was quite low in the second month, high rate

of success in the first month is indicative that it is not the expected performance

of the user. It might be the case that some exceptional things happened that lead

in low success rate. Applying the prior from the first month adds this possibility,

resulting in a mediocre performance expectancy. If the prior was not as good as

the first month’s performance, calculated posterior would be worse. Assuming

there were no priors for the second month’s performance, the posterior would be

Beta(6, 16). This case, along with the actual prior and actual posterior, is given

in Figure 6.4.

It is worth noting that these credible intervals calculated from the posteriors

are relatively wide. Stating that a user’s performance is probably between 59%

and 98% might not be very informative, as a user with 98% performance is a top

rated student, but 59% performance might indicate a mediocre success. There

are two reasons as to why these intervals are so wide. Firstly, these credible

intervals are calculated with a confidence level of 95%, which yields that the

actual performance is almost surely within these intervals. And to be so sure,

intervals widen to cover most of the probability. Lowering the confidence level

CHAPTER 6. DATA-DRIVEN DECISIONS 121

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

Probability

Prior

Posterior with non-informative Prior

Actual Posterior

Figure 6.4: Prior & posteriors with actual prior and non-informative prior

would shrink the interval to an acceptable level. For example, instead of requiring

a confidence level of 95% and getting interval [0.59, 0.98], choosing a confidence

level of 60% results in a narrower interval, [qbeta(0.2, 10, 2), qbeta(0.8, 10, 2)] ≈
[0.75, 0.92] (Figure 6.6).

However, lowering the confidence level yields a greater possibility of misleading

results. For precision, it is an unwanted property and should be avoided. The

second way of narrowing confidence intervals is much more acceptable, which is

increasing the data size. In the previous example, the user was assumed to solve 10

questions with 9 correct answers, which generated interval [0.59, 0.98]. Assuming

the success rate of the user remains the same, analysing the user’s performance

over 100 questions with 90 correct answers would generate a narrower interval,

[qbeta(0.025, 91, 11), qbeta(0.975, 91, 11)] ≈ [0.83, 0.94] (Figure 6.6). Note that the

prediction still holds 95% confidence level, but yields a much narrower interval,

which is much more informative than the previous one. Shrinking of the interval

with wider dataset is only natural, since increase in evident data leads to a more

precise deduction.

CHAPTER 6. DATA-DRIVEN DECISIONS 122

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

X

min max

Figure 6.5: Credible interval with 60% confidence level

6.4 Question Difficulty Deduction

Traditionally, a question’s difficulty is decided by its creator or a group of experts,

based on their intuitions. Although these people have sound understanding of

how questions should be classified regarding their difficulties, it is a subjective

matter. A question might be regarded as easy by some students, but found to

be hard by others. Intuitions might not be enough to come up with an accurate

classification. Instead, Sınavo offers a data-driven process to discover question

difficulties.

From a question’s perspective, it being solved by any arbitrary student is a

Bernoulli Trial. If a student solves the question successfully, result of the trial

is 1, and 0 otherwise. We model the difficulty of a question as the probability

of it being solved correctly by an arbitrary user. Just like user performances, we

apply bayesian statistics and credible interval analysis on these bernoulli trials to

generate a credible interval for this probability.

CHAPTER 6. DATA-DRIVEN DECISIONS 123

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

b
a
b
ili

ty
 D

e
n
si

ty

X

min max

Figure 6.6: Credible interval with more data and 95% confidence level

As we regard difficulties of questions static, we do not apply monthly cal-

culations, using previous month’s distribution as a prior. Instead, opinions of

experts are used as priors when applicable. When no such data is available, non-

informative prior is used. For example, let n, the number of times a question is

solved, be 50, and let y the number of times users succeeded in solving that ques-

tion be 30. Assuming that there is no prior knowledge available, the posterior

probability distribution for this question’s difficulty (φ) will be calculated like the

following.

p(φ|Y) ∝ B(y, n)×Beta(α, β)

∝ B(30, 50)×Beta(1, 1)

∝ Beta(30 + 1, 50 + 1− 30)

∝ Beta(31, 21)

ConfidenceInterval ≈ [0.46, 0.72]

CHAPTER 6. DATA-DRIVEN DECISIONS 124

Difficulty of a question is usually a label, from a domain of labels such as

easy, moderate, hard, instead of numerical values. However, difficulty values

of questions actually differ among themselves. Not all questions labelled as the

same are at the same level of difficulty. Instead, these labels group questions with

similar difficulties; hence, represent intervals. To be able to group the intervals

generated by Sınavo system, we need a data-driven method to come up with

an interval → label mapping. To do this, we analyse how these intervals are

scattered.

First, means of posterior distributions are calculated. Mean for a beta dis-

tribution for 0 ≤ x ≤ 1 is calculated as α
α+β

. Then, these means are considered

as single values and analysed as a new distribution D. Mean µ′ and standard

deviation σ′ of this new distribution are calculated. Using the µ′ and σ′, difficulty

intervals are generated by the following method. As the new distribution is ex-

pected to follow a normal distribution, items that are more than three standard

deviations farther than the mean are considered as outliers. Hence, items are

expected to be scattered over six standard deviation long interval. Splitting this

space into the number of labels required, 5 in Sınavo, we get the intervals for

difficulties.

A sample labelling procedure is plotted in Figure 6.7. After calculating σ′ and

µ′, difficulty boundaries are calculated. The lowest boundary L1 is 3×σ units to

the left of the mean, and each label interval covers 1.2×σ space as we split 6×σ
long space into 5 buckets. Each consecutive boundary forms a difficulty label

interval. Considering the fact that x-axis represents the probability of a question

being solved, the buckets to the left represent harder questions; whereas, buckets

to the right represent easier ones. As a result, following difficulty intervals are

calculated:

[0, L2] very hard

[L2, L3] hard

[L3, L4] moderate

[L4, L5] easy

[L5, 1] very easy

CHAPTER 6. DATA-DRIVEN DECISIONS 125

Figure 6.7: Difficulty labels for question intervals

Note that the credible intervals of probabilities for questions being solved are

simply stating the actual probability lies within that interval, and nothing more.

Hence, we can not just select a label for a question whose mean lies within that

label’s interval. Instead, each question difficulty interval is compared to all label

intervals to see if two intervals have an intersection. If that is the case, it is

possible, but not certain, that the question is from that difficulty. As a result,

question difficulties are sets of difficulty labels in Sınavo. As discussed earlier,

the more a question is solved, the narrower the credible interval for that question

will be. That is why all difficulties are expected to converge into having only one

label eventually.

6.5 Summary

To summarize, we have introduced two novel ways of using statistics of Sınavo

system to make valuable data-driven decisions. In section 6.3, we have shown

CHAPTER 6. DATA-DRIVEN DECISIONS 126

that by considering acts of solving question as Bernoulli trials, bayesian statistics

can be applied to come up with credible intervals. We model performance of

a user as the expected probability of that user solving questions correctly. We

use stored statistics as the evidence, which is a binomial distribution. We use a

non-informative beta distribution with hyper parameters (α = 1, β = 1) in the

beginning, which results in a posterior with beta distribution, as beta distribution

is conjugate on binomial distribution. Then, we use these posterior distributions

as priors and update credible intervals monthly, to mimic the fact that student

performances are dynamic and change over time. Moreover, we have shown that

with limited data and high confidence levels, credible intervals are wide and un-

informative (see Figure 6.3). However, lowering confidence level (see Figure 6.5),

or more preferably, increasing evident data (see Figure 6.6) result in narrower in-

tervals. Consequently, as students solve more questions, estimations will become

more precise.

In addition, we apply similar approach to questions to come up with data-

driven difficulty estimation, described in section 6.4. We model a question’s

difficulty as the probability it being solved correctly by any student and try to find

that probability. For this, we consider questions being solved as Bernoulli trials,

regardless of the student solving them. Applying same approach, we generate

credible intervals that correspond to expected difficulties of questions. We also

discuss how these intervals can be mapped to difficulty labels by dividing difficulty

distributions to intervals for each label. As credible intervals are wide with limited

evidence, they can intersect with multiple labels. As a result, initial estimated

difficulties can include more than one label. However, as more data is collected,

credible intervals shrink and converge to one label.

Chapter 7

Conclusion

7.1 Summary

The world is getting digitalized, and a wide variety of real world data is being

collected constantly. In addition, with more and more people getting Internet

access, there are a lot of systems with a vast number of users. Such systems are

often operate real-time and run into the trouble of storing and retrieving data

efficiently. With the needs of software systems changing, database management

systems evolved accordingly. For an important amount of time, SQL Servers

were enough to handle operations of software systems, but when they started

to fail meeting new expectations, NoSQL movement challenged fundamentals of

database systems and resulted in a number of new approaches of modelling data.

In this thesis, we have discussed new technologies used to store data on clouds

and new means introduced to process this data. We have explained how tradi-

tional SQL servers worked and focused on two new database approaches: doc-

ument based and graph databases. We have exemplified those approaches with

widely used database management systems, which are MongoDB for document

store and Neo4j for graph database. We have discussed how those approaches

modelled data and provide means of storing and accessing that data.

127

CHAPTER 7. CONCLUSION 128

In chapter 4, we have explained Sınavo, which is an online educational sys-

tem that provides an extensive set of questions, that can be solved in different

contexts. Those contexts include competitive games and tests, which are all ac-

cessible via a web interface. We have discussed main focuses of this system, such

as socialization and ability to provide statistical analysis. In the next chapter,

we have presented how different database management systems are implemented

for this system. We analysed strengths and weaknesses each approach exhibits

and provided a comparison of these approaches on different aspects, such as ease

of use, maintainability, and efficiency.

Storing and retrieving Big Data is a problem on its own, but what is being done

with this dataset is a fertile field often used incompletely. This is because data

gathered for a specific purpose, such as messages from a vastly used social media,

also contains possibilities for valuable inferences. In chapter 2, we mentioned that

buzz in Twitter is used to estimate how successful a movie will be in theaters. In

chapter 6, we present a novel way of using statistics gathered by Sınavo system to

estimate students’ actual performances. We have acknowledged that success rates

of students are subject to change in time and provided a feedback loop that can

be used to adjust these estimations accordingly. We have also introduced a way

of evaluating question difficulties in a data-driven manner. We have discussed

how a bayesian approach can be applied to statistics of questions within Sınavo

system to come up with credible intervals. We used those credible intervals to

classify questions based on their difficulty levels.

Despite all our efforts, this thesis is naturally not perfect. The drawbacks of

this thesis can be summarized as follows.:

• Although we have covered three different types of database management

systems, there are a lot more. There are column-oriented databases such

as the Apache Cassandra, or key-value stores such as Redis, as well as

other instances of the database types we have covered, such as Oracle for

relational databases, Titan for graph databases. As discussed before, it is

not within the scope of this thesis to compare all existing databases and

provide a perfect selection for Big Data projects.

CHAPTER 7. CONCLUSION 129

• All the experiments we have conducted were run on a single machine setting.

This means that we did not evaluate scalability aspect of these database

management systems.

• While evaluating quantitative properties of database management systems,

we have focused on read queries. However, write queries might be just as

important for projects.

Contributions of this thesis can be summarized as follows:

• In chapter 5, we have discussed design and data model for Sınavo on three

database management systems, namely Microsoft SQL Server, MongoDB,

Neo4j.

• In section 5.4.1 we have provided a comparison on their non-quantitative

attributes and discussed that relational databases are easier maintain, but

are less flexible. MongoDB; on the other hand, is easier to use, as there are

way less collections than relational databases, as related data is encapsu-

lated within fewer documents. When it comes to designing process, Neo4j is

the easiest, considering the fact that software projects are mostly designed

in graph-like models, such as entity-relationship diagram.

• In section 5.4.2, we present results of experiments we have conducted on

three database management systems. These experiments show that Mon-

goDB performs better on queries that require small number of joins. On the

other hand, when the number of joins required increases, such as finding

people that a user is connected via multiple friendship relationships, i.e.

friends of friends of friends, etc, Neo4j outperform others.

• In chapter 6, we present a novel way to use existing statistics to make

data-driven decisions on student performances. In section 6.3, we show

how student performances can be estimated. We model student perfor-

mances as their probability to solve questions correctly. We make use of

bayesian statistics and apply beta priors to find credible intervals, which

CHAPTER 7. CONCLUSION 130

correspond to student performances. We acknowledge the fact that stu-

dents’ level change in time. We apply monthly updates, using previous

month’s posterior as the prior for the new month, to mimic this change.

• In section 6.4, we apply bayesian approach on question statistics to estimate

question difficulties. We model a question’s difficulty as the probability it

being solved correctly by any student. We use existing statistics to come

up with credible intervals for this probability, and show a way of mapping

these credible intervals to different difficulty labels.

7.2 Future Work

As discussed earlier, there are a vast number of new approaches for storing and

processing Big Data. Although we have discussed database management systems

which we deem important actors, we acknowledge that there are many others,

possibly more suitable for different kinds of software systems. An extensive eval-

uation of those systems and models may be very beneficial to further pinpoint

how database selections should be done based on the requirements of projects.

For projects that require an intersection of features different database models

offer, there may be systems making use of more than one database management

systems. If it is possible to separate the data into mutually exclusive subsets,

such a configuration might work well. However, this is usually not the case and

data is connected overall. In such configurations, if more than one DBMS’s are

used, a new problem of keeping those DBMS’s in sync emerges. In addition, new

technologies can be designed as hybrids of existing technologies, such as a graph

database, vertices of which are documents.

We have presented a novel way of estimating student performances and ques-

tion difficulties based on statistics of Sınavo system. For now, these estimations

are used solely to inform students and teachers. However, changes in perfor-

mances may be analysed to do a lot more. For example, an intelligent system

CHAPTER 7. CONCLUSION 131

may be developed to match decreases/increases in those performances to be-

haviours of students. It might estimate the optimal intervals in which students

should repeat certain subjects to prevent their performances from decreasing. In

addition, as students have target scores, an intelligent system can analyse their

performances and provide an optimized schedule to achieve those targets. For

example, a subset of students may be able to improve their performances on a

specific subject easier than others, with possibly diminishing efficiency. Such an

intelligent system can make data-driven decisions to estimate optimal levels for

students on subjects and encourage an optimized schedule to reach those levels.

BIBLIOGRAPHY

[1] Neo4j, the world’s leading graph database. http://neo4j.com/product/,

2015.

[2] Sitaram Asur and Bernardo A Huberman. Predicting the future with social

media. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010

IEEE/WIC/ACM International Conference on, volume 1, pages 492–499.

IEEE, 2010.

[3] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan

Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-

ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, et al. Apache

hadoop goes realtime at facebook. In Proceedings of the 2011 ACM SIG-

MOD International Conference on Management of data, pages 1071–1080.

ACM, 2011.

[4] N. Bressan, A. James, and C. McGregor. Trends and opportunities for

integrated real time neonatal clinical decision support. In Biomedical and

Health Informatics (BHI), 2012 IEEE-EMBS International Conference on,

pages 687–690, Jan 2012.

[5] Kristina Chodorow. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”,

2013.

[6] Edgar F Codd. A relational model of data for large shared data banks.

Communications of the ACM, 13(6):377–387, 1970.

[7] Edgar F Codd. Recent investigations in relational data base systems. In

IFIP congress, volume 74. Amsterdam., 1974.

132

http://neo4j.com/product/

BIBLIOGRAPHY 133

[8] Edgar Frank Codd. Further normalization of the data base relational model,

data base systems, courant computer science symposia series 6, r. rustin,

1972.

[9] Douglas Crockford. JavaScript: The Good Parts: The Good Parts. ” O’Reilly

Media, Inc.”, 2008.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[11] Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.

[12] Ward Edwards, Harold Lindman, and Leonard J Savage. Bayesian statistical

inference for psychological research. Psychological Review, 70(3):193, 1963.

[13] Ronald Fagin. Multivalued dependencies and a new normal form for re-

lational databases. ACM Transactions on Database Systems (TODS),

2(3):262–278, 1977.

[14] John Gantz and David Reinsel. The digital universe in 2020: Big data,

bigger digital shadows, and biggest growth in the far east. IDC iView: IDC

Analyze the Future, 2012.

[15] John F Gantz and David Reinsel. The expanding digital universe: A forecast

of worldwide information growth through 2010. IDC, 2007.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file

system. In ACM SIGOPS Operating Systems Review, volume 37, pages 29–

43. ACM, 2003.

[17] Theo Haerder and Andreas Reuter. Principles of transaction-oriented

database recovery. ACM Computing Surveys (CSUR), 15(4):287–317, 1983.

[18] Colin J Ihrig. Javascript object notation. In Pro Node. js for Developers,

pages 263–270. Springer, 2013.

[19] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual

BIBLIOGRAPHY 134

ACM symposium on Theory of computing, STOC ’98, pages 604–613, New

York, NY, USA, 1998. ACM.

[20] Simon Josefsson. The base16, base32, and base64 data encodings. 2006.

[21] Paul H Kvam and Brani Vidakovic. Nonparametric statistics with applica-

tions to science and engineering, volume 653. John Wiley & Sons, 2007.

[22] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard

Dobbs, Charles Roxburgh, and Angela H Byers. Big data: The next frontier

for innovation, competition, and productivity. 2011.

[23] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.

Cambridge University Press, Cambridge, 2012.

[24] Ronald Rivest. The md5 message-digest algorithm. 1992.

[25] Ian Robinson, Jim Webber, and Emil Eifrem. Graph databases. ” O’Reilly

Media, Inc.”, 2013.

[26] Robert Schlaifer and Howard Raiffa. Applied statistical decision theory.

1961.

[27] Gautam Shroff. The Intelligent Web: Search, smart algorithms, and big data.

Oxford University Press, 2013.

[28] Jeffrey D Ullman et al. A first course in database systems. Pearson Education

India, 1982.

[29] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, and Wei Ding. Data mining

with big data. Knowledge and Data Engineering, IEEE Transactions on,

26(1):97–107, 2014.

	Front Matter
	Abstract
	Öz
	Table of Contents

	Introduction
	Topic of the thesis
	Overview of this thesis
	Structure of the thesis

	Big Data
	Introduction
	Sources and Uses
	Sensors and Surveillance Systems
	Social Media
	Healthcare
	Others

	Storing Big Data
	Apache's Hadoop Distributed File System
	Google File System

	Processing Big Data - MapReduce
	Summary

	Database Management Systems
	Introduction
	Relational Databases
	Relational Model
	Normalization
	Reading and Writing Data

	Document Based Databases
	JSON
	Document
	Storage, Retrieval and Editing

	Graph Databases
	Graphs
	Data Access
	Editing & Inserting Data

	Summary

	Sınavo: A Big Data
	Introduction
	Components
	Question Solving
	Games
	Test
	Performance Analysis
	Landing Page

	Challenges
	Handling Data
	Accessing Data

	Summary

	Alternative Database Approaches to Sınavo
	Relational Database
	User data & Interactions
	Questions - Subjects
	Games
	Tests
	Statistics

	Document Database
	User data & Interactions
	Questions - Subjects
	Games
	Tests
	Statistics

	Graph Database
	User data & Interactions
	Questions - Subjects
	Games
	Tests
	Statistics
	Design Notes

	Comparison & Analysis
	Non-quantitative Attributes
	Ease of Use
	Maintenance
	Flexibility

	Quantitative Attributes
	Query with fixed number of joins
	Authentication query
	Query with different path lengths
	Comparison Summary

	Summary

	Data-driven Decisions
	Statistics of Sınavo
	Bayesian Statistics and Credible Intervals
	Performance Analysis & Prediction
	Question Difficulty Deduction
	Summary

	Conclusion
	Summary
	Future Work

