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Buckling and Post-Buckling of
Parabolic Arches with Local Damage

6.1. Introduction

The birth of fracture mechanics is attributed to Griffith (1920), who based it on
the solutions provided by Kirsch (1898) and Inglis (1913). Many efforts to enhance
this new branch of solid mechanics followed (Irwin 1957a,b, 1960a,b; Dugdale 1960;
Wells 1963; Rice 1968; Rice and Levy 1972). Applications of fracture mechanics to
one-dimensional continua were possible after the introduction of the stress intensity
factor (SIF) in Irwin (1957a,b). This, together with Castigliano’s theorem, allows
crack-like damages to be modeled by springs, and the response of beam frames can
be described with no need to find the stress field around the crack tip. The structural
response includes the displacement profiles due to benchmark load distributions, as
well as the frequencies and mode shapes of natural free vibration, which encompass
information about geometry, material properties and boundary conditions. A decade
before the introduction of SIFs, Kirshmer (1944) and Thomson (1949) focused on
simple structures with crack-type damages using a reduced area. Even after the
introduction of SIFs, these crack models were used by many researchers.

Dimarogonas (1981, 1982, 1996); Dimarogonas and Paipetis (1983); Anifantis
and Dimarogonas (1983a,b,c) successfully used the spring analogy by means of SIFs,
especially on rotating machines. These papers paved the way to many more, which
focus on building enhanced models for either the crack or the structure and on
examining the effects of cracks on the static and dynamic behavior of beam-type
structures (Gounaris and Dimarogonas 1988; Ostachowicz and Krawwczuk 1992;
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Chati et al. 1997; Khiem and Lien 2001; Sinha and Friswell 2002; Viola et al. 2002;
Krawczuk et al. 2003; Kisa and Arif Gurel 2007; Orhan 2007; Mazanoglu et al.
2009; Caddemi and Morassi 2013; Caddemi et al. 2017; Caliò et al. 2017;
Cannizzaro et al. 2017; Eroglu and Tufekci 2017b; Eroglu et al. 2019, 2020), without
pretending to be exhaustive. A thorough investigation of the structural response
suggested that monitoring the mechanical behavior of cracked elements may lead to
damage identification by suitable methods. Thus, many papers focused on
experimental settings, optimization techniques and their effects on identification
procedures (Cawley and Adams 1979; Ju and Minovich 1986; Cerri and Ruta 2004;
Cerri et al. 2008; Pau et al. 2010; Ciambella and Vestroni 2015; Capecchi et al. 2016;
Eroglu and Tufekci 2016, 2017a; Caddemi and Morassi 2007, 2011; Greco and Pau
2011). A survey of the entire literature is out of our scope, yet, we may refer to the
review of Doebling et al. (1996) for details.

Most studies on cracked one-dimensional structural elements deal with their
statics and free dynamics, while their stability is only given marginal consideration,
especially arches. A possible reason for this is that stability analysis is usually related
to structural design and functioning, and is not meant for structural monitoring
purposes. We may quote Karaagac et al. (2011), who examined the static and
dynamic stability of circular arches by the finite element technique. They used the
SIFs provided in Müller et al. (1993) and assumed the crack on the inner surface of
the arch.

We investigate buckling and post-buckling of parabolic arches with crack-like
damages. The latter may be simplified models of either the failure of connections of
large structures and actual cracks in relatively small-size applications. We model the
arch as a one-dimensional curved beam and study its fundamental and bifurcated
path under reasonable kinematic and constitutive assumptions. The crack is modeled
by the spring analogy and the SIFs, following literature and previous works by the
authors. The novel points here are: a) the fundamental path is non-trivial, in that we
linearize the finite field equations and find a non-zero linear elastic response to a
uniform load with respect to the arch span; b) the critical values of the load multiplier
are found in closed form; c) the germ of the post-buckling path is found by an
additional perturbation of the finite field equations about the bifurcation point,
providing information on the quality of the bifurcated path. Thorough comments and
mechanical interpretations, in light of classic results on stability, are provided,
together with hints on possible applications and future developments.

6.2. A one-dimensional model for arches

We model arches as initially curved fully deformable beams, i.e. one-dimensional
structured continua that are assumed flexible, extensible and shear-deformable. Then,
we suppose that their reference shape is well defined starting from a segment of a
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regular planar curve, called the arch axis. The curve segment lies on a plane. On the
latter we fix a Cartesian frame x, y, to which a consistent basis of unit vectors {ex, ey}
is associated. A third unit vector ez , which coincides with one of the unit normals to
the plane of the arch axis, completes a vector basis for the vector space associated
with the three-dimensional Euclidean ambient space. The position of any point P of
the axis is described by the vector field r0

r0(x) = xex + y(x)ey, 0 ≤ x ≤ x̄, y(0) ≤ y ≤ y(x̄) [6.1]

The tangent vector to the arch axis at any point P and its unit counterpart l(s) are

dr0(x)

dx
= ex − dy(x)

dx
ey, ds =

√
dr0(x)

dx
· dr0(x)

dx
dx,

l(x(s)) =
dr0(x(s))

dx(s)

dx(s)

ds
,

[6.2]

where ds is the arc length, which is a measure of an element of the axis compatible
with the given Cartesian metrics. Equation [6.2]2 yields the intrinsic abscissa s in
terms of x and vice versa; hence, r0 and all the fields depending on P may be
expressed in terms of either x or s; thus, equation [6.2]3 gives the field of unit vectors
tangent to the axis.

The s-derivative of the field l(x(s)), its magnitude and its unit counterpart are

dl(x(s))

ds
=
dl(x(s))

dx(s)

dx(s)

ds
=: k(x(s))m(x(s)),

m(x(s))=
1

k(x(s))

dl(x(s))

ds

[6.3]

The quantity k is the local curvature of the axis at P ; the Frénet–Serret local basis
consists of the triad {l,m,n}, n = l×m. Since the axis is a plane curve, the unit
tangents and normals depend on P , while the bi-normal does not and coincides, with
the exception of the a sign depending on the location of the osculating circle at P ,
with ez .

The reference shape is a three-dimensional region that is completed by attaching
the copies of a prototype plane figure to any point of the axis. These are called
transverse cross-sections and, being all equal, model an arch with uniform geometry
with respect to the axis. With no loss in generality, the cross-sections are attached to
the axis orthogonally to the unit tangent to the axis. That is, the initial setting of the
cross-sections is determined by the Frénet–Serret local triad of unit base vectors for
any point of the axis: the arch element is along the unit tangent l, the corresponding
cross-section lies in the plane spanned by the unit normal m and the unit bi-normal n.

For simplicity, the dependence on x(s) will be dropped if no confusion arises.
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6.2.1. Finite kinematics and balance, linear elastic law

The reference configuration is supposed to be stress-free (i.e. the arch is in an
initial natural state). A different shape is provided by the fields d, the vector of the
axis displacement (equivalently, by the new position r = r0 + d ∀P ), and R, the
orthogonal tensor of the cross-section’s rotation; both are functions of P , hence of x
(or s) and of an evolution parameter (time, for instance).

Neutral, or rigid, changes of shape are characterized by a uniform value of R and
by a tangent vector in the new shape that is simply the R-transformed of l. If primes
denote s-derivatives to shorten the notation, finite deformation measures in the actual
configuration are thus (see Antman (1973, 1995) and Pignataro et al. (2008))

v=(r0 + d)
′ −Rl, V=R′R� [6.4]

The components of the vector field v are the elongation ε of the axis and the
shearing strains γ between the axis and the cross-sections; the non-zero components
of the skew-symmetric tensor field V are the variation of curvature χ of the axis.

If we suppose the loads and the change of shape take place in the same plane of
the referential configuration, R is expressed in terms of a single angle ϑ, providing
the rotation of the cross-section at P about the bi-normaln, and the displacement field
has just two components:

(R) =

(
cosϑ − sinϑ
sinϑ cosϑ

)
, d = ul+ vm [6.5]

Then, we have only two and one components of the strain measures v,V,
respectively

ε=1− cosϑ+ kv + u′, γ=− sinϑ+ ku+ v′, χ=ϑ′ [6.6]

The environment acts on the arch by: a vector force field, power dual of the
incremental displacement of the axis; and a skew-symmetric tensor couple field, power
dual of the incremental rotation of the cross-sections. Force and couple may be either
distributed (actions at a distance) and localized at the end cross-sections (actions by
contact); they are denoted b,B, f ,F, respectively. The parts of the arch interact by
contact via a vector and a skew symmetric tensor field, power duals of the incremental
strains, denoted t,T, respectively. All the action fields are functions of the place P
along the axis and of the evolution parameter, in general.

The balance equations in the configuration at a given value of the evolution
parameter, also called actual shape, may be derived either by applying the virtual
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work principle or by assuming balance of force and torque as a basic principle. In
both cases, they read (see Antman (1973, 1995) and Pignataro et al. (2008))

t′ + b = 0, T′ + (r0 + d)
′ ∧ t+B = 0 ∀x ∈ (−l, l),

t = ±t±l, T = ±T±l x = ±l
[6.7]

with ∧ the external product of vectors, providing skew-symmetric tensors. The balance
of torque has a parallel expression in terms of axial vectors of skew-symmetric tensors
and the cross-product between them. The two components of the inner force and
the sole component of the inner couple, with respect to the local basis in the actual
configuration, will be denoted Ñ , T̃ , M̃ , respectively; they are usually named normal
and transverse (or shearing) force and bending couple, respectively.

The components of the inner actions are resultants and resultant moments of
Cauchy stresses (i.e., surface densities of contact force in the actual shape). It is
customary in structural mechanics, however, to express them in terms of the inner
actions in the reference configuration, with components denoted N, T,M ,
respectively (this is what is usually done by Cauchy and Piola stresses in
three-dimensional continuum mechanics). The two sets of components are related via
the rotation tensor R in equation [6.5]1, ruling the change of unit vectors solidal to
the cross-sections.

Then, the scalar consequences of equation [6.7] in the presence of planar external
actions with components n, t,m, with respect to the local basis in the actual shape,
read

N ′ − kT + n = 0, T ′ + kN + t = 0,

M ′ −N(sinϑ+ γ) + T (cosϑ+ ε) +m = 0
[6.8]

Here, the local curvature k appears due to the Frénet–Serret formulas for the
s-derivatives of the intrinsic local basis.

Even though kinematics is in a finite setting and balance is written in the actual
configuration in terms of the inner actions in the reference shape, we admit that
the inner actions are linearly related to the strain measure components by elastic
uncoupled constitutive laws, according to

Ñ = EAε, T̃ = GAsγ, M̃ = EIχ [6.9]

where E,G are Young’s and transverse elastic moduli of the material of the arch,
respectively, and A,As, I are the cross-sectional area, shearing area and second
moment of area relative to a principal axis of inertia parallel to n, respectively. The
positions in equation [6.9] are reasonable in that we will operate a perturbation of the
finite field equations, and linear (incremental) constitutive equations suffice to



126 Modern Trends in Structural and Solid Mechanics 1

describe the arch response. The uncoupled laws in equation [6.9], similar to those
provided by Saint-Venant’s theory, are reasonable enough for compact cross-sections
with main dimensions that are small compared with the local radius of the osculating
circle (see Timoshenko and Goodier (1951)).

Then, taking into account that the local frame attached to the cross-section changes
according to the orthogonal tensor R in equation [6.5], the constitutive relations in
equation [6.9] can be given in terms of the components of the inner action in the
reference shape, providing

ε = N

(
cos2 ϑ

EA
+

sin2 ϑ

GAs

)
+ T sinϑ cosϑ

(
1

EA
− 1

GAs

)
,

γ = T

(
cos2 ϑ

GAs
+

sin2 ϑ

EA

)
+N sinϑ cosϑ

(
1

EA
− 1

GAs

)
, χ =

M

EI
[6.10]

In the following sections, we describe how we use the set of field equations for
the arch in order to follow its response to an external load uniformly distributed with
respect to the metrics of the span and monotonically increasing. A perturbation
approach will follow a linearized solution in the neighborhood of the referential
configuration (fundamental path), until a critical value of the load multiplier is
reached. This corresponds to a bifurcation of the static equilibrium; in order to follow
the jet of the bifurcated path, a second perturbation of the field equations in the
neighborhood of the buckled shape will be performed.

6.2.2. Non-trivial fundamental equilibrium path

The field equations [6.6], [6.8] and [6.10] form a system of ordinary differential
equations with respect to the spatial coordinate of any point P of the arch axis. To
find the static response to any set of distributed external actions n, t,m in the actual
shape, we are supposed to solve this nonlinear differential system, supplemented
by the relevant boundary conditions. Let all external actions be rescaled by a load
multiplier: then, the solutions of the field equations provide a one-parameter family of
new shapes, called the fundamental path, which is described in exact, nonlinear, finite
form. It goes without saying that, bar very special cases, the resolution of the field
equations in finite form is computationally very demanding.

However, in structural engineering, we usually do not face finite displacements,
and we may assume the structural response to be limited to “small” displacements and
rotations. Hence, linearization of the field equations is possible, and the search for
the fundamental path is greatly simplified. To this aim, let us introduce an evolution
parameter η ∈ [0, 1] such that η = 0, η = 1 characterize the reference and the actual
shape, respectively. A perturbation approach, i.e., a formal power series expansion



Buckling and Post-Buckling of Parabolic Arches with Local Damage 127

of all the fields of interest in terms of η, provides an approximate response of the
structure about a given value of the evolution parameter (see Pignataro et al. (1991)).
If we thus let η=0 and limit the formal expansion at the first order, we study a non-
trivial neighborhood of the reference configuration, supposed to represent the natural
state of the arch. Then, if the suffix 0 denotes quantities evaluated in the reference
shape,

R0 = I ⇔ ϑ0 = 0, d0 = 0, N0 = T0 =M0 = 0 [6.11]

Hence, the linear expansion of equations [6.6], [6.8] and [6.10] about the
unstressed reference state provides

EA(u̇′f − kv̇f ) = Ṅf , GAs(v̇
′
f − ϑ̇f + ku̇f) = Ṫf , EIϑ̇′f = Ṁf ,

Ṅ ′
f − kṪf + ṅf = 0, Ṫ ′

f + kṄf + ṫf = 0, Ṁ ′
f + Ṫf + ṁf = 0,

[6.12]

where the overdot denotes η-derivatives of functions evaluated at η = 0; the suffix f
indicates fields along the fundamental path. As is well known, the fundamental path
is a single-valued curve expressing a characteristic displacement (or strain) versus
the load multiplier when the latter monotonically grows from zero. When the load
multiplier attains a so-called critical value, the equilibrium path becomes a multi-
valued curve and bifurcation of the static solution occurs (see Pignataro et al. (1991)).

6.2.3. Bifurcated path

To investigate the static bifurcation phenomenon in a neighborhood of the critical
point, we assume that any function g of interest in this problem may be written in the
additive form g = gf + gb, where the subscripts f and b denote the values of g in the
fundamental and bifurcated paths, respectively. If we let gb = 0, we investigate the
fundamental path only; if gb �= 0 and we add it to gf , we obtain the value attained by
g in the bifurcated path when departing from the fundamental one.

Let us investigate a neighborhood of the bifurcation point, found by evaluating
the critical value of the load multiplier along the fundamental path. Then, we suppose
that any function of interest along the bifurcated path regularly depends on another
evolution parameter β, equal to zero at the bifurcation point and growing along the
bifurcated path. We may thus perform a power series expansion of gb in terms of β
about the critical point β = 0 (see Pignataro et al. (1991)); if overdots now stand for
the β-derivatives evaluated at β = 0 and gb(β = 0) = 0, i.e. g(β = 0) = gf , we have

gb = 0 + βġ + (β2/2)g̈ + . . . [6.13]

Performing such an expansion for the system of equations [6.6], [6.8] and [6.10],
where all functions of interest are now evaluated along the bifurcated path, we obtain
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a hierarchy of systems of ordinary differential equations, one at each order of the
β-formal power series expansion (see Pignataro et al. (1991)).

The first set of the hierarchy provides the first-order germ of the bifurcated path
and accounts for the quantities of the fundamental path at the critical point

−kv̇b + sinϑf ϑ̇b + u̇′b =
Ṅb
EA

+ Tfϑb

(
1

EA
− 1

GAs

)
= ε̇b,

ku̇b − cosϑf ϑ̇b + v̇′b =
Ṫb
GAs

+Nfϑb

(
1

EA
− 1

GAs

)
= γ̇b,

ϑ̇′b =
Ṁb

EI
, Ṅ ′

b − kṪb + ṅb = 0, Ṫ ′
b + kṄb + ṫb = 0,

Ṁ ′
b −Nf (γb + cosϑf ϑ̇b)− Ṅb(γf + sinϑf )+

+Tf(ε̇b − sinϑf ϑ̇b) + Ṫb(cosϑf+εf) + ṁb = 0

[6.14]

The terms along the fundamental path may be replaced with those evaluated by
the η-linearization discussed in the previous section, since we assumed that the
fundamental path, however non-trivial, consists of shapes adjacent to the reference
configuration. Thus, equation [6.14] becomes

u′b − kvb =
Nb
EA

+ Tfϑb

(
1

EA
− 1

GAs

)
− ϑfϑb

v′b + kub − ϑb =
Tb
GAs

+Nfϑb

(
1

EA
− 1

GAs

)
,

EIϑ′b=Mb N ′
b−kTb+nb=0, T ′

b+kNb + tb=0,

M ′
b−Nf(γb+ϑb)−Nb(γf+ϑf)+Tf(εb−ϑfϑb)+Tb(1+εf)+mb=0

[6.15]

where all overdots are omitted for a simpler notation: all quantities are thus actually
first-order increments (with the exception of the curvature k in the reference
configuration): those with subscript f are with respect to the reference configuration,
and those with subscript b with respect to the critical state. The solution to the set in
equation [6.15] provides the first-order bifurcated path with respect to β, accounting
for the strains and inner actions attained at the bifurcation point.

Next, we show a couple of meaningful benchmark examples to show how the
proposed two-parameter perturbation expansions work and provide known results.

6.2.4. Special benchmark examples

Here, we provide qualitative evidence on the generality of the differential system
[6.15]. We present two benchmark examples from the literature; since shearing strain
is neglected in these, we admit the same inner constraint, without loss of generality.



Buckling and Post-Buckling of Parabolic Arches with Local Damage 129

Straight compressed beams. In a straight (k = 0) and slender (γ = 0) beam subjected
only to a compressive force P , it is immediate to see that the non-trivial linear
response, describing the fundamental path, is

γf = 0, εf = −P/EA, ϑf = 0, Nf = −P, Tf =Mf = 0 [6.16]

Substituting equation [6.16] into equation [6.15] leads to the set of linear
differential equations

EAu′b = Nb, v′b = ϑb(1 − εf), EIϑ′b =Mb,

N ′
b = T ′

b = 0, M ′
b + Pϑb + Tb(1− εf ) = 0

[6.17]

which can be rearranged as

EAu′′b = 0, EIvIVb + P (1− εf ) v
′′
b = 0 [6.18]

Equations [6.18] are identical to the first two of (31) in Pignataro and Ruta (2003),
and we also find them in Pflüger (1964). If we neglect the initial contraction, i.e.
εf = 0, equations [6.18] coincide with the well-known differential equations for Euler
buckling.

Circular arch under radial load. A portion of a slender (γ = 0) circular arch of
radius R has uniform initial curvature k = 1/R and is loaded by a uniform radial
distribution of magnitude q with the same direction throughout the motion (i.e. “dead”
or conservative). If, as is usual in the literature, the arch is supported by rollers, the
only non-zero fields of the fundamental path follow “Mariotte’s formula”

εf = −(qR)/(EA), Nf = −qR [6.19]

Substituting equation [6.19] into equation [6.15] leads to the set of linear
differential equations

u′b −
vb
R

=
Nb
EA

, v′b − ϑb

(
1− qR

EA

)
+
ub
R

= 0,

ϑ′b =
Mb

EI
, N ′

b −
Tb
R

− qϑb = 0,

T ′
b +

Nb
R

= 0, M ′
b + qRϑb + Tb

(
1− qR

EA

)
= 0

[6.20]

If the axial strain is negligible, i.e. 1− (qR/EA) ≈ 1, the system [6.20] becomes

EA
(
u′b −

vb
R

)
− qR2

(
v′′b +

u′b
R

)
−REI

(
vIVb +

u′′′b
R

)
= 0

EI

(
v′′′b +

u′′b
R

)
+REA

(
u′′b −

v′b
R

)
− qR

(
v′b +

ub
R

)
= 0

[6.21]
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Equation [6.21] is identical to those of Simitses and Hodges (2006), after suitably
changing the independent variable and the orientation of the radial displacement.

From these two benchmark studies, we deduce that the two-parameter
perturbation expansions of the finite field equations proposed here are a reliable tool
for investigating the static stability of non-trivial equilibria. In the next section, we
investigate parabolic arches, which are the main objectives of our study.

6.3. Parabolic arches

Parabolic arches are curved beams, the axes of which are described by a segment
of parabola, symmetric with respect to its vertex. We fix the coordinate frame as in
Figure 6.1; thus, the position vector of the points of the axis is

r0(x) = xex + f [1− (x2/l2)]ey, −l ≤ x ≤ l, 0 ≤ y ≤ f [6.22]

in terms of the Cartesian abscissa x along the span, 2l long; f is the height of the arch
crown with respect to the line of the span, connecting the two ends.

2l 

x 

f 

y 

O 
ex 

ey r0 

l 

m 

sP 

xP 

P 

Figure 6.1. Reference shape of a parabolic arch with
cross-sections orthogonal to the axis

By equations [6.2] and [6.3], the tangent vectors, their magnitude (the arc length),
their unit counterpart l, the local curvature and unit normals are

dr0
dx

= ex − f
2x

l2
ey, ds =

√
1 +

4f2x2

l4
dx, l =

l2ex − 2fxey√
l4 + 4f2x2

,

k =
2fl4

(l4 + 4f2x2)
3/2

, m = −2fxex + l2ey√
l4 + 4f2x2

[6.23]
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The Frénet–Serret triad in equation [6.23] is completed by the bi-normal n= l ×
m = −ez (the sign is due to the assigned curvature, with osculating circle below the
axis ∀P ).

To abstract from the particular values of the geometrical and physical quantities in
a problem, it is customary to operate non-dimensional analyses; let us then define

(x̄, s̄, ū, v̄) =
(x, s, u, v)

l
, α =

f

l
, λ = l

√
A

I
, Ā =

GAs
EA

,

(N̄ , T̄ ) =
(N, T )l2

EI
, M̄ =

Ml

EI
, (n̄, t̄) =

(n, t)l3

EI
, m̄ =

ml2

EI

[6.24]

Equation [6.23]2 provides (at least locally) the functions x(s) and s(x); thus, we
may also deduce that x̄ = x̄(s̄) and equation [6.24] provides further non-dimensional
quantities

ds

dx
=
ds̄

dx̄
= L(x̄) =

√
1 + 4α2x̄2, k̄(x̄) = kl =

2α

L3(x̄)
. [6.25]

Substituting equations [6.24] and [6.25] into equation [6.12], the equations for the
non-dimensional η-first-order fundamental path are written in matrix form

dyf
dx̄

=Afyf+qf , yf =
{
ūf v̄f ϑf N̄f T̄f M̄f

}T
,

qf =−L{0 0 0 n̄f t̄f m̄f}T , Af = L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k 0
1

λ2
0 0

−k 0 1 0
1

Āλ2
0

0 0 0 0 0 1
0 0 0 0 k 0
0 0 0 −k 0 0
0 0 0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

[6.26]

A force load −qey that is uniform with respect to the span length implies that
mf =0⇒ m̄f =0; its components with respect to the arc length in the local basis are
given by the force equivalence

−qey dx = (nl+ tm)ds [6.27]

whence their non-dimensional counterparts according to equations [6.24].

The solution of equation [6.26] is (Hubbard and West 1995; Tufekci et al. 2017)

yf (x̄) = Yf (x̄)

[
yf (x̄0) +

∫ x̄

0

Y−1
f (ξ)q (ξ) dξ

]
[6.28]
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where Y(x̄) is called the principal matrix, or matricant (Pease 1965), or transfer
matrix (Pestel and Leckie 1963), of the homogeneous equation [6.26] about x̄ = 0.
The entries of the principal matrix for a planar curved beam in integral form can be
found in Tufekci and Arpaci (2006). They are provided in Eroglu et al. (2020) for
parabolic arches of uniform cross-sections; variable cross-sections are considered in
Eroglu and Ruta (2020). The state vector y in equation [6.28] accounts for distributed
external loads; concentrated ones at any point x̄i ∈ [−1, 1] were recently discussed in
Eroglu et al. (2020) through continuity of displacement and local balance of actions.

We admit that the given load is “dead”; then, it is easy to prove that
nb = −tfϑb, tb = nfϑb. Substituting equations [6.24] and [6.25] into equations
[6.15] provides the equations for the non-dimensional β-first-order bifurcated path in
matrix form

dyb
dx̄

= Abyb , yb =
{
ūb v̄b ϑb N̄b T̄b M̄b

}T

Ab = L

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 k −ϑf + Tf(
1

λ2
− 1

Āλ2
)

1

λ2
0 0

−k 0 1 +Nf (
1

λ2
− 1

Āλ2
) 0

1

Āλ2
0

0 0 0 0 0 1
0 0 tf 0 k 0
0 0 −nf −k 0 0

0 0 Nf
Tf
Āλ2

+ ϑf −1− Nf
Āλ2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[6.29]

In a homogeneous arch, the mass per unit length and the bending stiffness are
uniform, but the terms in equation [6.29] depend on x̄, and Ab cannot be reduced
to an upper triangular form. Hence, equation [6.29], in general, does not have
closed-form solutions. Thus, Eroglu et al. (2019) propose to find approximate
solutions by the Peano series (Peano 1888) and Volterra’s multiplicative integral
(Pease 1965; Slavik 2007)

yb (x̄)=Yb(x̄, x̄0)yb(x̄0)

Yb(x̄, x̄0)=

n∏
ı=1

Y2(x̄0+ıΔx̄, x̄0+(ı−1)Δx̄),

Y2(x̄2, x̄1) ≈ I+Ab(x̄1)(x̄2 − x̄1)+

+

(
1

2

dAb

dx

∣∣∣∣
x̄1

+
1

4

d2Ab

dx2

∣∣∣∣
x̄1

+
1

2
A2
b(x̄1)

)
(x̄2 − x̄1)

2

[6.30]

having split {x̄, x̄0} in n intervals with Δx̄ = (x̄− x̄0) /n. As n increases, Δx̄ → 0
and equation [6.30] turns into Volterra’s integral (Slavik 2007). We keep n finite, yet
large enough to ensure convergence.
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Equation [6.30]1 requires a point x̄0 where the values of the displacements and
contact actions are known. This occurs at the boundary, where non-dimensional
natural conditions are (see equation [6.24]):

clamped end : ū = 0, v̄ = 0, ϑ = 0,
pinned end : ū = 0, v̄ = 0, M̄ = 0,

free end : N̄ = 0, T̄ = 0, M̄ = 0.
[6.31]

They are three such natural conditions at each end, yielding six linear equations in
the six components yb

T (q)yb (x̄0) = 0 [6.32]

with T(q) a square 6× 6 matrix of coefficients. Non-trivial solutions yb (x̄0) require
the singularity of T(q) in terms of the load multiplier q, yielding a highly nonlinear
equation, the solutions of which are the critical loads for the arch,

det [T (q)] = 0 ⇒ q = qcr [6.33]

6.4. Crack models for one-dimensional elements

If the arch has a small plane crack on the cross-section at x̄c, its damaging effect is
described by considering two regular arch chunks connected at xc by a set of springs;
as in Eroglu and Tufekci (2017a), their compliances are related to the depth of the
crack through its strain energy Uc, given by Tada et al. (2000)

Uc=

∫
Ac

1

E′

[(∑
KIj

)2
+
(∑

KIIj

)2]
dA, cıj=

∂2Uc
∂ı∂j

, ı, j=N, T,M

[6.34]

where Ac is the cross-section as reduced by the crack; E′ = E/(1 − ν2), with ν
Poisson’s ratio of the material;KIj,KIIj are the stress intensity factors in opening and
shearing modes, respectively, due to the j-th contact action; and cıj is the compliance
of the spring representing the effect of the crack on the j-th contact action due to a
unit value of the ı-th kinematic descriptor.

In a rectangular cross-section of height h with a crack of depth a at opposite
sides, with respect to the center of curvature, consider the additional non-dimensional
quantities related to the crack

ā =
a

h
, K̄ıj =

Kıj

E
√
h
, Ūc =

Uc
hEA

, c̄N̄N̄ =
EI

l3
cNN ,

c̄T̄ T̄ =
EI

l3
cTT , c̄M̄M̄ =

EI

l
cMM , c̄M̄N̄ = c̄N̄M̄ =

EI

l2
cMN

[6.35]
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Following Tada et al. (2000), the shape functions fi of the crack magnitude ratio

f1(ā) =

√
2 tan(πā/2)

πā

0.752 + 2.02ā+ 0.37[1− sin(πā/2)]3

cos
(πā/2),

f2 (ā) =
1.22− 0.561ā+ 0.085ā2 + 0.18ā3√

1− ā
,

f3(ā) =

√
2 tan(πā/2)

πā

0.923 + 0.199 [1− sin (πā/2)]
4

cos (πā/2)
[6.36]

and equation [6.34] yield the non-dimensional compliances

c̄N̄N̄ = 4π
√
3(1− ν2)

∫ ā

0

ξ

λ3
f2
1 (ξ) dξ,

c̄T̄ T̄ = 16π
√
3
1− ν

1 + ν

∫ ā

0

ξ

Ā2λ3
f2
2 (ξ)dξ,

c̄M̄M̄ = 12π
√
3(1− ν2)

∫ ā

0

ξ

λ
f2
3 (ξ) dξ,

c̄N̄M̄ = 12π(1− ν2)

∫ ā

0

ξ

λ2
f1 (ξ) f3 (ξ) dξ.

[6.37]

Henceforth, only non-dimensional quantities will be used; with another abuse of
notation, overbars will be omitted for simplicity, except when confusion may arise.

The crack at xc implies a jump of the axis displacement in the actual shape; the
jump depends on the contact actions at the cross-sections of the left and right chunks
of the arch (whence the superscripts l, r) facing each other at xc. The inner contact
actions at the ends of the fictitious springs will, of course, be balanced. These vector
conditions are written in the local basis of the left chunk, pulled by the operator R:

R (ϑr − ϑl) d̃
r − d̃l = C∗ f̃ l, R (ϑr − ϑl) f̃

r = f̃ l [6.38]

C∗ =

⎛⎝ cNN 0 pcNM
0 cTT 0

pcNM 0 cMM

⎞⎠
The tilde here denotes vectors in actual configuration. For easier calculations,

inner actions f = {N , T ,M}T and displacement are written with respect to their
components in the reference frame; hence, equation [6.38] becomes

R(ϑr−ϑl)RT (ϑr)d
r−RT (ϑl)d

l=C∗RT (ϑl)f
l,

R(ϑr−ϑl)RT (ϑr)f
r=RT (ϑl)f

l
[6.39]
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Since R (ϑr − ϑl)R
T (ϑr) = RT (ϑl), equation [6.39] may be written in matrix

form

yr(xc) = C(a, p)yl(xc),

C (a, p) =

(
I R (ϑl(xc))C

∗RT (ϑl(xc))
0 I

)
,

[6.40]

where 0, I are the 3× 3 null and identity matrices, respectively, and p = ±1 is a
non-material parameter indicating that the crack is at the top or bottom of the
cross-section with respect to the center of curvature, respectively. Equation [6.40] is
nonlinear and can be subjected to the same perturbation performed for field
equations. When it is linearized about the initial unstressed configuration, the
condition yr(xc) = Cfy

l(xc), identical to that in Eroglu et al. (2020), is recovered.
A linearization about the non-trivial fundamental path leads to the matrix C
depending on ϑb, rearranged as

yr(xc) = Cby
l(xc) [6.41]

where Cb is too long to be reported and will be omitted for the sake of space.

For both right and left chunks, equation [6.28], solution for the static problem,
holds; the unknown initial values are now 12, and adding the jump to the boundary
conditions yields 12 equations for calculating them. It is then better to present the
jump conditions in terms of these initial values; if Î is the 6 × 6 identity, equation
[6.40] becomes

yrf (x0)=Y−1
f (xc)

(
CfYf (xc)y

l
f (x0)+

(
Cf− Î

)∫ xc

0

Y−1
f (ξ)q (ξ) dξ

)
[6.42]

For the eigenvalue problem equation [6.33] we will then update the principal
matrix for a given crack location xc inside the j-th interval between x0 and x as
follows:

Yb(x, x0) = Yb (x, x0 + jΔx)YbcYb (x0 + (j− 1)Δx, x0)

Ybc = Y2 (x0 + jΔx, xc)CbY2 (xc, x0 + (j− 1)Δx)
[6.43]

6.5. An application

Consider a fixed parabolic arch with geometric aspect α = 0.4 and slenderness
ratio ς = 100, under the described load; if the cross-section is rectangular, Ā = 0.3.
The arch is assumed to have a transverse crack at x = xc with depth ratio a = 0.6
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(recall that, to simplify the notation, we dropped the overbars for the non-dimensional
quantities related to the crack). We refer to Eroglu et al. (2020) for a detailed
examination of the static problem providing the first-order strain increments, which
are assumed to be a sufficiently accurate representation of the actual deformed shape.

If the crack is not at the crown, one of the arch chunks is more “slender” than the
other. Then, it is possible that when the former buckles, the latter goes on along its
fundamental path; thus, two different principal matrices should be used. In general,
both chunks buckle in correspondence to the same load multiplier; in any case, we
consider two different scenarios: both chunks bifurcate for the same load multiplier
(“global buckling”), or the more slender reaches bifurcation, while the other remains
on its fundamental path (“local buckling”). However, recall that the two sub-arches
are linked by relatively stiff springs, not by a smooth hinge; i.e. the crack affects a
very small portion of the cross-section and does not actually cut the arch in two.

0.0 0.2 0.4 0.6 0.8 1.0
xc

0.9

1.0

1.1

1.2

Load ratio

Global, p=-1 Global, p=1
Local, p=-1 Local, p=1

Figure 6.2. Critical load ratio for a fixed arch with
a crack characterized by a = 0.6

Figure 6.2 presents the plot of the critical load ratio (critical load of the cracked
arch divided by that of the intact arch) for an arch damaged by a crack with aspect
ratio a = 0.6 versus the crack location xc. The plot considers one half of the arch,
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because of symmetry, i.e. we plot what happens when the crack is located at the right
half of the considered arch. We present the results for both “global” (square markers)
and “local” buckling (round markers) and for both crack locations at the opposite sides
of the cross-section with respect to the center of curvature (i.e. for the non-material
parameter p = 1 (full lines) and p = −1 (dashed lines)).

We see that “local” buckling requires a greater critical load than the “global”
one, except for xc ≥≈ 0.8, i.e. in the vicinity of the right constraint. This has a
clear physical interpretation: when the crack is near the fixed end, the difference
in slenderness of the two sub-arches reaches its top; thus, the more slender chunk
attains buckling before the more stubby sub-arch. The critical load ratio of this “local”
buckling is very high at the beginning, then decreases as xc approaches the constrained
end, resembling that of “global” buckling. This also has a physical interpretation, since
for xc ≈ 0.8, the stubby chunk actually acts as an extended clamp, then makes the
system globally stiffer; on the other hand, when xc → 1, the system is practically
equivalent to the entire arch.

Actually, for other values of xc, the global buckling prevails, which is also
physically reasonable: if both chunks have comparable slenderness, they are
similarly prone to buckling and bifurcate as one. We also remark that the effect of the
crack position on opposite sides of the cross-section has limited effect on critical
load, due to considerations similar to those provided in Eroglu et al. (2019). For more
shallow arches, we may expect a stronger dependence of the critical load on p.

We remark that at xc ≈ 0 and xc ≈ 0.75, the critical load ratio attains values
greater than unity, i.e. the critical load multiplier of the damaged arch is greater
than that of the intact one. This is a seemingly paradoxical behavior, since it was
highlighted by Timoshenko and Gere (1961) that a parabolic arch with one hinge at
the crown, in general, buckles under a lower critical load with respect to an entire fixed
arch. However, we may check that this phenomenon occurs for cracks located at places
around which the incremental bending moment vanishes. Therefore, the coupling
between axial force and bending moment (accounted for by the parameter p) creates a
bending moment, which acts against the buckling strain, providing a stiffening effect.
Note that for the problems considered herein, the mode shape is still skew-symmetric,
albeit the crack induces some slight deviations from it (see Figure 6.3).

Figure 6.3 shows the buckling modes about the non-trivial fundamental path. The
deformed configuration is plotted with an amplification factor of 10, to better reflect
the effect of crack location on the section. Effects of crack position on the bifurcated
paths are clearly shown; moreover, the question is raised about the stability of
bifurcated paths and its dependence on the crack location on the section, which needs
to be investigated in future contributions.
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Figure 6.3. Buckling modes about the deformed shape for a = 0.6

6.5.1. A comparison

For comparison, we consider a symmetric circular arch, consisting of two regular
identical chunks connected with a torsional spring with stiffness kT , as in Wang et al.
(2005). This shape approximates that of a parabolic arch when its opening angle is
moderate. The arch has radius R and opening angle ϕ. This is a primitive model
of possible damage at the apex, neglecting axial, and shear compliances as well as
axial-bending coupling. For this simplified model, in our treatment, we have a single
non-zero component in the compliance matrix, cMM , which equals 1/kT .

ϕ π/6 π/6 π/3 π/3 π/2 π/2 2π/3 2π/3
kTR

EI
W Present W Present W Present W Present

0 108.36∗ 108.21∗ 27.077∗ 27.052∗ 12.025∗ 12.008∗ 6.7578∗ 6.755∗

2 129.48∗ 129.30∗ 36.794 36.737 17.956 17.926 10.806 10.788
4 147.61 147.40 43.979 43.909 21.751 21.712 13.060 13.035

6 163.21 162.97 49.366 49.282 24.277 24.231 14.418 14.388

Table 6.1. Critical loads for the symmetric mode shapes of a hinged circular arch with
a weakened section at the apex. Stars denote that the symmetric mode has a lower
critical load than the corresponding skew-symmetric mode; W=Wang et al. (2005)

In the exact treatment in Wang et al. (2005), the arch is assumed to be inextensible
and shear rigid. Table 6.1 lists the critical loads for symmetric mode shapes: indeed,
note that for skew-symmetric mode shape, the bending couple at the apex vanishes
and the torsion spring does not affect the behavior. The weakened section only affects
the critical load for symmetric mode shapes.

6.6. Final remarks

We presented two perturbation expansions of the finite governing equations for
arches modeled as curved beams, in order to investigate their non-trivial fundamental
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path and their post-buckling path. Kinematics is finite, balance is in the actual
configuration and only constitutive equations are supposed linear elastic. The
perturbation approach lets us investigate the effect of a deformed and pre-stressed
shape on the buckling load and the relevant equilibria following possible static
bifurcation. We showed that this approach recovers well-known benchmark results
and applied it to the analysis of buckling scenarios of parabolic arches under a
“vertical” load uniformly distributed with respect to the span, affected by small
cracks. The effect of the latter is suitably modeled as a set of linear elastic springs,
following previous investigations; the solution of the governing equations was found
numerically by using the so-called principal matrix of the differential system. We
obtained results for both “local” and “global” buckling and commented on them,
highlighting how seemingly paradoxical results actually have a clear physical
interpretation. Future investigations will be about the quality of the post-buckling
path and on linear vibration about non-trivial pre-stressed states, in order to detect the
effect of local damages for monitoring purposes.
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